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ABSTRACT

3DLigandSite is a web server for the prediction of
ligand-binding sites. It is based upon successful
manual methods used in the eighth round of the
Critical Assessment of techniques for protein
Structure Prediction (CASP8). 3DLigandSite utilizes
protein-structure prediction to provide structural
models for proteins that have not been solved.
Ligands bound to structures similar to the query
are superimposed onto the model and used to
predict the binding site. In benchmarking against
the CASP8 targets 3DLigandSite obtains a
Matthew’s correlation co-efficient (MCC) of 0.64,
and coverage and accuracy of 71 and 60%, respect-
ively, similar results to our manual performance in
CASP8. In further benchmarking using a large set of
protein structures, 3DLigandSite obtains an MCC of
0.68. The web server enables users to submit either
a query sequence or structure. Predictions are
visually displayed via an interactive Jmol applet.
3DLigandSite is available for use at http://www
.sbg.bio.ic.ac.uk/3dligandsite.

INTRODUCTION

Proteins often perform their function on ligands (e.g.
enzyme substrates) or are regulated by them. Therefore
the identification of ligand-binding sites is important.
The explosion of protein sequences from genome
sequencing projects makes it essential for automated
methods to predict ligand-binding sites. Further, protein
structures are often solved in the absence of ligands,
making it important that we are able to identify binding
sites for such proteins.

Many methods have been developed for the prediction
of ligand-binding sites (reviewed in 1). Sequence conser-
vation is commonly used to predict binding sites (2,3).
Many methods combine sequence conservation with struc-
tural data (4–6). Evolutionary trace was the first approach
to do this by mapping and clustering conserved residues

onto protein structure (4,5). Other approaches use probes
to identify pockets on the protein surface that are likely to
be binding sites (7–9). More recent approaches have
focused on using ligand-binding data from similar struc-
tures (10–13). Firestar (10) generates sequence alignments
of a query with ligand-bound proteins present in the
Protein Data Bank (PDB) and combines these with
residue conservation to make predictions. FINDSITE
(11) superimposes and clusters ligands from similar
structures onto a query structure and makes consensus
predictions of residues that contact ligands in a cluster.
FINDSITE is available as part of the PSiFR web
server (12).
Here we present 3DLigandSite, a web server for the

prediction of ligand-binding sites, which automates the
manual process we used for ligand-binding site prediction
in the eighth round of the Critical Assessment of tech-
niques for protein Structure Prediction (CASP8) (13),
where we were one of the top-performing groups (14). In
CASP8, we superimposed ligands from similar structures
onto a structural model of the target protein, in an
approach similar to FINDSITE. We also mapped
residue conservation onto the protein surface and made
predictions combining data from both approaches.
3DLigandSite uses ligands from similar structures to
make predictions. It also provides details of conservation
as a further guide for the user, but residue conservation
information is not currently used in the predictive process.
3DLigandSite performance has been assessed on two

sets of proteins; the CASP8 targets, and a set of 617
proteins from the FINDSITE test set (11). On the
CASP8, set of 28 protein targets 3DLigandSite obtained
a Matthew’s Correlation co-efficient (MCC) (15) of 0.64
and coverage and accuracy of 71 and 60%, respectively.

METHODS

The 3DLigandSite algorithm

Figure 1 shows an overview of the 3DLigandSite algo-
rithm. Users may either submit a protein structure or
sequence. For sequence submission, Phyre (16), our
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in-house structure prediction server, is run to generate a
model of the protein. Structures similar to the query are
identified using MAMMOTH (17) to perform a structural
scan of the user-provided structure or Phyre model
(referred to as the query structure) against a library of
protein structures that have bound ligands. The alignment
of the similar structures with the query superimposes their
bound ligands onto the query structure. The ligands from
the top 25 MAMMOTH hits are retained for analysis. To
remove weak structural matches only MAMMOTH hits

with a –LnE score >7 are retained. Single linkage cluster-
ing is performed on the ligands with a maximum separ-
ation of 0.5Å+van der Waals radii between ligands in a
cluster. The cluster with the highest number of ligands is
selected as the general area of the binding site. The
number of ligands within a distance threshold of each
residue is used to predict the residues that are part of
the binding site. Residue conservation is also calculated
and mapped onto the target structure (see below). More
details of these steps are described in the sections below.

Generating the structural library

The identification of ligands present in the PDB (18) that
are biologically relevant and not present as solvent mol-
ecules can be difficult to perform automatically. We used a
list of heterogens provided by Uniprot (19) that are
unlikely to be present in protein structures as solvent
and manually supplemented it with further heterogens
that we considered to be likely to be biologically relevant.

Selecting residues

The chosen cluster is used to predict the binding site in the
query protein. The number of ligands within a fixed
distance (distance cut off) of a residue is used to determine
if it is predicted to form part of the binding site. The
threshold number of ligands is a proportion of the total
number of ligands in the cluster and is set using Equation
(1) (where m is a constant that determines the proportion
of the ligands that need to be within the distance cut off to
be predicted as part of the binding site). The threshold
needs to account for variation between the modeled and
real structure and between the ligands in the cluster, so a
range of distances from 0.2Å to 2.0Å (‘Evaluating
3DLigandSite performance’ section and Figure 2) and a
range of m values in the equation between 0.10 and 0.35
were considered. The server uses a distance setting of 0.8 Å
and Equation (1) with m set to 0.24.

Threshold ¼ m� cluster size+1 ð1Þ

Calculating residue conservation

Residue conservation is calculated using the Jensen
Shannon divergence (JSD) score (20). PSI-BLAST (21) is
run for the query sequence. The full length sequences of
PSI-BLAST hits with E-values below 1e-03 are aligned
with MUSCLE (22) to generate a multiple sequence align-
ment which is used to calculate conservation. JSD is
calculated using default settings as described by Capra
and Singh (20), which uses BLOSUM-62 as a background
distribution. Residue conservation is not used in the
3DLigandSite prediction. It is provided as a feature of
the server which the user can use in conjunction with the
3DLigandSite prediction.

EVALUATING 3DLIGANDSITE PERFORMANCE

3DLigandSite has been benchmarked on the set of struc-
tures that were used for the assessment of FINDSITE (11)
and on the targets assessed for the ligand-binding category

Figure 1. Overview of 3DLigandSite process.
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in CASP8 (14). The FINDSITE data set was filtered using
our list of accepted ligands, which resulted in a set of 617
test structures. 3DLigandSite made predictions for all but
three of these structures. 3DLigandSite performance was
assessed using a range of distance cut offs between 0.2Å
and 2.0Å at 0.2Å intervals and with m in Equation (1) set
to values in the range 0.10–0.35. We assessed the predic-
tions using the MCC (15), and coverage and accuracy, all
of which have been used for assessment in recent CASP
experiments (14,23). The results for the m setting of 0.24
are displayed in Figure 2 (the full set of results is shown in
Supplementary Figure S1). At low-distance cut offs, high
accuracy and lower coverage are obtained and as the
distance cut off increases the accuracy lowers while the
coverage increases. The maximum MCC of 0.68 is
obtained at a 0.8Å distance cut off. The MCC decreases
at lower and higher cut offs (Figure 2). At this distance cut
off 70% coverage and accuracy are obtained. This setting
was selected for use in the 3DLigandSite server and for the
analysis of the CASP8 targets.

To make our predictions of the 28 CASP8 targets com-
parable with the predictions made during CASP8, the
structural library was restricted to structures present in
the PDB before May 2008 (the start of CASP8). Using
the settings described earlier, 3DLigandSite obtained a
MCC of 0.64 and coverage and accuracy of 71 and
60%, respectively. These results are comparable to our
human performance in CASP8, where we obtained
MCC of 0.63, 83% coverage and 56% accuracy (13).

THE 3DLIGANDSITE WEB SERVER

The 3DLigandSite server is available at http://www.sbg
.bio.ic.ac.uk/3dligandsite. Users can submit either a
protein sequence or a structure. For sequence submission,

the first step of the prediction process is to model the
structure of the protein using Phyre (16).

Results output

3DLigandSite output is split into four main sections. The
first provides details of the phyre model used (only where
a sequence has been submitted) and details of the search
against the structural library. This information provides
details of confidence in two individual steps of the predic-
tion process, which can aid the user in deciding their con-
fidence in the prediction.
The second section shows a table of the ligand clusters

identified. The cluster containing the greatest number of
ligands is automatically selected for prediction by
3DLigandSite. This table provides details of the other
clusters and allows the user to view the potential sites
associated with these clusters. Links are provided to
Jmol applets for each cluster, similar to that of the main
prediction (see below and Figure 3).
The final two sections display the 3DLigandSite predic-

tion. A table lists all of the predicted binding-site residues
with details of the number of ligands that they contact, the
average distance between the residue and the residue con-
servation score (JSD). A table of the heterogens present in
the cluster is provided together with details of the source
structures from the structural library. A Jmol (www.jmol
.org) applet enables visualization of the modeled protein,
the ligand cluster and the predicted binding site (Figure 3).
Jmol is java based and only requires users to have a java
runtime environment installed on their machine. By
default, the protein is displayed in cartoon format with
metallic ligands in spacefill and non-metallic ligands in
wireframe representation. A table to the right of the
applet provides controls for users to modify the display
in the applet. Options are available to modify the display
of the whole protein, predicted residues and ligands.

Figure 2. 3DLigandSite performance. (A) MCC obtained at different distance cutt offs. (B) A graph of accuracy versus coverage for the distance
thresholds from (A).
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The protein and predicted binding site can be shown in
cartoon, spacefill or wireframe formats. The protein can
be colored to show the predicted binding site or residue
conservation. The user can also label the predicted
residues making it easier for them to investigate the pre-
dicted binding site. Further, spacefill and wireframe
options are also available for displaying the ligand
cluster. These multiple viewing options provide a
powerful way for the user to interrogate the prediction
displayed in the applet.

CONCLUDING REMARKS

3DLigandSite was developed to automate our manual
approach for predicting ligand-binding sites used in
CASP8 (13). We have demonstrated that 3DLigandSite
is able to obtain performance comparable to ours in
CASP8 and that this performance is also retained for a
much larger test set. In CASP8 we found that extensive
use of residue conservation reduced performance of our
approach and as a result the use of residue conservation is
limited in 3DLigandSite, so future work will try to incorp-
orate conservation in a way that improves predictive per-
formance. We also intend to develop more sophisticated
thresholds over the simple distance measure that is cur-
rently used by 3DLigandSite.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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