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In addition to physical barriers, neutrophils are considered a part of the first line of immune 
defense. They can be found in the bloodstream, with a lifespan of 6–8 h, and in tissue, 
where they can last up to 7 days. The mechanisms that neutrophils utilize for host defense 
are phagocytosis, degranulation, cytokine production, and, the most recently described, 
neutrophil extracellular trap (NET) production. NETs are DNA structures released due to 
chromatin decondensation and spreading, and they thus occupy three to five times the 
volume of condensed chromatin. Several proteins adhere to NETs, including histones 
and over 30 components of primary and secondary granules, among them components 
with bactericidal activity such as elastase, myeloperoxidase, cathepsin G, lactoferrin, 
pentraxin 3, gelatinase, proteinase 3, LL37, peptidoglycan-binding proteins, and others 
with bactericidal activity able to destroy virulence factors. Three models for NETosis are 
known to date. (a) Suicidal NETosis, with a duration of 2–4 h, is the best described model. 
(b) In vital NETosis with nuclear DNA release, neutrophils release NETs without exhibiting 
loss of nuclear or plasma membrane within 5–60 min, and it is independent of reactive 
oxygen species (ROS) and the Raf/MERK/ERK pathway. (c) The final type is vital NETosis 
with release of mitochondrial DNA that is dependent on ROS and produced after stimuli 
with GM-CSF and lipopolysaccharide. Recent research has revealed neutrophils as more 
sophisticated immune cells that are able to precisely regulate their granular enzymes 
release by ion fluxes and can release immunomodulatory cytokines and chemokines 
that interact with various components of the immune system. Therefore, they can play a 
key role in autoimmunity and in autoinflammatory and metabolic diseases. In this review, 
we intend to show the two roles played by neutrophils: as a first line of defense against 
microorganisms and as a contributor to the pathogenesis of various illnesses, such as 
autoimmune, autoinflammatory, and metabolic diseases.
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DeFiNiTiON, MeCHANiSMS, AND FUNCTiONS

In addition to physical barriers, neutrophils are considered part of the first line of immune defense. 
They can be found in the bloodstream, where they have a lifespan of 6–8 h, and in tissue, where they 
can last up to 7 days (1). They are the first cells of the immune system to migrate to a site of inflam-
mation, where they play an important role in pathogen elimination and cytokine production (2).
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The mechanisms that neutrophils undertake for host defense 
are phagocytosis, degranulation, cytokine production, and, the 
most recently described, neutrophil extracellular traps (NETs) 
production (3).

Neutrophil extracellular traps were discovered by Takei 
et al. (4) in 1996 as a pathway of cellular death different from 
apoptosis and necrosis. They were investigating the relationship 
of neutrophil activation and neutrophil death using phorbol-
12-myristate-13-acetate (PMA); they observed morphological 
changes quite distinct to those that occur in apoptosis and 
necrosis, which led them to suggest that an alternative pathway of 
cell death could be taking place. First, they described the fusion 
of a multilobulated nucleus in neutrophils and the reduction 
of chromatin from its compact structure. The nuclear envelope 
then breaks down while cytoplasmic organelles remain intact. 
After 3 h, the extracellular membrane is disrupted in a mecha-
nism dependent on reactive oxygen species (ROS) (4). Finally, 
in 2004, Brinkmann et al. (3) further detailed this process and 
named it NETosis (3).

Neutrophil extracellular traps are DNA structures released 
due to chromatin decondensation and spreading, and they thus 
occupy three to five times the volume of condensed chromatin. 
Several proteins adhere to NETs, including histones and over 
30 components of primary and secondary granules (5), among 
which are components with bactericidal activity such as elastase, 
myeloperoxidase, cathepsin G (CG), lactoferrin, pentraxin 3, 
gelatinase, proteinase 3 (PR3), LL37, peptidoglycan-binding 
proteins, and others with bactericidal activity able to destroy 
virulence factors (6–9).

It is worth mentioning that chromatin and histones within 
the nucleus possess intrinsic antimicrobial activity. DNA acts as 
a chelating agent for cations due to its phosphodiester skeleton, 
rendering it capable of disrupting the external and internal mem-
branes of Pseudomonas aeruginosa (10, 11). The antimicrobial 
effect of histones was observed in the 1950s by James Hisch, and 
H2A has been proposed as one of the most effective antimicrobial 
agents, particularly against Escherichia coli, Shigella flexneri, 
Shigella sonnei, Salmonella enteritidis, Salmonella typhimurium, 
Klebsiella pneumoniae, P. aeruginosa, Staphylococcus albus, and 
Staphylococcus aureus. In addition, recombinant H4 possesses 
antimicrobial activity against S. aureus and Propionibacterium 
(12). The antimicrobial effect of histones has been observed not 
only against bacteria but also parasites. Wang et al. observed that 
H2A and H2B reduced the replication of the Leishmania spp. 
promastigotes by up to 50% (13).

Three models for NETosis are known to date. Suicidal NETosis, 
with a duration of 2–4 h, is the best described model (14), even 
though its molecular processes are not fully understood (15). 
Stepwise, it starts with the activation of neutrophils through 
the recognition of stimuli, leading them to package and activate 
the NADPH oxidase (NOX) complex through protein kinase C 
(PKC)/Raf/MERK/ERK, as well as to increase cytosolic Ca++; 
these cations act as cofactors for peptidyl arginase deaminase 4 
(PAD4), a nuclear enzyme that promotes the deamination of his-
tones, thus modifying amino acids to allow the decondensation of 
chromatin by promoting the loss of the positive charges necessary 
for the interaction of histones with DNA (16, 17).

Reactive oxygen species behave as second messengers in 
suicidal NETosis by promoting the gradual separation and loss of 
the nuclear membrane, which disintegrates into small individual 
vesicles. Afterward, chromatin disperses throughout the cyto-
plasm, where it gets mixed with cytoplasmic proteins and granule 
toxins. NET formation is dependent on elastase and myeloper-
oxidase transport all the way from granules to the nucleus (18). 
Finally, chromatin is released outside the cell through membrane 
pores and cellular lysis. Suicidal NETosis is dependent on ROS for 
histone citrullination by PAD4, which allows chromatin decon-
densation (16, 17, 19), finally releasing the DNA as extracellular 
traps (ETs) (Figure 1) (20, 21).

In vital NETosis, neutrophils release NETs without exhibiting 
a loss of nuclear or plasma membrane within 5–60 min, and it 
occurs independently of ROS and the Raf/MERK/ERK pathway. 
This process consists of the release of nuclear DNA through 
three morphological changes: (a) nuclear envelope growth and 
vesicle release, (b) nuclear decondensation, and (c) nuclear 
envelope disruption (14, 22–24). This type of NETosis is trig-
gered by the recognition of stimuli through toll-like receptors 
(TLRs) and the complement receptor for C3 protein (25–27). 
Furthermore, interaction between glycoprotein Ib in platelets 
with β2 integrin (CD18) in neutrophils may induce NET forma-
tion by the activation of ERK, PI3K, and src kinases (Figure 2) 
(28). After release of the nucleus, these neutrophils are still able 
to phagocytose pathogens, and their lifespan is not affected by 
DNA loss (24).

Finally, Yousefi has described another type of vital NETosis 
dependent on ROS, in which mitochondrial DNA is released 
instead of nuclear DNA; this process results in NET formation 
from 80% of neutrophils within 15 min through recognition of 
C5a or lipopolysaccharide (LPS) (29).

This review will focus on NET participation in microbial 
infections, autoimmunity, and metabolic disorders. A detailed 
description of the mechanisms involved in NET formation is 
beyond the scope of this work, but additional reviews can be 
found elsewhere (30). However, it is important to highlight high-
mobility group box 1 (HMGB1) protein-expressing platelets as 
major endogenous inducers of NET formation, not only during 
infectious processes but also in sterile inflammation (31, 32).

NeTs AND PATHOGeNS

There are several inflammatory processes triggered by the pres-
ence of bacteria, viruses, parasites, and fungi. Since bacteria and 
their metabolic products were first described to stimulate NET 
formation, the mechanisms for both the initiation and evasion 
of NETs by pathogens have been intensively studied (Table 1).

Bacteria
Staphylococcus aureus
Staphylococcus aureus is a Gram-positive bacterium that mainly 
resides in the wet squamous epithelium of the anterior nasal 
cavity (54) and is known as a “super bacterium” due to its capac-
ity to evade the immune system and resist antibiotic treatment 
(55). It causes pathologies such as osteomyelitis, endocarditis, 
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FiGURe 2 | Sequential steps of vital NeTosis. (1) Recognition of stimuli through receptors. (2) Loss of the lobular and multinucleated shape of the nucleus. (3, 4) 
Separation of external and internal nuclear membranes and budding of vesicles. (5) Vesicles in cytoplasm containing DNA filaments in form of pearl strings, 
approaching of dense cytoplasmic granules toward intact plasmatic membrane. (6) Release of DNA as extracellular traps released through a small area in cell 
surface; some cytoplasmic granules also fuse to plasmatic membrane and are released into extracellular space to associate with DNA.

FiGURe 1 | Sequential steps of suicidal NeTosis. (1) Recognition of stimuli through receptors. (2) Activation of Raf/MEK/ERK kinases pathway and increase of 
cytosolic calcium that leads to gp91phox phosphorylation for activation of oxidase NADPH complex and subsequent reactive oxygen species (ROS) production. (3) 
Elastase and myeloperoxidase (MPO) translocation to nucleus from azurophil granules promoted by ROS and other yet unknown factors. Decondensation of 
chromatin and loss of the lobular shape of the nucleus. (4) Loss of nuclear and granular membrane, association of decondensed chromatin to cytoplasmic 
components. (5) Loss of plasmatic membrane and release of DNA as extracellular traps.
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bacteremia, and gastroenteritis, which are related to a severe 
inflammatory response (56).

In classic assays performed by Brinkmann in 2004, S. aureus 
was first used as a stimulus for unleashing NETosis (3). In 2010, 
when inducing NET formation and studying its molecular 
mechanisms, Pilscek et  al. discovered that S. aureus led to a 
notably faster NETosis that was independent of ROS, which they 
named “vital NETosis” (14).

Staphylococcus aureus secretes several virulence factors that 
allow it to evade the host immune system, among which are 
Panton–Valentine leucocidin (PVL), leukotoxin GH (LukGH), 
leukotoxin DE, gamma-hemolysin, and N-terminal ArgD 
peptides, of which LukGH and PVL promote NETs through an 
oxidative pathway-independent mechanism (14, 57, 58).

Bacterial invasion promotes NET formation to immobilize 
pathogens and hinder their spread. This innate immune response 
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TABle 1 | Microbe inducing NeTosis.

Microbes Microbe 
peptides 
modulating 
neutrophil 
extracellular 
traps (NeTs)

Pathologies effects in NeTosis Types of 
NeTosis

References

Bacteria

Staphylococcos aureus Leukotoxin GH 
and Panton–
Valentine 
leucocidin

Osteomyelitis, endocarditis, 
bacteremia, and gastroenteritis

Reactive oxygen species (ROS)-independent induction with 
nuclear DNA liberation, toll-like receptor (TLR)2, and C3 
dependent

Vital (14, 27)

Streptococcus 
pneumoniae

EndA and 
α-enolase

Pulmonar influenza, chronic 
obstructive pulmonary 
disease, pneumococcal 
pneumonia, and emphysema

ROS-independent induction Suicidal (33)

Escherichia coli ND Enteritis, urinary infeccions, 
meningitis, and sepsis

Platelet free induction, TLR4 independent, and ROS 
dependent

Absence of 
platelets: 
suicidal

(34, 35)

E. coli Induction with platelet presence, TLR4 dependent, and 
ROS independent

Presence 
of platelets: 
vital

(26, 28, 36)

Clostridium difficile ND Diarrhea and 
pseudomembranous colitis

Induction ND (37)

Shigella flexneri IcsA and IpaB Dysentery Induction Suicidal (3)

Salmonella typhimurium ND Infectious gastrienteritis Induction Suicidial (3)

Yersinia Yops proteins and 
invasin protein

Yersiniosis, acute enteritis, and 
enterocolitis

ROS-dependent induction, PI3K signaling, and β-integrin 
pathway

Suicidal (38, 39)

Mycobacterium 
tuberculosis

Adhesins, heat 
shock protein 72, 
and ESAT/6

Tuberculosis Phagocytosis-dependent induction, ROS, and elastase Suicidal (40, 41)

Vibrio cholerae Dns and Xds Cholera ROS-dependent induction Suicidal (42)

Lactobacillus rhamnosus 
GG

P40 and P75 – Inhibition – (43)

virus

Influenza virus ND Influenza A H1N1 ROS- and peptidyl arginase deaminase 4-dependent 
induction

Suicidal (44)

Dengue virus serotype 3 ND Dengue NETs inhibition and Glut-1 decreasing glucose captation – (45)

HIV ND Acquired immune deficiency ROS-dependent induction Suicidal (46)

Respiratory syncytial 
virus

Fusion protein Acute bronchitis F protein induction across TLR4, ROS, ERK, and MAPK 
p38

Suicidal (47)

Yeast

Candida albicans – Complement receptor 3- and fibronectin-dependent 
induction, and ROS independent

Vital (25)

Asperguillus fumigatus RodA Invasive aspergillosis ROS-dependent induction. A. fumigatus spores containing 
RodA do not induce NETs

Suicidal (48, 49)

Cryptococcus 
neoformans

– Cryptococcal meningitis ROS and NETs inhibition – (50)

Parasites

Plasmodium falciparum Antihemostatic 
agaphelin

Malaria Induction through P. falciparum and inhibition through 
agaphelin

Suicidal (51, 52)

Toxoplasma gondii – Toxoplasmosis MEK–ERK-dependent induction Suicidal (53)
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is supported by macrophages through phagocytosis and cytokine 
production. Thammavongsa et  al. have reported that S. aureus 
may have a cytotoxic effect on macrophages through these NETs, 

since NET incubation with nucleases and adenosine synthases 
derived from this bacterium promotes the formation of deoxy-
adenosine, which is capable of inducing cell death (59).
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Streptococcus pneumoniae
Streptococcus pneumoniae is a Gram-positive bacterium that can 
be found normally in the human respiratory tract (60), and its 
role in NET induction has been established (3).

It has been found that during pulmonary infection, similar 
to S. aureus, S. pneumoniae is able to produce virulence factors 
(endA) that degrade DNA and allow it to escape from NETs even 
after bacteria have been caught within, promoting bacterial dis-
semination from the upper respiratory tract to the lungs and then 
to the bloodstream (61–63).

Neutrophil extracellular trap release has also been implicated 
in the development and complications of respiratory diseases 
due to secondary infections such as chronic obstructive pulmo-
nary disease, pneumonia, and emphysema (64–66). Neutrophils, 
when excessively recruited to lung tissue in response to infec-
tion, disrupt microcirculation and induce more NETosis in 
pulmonary alveoli. Furthermore, patients with pulmonary 
dysfunction show higher levels of extracellular DNA than 
patients with mild lung disease, showing that NETs participate 
in airflow obstruction and perpetuate chronic inflammatory 
responses (67, 68).

Escherichia coli
Escherichia coli is a Gram-negative bacterium that colonizes the 
human gastrointestinal tract at birth (69), and it is the most abun-
dant facultative anaerobe among the host microbiota. It has been 
implicated in pathologies such as enteritis, urinary infections, 
meningitis, and sepsis (70).

Finally, Kambas et al. found that NETs are significantly induced 
when neutrophils are stimulated with the serum of patients with 
septic shock triggered by E. coli, probably through activation of 
TLRs or complement receptors for C3 or C5a (34).

It has been reported in several studies that septicemia is 
aggravated by NETs and their components (71–73), since their 
degradation with DNases along with antibiotic treatment attenu-
ates tissue damage (74).

Neutrophils are capable of discriminating between LPS from 
different pathogens and strains in order to induce NET forma-
tion and release tissue factor (TF), a thrombogen that has been 
implicated in systemic inflammatory responses mediated by 
activation of the coagulation system that characterizes septic 
processes (36, 75).

Escherichia coli strain Afa/Dr has been studied in infantile 
diarrhea, where it has been shown to promote the activation of 
several signaling pathways of epithelial cells, especially those 
involved in functional and structural injury to the intestinal bar-
rier (76). Regarding the relationship of this process and NETs, 
Marin-Esteban et  al. showed that these structures are able to 
capture, immobilize, and eliminate bacteria. However, when neu-
trophils are cocultured with the epithelial cell line CaCo-2/TC7 
and bacteria, the former produce NETs and harm the epithelial 
cells. For this reason, they suggest that NETs may be involved 
in injury to the intestinal epithelium as well as other intestinal 
inflammatory diseases (35).

Concentrations of the antimicrobial peptide (AMP) LL37 by 
cells of the urinary tract are not able to eliminate infections caused 
by E. coli. Nevertheless, LL37 derived from recruited neutrophils 

significantly decreases bacterial colonization (77). Since LL37 is 
associated with NETs (3) and promotes their formation and sta-
bility (78), it seems likely that it plays a relevant role in pathogen 
elimination by cooperating with NETs, although this has not yet 
been proven.

Clostridium difficile
Clostridium difficile causes diarrhea and pseudomembranous 
colitis in humans, generally due to the abuse of antibiotics (79) 
that severely harm the host resident microbiota, leading to dys-
biosis (80).

Clostridium difficile is a normal component of the human 
microbiota, and its competition for nutrients with other 
resident species normally prevents its excessive reproduction 
(81). However, when the microbiota becomes altered, nutrient 
availability is increased along with the diminished production of 
secondary biliary acids, which allows for C. difficile colonization 
of the gut (82, 83).

Clostridium difficile is able to translocate through the ability of 
its enterotoxins to cause the loss of tight junctions. When C. dif-
ficile comes into contact with cells of the gut-associated lymphoid 
tissue, it promotes the production of proinflammatory cytokines 
and chemokines such as interleukin 1 beta (IL-1β), IL-8, and 
CXCL5 to promote the recruitment of neutrophils (84, 85).

Neutrophils not only reduce the function of microbial toxins 
by secreting AMPs and elastase but also produce NETs, which 
may act to cover the injured areas of the intestinal epithelium to 
effectively hinder C. difficile dissemination (37).

Shigella flexneri
Shigella flexneri is a Gram-negative enteropathogenic bacterium 
usually acquired by the ingestion of contaminated food and 
beverages and whose infection may cause dysentery in the host. 
Shigella can traverse the intestinal lumen through M cells; once 
there, it infects epithelial cells and may propagate horizontally. As 
a response, nuclear factor kappa B (NF-κB) is activated in infected 
cells, which produce IL-8 to attract the migration of neutrophils 
to infected tissues, where neutrophil-derived elastase degrades 
microbial virulence factors (86, 87).

Brinkmann et  al. showed that S. flexneri is trapped within 
NETs in vitro and tested the ability of DNA-associated elastase to 
degrade the virulence factors IcsA and IpaB (3).

Perdomo et al. showed that, for Shigella pathogenesis, in vitro 
neutrophil transmigration is required for Shigella invasion in 
zones with intense neutrophil infiltration (88).

Salmonella typhimurium
Salmonella is a genus of facultative anaerobic intracellular bacte-
ria. Even though many species of this genus can be found in the 
gut microbiota, S. typhimurium is a leading cause of infectious 
gastroenteritis. After colonizing the gut, it can enter into entero-
cytes, M cells, dendritic cells (DCs), and, finally, into macrophages 
upon reaching the submucosa. S. typhimurium replicates inside 
phagosomes where it may express several virulence factors: 
adhesins, flagella, fimbriae, and T3SS (89). It is also capable of 
using a superoxide dismutase known as SodCl to counteract the 
activity of ROS in the phagosome of leukocytes (90, 91).
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Salmonella typhimurium has been shown to stimulate NETs 
by Brinkmann et  al. They have also shown that it is effectively 
trapped and eliminated by components of NETs, including 
granular proteins and H2A histone (3).

Yersinia
Yersinia enterocolitica is the causal agent of yersiniosis, acute 
enteritis, and enterocolitis. It invades the epithelium and translo-
cates to Peyer’s patches and affects tight junctions by decreasing 
occludin and claudins 5 and 8 (92). All three pathogenic species 
of Yersinia, namely, Y. pseudotuberculosis, Y. enterocolitica, and Y. 
pestis, mainly aim to translocate their effector proteins (known 
as Yops) into neutrophils, macrophages, and DCs. Additionally, 
Y. pestis inhibits the oxidative burst of neutrophils in order to 
promote its own intracellular survival using Yops proteins (93).

In 2015, Möllerherm et al. proved that serotypes 0:3, 0:8, and 
0:8 of Y. enterocolitica induce NETs in vitro within 1 h of incuba-
tion. However, NET induction was diminished as the incubation 
time increased, suggesting that NETs may be degraded by the 
effects of Ca++- and Mg++-dependent nucleases (38).

Yersinia pseudotuberculosis employs a specialized protein 
called invasin to breach the intestinal epithelium. Invasin is a 
highly adhesive protein that mediates Y. pseudotuberculosis bind-
ing to the β1 integrins of M cells; however, this binding induces 
ROS production and NET formation (39).

Mycobacterium tuberculosis
Mycobacterium tuberculosis is an obligate aerobic bacillus that 
causes tuberculosis. It is one of the most successful intracellular 
pathogens regarding its strategies for evasion of immune system. 
It primarily infects the respiratory system, but it may also affect 
other organs. Its cell envelope contains adhesins and, in contrast 
to other pathogenic bacteria, it does not produce toxins. It 
uses phagocytes for replication as well as a way to disseminate 
throughout the host organism.

It has been shown that different genotypes induce NETs 
when they are cocultured with neutrophils. Even though NETs 
effectively trap and hinder the dissemination of mycobacteria, 
NET-derived components are unable to kill them (40).

A mechanism of immune evasion that M. tuberculosis utilizes 
is to augment the apoptosis of neutrophils to stop them from 
creating granulomas, which are structures composed of immune 
cells in response to primary infection, to contain this bacillus 
(94). Macrophage efferocytosis of apoptotic neutrophils leads the 
immune response toward a proinflammatory pole. Heat shock 
protein 72 has been found in apoptotic and necrotic cells (95) and 
in DNA within NETs, where it is also necessary for the elimina-
tion of M. tuberculosis (41).

Vibrio cholera
Vibrio cholerae is a Gram-negative bacterium widely recognized 
because of cholera pandemics provoked by the O1 and O139 
serogroups. This bacterium can be found in the human gastro-
intestinal tract and in aquatic environments; concordantly, infec-
tions usually follow the ingestion of contaminated seafood and 
water. When V. cholerae reaches the gut, it secretes cholera toxin 
as well as adhesins, hemagglutinin, proteases, and hemolysins. 

Finally, V. cholerae induces the production of cytokines as well as 
neutrophil recruitment to the gut (96).

It has been reported that V. cholerae induces NETs upon 
in vitro contact with neutrophils. However, V. cholerae secretes 
the nucleases Dns and Xds as an evasion mechanism that allows 
it to escape from NETs, thus allowing it to continue the infectious 
process. Therefore, NETs have not been shown to be a protective 
mechanism for containing infection by V. cholerae (42).

Lactobacillus rhamnosus
Lactobacillus rhamnosus is considered an important probiotic for 
the microbiota. It is able to adhere to the intestinal epithelium and 
to resist gastric acid and bile (97).

It is a Gram-positive bacterium that has been primarily stud-
ied for its capacities to restore the intestinal barrier, as it reduces 
the epithelial injury caused by ulcerative colitis (UC) and Crohn’s 
disease (CD) (98).

Lactobacillus rhamnosus GG modulates the immune 
response and intestinal microbiota by stimulating TLRs on 
immune cells (99).

It has been shown that L. rhamnosus GG inhibits NET 
formation induced by either microbes (S. aureus and E. coli) or 
chemicals (phorbol 12-myristate 13-acetate, better known as 
PMA), probably due to its antioxidant activity and yet unknown 
secreted proteins (43).

viruses
Influenza
Influenza A virus is known for killing over 50 million people in 
1918 and, recently, for the 2009 pandemics responsible for 18,000 
deaths around the world. Influenza pathology is characterized by 
excessive neutrophil recruitment to the lungs, which is facilitated 
by CXCR2. Influenza A-stimulated NETs are dependent on PAD4 
(100). α-Defensin-1 associated with NETs inhibits virus replica-
tion through the blockade of the PKC pathway.

Another component of the bactericidal nets stimulated by 
influenza A virus is LL37, which has been shown to increase 
NET production in response to this pathogen in  vitro (44). 
Additionally, arginine-rich H3 and H4 histones are important 
for viral aggregation and neutralization. Incubation of influenza 
A virus with H4 was shown to lead to a significant decrease in 
viral replication in epithelial cells; by contrast, H4 was inactivated 
when incubated with the pandemic strain H1N1, which may 
highlight its importance in response to this pathogen (101).

The downsides of excessive neutrophil infiltration include 
injury to tissues mediated by AMPs and extensive NETs in the 
alveolar capillaries (67, 68).

Dengue
Dengue virus (DENV) is a single-stranded RNA virus that 
belongs to the Flaviviridae family. Infection with any of the 
dengue serotypes (1–4) has a range of effects, from mild fever 
to severe dengue, formerly known as dengue hemorrhagic fever 
(45). The incidence of dengue infections has increased in recent 
years (102); therefore, it is necessary to understand the mecha-
nisms of host defense used to fight this pathogen.
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Neutrophil extracellular traps are able to restrain infections 
by trapping viruses within their structures. However, it has been 
demonstrated that rather than stimulating NETs, DENV-2 inhib-
its them in vitro. Moreno-Altamirano et al. have observed an 80% 
reduction in PMA-stimulated-NET formation by neutrophils 
following previous incubation with DENV-1. This inhibition was 
caused by the disruption of Glut-1-mediated glucose uptake (45), 
a metabolic requirement for NET release (103).

Human Immunodeficiency Virus 1
Human Immunodeficiency Virus 1 (HIV-1) is a virus with tro-
pism for the immune system. There are over 35 million people 
currently infected, with approximately 2 million acquiring the 
infection every year (104). It has been shown that CD4, along 
with CCR5 and CXCR4, acts as the receptor for virus entry, 
which allows not only for the infection of CD4 T cells but also 
antigen-presenting cells such as macrophages and DCs. However, 
most serum plasma is derived from activated T cells, where viral 
replication is quick and efficient (105).

Neutrophils recognize HIV-1-derived nucleic acids through 
TLR7 and TLR8. Afterward, they release ROS in order to induce 
NET formation. These structures may trap, contain, and eliminate 
HIV through the action of myeloperoxidase and α-defensins, to 
both of which antiviral activity has been attributed. HIV, as a 
mechanism of evasion, promotes IL-10 production by DCs, thus 
inhibiting ROS and NET release (46).

Respiratory Syncytial Virus
Respiratory syncytial virus (RSV) is the leading cause of hos-
pitalization in 1-year-old infants (106); thus, it represents one 
of the most important pediatric infections. RSV causes acute 
bronchitis, mucosal and submucosal edema, and luminal occlu-
sion by cellular debris formed from epithelial cells, macrophages, 
fibrin strands, and mucin. RSV also infects DCs and reduces their 
antigen-presenting capacity to activate T cells (107).

To generate NETs in vitro, RSV may stimulate neutrophils, and 
in turn, these have been shown in samples of bronchoalveolar lav-
age fluid from patients with severe disease of the lower respiratory 
tract caused by RSV. NET formation prevents RSV dissemination 
but seems unable to kill the virus (108). Additionally, RSV F 
protein is also able to induce NETs via TLR4. Despite these NETs 
acting as viral reservoirs, their presence may aggravate inflamma-
tory symptoms and promote luminal occlusion with structures 
composed of mucus and DNA (47).

Fungi
Candida albicans
Candida albicans is usually found colonizing the mucosa, skin, 
and oral cavity in healthy individuals, causing disease only in 
immunocompromised subjects, such as patients with pancreatitis 
or renal insufficiency, patients on antibiotic treatment or with a 
central venous catheter, and in patients following gastrointestinal 
surgery. C. albicans morphologically changes from yeasts to 
hyphae producing several virulence factors such as Als3 and 
Ssa11 invasins, turning itself into an invasive pathogen. Epithelial 
cells and macrophages that recognize C. albicans respond 

by releasing chemokines that attract neutrophils (109, 110). 
Neutrophils are able to trap and eliminate C. albicans in either its 
yeast or hyphal form by releasing NETs (111). To achieve a fast 
NETosis response, the β-glucan on hyphae must be recognized 
by complement receptor 3, and fibronectin, a component of the 
extracellular matrix, must be present. These elements are required 
for homotypic cellular aggregation supported by NETs but are 
independent of ROS production (25).

Aspergillus fumigatus
Aspergillus fumigatus is part of the human microbiota in healthy 
subjects. In immunosuppressed individuals, it is responsible for 
invasive aspergillosis, a leading mycotic infection by both preva-
lence and mortality rate in patients with chronic granulomatous 
disease (112). Infection occurs through the inhalation of spores, 
which instead of being eliminated by immune system cells, take 
up residence in the respiratory tract and alters their morphol-
ogy from yeast to hyphae, infecting the lungs and leading to 
pneumonia and infection of other organs. Similar to C. albicans, 
it produces invasins that allow it to adhere to host cells (113, 114).

Release of NETs induced by A. fumigatus in  vitro requires 
activation of NOX (48). Furthermore, p46−/− mice cannot form 
NETs (115). Even though NETs are necessary for the capture and 
elimination of A. fumigatus hyphae, these are not induced by 
spores due to the presence of RodA in the spore cell wall (49).

Cryptococcus spp.
Cryptococcus neoformans is an opportunistic pathogenic yeast. 
Infection develops after spores are inhaled and enter into the 
alveolar space, where they remain latent until immunological 
disequilibrium occurs and leads to cryptococcosis and menin-
goencephalitis (116).

Cryptococcus neoformans possesses a capsular polysaccharide 
that confers it with the ability to regulate the host immune 
system. In particular, it is able to modulate NET production. 
Neutrophils incubated with strains whose capsules contained 
glucuronoxylomannan (GXM) and galactoxylomannan were 
not efficient producers of either ROS or NETs, even after PMA 
stimulus. When neutrophils were incubated with strains without 
capsular GXM, NETs were effectively produced; however, ROS 
were not observed. Thus, capsular GXM improves virulence by 
mediating resistance to NETs. Finally, the microbial activity of 
NET-associated AMPs, such as elastase, myeloperoxidase, col-
lagenase, and histones, is required to kill this pathogen (50).

Parasites
Plasmodium falciparum
Plasmodium falciparum is the causal agent of malaria, also known 
as paludism. It severely affects children under 5 years old, who 
represent 90% of deaths related to this disease (117). Malaria is 
a hematological disease transmitted by mosquitoes. Plasmodium 
spp. infect erythrocytes, which induces the production of inflam-
matory cytokines; these suppress erythropoiesis and lead to ane-
mia. Invasion is mediated by proteins on infected erythrocytes 
that promote their adhesion to the vascular endothelium present 
in tissue and organs and induce an inflammatory response and 
coagulation (118, 119).
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This infection process causes vascular damage, lesions on 
endothelial cells, and activation of platelets, monocytes, and 
neutrophils. Neutrophils release NETs, and these structures can 
be found in the circulation of children infected with P. falciparum 
adhering to erythrocytes and parasites. Additionally, α-dsDNA 
antibodies are found in these patients and may participate in the 
development of this pathology, aggravating the immune response 
and autoimmune processes (51). On the other hand, the glands 
of infected mosquitoes produce the antihemostatic agaphelin, 
which is able to inhibit neutrophil chemotaxis, blockade plate-
let aggregation mediated by cathepsin/elastase, and attenuate 
neutrophil-induced coagulation (52).

Toxoplasma gondii
Toxoplasma gondii is the causal agent of toxoplasmosis, which 
infects over a third of the population worldwide as a result of the 
ingestion of contaminated food.

Infection by T. gondii induces neutrophil recruitment to the 
infected site (120). Accordingly, in a murine model of intranasal 
infection, neutrophils limit the dissemination of this pathogen by 
trapping it and killing it in NETs, thus demonstrating that active 
invasion is not necessary for NET formation. This observation 
was subsequently shown in humans, further showing that NET 
formation is MEK–ERK dependent (53).

NeTs AND AUTOiMMUNiTY

Neutrophils and NETs play a dual role in host homeostasis. They 
both protect hosts from infectious diseases; however, they also 
cause pathologic alterations, as is the case in autoimmune and 
autoinflammatory diseases.

Psoriasis
Psoriasis is a chronic inflammatory disease that affects the skin 
and is characterized by a complex immune response, since 
cellular, molecular, and vascular components participate in the 
perpetuation of the inflammatory process. To date, T helper 1 
(Th1) and Th17 lymphocytes are considered as the sole regu-
latory cells of the immune response in psoriatic lesions (121, 
122). However, Lin et al. have shown that IL-17 is abundantly 
produced by neutrophils and mast cells, both of which are found 
in the cellular infiltrates of psoriatic plaques (123). Initially, 
interferon alpha (IFN-α)- and tumor necrosis factor alpha 
(TNF-α)-secreting plasmacytoid dendritic cells (pDCs) are 
activated through TLRs upon the recognition of LL37–nucleic 
acid complexes released by damaged keratinocytes to secrete 
their cytokines. Initially, pDCs are activated through TLRs 
upon the recognition of LL37–nucleic acid complexes released 
by damaged keratinocytes, and consequently, the pDCs release 
IFN-α and TNF-α (124). These cytokines might favor the acti-
vation of DCs and macrophages and their production of IL-23 
and IL-1β, which in turn induce the activation and production 
of IL-17, TNF-α, CXCL2, chymase, and tryptase by mast cells 
through mast cell extracellular trap (MCET) formation (125). 
Additionally, these mediators promote neutrophil migration 
toward the epidermis, where they may become activated by 
IL-23 and IL-1β and produce NETs. Together, both neutrophils 

and mast cells secrete IL-17 and other proinflammatory media-
tors to amplify neutrophil migration, which will then contribute 
to the formation of Munro’s abscesses (126).

On the other hand, IL-17 in keratinocytes increases the 
expression of LL37 and defensins such as beta-defensin 2 (HBD-
2), S100A7, S100A8, and S100A9 (127, 128), which mediate 
cellular infiltration and both MCET and NET formation. In this 
context, ET-derived DNA–LL37 complexes are usually generated. 
These complexes may lead to pDC activation and the consequent 
production of IFN-α, further promoting NETosis and inflamma-
tion in psoriatic lesions even in the absence of infection (124) 
(Figure 3).

Systemic lupus erythematosus
Systemic lupus erythematosus (SLE) is an autoimmune disease 
characterized by immune complexes and high levels of IFN-α 
induced by the presence of autoantigens due to a failure to elimi-
nate products derived from apoptotic or necrotic cells (129, 130). 
Loss of tolerance toward self-antigens leads to the activation of 
autoreactive B cells and the production of autoantibodies against 
nucleic acids and AMPs, which are released by infiltrating neu-
trophils that undergo NETosis in the skin and kidneys of patients 
with SLE. The generated immune complexes may deposit in 
different tissues, resulting in injury and inflammation, provoking 
mainly cutaneous lesions, nephritis, and cardiovascular disease 
(131, 132). Furthermore, opsonized autoantigens induce pDCs 
to secrete IFN-α, also known as an “IFN-α signature,” and induce 
neutrophils to form NETs (133, 134).

In patients with SLE, nucleic material derived from dead 
cells accumulates due to the failure of its elimination. These 
self-antigens are presented to autoreactive B cells in germinal 
centers in secondary lymphoid organs by follicular dendritic 
cells, thus generating autoantibodies against cellular components 
derived from NETosis and apoptosis (134, 135). The production 
of immune complexes activates the complement system and 
induces inflammation, vascular injury, thrombosis, and brain 
damage. Immune complexes are internalized by pDCs through 
type II Fcγ receptor-mediated endocytosis; afterward, they 
associate with TLR7 and TLR9 on endosomes, which leads to the 
activation of IFN-α-secreting pDCs and additional formation of 
NETs (136–138).

Patients with SLE have been found to possess elevated numbers 
of a subpopulation of neutrophils in the blood known as low-
density granulocytes (LDGs). These are immature neutrophils 
that quickly undergo apoptosis and release ROS in  vitro, thus 
acting as potent NET inducers in SLE patients (132). Through 
NET formation, LDG intracellular contents are released into 
the microenvironment and include several molecules such as 
LL37, α- and β-defensins and HMGB1; these molecules associ-
ate with nucleic acids and induce pDC activation though TLR9 
stimulation, which subsequently induces IFN-α synthesis. It has 
been observed that, in SLE patients, IFN-α is a potent NETosis 
inducer (139) and, along with activated pDC-derived IL-6, pro-
motes the differentiation of autoantibody-secreting autoreactive 
B cells (140). Another possible mechanism for the release of 
autoantigens such as HMGB1 and nucleic acids from apoptotic 
cells is through secondary necrosis, a phenomenon observed 
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when apoptotic bodies are not properly removed by phagocytes. 
HMGB1 then associates with DNA and activates pDCs due to 
its recognition by TLR9 and receptor for advanced glycation 
end products (RAGE) in pDCs, thus inducing pDC activation 
(141). DNA–HMGB1 complexes may also be recognized by 
autoreactive B cells through B cell receptor–TLR7/9–RAGE; 
this results in the production of autoantibodies. Likewise, DNA–
HMGB1–immunoglobulin may activate pDCs by interacting 
with RAGE–FcR–TLR9, which will lead to IFN-α synthesis and 
a positive feedback cycle (Figure 4) (142).

Finally, the release and persistent presence of these products 
represents a source of self-antigens that enhance the autoimmune 
and inflammatory process, leading to tissue injury in SLE.

Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a systemic autoimmune disease 
characterized by persistent synovial inflammation that leads to 

cartilage and bone injury in the joints (143). The synovial fluid at 
the synovial cavity of RA patients becomes infiltrated with neu-
trophils that readily form NETs; furthermore, even the circulating 
neutrophils of RA patients are more easily stimulated to NETosis 
than those from healthy subjects (144, 145). As occurs in other 
autoimmune diseases, NETs may act as a source of extracellular 
autoantigens; for instance, citrullinated peptides generated from 
histone citrullination via PAD2 and PAD4 activity are overex-
pressed in neutrophils and can be detected even in the synovia of 
RA patients (144, 146, 147). Such citrullinated peptides are recog-
nized by α-citrullinated peptide antibodies (ACPAs), which form 
immune complexes that induce NET formation, resulting in the 
release of neutrophil granular contents as well as cytoplasmic self-
antigens in the joints. They may also release receptor activator of 
nuclear factor kappa-β ligand and B-cell activating factor, which 
activate osteoclasts and B cells, respectively (148, 149), leading 
to excessive innate and adaptive immune responses in the joints 
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susceptible to be internalized by pDCs through type II Fcγ receptors (FcγRII)-mediated endocytosis. Endosomes associate to toll-like receptors (TLRs)-containing 
vesicles, which results in activation of pDCs and synthesis of IFN-α, further inducing NETs and tissular inflammation. In addition, necrotic cells-derived DNA–HMGB1 
complexes activate B cells resulting in production of autoantibodies and formation of immune complexes that activate pDCs, leading to IFN-α synthesis and thus 
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facilitates presentation of autoantigens by follicular dendritic cells (fDCs) to autoreactive B cells and subsequent formation of immune complexes that lead to 
persistent inflammatory process that causes tissular injury in SEL patients.
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and tissue injury. ACPAs are detected in the serum of RA patients 
at early stages of the disease and even before clinical symptoms 
appear, and they thus represent an early biomarker of RA (150). 
Khandpur et al. have found that in addition to autoantibody NET 
induction, IL-17 and TNF-α may also have this ability, and they 
found these cytokines to be elevated in RA patient serum (144).

High-mobility group box 1 is another autoantigen related to RA 
pathogenesis. It can be found elevated in the pannus of RA patients, 
particularly in the bone-cartilage interphase and areas with tissue 
hypoxia (151). Under hypoxic stress, cells release HMBG1 and 
induce production of the proinflammatory molecules TNF-α and 
IL-1, suggesting that HMGB1 is closely associated with hypoxia 
and inflammation in RA (152). Additionally, this protein binds 
IL-1α and IL-1β to form complexes that enhance the immune 
response in joints, thus provoking inflammation (141).

Some patients may develop Felty syndrome, a severe presenta-
tion of RA that manifests in patients as neutropenia and spleno-
megaly. The latter seems to be related to the oligoclonal expansion 
of T cells and autoantibodies against PAD4 (153).

Type 1 Diabetes Mellitus
Type 1 diabetes mellitus (T1DM) is an autoimmune disease 
characterized by the destruction of β pancreatic cells in geneti-
cally predisposed individuals, leading to hyperglycemia. The 
destruction of β pancreatic cells also permits the presentation 

of autoantigens that are recognized by autoreactive T cells, 
followed by the production of specific autoantibodies for β cell 
antigens, including glutamic acid decarboxylase autoantibody, 
insulinoma-associated protein 2 autoantibody, and zinc trans-
porter-8 autoantibody, which are used clinically as predictors 
of and diagnostic for T1DM, although they are not considered 
pathogenic (154–157).

In individuals with T1DM, infiltrates of predominantly CD8 
T cells along with CD4 T cells and B cells participate in the 
destruction of β pancreatic cells through the release of granzymes 
and perforins, activation of the FasL pathway, and production of 
proinflammatory cytokines, namely, IFN-γ and TNF-α (158). 
Innate immune response cells also play an important role in the 
pathogenesis of T1DM, since macrophages, monocytes, DCs, and 
neutrophils can be found within infiltrates in pancreatic islets, 
wherein they synthetize IFN-α and ROS, thus promoting the 
synthesis of proinflammatory cytokines (154, 158, 159).

Several studies have shown that T1DM patients and individuals 
at risk of developing the disease suffer neutropenia (160), which 
may partially be attributed to increased NETosis and neutrophil 
infiltrate in pancreatic tissue (160–162).

Neutrophils produce superoxide and cytokines when 
exposed to hyperglycemic conditions. In diabetic individu-
als, TNF-α is elevated and activates neutrophils to form NETs 
and, subsequently, to release their intracellular contents, which 
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include neutrophil serine proteases, such as neutrophil elastase 
(NE), PR3, and CG (161–163). T1DM patients show elevated 
concentrations of serum NE and PR3, as well as elevated levels 
of activity for these enzymes (162). These proteins are important 
in T1DM pathogenesis given their implication in the maturation 
and release of the cytokines IFN-α, IL-1β, and IL-18, as well as 
in inducing the expression and activation of TLRs, which are 
important mediators of insulitis and the destruction of pancreatic 
β cells (158, 164). They also favor neutrophil recruitment to sites 
of inflammation, providing negative feedback and contributing to 
pathogenesis in autoimmune diabetes (162).

Small vessel vasculitis
Small vessel vasculitis (SVV) is a systemic disease of unknown 
etiology. SVV patients exhibit blood vessel inflammation 
affecting arterioles, venules, and capillaries, which may also 
involve arteries during disease exacerbation. In these cases, 
necrotizing inflammation occurs in small blood vessels and may 
potentially damage any organ, the primary ones being the kid-
neys, lungs, skin, and peripheral nerves (165). Antineutrophil 
cytoplasmic antibodies (ANCAs) can be detected in most 
SVV patients (166). Since prolonged exposure to proteins 
released during NETosis, such as myeloperoxidase (MPO), 
PR3, histones, HMGB1, and NE, is the main cause of ANCA 
production, these proteins are considered proinflammatory 
mediators that activate the complement system and lead to 
endothelial damage. MPO and PR3 are the principal targets of 
ANCAs, and it has been shown that α-PR3 and α-MPO ANCAs 
induce NETosis during active disease; additionally, high levels 
of DNA-MPO complexes are associated with disease activity 
(167–170). The presence of ANDA-PR3 and ANCA-MPO 
may activate neutrophils and perpetuate an inflammatory 
state through complement system activation and neutrophil 
chemotaxis toward the site of injury (171).

Infections may also induce the production of ANCAs through 
molecular mimicry. Additionally, microorganisms may induce 
NET formation, leading to autoantigen release (172, 173). 
However, since NETs have been found in SVV patients in remis-
sion, it is also important to consider that the presence of ANCAs 
may also help to remove NET-derived products and contribute to 
host homeostasis (174, 175).

Thrombosis is caused by the release of TF, cytokines, and other 
inflammatory mediators during NETosis occurring as a result of 
infection, autoimmune disease, and cancer (75, 176).

Small vessel vasculitis patients show elevated levels of NETs 
in the bloodstream. LDGs have been proposed as the main 
source of NETs due to their capacity to spontaneously generate 
NETs (177). These NETs may potentially amplify the inflamma-
tory process, causing endothelial injury and activating the alter-
native complement pathway (170, 178). Additionally, histone 
presence in NETs has been demonstrated, which contributes 
to thrombus formation and promotes TF production, which in 
turn induces thrombin (165, 179). In mouse models, activated 
platelets have been observed to stimulate NET formation and 
provoke thrombosis in deep veins (180). Finally, an increased 
presence of neutrophil-platelet aggregates in SVV patients’ cir-
culation has been shown to correlate to disease activity, which 

suggests a relationship between NETs and thrombin formation 
in SVV (181).

AUTOiNFlAMMATORY DiSeASeS  
AND NeTs

Gout
Gout is an autoinflammatory disease characterized by the deposi-
tion of monosodium urate (MSU) crystals in the joints, which 
attracts leukocytes and forms structures known as tophi that 
mediate tissue damage. After uptake by phagocytes, MSU crystals 
are major stimulants of the immune response through NLRP3 
inflammasome-mediated IL-1β production due to the osmotic 
disequilibrium caused by a sudden increase in the intracellular 
sodium concentration coupled with water influx and subsequent 
potassium dilution. Additionally, MSU-activated neutrophils 
secrete IL-8, TNF-α, and IL-6. These cytokines not only promote 
neutrophil recruitment but also induce NET formation. In 
particular, NETs could participate in tophi formation, since their 
components are closely related (Figure 5) (182, 183).

As in other diseases, NETs have been reported to promote 
inflammation in gout (184). However, unlike other diseases, 
NETs also seem to play an important role in regulating the 
inflammatory process and stopping gout episodes (185). 
Initially, NETosis reduces neutrophil density, as they indi-
cate neutrophil death. Second, DNA nets encapsulate MSU 
crystals and protect them from further phagocytosis. Finally, 
NET-derived proteases inactivate cytokines and abrogate their 
proinflammatory effects (186).

Crohn’s Disease
Crohn’s disease is a complex systemic disease that clinically mani-
fests as gastrointestinal disorders and inflammation of the ileum 
and colon (187). Though inflammation is a major component of 
CD, the cellular components involved in its pathology remain 
somewhat unclear. Regarding neutrophils, their activity becomes 
altered. While their chemokine-mediated migration is reduced, 
ROS production is enhanced; furthermore, bacterial uptake 
seems altogether unaltered (188).

On the other hand, NET formation in CD has not been studied. 
Arguably, since ROS production is enhanced, neutrophils may 
be more prone to NET formation. Accordingly, L. rhamnosus, an 
important probiotic with both protective and corrective activity 
against CD, effectively inhibits NETosis (43).

Ulcerative Colitis
Similar to CD, UC is characterized by inflammation of the gas-
trointestinal tract. Together, CD and UC form a clinical entity 
known as inflammatory bowel disease (IBD). However, unlike 
CD, UC is mostly restricted to colon inflammation (189, 190). 
Also similar to CD, the cellular components of clinical inflamma-
tion in UC are mostly unknown. Unsurprisingly, NETs have been 
observed in UC and correlated with inflammation by proteomic 
studies (191), though clearly more cellular and biochemical 
research is required for a clear understanding of NET involve-
ment in IBD.
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MeTABOliC DiSeASeS AND NeTs

It is now well known that metabolic diseases are associated with 
chronic low-grade inflammation driven primarily by activation 
of the innate immune system (192). The metabolic disorders 
characteristic of metabolic syndrome (MS) (hyperglycemia, 
hypertriglyceridemia, dyslipidemia, and hypertension) are also 
associated with activation of the immune system (193).

Excess caloric intake, increased fat accumulation, and lipo-
toxicity activate the production of effector molecules (cytokines), 
which in turn promote a chronic low-grade inflammatory 
condition that induces the recruitment and activation of many 
mature immune cells (including mast cells, macrophages, DCs, 
and neutrophils) in metabolic tissues and in adipose tissues in 
particular (194).

Type 2 Diabetes
Diabetes mellitus (DM) is characterized by chronic inflammation 
that involves humoral factors and different types of white blood 
cells, including mononuclear and polymorphonuclear leuko-
cytes. It is known that in diabetic individuals, there is an increased 
neutrophil count and dysfunction of phagocytic activity (195).

It has been observed that the diabetic microenvironment 
can favor NETosis, as in diabetic conditions (hyperglycemia), 
neutrophils generate oxidative stress and produce cytokines 
such as IL-6 and TNF-α, which predispose neutrophils to 
produce ETs (Figure 6) (196, 197). However, hypotheses link-
ing NETosis deregulation and hyperglycemia, oxidative stress, 
inflammation, and further complications of the disease remain 
to be confirmed (198).

Studies in humans and murine models have shown that 
hyperglycemia predisposes neutrophils to release NETs regard-
less of diabetes type when stimulated with ionomycin, PMA, or 
LPS. In addition, protein expression of PAD4 was found to be 
increased fourfold in neutrophils from individuals with diabetes 
when compared to those from healthy controls, suggesting that 
increased PAD4 may favor chromatin decondensation. However, 
it is still unclear whether high glucose concentrations upregulate 
the protein expression of PAD4 at the transcriptional or post-
translational level (197).

In the sera of type 2 diabetes patients, NET-related biomark-
ers (elastase, mono- and oligonucleosomes, and dsDNA) are 
increased when compared to non-diabetic subjects; addition-
ally, these biomarkers positively correlate with glycated hemo-
globin (HbA1c) levels. In these patients, dsDNA has also been 
correlated with the IL-6 concentration, which may suggest a 
role for NETosis in the interactions between hyperglycemia 
and inflammation as well as in the consequences of inflam-
mation (198).

Joshi et  al. investigated whether hyperglycemic conditions 
could modulate NET release. They found that neutrophils 
exposed to high glucose concentrations and neutrophils isolated 
from diabetic patients had altered potential for NET release 
when exposed to LPS stimuli (196). Thus, they hypothesized 
that the chronic proinflammatory conditions present during 
hyperglycemia promote the constitutive formation of NETs, yet a 
weak response to stimuli. Fadini et al. found similar results when 
they analyzed NET-generation pathways in neutrophils isolated 
from patients with diabetic ulcers, i.e., NOX-dependent and 
NOX-independent pathways. In this model, neutrophils show 
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FiGURe 6 | High glucose primes neutrophils to undergo NeTosis. Neutrophils in response to inflammatory stimuli [ionomycin, phorbol-12-myristate-13-acetate 
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enhanced spontaneous NETosis but a compromised capacity for 
induced NETosis (199).

On the other hand, neutrophils from non-diabetic individu-
als exposed to a high glucose concentration (25 mM) have been 
shown to be more susceptible to spontaneous and PMA-induced 
NETosis when compared to those exposed to a low glucose 
concentration (5  mM) and mannitol (25  mM). Since non-
energetic sugars did not affect NETosis, this phenomenon could 
be explained by enhanced ROS production through an increase 
in glycolysis (198).

In summary, these data suggest that NET formation is 
enhanced in hyperglycemic conditions independent of diabetes 
type and origin.

It is important to note that in DM patients, slower wound 
healing represents one of the main complications. Cicatrization 
is a process that involves endothelial cells, fibroblasts, leukocytes, 
platelets, and keratinocytes. Since inflammation is a typical 
characteristic of the cicatrization process, neutrophils are one of 
the first cells recruited to the injury site, where they also act as 
antimicrobial cells. However, some studies report that excessive 
activation of NETosis-inducing neutrophils may contribute to 
poor wound healing (199–202).

It has been shown that PAD4-deficient mice (both diabetic and 
non-diabetic) possess faster wound healing and re-epithelization 
processes than their wild-type (WT) counterparts, independent 
of wound infection. This suggests that NETosis could hinder 
wound healing by limiting keratinocyte migration and, conse-
quently, adequate re-epithelization. As such, NETs are a putative 
therapeutic target for one of the main disabling complications of 
diabetes (197).

Recently, it has been shown that an excess of NET-related 
proteins is associated with wound healing alterations and poor 
resolution. Furthermore, NE, oligo- and mononucleosomes, 
neutrophil gelatinase-associated lipocalin, and PR3 are increased 
in biopsies with poor healing prognosis compared to those in 
remission or completely healed (199).

These studies show a link between neutrophils, inflammation 
and tissue injury in diabetes. However, more investigation is 
required to fully understand the mechanisms behind NETosis 
and glucose metabolism.

Obesity and MS
Obesity is characterized by an excess of adipose tissue produced 
as a consequence of a loss of equilibrium between energy intake 
and expenditure (203). The development of obesity implies a 
complex interaction of genetic and environmental factors that 
are also frequently associated with other chronic complica-
tions (hyperglycemia, dyslipidemia, hypertriglyceridemia, and 
high blood pressure). Individuals with three of these criteria 
may be clinically diagnosed as presenting MS according to the 
World Health Organization. MS increases the risk of develop-
ing metabolic diseases such as type 2 DM and cardiovascular 
diseases (194).

Obesity has been associated with low-grade chronic inflam-
mation in white adipose tissue (192). Adipocytes are able to 
secrete adipokines such as TNF-α, IL-6, and IL-8, which due 
to their proinflammatory properties, have been associated with 
enhanced activity of peripheral neutrophils, such as produc-
tion of superoxide radicals and NET formation (Figure  7A). 
However, the effects of inflammation on adiposity and its 
association with NETosis are not yet clear (204–206). Since 
adipose tissue promotes a potentially neutrophil-activating 
proinflammatory environment, there exists a need to study 
whether the increase in adiposity may contribute to NETosis. 
Additionally, enhancement of glucose metabolism may lead to 
increments of mitochondrial-derived ROS. This phenomenon 
is also observed in obesity, which provokes activation of inflam-
matory pathways (192).

Feeding mice a high-fat diet (HFD) induces neutrophil 
recruitment to adipose tissue (Figure 7B). As a consequence, 
it is possible that neutrophils could play a role in triggering the 
inflammatory cascade in response to obesity (207). Accordingly, 
when mice fed an HFD are infected with influenza virus, viral 
titers are increased threefold when compared to infected mice 
fed a low-fat diet (LFD); the H2O2 concentration is also rela-
tively higher in HFD mice, suggesting increased oxidative stress 
in their lungs. The neutrophils of these mice are more prone to 
spontaneous NET formation compared to neutrophils derived 
from LFD mice. Finally, the authors conclude that because of 
the elevated cytokine levels and the proinflammatory oxidative 
stress caused by these cytokines, adiposity associated with 
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FiGURe 7 | Neutrophil extracellular traps (NeTs) and adipose tissue. (A) Obesity is characterized by an increase in adipose tissue and chronic low-grade 
inflammation in which adipocytes secrete adipokines, such as tumor necrosis factor alpha (TNF-α), IL-6, and IL-8, which have been associated with increased 
activity of peripheral neutrophils (generation of superoxide and induction of NETosis). (B) In mice under a high-fat diet (HFD), an increase in neutrophil recruitment is 
observed in adipose tissue and neutrophil elastase (NE) activity, consequently, it is possible that neutrophils may be promoting the insulin resistance through the 
degradation of insulin receptor substrate-1 (IRS-1).
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higher lung viral titers could represent stronger stimuli for NET 
formation, suggesting that in individuals with morbid obesity, 
lung NETs could be formed at significant levels as a response 
to influenza infection, thus aggravating pulmonary injury 
and resulting in further complications of influenza-provoked 
pneumonia (208).

Talukdar et  al. have reported that neutrophils derived from 
mice fed an HFD possess higher granular content and that their 
NE activity is significantly higher than that of mice fed an LFD, 
which could promote insulin resistance through degradation 
of insulin receptor substrate-1 (Figure 7B). They also observed 
decreased insulin signaling and higher glucose production in 
human hepatocytes and murine adipocytes. Additionally, they 
showed that NE-knockout mice are more sensitive to insulin 
than WT mice, suggesting that the ablation of NE leads to higher 
hepatic insulin sensitivity and decreased expression of proinflam-
matory genes (207).

Oxidized low-density lipoprotein (oxLDL) is a complex 
mixture of LDL composed of oxidized bioactive elements 
with intrinsic proinflammatory activity capable of stimulating 
ROS production and improving the degranulation capacities 
of human neutrophils. Additionally, oxLDL is able to induce 
ROS-dependent NETosis in human neutrophils in a dose- and 
time-dependent manner. Interestingly, TLR2/TLR6 heter-
odimers seem to be necessary for oxLDL-induced NETosis 
as well as the PKC–IRAK–MAPK pathway, which indicated 

that NETosis is a multifactorial process that requires not only 
respiratory burst but also sequential activation of several sign-
aling events that depend on the nature of the NET inductor. 
In conclusion, the inflammatory environment characterized by 
oxLDL and proinflammatory cytokines (IL-1β, TNF, IL-8) may 
be considered a potential inductor of NETs in the absence of 
microbial stimuli, further aggravating systemic inflammatory 
response syndrome, atherosclerosis and other sterile inflamma-
tory conditions (209).

Perspectives and Conclusion
The accumulating data on the role of neutrophils in infectious, 
autoimmune, autoinflammatory and metabolic diseases via 
NET structures demonstrate that they constitute novel bioin-
dicators of prognosis and represent candidates for therapeutic 
targets by blocking the formation of or locally neutralizing NET 
signaling.
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