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 When charge carriers are spatially confi ned to one dimension, conventional Fermi-liquid 

theory breaks down. In such Tomonaga – Luttinger liquids, quasiparticles are replaced by 

distinct collective excitations of spin and charge that propagate independently with different 

velocities. Although evidence for spin – charge separation exists, no bulk low-energy probe 

has yet been able to distinguish successfully between Tomonaga – Luttinger and Fermi-

liquid physics. Here we show experimentally that the ratio of the thermal and electrical 

Hall conductivities in the metallic phase of quasi-one-dimensional Li 0.9 Mo 6 O 17  diverges with 

decreasing temperature, reaching a value fi ve orders of magnitude larger than that found 

in conventional metals. Both the temperature dependence and magnitude of this ratio are 

consistent with Tomonaga – Luttinger liquid theory. Such a dramatic manifestation of spin –

 charge separation in a bulk three-dimensional solid offers a unique opportunity to explore 

how the fermionic quasiparticle picture recovers, and over what time scale, when coupling to 

a second or third dimension is restored.         
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 T
he success of Fermi-liquid (FL) theory in describing the 
properties of most ordinary three-dimensional metals makes 
it one of the triumphs of twentieth-century theoretical 

 physics. Its wide-ranging applicability is testament to the validity 
of describing a system of interacting electrons by mapping its low-
lying quasiparticle excitations onto a Fermi gas of non-interacting 
electrons. Perhaps the most striking realization of this one-to-one 
correspondence is the validity of the Wiedemann – Franz (WF) law 
in almost all known theoretical 1 – 4  and experimental 5 – 7  cases. Th e 
WF law states that the ratio of the electronic thermal conductivity 
  κ   e  to the electrical conductivity   σ   at a given temperature  T  is equal 
to a constant called the Lorenz number or Lorenz ratio,  L  0     =      κ   e  /   σ T     =    
(  π   2  / 3)( k  B  /  e ) 2  and refl ects the fact that thermal and electrical currents 
are carried by the same fermionic quasiparticles. Although the WF 
law is most applicable in the zero temperature (impurity scattering) 
limit, it is found to hold equally well at room temperature once all 
inelastic scattering processes become active 8 . 

 A marked deviation from the WF law is theoretically predicted 
when electrons are spatially confi ned to a single dimension. In 
systems that are strictly one-dimensional (1D), even weak interac-
tions destroy the single particle FL picture in favour of an exotic 
Tomonaga  – Luttinger liquid (TLL) state in which the fundamental 
excitations are independent collective modes of spin and charge, 
referred to, respectively, as spinons and holons. As heat is trans-
ported by entropy (spin and charge) and electric current by charge 
alone, spin – charge separation is a viable mechanism for the viola-
tion of the WF law 9 – 12 . Physically, repulsive interactions in a disor-
dered 1D chain can inhibit the propagation of holons relative to that 
of spinons, leading to a strongly renormalized Lorenz number 9 . 

 Experimental signatures of TLL physics have been seen in the 
spectral response of a number of 1D structures 13 – 15  and bulk crys-
talline solids 16 – 20 . Although the ratio   κ   e  /   σ T  can in principle pro-
vide a direct means of distinguishing between FL and TLL states 
at low energies, there have been no confi rmed reports to date of 
WF law violation in any 1D conductor. Identifying such systems, 
particularly bulk systems, is important as it might then allow one 
to tune, chemically or otherwise, the eff ective interchain coupling 
and thereby drive the system from one electronic state to the other. 
Th is would then open up the possibility of exploring the TLL-to-FL 
crossover and the nature of the excitations in the crossover regime. 

 Here we report a study of the electrical and thermal conductiv-
ity tensors of the purple bronze Li 0.9 Mo 6 O 17 , a quasi-1D conductor 
whose (surface-derived) photoemission lineshapes 19 , and density of 
states profi les 20  contain features consistent with TLL theory.  

 Results  
  Electrical resistivity of Li 0.9 Mo 6 O 17    .   As shown in  Figure 1a , 
Li 0.9 Mo 6 O 17  possesses a set of weakly coupled zigzag chains of 
MoO 6  octahedra with a hole-concentration, believed to be close to 
half-fi lling 21 , running parallel to the crystallographic  b  axis. Th e  T -
dependence of the  b  axis resistivity, plotted in  Figure 1B , varies linearly 
with temperature above 100   K, then as  T  is lowered,   ρ   b ( T ) becomes 
superlinear. Below around 20   K, Li 0.9 Mo 6 O 17  undergoes a crossover 
from metallic to insulating-like behaviour, ascribed to the formation 
of a putative charge density wave 22,23 . Also plotted in  Figure 1b  
is the interchain resistivity   ρ   a ( T ). Th e anisotropy in the electrical 
resistivity,   ρ   a  ~ 100  ρ   b  ( �      ρ    c  ) agrees well with optical conductivity 
measurements 24  and highlights the extreme one-dimensionality 
of the electronic system. Note that although the  T -dependence 
of the resistivity is similar along all three crystallographic axes, 
the corresponding interchain mean free paths are estimated to be 
less than the spacing between adjacent zigzag chains, implying 
incoherent interchain transport, at all fi nite temperatures.   

  Th ermal and electrical Hall conductivities of Li 0.9 Mo 6 O 17    .   In. 
most solids, the thermal conductivity   κ   can be described as the 

sum of two independent contributions;   κ      =      κ   e     +      κ   ph , where   κ   ph  is the 
 phonon  thermal conductivity. In metals with short mean-free-paths, 
these two terms are comparable in magnitude, making it diffi  cult 
to  accurately determine the Lorenz ratio. As shown in the Methods 
section  however, the transverse Hall conductivity   κ    xy   is purely elec-
tronic in origin (the phonon current is strictly unaff ected by a magnetic 
fi eld) and thus measurements of the thermal Hall eff ect (the thermal 
analogue of the electrical Hall eff ect) provide a means of isolating the 
 electronic component. Moreover, the ratio of the thermal and electri-
cal Hall conductivities   κ    xy   /   σ    xy   T , known as the Hall Lorenz number 
 L   xy   , is also expected to be equal to  L  0  for a Fermi liquid. In our thermal 
Hall apparatus (inset to  Fig. 2a  and described in more detail in 
the  Methods section), a temperature gradient is applied along the 
 conducting chain direction ( b  axis, taken here to be the  x  axis) and a 
magnetic fi eld  H  /  /  c  ( H  /  /  z ) generates a Lorentz force that produces a 
transverse thermal gradient along  a  ( y ). Th e main panel in  Figure 2a  
shows the transverse temperature diff erence  Δ  T   y  ( H ), normalized by 
the applied power and multiplied by the sample thickness, at a 
number of selected temperatures. As expected,  Δ  T   y   is linear and odd 
in fi eld.  Figure 2b  shows the  electrical Hall resistivity at comparable 
temperatures. 
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      Figure 1    |         Crystal structure and electrical resistivity of the quasi-one-
dimensional metal Li 0.9 Mo 6 O 17   . ( a ) Three-dimensional crystal structure showing 

isolated, conducting, zigzag chains of MoO 6  octahedra along the  b  axis in dark 

purple and non-conducting octahedra and MoO 4  tetrahedra in light pink. Li ions 

are shown as green spheres. ( b ) Intra-chain (  ρ    b  ) and inter-chain (  ρ    a  ) resistivities 

of Li 0.9 Mo 6 O 17  as a function of temperature. Note that   ρ    a   has been scaled by 

a factor of 1 / 100. The error bars in   ρ    a   and   ρ    b   (    ±    7 %  and 12 % , respectively) 

represent the uncertainty in the determination of the sample dimensions and the 

standard deviation of the room temperature resistivity of the subset of curves 1 – 5 

shown with solid lines in  Supplementary Figure S1a,  respectively. For details 

of how   ρ    b   was determined, please refer to the section on isolating the intrinsic 

in-chain resistivity in the Supplementary information.  
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 To determine   κ    xy   and   σ    xy   at each temperature, it is also necessary 
to evaluate the longitudinal terms   κ    xx   (    =      κ    b  ),   κ    yy   (    =      κ    a  ),   σ    xx   (    =    1 /   ρ    b  ) 
and   σ    yy   (    =    1 /   ρ    a  ) (see the Methods section for the derivation of   κ    xy  ). 
As shown in  Figure 3a ,   κ   a  and   κ   b  show marked anisotropy. Due 
to the extreme resistivity anisotropy,   κ   a  is presumed to be purely 
phononic in origin and the  ab  anisotropy in   κ  ( T ) can be attrib-
uted either entirely to the electronic contribution within the chains 
or to a combination of   κ    e   and additional anisotropy in the phonon 
spectrum and / or scattering rate. 

  Figure 3b  shows the resultant thermal and electrical Hall con-
ductivities as obtained from the data presented in  Figures 1b, 2a, 
2b and 3a . According to the WF law, the ratio   κ    xy   /   σ    xy   should 
decrease (linearly) with decreasing temperature. In Li 0.9 Mo 6 O 17 , 
however, the opposite is true; while   σ    xy   increases by a factor  ~ 60 
between 300   K and 25   K,   κ    xy   increases by more than 3,000. Th is 
implies a change in the Hall Lorenz number  L   xy   (    =      κ    xy   /   σ    xy   T ) of more 
than 500 over the same temperature interval. Th e thermal Hall angle 
tan  θ   T     =      κ    xy   /   κ   e , which provides a measure of the electron mobility, 
reaches a value  ~ 0.6 at  T     =    50   K and   μ   0  H     =    10 Tesla comparable with 
that observed in elemental Cu (ref.   25). (Here we have assumed that 
  κ   e     =      κ   b  –   κ   a ). By comparison, the corresponding electronic Hall angle 
  σ    xy   /   σ    xx   ~ 1.25 × 10     −    3 , illustrating the striking diff erence in mobilities 
for entropy and charge transport in Li 0.9 Mo 6 O 17 .   

  Lorenz ratios in Li 0.9 Mo 6 O 17    .    Figure 3c  shows  L   xy   /  L  0 ( T ) for two 
samples over the entire temperature range studied. (Note that 
we have confi ned our Hall measurements to the metallic regime 
above the resistivity minimum.) At  T    =     300   K,  L   xy   /  L  0  ~ 100 and as 
 T  falls,  L   xy   /  L  0  follows an inverse power-law ~  T     α      xy   (  α    xy   ~     −    2.3), reach-
ing a value ~ 10 5  at  T     =    25   K. Th e solid triangles in  Figure 3c  are the 

 corres ponding estimates of  L   xx   /  L  0     =    (  κ   b  –   κ   a ) /   σ    b   T , that is, assum-
ing an isotropic   κ    ph  . At  T    =     300   K,  L   xx    /  L  0  ~ 7.5    ±    1.5, rising to  ~ 35 
at  T     =    25   K. Th e horizontal dashed line is the expected FL result. 
Signifi cantly, in both conventional metals like Cu (ref.   25) and Ni 
(ref.   26), and also in correlated metals like YBa 2 Cu 3 O 6.95  (ref.   25) 
and URu 2 Si 2  (ref.   27) (whose longitudinal thermal conductivity is 
dominated by phonons), neither  L   xx   /  L  0  nor  L   xy   /  L  0  is ever larger than 
unity. (As shown in  Supplementary Figure S1 , we have also verifi ed 
this result for Ni using our own thermal Hall apparatus). Moreover, 
according to standard Boltzmann transport theory 26 ,  L   xx   /  L  0  ~     〈     λ   s      〉     /
     〈     λ   e      〉     whereas  L   xy   /  L  0  ~     〈     λ   s      〉     2  /     〈     λ   e      〉     2 , where     〈     λ   s ( e )     〉     is the Fermi-
surface averaged mean free path for entropy (charge) transport, 
respectively. Hence, in ordinary metals,  L   xy   /  L  0  is expected to vary as 
( L   xx   /  L  0 ) 2 , as found experimentally 25 . In Li 0.9 Mo 6 O 17 , however, 
( L   xx   /  L  0 ) 2  does not scale with  L   xy   /  L  0  and cannot be made to scale 
with  L   xy   /  L  0  for any reasonable estimate for the phonon contribution 
to   κ    xx   (  κ    b  ). Th is, together with the unprecedented enhancement of 
the WF ratio by several orders of magnitude, provides compelling 
evidence for the breakdown of the conventional FL picture in this 
quasi-1D conductor.    

 Discussion 
 Before discussing the violation of the WF law in Li 0. 9 Mo 6 O 17  in 
terms of 1D correlation physics, we fi rst consider alternative sce-
narios based on localization eff ects. In non-interacting systems, it 
has been shown theoretically that the WF law is robust to impurity 
scattering of arbitrary strength up to the Anderson transition 1 – 4 . 
In strongly correlated electron systems, however, the opening of a 
Mott gap can lead to a strong reduction of the electrical conductivity 
whereas the transport of heat, through spin fl uctuations, can remain 
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    Figure 2    |         Thermal and electrical Hall measurements of Li 0.9 Mo 6 O 17 . ( a ) Transverse temperature difference  Δ  T   y   per unit power (multiplied by the sample 

thickness) as a function of applied magnetic fi eld at various temperatures. Inset shows a schematic diagram of experimental setup used to measure the 

thermal Hall effect. Note that the thermocouples were placed either directly opposite to one another or (as shown) displaced longitudinally to allow both   κ    xx   

and   κ    xy   to be measured simultaneously. Both set-ups gave the same response.  Δ  T   y   is dominated by the  H -linear, odd-component   κ    xy  . The fi eld-independent 

component of  Δ  T   y   due to   κ    xx   has been subtracted from the data. ( b ) Hall resistivity as a function of applied magnetic fi eld at various temperatures in the same 

geometrical arrangement.  
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high 10 . Localization corrections associated with electron – electron 
interactions are also believed to induce corrections to   κ    e   that do not 
scale with the WF ratio, leading to an enhancement in  L  /  L  0  (ref.  28 ). 
Such interaction corrections only appear in the diff usive limit, how-
ever, below a characteristic energy scale  k   B   T   d      =      ћ   / 2  π  τ   determined 
by the impurity scattering rate 1 /  τ . Estimates for 1 /   τ   in Li 0.9 Mo 6 O 17  
from in-chain resistivity or magnetoresistance measurements give 
 T  d  values of order several tens of Kelvin. Whereas this estimate for 
the diff usion limit is consistent with the temperature ( T  min  ~ 20   K) 
below which the resistivity starts to increase with decreasing  T , the 
behaviour of the magnetoresistance below  T  min  is found to be more 
consistent with density wave formation than localization correc-
tions 23 . In addition, the strong violation of the WF law is observed in 
the metallic regime between  T  min  and room temperature, and more 
signifi cantly, above 100   K where the resistivity itself is strictly  T -lin-
ear. Collectively, these observations appear to rule out localization 
as the origin of the WF law violation in Li 0.9 Mo 6 O 17 . 

 Turning now to the issue of dimensionality, the form of the 
enhancement of the WF ratio in Li 0.9 Mo 6 O 17  is at least qualitatively 
consistent with the original theoretical prediction for a spinless 
TLL 9 . An enhancement in  L   xx   /  L  0  originates from the fact that while 
heat can be transmitted through a non-magnetic impurity (via 

spinons), the latter acts as a near-perfect refl ector (back-scatterer) 
of charge (holons). According to this picture,  L   xx   is predicted to 
be of order  L  0  /  K  at high  T , where  K  is the dimensionless conduct-
ance or Luttinger parameter, and as temperature is lowered,  L   xx   /  L  0  
varies as a power-law,  L   xx   /  L  0  ~  T   4    −    2  / K   which diverges for  K     <    0.5, 
corresponding to repulsive, long-range interactions 9 . Although 
the original model considered a single impurity embedded in an 
interacting spinless 1D chain, the theory has been shown to apply 
equally to the case of multiple impurities and the inclusion of spin 
degrees of freedom with only minor modifi cations 9,11 . Concerning 
the magnitude of the violation, a recent theoretical treatment of 
a weakly disordered TLL in the regime of large Umklapp scatter-
ing found an enhancement of  L   xx   /  L  0  of several orders of magnitude 
close to commensurate fi lling, owing to the fact that the spinon 
contribution to the thermal current cannot be degraded by Umk-
lapp scattering processes 10 . To the best of our knowledge, no other 
 ‘ gapless ’  model can account for such a gross violation of the WF law 
in the metallic regime. 

 Although there is currently no specifi c theoretical framework for 
the thermal Hall response in a quasi-1D conductor, it has been shown 
theoretically that a system of weakly coupled TL chains can exhibit an 
electrical Hall response that shows a power-law correction to the free 
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      Figure 3    |         The Lorenz ratios of Li 0.9 Mo 6 O 17 . ( a ) Intra-chain (  κ   b ) and inter-chain (  κ    a  ) thermal conductivities as a function of temperature. The error bars 

in   κ   (    ±    15 % ) represent the uncertainty in the determination of the sample dimensions and the effective distance between the junctions of the differential 

thermocouple on the sample. ( b ) Electrical Hall (  σ    xy  ) and thermal Hall (  κ    xy  ) conductivities per unit fi eld as a function of temperature. The error bars in   σ    xy   (  κ    xy  ) 

are estimated from the standard deviation of multiple measurements on different samples. ( c ) Hall Lorenz ratio ( L   xy     / L  0 ) for samples no. 1 and no. 2 and the 

longitudinal Lorenz ratio ( L   xx     / L  0 ) and its square for no. 1. The error bars in  L   xy     / L  0  and  L   xx     / L  0  represent compound errors obtained from the various sources 

described above. The dotted line is guide to the eye. The horizontal dashed line represents the expectation from Fermi-liquid theory.  
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Fermi (band) value in the presence of Umklapp scattering 29 .  Moreover, 
the divergence of  L   xy   /  L  0  with decreasing temperature ( Fig. 3c ) 
is qualitatively, if not quantitatively, similar to that found in  L   xx   /  L  0 . 
Th is divergence would seem to imply that electronic interactions in 
Li 0.9 Mo 6 O 17  are indeed repulsive and long range, in agreement with 
conclusions drawn from angle-resolved photoemission spectroscopy 19  
and scanning tunnelling microscopy 20  where  K , as obtained from the 
anomalous exponent   α  , is found to lie between 0.2 and 0.25. Th e fact 
that  L   xy   /  L  0  does not scale with ( L   xx   /  L  0 ) 

2 , as expected for a FL, might 
also be an intrinsic property of the TLL. Power-law behaviour is also 
predicted and indeed found in the  T -dependence of the dc resistivity. 
Specifi cally,   ρ    b  ( T ) ~  T  between 100   K and 300   K ( Fig. 1b ). Th e value of 
 K  extracted from the power-law exponent in   ρ    b  ( T ) depends on the 
degree of commensurability. An exponent close to unity is consistent 
with  K    =     0.25 for a system at or near quarter-fi lling 30 . According to 
band-structure calculations 21  however, Li 0.9 Mo 6 O 17  is believed to be 
closer to half-fi lling, for which a  T -linear resistivity corresponds to 
 g ~  1 (ref.  29 ), that is, to the non-interacting case. Th e origin of this 
inconsistency is not understood at present. 

 Since the TLL state is predicted to occur only in a strictly 1D 
interacting electron system, the inevitable coupling that exists 
between the chains in Li 0.9 Mo 6 O 17  (to generate the Hall response) 
and parameterized by the interchain hopping integral  t   �  , ought to 
inhibit the observation of TLL physics in the zero-frequency limit 31,32 . 
(For simplicity, we assume here that  t   �   is the same in both orthog-
onal directions). For  k   B   T     <     t   �  , charge should hop coherently in all 
three dimensions, albeit with anisotropic velocities, and the system 
show characteristics of a Fermi-liquid. Once thermal broadening 
is comparable with the warping of the Fermi sheets, however, hop-
ping between chains will become incoherent, leading to a putative 
3D – 1D dimensional crossover. Notably, in the presence of strong 
interactions, the value of  t   �   can be signifi cantly renormalized 30,33  and 
as stated above, both band structure calculations 21  and photoemis-
sion spectroscopy 19  indicate that Li 0.9 Mo 6 O 17  lies close to half-fi lling. 
Th us, provided nearest neighbour interactions are dominant, intra-
chain correlation eff ects in Li 0.9 Mo 6 O 17  may be strong enough that its 
physical response is indistinguishable from that of a TLL 33 , at least at 
an energy scale  k  B   T  ~  20   K   ~   2   meV. Below this scale, the FL ground 
state should recover, though whether or not such a crossover to FL 
physics can ever be realized in Li 0.9 Mo 6 O 17 , given its propensity to 
superconducting 22  and density-wave 23  order, remains to be seen. 

 Finally, we turn to consider how one might controllably aff ect the 
interaction strength or eff ective dimensionality in Li 0.9 Mo 6 O 17  so that 
the spin and charge are recombined. One obvious route to try is to vary 
the band fi lling, for example, through substitution of Mg for Li. On the 
basis of the diagonal principle, the ionic radius of Li     +      ions is compara-
ble with that of Mg 2    +     . Th is suggests that such substitution could pro-
ceed without adversely aff ecting the 1D nature of the system, allowing 
the role of correlations in the TLL-to-FL crossover to be explored in 
a controlled manner. Th e results reported in this manuscript suggest 
that an accompanying study of the variation of  L   xy   with doping would 
provide a clear litmus test of the recovery of the FL state.   

 Methods  
  Sample growth and characterization   .   Single crystals of Li 0. 9 Mo 6 O 17  were grown 
using a temperature gradient fl ux method 22  and cleaved within the  a – b  plane. Th e 
resulting samples were face-indexed using a single-crystal X-ray diff ractometer to 
determine the  a - and  b -axes. Th ereaft er bar-shaped crystals (approximate dimen-
sions 700 × 100 × 20    μ m 3 ) were cut from the face-indexed sample using a wire-saw.   

  Isolating the intrinsic in-chain resistivity   .   To test the validity of the WF law, 
accurate measurements of both the electrical resistivity and thermal conductivity 
are essential. In a quasi-1D conductor, it is especially problematic to measure the 
smallest of the resistivity tensor components, because even a small admixture of 
either of the two larger orthogonal components can give rise to erroneous values 
and distort the intrinsic temperature dependence of the in-chain resistivity. In 
Li 0.9 Mo 6 O 17 , reported room-temperature values for the in-chain ( b  axis) resistivity 
range from 400    μ  Ω    cm 23  to more than 10   m Ω    cm 34,35 . Moreover, in instances where 

large (that is,     >    1 m Ω    cm)   ρ    b   values have been reported,   ρ    b   ( T ) tends to show a sub-
linear  T -dependence below 300   K. 

 To isolate the in-chain resistivity extreme care is needed to electrically short 
out the sample in the two directions perpendicular to the chain and thus ensure 
that current fl ow between the voltage contacts is uniaxial. In our experiments, this 
is achieved either by coating conductive paint or evaporating gold strips across the 
entire width of the sample in the two orthogonal current directions. Th e mount-
ing confi guration is shown as an inset in  Supplementary Figure S2 . Th e zero fi eld 
measurements were carried out for 4.2   K     <     T     <    300   K in a  4 He dipper cryostat. In 
total, we measured   ρ    b  ( T ) of over 30 single crystals to allow us to better identify the 
intrinsic  T -dependence of the chains. For further details of how we determined 
the in-chain electrical resistivity, please refer to the corresponding  section in the 
  Supplementary information .   

  Electrical Hall effect   .   Th e electrical Hall eff ect was measured using the standard 
four-point method. Th in long crystals were mounted freestanding using Dupont 
4929 silver epoxy. Two pairs of transverse voltage contacts were used, to check for 
reproducibility, and the whole process was repeated on three diff erent samples. 
Owing to slight misalignment of the contacts, the measured signal contained both 
a symmetric (that is, magnetoresistive) and an antisymmetric part (the Hall signal). 
Using the relation  V   H      =     ½ ( V ( B )    −     V (    −     B )), we were able to isolate the smaller 
antisymmetric Hall voltage  V   H  , which, when normalized by  B , yields the Hall 
coeffi  cient  R   H  . Th e uncertainty here refl ects the scatter of the data from diff erent 
measurements using diff erent voltage contact pairs. To determine the Hall Lorenz 
number  L   xy   (    =      κ    xy   /   σ    xy   T ), we extract   σ    xy   from our Hall data using the following 
expression:  

s s s
s s

xy H xx yy
H xx yy

R B
V t

I
= =

  where  t  is the crystal thickness and  I  is the applied current.   

  Thermal conductivity measurements   .   For the thermal conductivity  measure ments, 
we used a zero-fi eld set-up housed in a  4 He fl ow cryostat that  covers the  temperature 
range 10   K     <      T      <     300   K. We employed a modifi ed steady-state method 36 , shown 
schematically in  Supplementary Figure S3 , in which a temperature gradient, 
measured using a diff erential thermocouple, is set up across the sample through a 
pair of calibrated heat-links attached to each end. Th e heat-links are also diff erential 
thermocouples. Th e sample is suspended by the free ends of the heat-links between 
two platforms that are weakly coupled to the heat-bath. Each platform houses a 
heater that enables a temperature gradient to be set up across the sample in both 
directions at a fi xed heat-bath temperature. Th e thermal  conductivity   κ   is related to 
the measured quantities through the relationship,  

k =
Δ

⎛
⎝⎜

⎞
⎠⎟

P
l

A Tx

  where  P  is the power through the cross-sectional area  A  and  l , the separation of 
contacts between which the temperature diff erence  Δ  T   x   is measured. 

 From the temperature drop across the heat-links, we can estimate the power 
entering and leaving the crystal. Th is is a distinct advantage of the heat-link 
method over other thermal conductivity experimental setups, as it ensures that any 
power loss due to radiative losses and heat conduction through the thermocouple 
wires to the heat-bath is known. Although power losses due to radiation are signifi -
cant (of order 20 % ) at high temperature, the total power loss across the sample falls 
to below 2 %  at  ~ 200   K. Provided the diff erence between the power entering the 
sample and leaving the sample remains below 20 % , the power through the sample 
can be taken as the average of the input and output power. 

 Regarding possible extrinsic contributions to  Δ  T   x  , thermocouple readings are 
always taken with and without heat input (in either current direction), and the 
direction of the heat current is reversed to remove any eff ect due to stray thermal 
gradients. Finally, data are always taken in the regime where the extracted value 
for the thermal conductivity (or thermal Hall conductivity) is independent of the 
strength of the heat current, thus eliminating nonlinear eff ects. 

 Th e largest errors associated with our absolute measurement of the thermal 
conductivity are geometrical errors associated with the fi nite width of the 
thermocouple contacts relative to their separation, as well as with the 
 uncertainty in determining the overall dimensions of the samples.  Depending 
on the size of the crystal to be studied, a scanning electron, focused ion 
beam or high-power optical microscope was used to measure its thickness. 
Th e  corresponding errors are     ±    1     μ  m,     ±    1     μ  m and     ±    5     μ  m, respectively. Th e 
 separation between contacts and the width of the sample was determined 
using a high-power optical microscope with an error of  ~ 7 % . To measure 
the  separation between contacts, we adopted the convention to measure the 
 separation between the mid-point of the contacts for both the thermal and 
 electrical measurements 37 . From these considerations, we associate an upper 
bound for the error in the fi nal values of thermal conductivity of     ±    15 %  for 
the samples. Th e reproducibility in our measurements of   κ   a  and   κ   b  is shown 
in the  Supplementary Figures S2A and S2B  respectively.   

  Thermal Hall measurements   .   By defi nition, the thermal Hall eff ect (also known 
as the Righi – Leduc eff ect) is the development of a transverse thermal gradient 

(1)(1)

(2)(2)
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( �  T   y  ) in the presence of a longitudinal thermal gradient ( �  T   x  ) and an orthogonal 
magnetic fi eld ( B   z  ). Crucially,  �  T   x   is generated by a thermal heat current along  x ; 
 J  h, x      =        −      κ    xx    �  T   x   where   κ    xx   is the  total  longitudinal thermal conductivity, including 
the phonon component. Th e transverse thermal current (  κ    xy    �  T   x  ), due to the mag-
netic fi eld defl ection of the electronic charge carriers, is balanced by a heat current 
due to the  ‘ total ’  thermal conductivity in the opposite direction. Th is is required by 
the condition that there is no net heat current fl ow in the transverse direction once 
steady state has been established. Again, inclusion of the relevant elements of the 
total thermal conductivity tensor leads to the following expression:  

J T Th y xy x yy y, = = ∇ − ∇0 k k

  giving,

  k k k kxy yy y x yy xx y h xT T T J= ∇ ∇ = ∇/ / ,

  Hence, the thermal Hall conductivity was calculated as,
 

k
k k

xy
xx yy yT t

P
=

Δ

  where  t  is the thickness of the sample. 
 To measure the thermal Hall eff ect, the same set-up on which the longitudinal 

(zero-fi eld) thermal conductivity measurements were performed was used, although 
in this case, the diff erential thermocouple was positioned on opposite edges of the 
crystal. Th e sample was always positioned so that the heat fl ow in the longitudinal 
direction was along the  b  axis of the sample. Th e experiment was placed in an 
evacuated chamber immersed in liquid helium within the coil of a superconducting 
magnet. Heating power was provided by a resistive element thermally connected to 
the experimental platform and was controlled by a Lakeshore temperature control-
ler. During a measurement of the thermal Hall eff ect, the temperature was fi rst sta-
bilized, then a fi xed fi eld applied and fi nally heat current passed through the sample. 
Th e modifi ed steady state method was then employed as before. Th e power loss was 
found to be  ~ 20 %  at room temperature, reducing to  ~ 10 %  below 200   K. Th e experi-
ment is then repeated at multiple fi eld values. To isolate the thermal Hall response, 
both positive and negative polarities of the magnetic fi eld were used. As with the 
longitudinal thermal conductivity measurements, the heat direction was then 
reversed and the measurements repeated. Finally, possible extrinsic contributions to 
the thermal Hall conductivity, for example due to anisotropy in the thermopower, 
are discussed in detail in the section on possible internal heating eff ects in the 
Supplementary Information.                                   
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