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BACKGROUND: Sex and age have long been known to affect the ECG. 
Several biologic variables and anatomic factors may contribute to sex and 
age-related differences on the ECG. We hypothesized that a convolutional 
neural network (CNN) could be trained through a process called deep 
learning to predict a person’s age and self-reported sex using only 12-lead 
ECG signals. We further hypothesized that discrepancies between CNN-
predicted age and chronological age may serve as a physiological measure 
of health.

METHODS: We trained CNNs using 10-second samples of 12-lead ECG 
signals from 499 727 patients to predict sex and age. The networks 
were tested on a separate cohort of 275 056 patients. Subsequently, 
100 randomly selected patients with multiple ECGs over the course of 
decades were identified to assess within-individual accuracy of CNN age 
estimation.

RESULTS: Of 275 056 patients tested, 52% were males and mean 
age was 58.6±16.2 years. For sex classification, the model obtained 
90.4% classification accuracy with an area under the curve of 0.97 in 
the independent test data. Age was estimated as a continuous variable 
with an average error of 6.9±5.6 years (R-squared =0.7). Among 100 
patients with multiple ECGs over the course of at least 2 decades of life, 
most patients (51%) had an average error between real age and CNN-
predicted age of <7 years. Major factors seen among patients with a 
CNN-predicted age that exceeded chronologic age by >7 years included: 
low ejection fraction, hypertension, and coronary disease (P<0.01). In the 
27% of patients where correlation was >0.8 between CNN-predicted and 
chronologic age, no incident events occurred over follow-up (33±12 years).

CONCLUSIONS: Applying artificial intelligence to the ECG allows 
prediction of patient sex and estimation of age. The ability of an artificial 
intelligence algorithm to determine physiological age, with further 
validation, may serve as a measure of overall health.

VISUAL OVERVIEW: A visual overview is available for this article.
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The ECG was first invented in 1901 by Willem Ein-
thoven. Over the ensuing century, it has become a 
mainstay for risk stratification, disease identifica-

tion, and cardiovascular management.1,2 In the current 
age of machine learning and artificial intelligence (AI), 
it may be possible to identify novel uses of the ECG. 
Recent studies suggest that using advanced computing 
approaches, the ECG may be used for serum potassium 
level estimation,3 screening for asymptomatic left ven-
tricular dysfunction,4 and detecting cocaine usage.5 In 
the nonmedical space, recent data has also suggested 
that the ECG can serve as a sort of biometric sensor 
similar to a retinal scan or a fingerprint as it contains 
subject-specific features.6,7

It is theoretically possible that diagnostic tests such 
as the ECG, which carry the ability to discriminate 
between individuals, might be able to more deeply 
assess aspects of an individual, such as predicting age 
and sex. The value of such approaches lies in further 
validating the role of the ECG in recognizing not just 
a disease but in revealing more details about an indi-
vidual that may factor into overall health. Additionally, 
discrepancies between chronological age and the age 
determined by processing the raw electrical signals 
generated by cardiac tissue may serve as a marker for 
occult cardiac or noncardiac disease, which may impact 
long-term outcomes.

While age and sex are known to affect the ECG,8–

10 prior work to see if the ECG could predict age has 
focused on Bayesian or other analytic techniques depen-

dent on specific feature extraction as the foundation for 
the analysis, and also largely included healthy patients.10 
We sought to determine whether the application of AI 
algorithms to a large ECG patient data set would be 
capable of predicting age and sex reported by patients, 
independent of additional clinical data. We further 
sought to determine whether discrepancies between 
ECG age and chronological age might be a marker of 
physiological health.

METHODS
The data, analytic methods, and study materials that sup-
port the findings of this study are available from the cor-
responding author on reasonable request.

Data Sources and Study Population
We identified 774 783 adult patients (18 years or older) with 
at least one digital, standard 10 second 12-lead ECG acquired 
in the supine position between January 1994 and February 
2017. Data was collected from the Mayo Clinic digital data 
vault, with institutional review board approval. For patients 
with multiple ECGs, only the earliest ECG was selected.

ECGs were acquired at a sampling rate of 500 Hz using 
a GE-Marquette ECG machine (Marquette, WI) and stored 
using the MUSE data management system.

Overview of AI Model Development
We implemented a convolutional neural network (CNN)11 using 
the Keras Framework with a Tensorflow (Google, Mountain 
View, CA) backend and Python. While CNNs are mainly applied 
to images, we adjusted the network architecture to have 
spatial and temporal feature extraction layers. The network 
operates by adjusting the weights of the convolutional filters 
during training to extract meaningful and relevant features 
in an unsupervised way. Both the sex and age network was 
built using stacked blocks of convolutional, max pooling, and 
batch normalization12; each block was followed by a nonlinear 
activation function. After the first group of blocks extracted 
temporal features, another spatial block was used to fuse data 
from all leads, and then the extracted features were used in 
a fully connected network. The difference between the age 
and sex networks was in the output layer. The sex detection 
network had 2 outputs (male and female) and was activated 
with a Softmax output, while the age network had a single 
output (age) as a continuous number, without a following 
nonlinear function (linear activation). Although we used the 
same data for training both the sex and age algorithms, the 
networks were trained separately, but with the same data split 
for training, validation, and testing sets. Of note, the only data 
inputted for training were the raw digital 12-lead ECG signal 
and the associated age and self-reported sex of each individ-
ual. Figure  1 summarizes the network architecture for each 
network. Hyperparameters (batch size, initial learning rate, 
number of neurons in the fully connected layers, and number 
of convolutional layers) were changed during training to get 
the optimal model based on the validation set. Initial learning 
rates tested were in the range 3e–3 to 1e–5, and batch size 
was in the range of 16 to 128. Selected hyperparameters were 

WHAT IS KNOWN?
• The 12-lead ECG may change in an individual over 

time due to normal aging, and males and females 
may exhibit differences in their ECGs.

• Artificial intelligence techniques, including convolu-
tional neural networks, may strongly correlate fea-
tures of an ECG with specific phenotypic findings 
(such as low ejection fraction) not otherwise iden-
tifiable through standard algorithms or by humans.

WHAT THE STUDY ADDS?
• Using convolutional neural networks, a trained 

computer system is able to identify whether an 
individual is male or female from a 12-lead ECG 
with an area under the curve of 0.97.

• A trained neural network can determine an indi-
vidual’s age from a 12-lead ECG alone within 7 
years of their actual age.

• When the convolutional neural network-predicted 
age exceeds a patient’s actual age by at least 7 years, 
there is a higher incidence of cardiovascular comor-
bidities, potentially suggesting that the convolu-
tional neural network-predicted age from 12-lead 
ECGs may correlate with physiological health.
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learning rate of 3e–4 and batch size of 64 for the age network 
and 16 for the sex network.

Data Sets for Developing and Testing the 
Network
ECGs have some biometric features that might be learnt in 
the process of training the network. To avoid cross-contam-
ination of the training and testing data sets, only a single 
ECG per patient was used. After an initial split into the devel-
opment (64% of the population) and holdout (36% of the 
population) data sets, the development data set was further 
divided into training (75% of the development set) and inter-
nal validation data (25%). The training and validation sets 
were mutually exclusive with respect to patient identification. 
For training both networks, ECGs were fed to the network, 
and the network weights were optimized using the Adam 
optimizer13 with categorical cross-entropy as the loss function 
for the sex network and mean squared error for the age net-
work. The internal validation data set was used to select the 
optimal model and hyper parameters and to find the optimal 
threshold for sex classification.

Models Evaluation and Statistical 
Methods
Separate models for sex and age were tested using the same 
holdout data set. The sex network is a binary classifier (male 
versus female), so the model output is the probability that 

the ECG was obtained from a male–denoted as P (convo-
lutional CNN-predicted sex). The output P is a continuous 
number in the range 0 to 1, and in cases of inconclusive 
ECG-sex discrimination, P will be closer to 0.5. Due to the 
nonlinear nature of the network and the uneven number of 
male and female ECGs used for training, a trivial threshold 
of 0.5, meaning P>0.5 implies male, may not be the optimal 
threshold to maximize classification accuracy for males and 
females. To address this, a receiver operating characteristic 
curve was created using P as the linear discriminator to esti-
mate the area under the curve (AUC) and accuracy at vari-
ous candidate thresholds. An optimal threshold was selected 
using the internal validation data set, and uncertainty in 
classification was evaluated using the output probability P 
to analyze if the model could evaluate its own classification 
results by rejecting samples with low certainty. To evaluate 
whether specific portions of the ECG were critical in arriv-
ing at a specific sex estimation, separate neural networks 
were trained on 35 000 independent individuals using dis-
crete portions of the ECG (P wave, QRS complex, etc), and 
similarly a receiver operating characteristic curve was gener-
ated to determine accuracy in prediction of sex. For the age 
estimation network, the network output was an estimate 
for age based on the ECG as an input (CNN-predicted age). 
The R square metric and the mean average error metric were 
used to evaluate the network. In the training stage, the net-
works were fed the whole training set, and in each itera-
tion (epoch) the model was evaluated on the validation set, 
a software callback that saved only the best model based 

Figure 1. Construction of neural network architecture.  
Shown is the construction of the neural network architecture for the age and sex networks. Further details are discussed under the methods section.



Attia et al; AI-Enabled ECG Age and Sex Estimation

Circ Arrhythm Electrophysiol. 2019;12:e007284. DOI: 10.1161/CIRCEP.119.007284 September 2019 4

on the validation performance was used. The training was 
stopped if, for 5 consecutive epochs, the validation perfor-
mance did not improve (to avoid training in the overfitting 
stage). The age prediction optimal model was trained for 
20 epochs while the sex detection model achieved optimal 
results after 12.

Estimation of CNN-Predicted Age Over 
Time and Impact of Clinical Variables
Within the data set, an algorithm to extract those patients 
with multiple ECGs recorded over a minimum 2 decades of 
life was created, and 100 patients were randomly selected. 
The choice of 100 patients was (1) to permit feasibility 
of deep chart review and (2) given this was meant to be 
an exploratory analysis of how this algorithm might per-
form in a random limited subset of patients. All ECGs at 
every chronologic year of life were evaluated using the 
trained network for age, and CNN-predicted age was plot-
ted against the chronologic age at which that ECG was 
obtained. If multiple ECGs were obtained at any year of life, 
the median CNN-predicted age at that year of life was used. 
After this, clinical histories for patients were extracted via 
chart review. Clinical comorbidities, including prior history 
of myocardial infarction, low ejection fraction, coronary 
disease, hypertension, diabetes mellitus, atrial arrhythmias, 
and prior history of cardiac surgery were included. In addi-
tion, incident events over the follow-up period including 
hospitalization for hemodynamic shock, incident cancer, 
incident comorbidities that were first diagnosed over the 
follow-up period, new diagnoses of coronary disease, heart 
failure, or thromboembolic events, and cardiac transplan-
tation were recorded. The R-squared correlation values 
between CNN-predicted and chronologic age were then 
calculated per patient and effect of prior comorbidities, and 
incident events on the R-squared or differences between 
CNN-predicted and chronologic age were determined. To 
compare impact of preexisting comorbidities on deviation 
of CNN-predicted age from chronologic age over time, the 
mean deviation of CNN-predicted age from chronologic age 
was calculated over the course of the follow-up period. The 
frequency of specific comorbidities among patients whose 
CNN-predicted exceeded the chronologic age by greater 
than 7 years, was within 7 years of the chronologic age, or 
was less than the chronologic age by 7 years was recorded. 
χ2 analysis was used to determine whether frequency of 
comorbidities was significantly different between groups. 
P<0.01 was considered significant.

RESULTS
Study Population
A total of 774 783 patients with ECG were evaluated. 
The first ECG was used for developing and testing the 
model. Patients’ mean age was 58.6±16.2, and 52% 
were male. In the development set, 399 750 unique 
patients’ ECGs were in the training set, and 99 977 in 
the internal validation set. The remaining 275 056 ECGs 
were in the holdout testing set.

Sex Classification
All the ECGs in the internal validation set and in the 
holdout data set were tested using the network. The 
algorithm output for each ECG included a probability 
number (P) between 0 and 1. A lower number implied 
high probability of being female while a number closer 
to 1 implied high probability of being male. The AUC 
of the holdout data set was 0.968 versus an AUC of 
0.973 on the internal validation data set (Figure 2A). 
Using the Youden index calculated on the internal vali-
dation set (Y= 0.517) the overall accuracy was 90.4% 
(95% CI, [90.3%–90.5%]) 90.6% (95% CI, [90.4%–
90.7%]) for females and 90.3% (95% CI, [90.2%–
90.5%]) for males.

After rejecting the 10% ECGs with intermediate P 
values (0.31<P<0.69) which suggested an inability to 
differentiate male versus female for the given ECG 
(seen in about 10% of all ECGs), the accuracy of the 
classification improved to 94.3 %. When applying the 
same technique wherein P values between 0.17 and 
0.83 were excluded (accounting for 20% of all ECGs), 
accuracy improved even further to 96.8%. These find-
ings suggest the classifier certainty can be derived from 
the output probability.

When testing the classifier in a younger population 
(<45 years of age), the overall accuracy for sex identifi-
cation was 93% versus 89% in patients older than 55. 
In addition, a separate independent cohort of 35 000 
individuals was used to test whether specific ECG fea-
tures (P wave area in lead I, QRS duration, P wave time 
to peak in lead I, QTc interval, and T wave area in lead 
V4) could be used separately to determine sex. The 
receiver operating characteristic curves are summarized 
in Figure 2B for each portion of the P-QRS-T complex, 
with QRS duration carrying the highest AUC (0.683) 
but none individually exceeding 0.7.

Age Estimation
As the output of the age estimation network was a 
continuous variable, the statistics of the absolute error 
were calculated together with the overall correlation 
and the explained variance (R squared). For the holdout 
data set, the mean absolute error was 6.9±5.6 years 
and R squared of 0.7 (r=0.837, P<0.0001). A scatter 
plot with chronologic age versus CNN-predicted age is 
presented in Figure 3A. For detection of age ≥40, the 
AUC was 0.94 with a sensitivity of 87.8%, specificity of 
86.8%, and accuracy of 87%. For the multi-group clas-
sification to the age groups of 18 to 25, 25 to 50, 50 to 
75, and 75 and above the overall accuracy was 71.6% 
(95% CI [71.5%–71.9%]; Figure 3B).

When supplying the network the results of the sex 
network and the reported sex of the patient, for the 
10% of patient with an inaccurate sex estimation, 
the R squared for age estimation decreased to 0.62 
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(r=0.78, P<0.00001) even though the networks were 
trained separately.

Change in ECG-Estimated Age Over Time
For the 100 patients with longitudinal data, Figure  4 
shows the numbers of patients with specific R-squared 
values between CNN-predicted age and chronologic age 
over the course of a minimum 20 year follow-up time 
span. The plurality of patients (N=24) had an R-squared 
value of 0.8 to 0.9 with 4 patients having an R-squared 
0.9 to 1.0. Among patients with an R-squared value of 0.9 
to 1.0, all had no significant medical comorbidities and 
were otherwise healthy, obtaining ECGs only for general 
physical examinations, executive physical examinations, or 

for routine noncardiac orthopedic or minor surgical pro-
cedures (Figure 5A presents one patient example of this). 
These patients all had minimal difference between ECG-
estimated age and chronological age (±7 years). Several 
patients (N=17) had R-squared values of ≤0.3. Among 
these patients, multiple incident events including new-
onset low ejection fraction, incident myocardial infarction, 
new-onset hypertension and diabetes mellitus, cardiac 
transplantation, and major events such as hemodynamic 
shock occurred over the follow-up period, resulting in 
major deviations from chronologic age during the year in 
which the events occurred, (Figure 5B presents one patient 
example of this). In most of these patients, with stabiliza-
tion from the incident clinical insult, CNN-predicted age 
again approximated chronologic age. (Figure 5B)

Figure 2. Receiver operating characteristic (ROC) of sex classification.  
A, Shown is the ROC curve for sex classification in the validation set. Overall area under the curve (AUC) was 0.97. B, Shows a separate network derived from specific 
ECG features—QRS duration, area of the T wave under V4, the time to peak of the P wave in lead I, the QTc interval, and the area under the P wave in lead I.

Figure 3. Convolutional neural network (CNN)-predicted age vs reported age.  
A, Shown is the estimated CNN-predicted ECG age (blue) vs the reported chronologic age (in years; red—identity line). The model R squared was 0.7 with a Pear-
son correlation of r=0.837. B, Demonstrates a multi-group classification to the age (in years) groups of 18 to 25, 25 to 50, 50 to 75, and 75 and accuracy of CNN-
predicted age (x axis—estimated age) vs the actual age (y axis) in terms of the percentage of patients with a specific actual age who had a specific corresponding 
CNN-predicted age within a similar range (eg, a patient from 18–25 y of age having a CNN-predicted age from 18–25 y).
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In patients with CNN-predicted age having a devia-
tion from chronologic age of more than 7 years, there 
was a higher incidence of preexisting comorbidities 
including prior diagnoses of myocardial infarction, low 
ejection fraction, coronary disease, hypertension, and 
atrial fibrillation. (P<0.01; Table). In one patient of inter-
est, CNN-predicted age exceeded chronologic age for 
most of the follow-up period, but after subsequent car-
diac transplant, CNN-predicted age decreased but was 
still greater than the age of the donor. After a period 
of weight loss with improvement in other comorbidi-
ties including hypertension and diabetes mellitus, the 

patient’s CNN-predicted age further decreased closer to 
the donor age and, in fact, to less than the patient’s 
chronologic age. (Figure 5C)

DISCUSSION
In the age of smartphones, wearables and the internet 
of things, access to and acquisition of ECGs is easier 
and more cost-effective than ever.14,15 In addition to 
the demonstration of proof of concept that ECG is 
a biomarker, this work demonstrates that the CNN-
predicted age appears to reflect changes in health sta-

Figure 4. R-squared distribution for correla-
tion between convolutional neural network 
(CNN)-predicted age and chronologic age.  
Shown is the distribution of the number of pa-
tients with specific R-squared values correlating 
CNN-predicted age (listed as ECG age in x axis) 
with chronologic age. Higher R squared values 
suggest a closer linear correlation between ages 
while low R squared values suggest poor cor-
relation over time.

Figure 5. Correlation between convolutional neural network (CNN) predicted age and chronologic age in different patients.  
A, Shown is the correlation of CNN-predicted age (in years) with chronologic age (in years) at every year of life in an otherwise healthy patient. Note the linear as-
sociation of age. Also note that the CNN-predicted age is younger than the chronological age. B, Shows correlation between CNN-predicted age and chronologic 
age in a woman with pulmonary hypertension with incident major hospitalizations. She was chronically managed with beta-blockers but developed supraven-
tricular tachycardia and acute pulmonary embolus at age 22. In the second year, she developed acute cardiogenic and hemodynamic shock due to endocarditis 
and acute right ventricular failure. Thereafter, she was well controlled on medications for her pulmonary hypertension without further major incident events. With 
stabilization of her medical condition her CNN-predicted age dropped and matched her chronological age after age 23. C, shows an example of a patient with 
multiple incident myocardial infarctions, low ejection fraction, and eventual cardiac transplant. Before age 54, he had numerous myocardial infarctions, and CNN-
predicted age significantly surpassed actual age. At age 54, he underwent a heart transplant from a donor who died at the age of 16, with subsequent decrease 
in CNN-predicted age to 50 y. He remained well for several years with subsequent loss of weight to normal weight and cessation of blood pressure and diabetes 
mellitus medications at the age of 60, with further drop in CNN-predicted age to below chronologic age.
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tus. This may suggest that physiological age is distinct 
from chronological age, and may have useful clinical 
applications.

Accuracy of Age and Sex Estimation
In a chart review of a random selection of patients, sev-
eral clinical factors associated with mortality including 
myocardial infarction, low ejection fraction, and coro-
nary artery disease, appeared to correlate with devia-
tions between CNN-predicted age and chronologic 
age. This may account for some differences between 
CNN-predicted and chronologic age, and supports the 
hypothesis that CNN-predicted age might prove a use-
ful marker for physiological age. The higher incidence 
of these diseases with older age might also explain 
the corresponding differences in sex estimation as sex 
identification was more accurate in younger than older 
patients.

In fact, the lower accuracy of sex in older individu-
als may be hypothesized to be due to changes in hor-
mone levels that may result in greater difficulty for 
the neural network to differentiate men from women. 
It is well recognized that circulating sex hormones 
may impact ECG characteristics.16–18 However, we 
could not account for hormonal status or gender in 
our population (only reported sex as male or female). 
Thus, there may have been factors in individual 
patients (eg, hormone therapy, gender reassignment, 
incident diseases, etc) that may have resulted in inac-
curacy of sex or age assignment by the neural net-
work. Further work is needed to better understand 
the nature of these outliers.

Certainty Values and the Black Box of 
Neural Networks
We have demonstrated that by applying advanced 
AI techniques to the ECG, it is feasible to accurately 

extract sex and age in most individuals. Furthermore, 
the system is able to provide the user with a cer-
tainty value about its categorization of an individual 
to a specific sex. The ability of such a system to pro-
vide a certainty value is critical in future applications 
to make it less of a black box. Limitations to such 
AI approaches include current inability to simply 
explain the features of the ECG that result in a given 
result (such as assignment of a specific age or sex). 
Figure  6A through 6D show example ECGs from 
patients with their actual age/sex, their CNN-pre-
dicted age and sex, and their comorbid conditions (if 
any). The reasons for the limitation of explainability 
includes that the AI is not relying on a singular mea-
sure or a simple scoring metric, but rather a complex 
set of factors that include varying levels of nonlinear 
interaction.

This issue of neural network explainability faces 
the additional issue of understanding the clinical fea-
tures driving the decision making of the algorithm. 
In this study, we did not seek to specifically com-
pare the benefits of a CNN approach for predicting 
age and sex from the ECG to other approaches to 
machine learning, such as principal component analy-
sis, Bayesian approaches, or other high-level statisti-
cal methodologies. The neural network approach is 
subject to inherent limitations, including the reliance 
on a big data approach, which is characterized by its 
own flaws related to data verification, the as-of-yet 
inability to oversee the system’s reasoning given the 
limitations in achieving immediate explainability, and 
limited research on how best to apply it to medicine. 
However, neural networks may offer a higher level 
of accuracy than other statistical methods as it may 
operate independently of the biases of the investiga-
tor, only dependent on the data that is input. The rea-
son for this is that a neural network learns through 
repeated exposure over time to associations between 
inputs. Of course, one key limitation is when consid-

Table. Distribution of Preexisting Comorbidities Among 100 Patients With ECGs Over Decades

Comorbidity*
Overall 
(N=100)

CNN-Predicted Age 
Exceeds Chronologic 
Age by >7 y (N=49)

CNN-Predicted Within 
+7 to −7 of Chronologic 

Age (N=40)

CNN-Predicted Age Is 
Less Than Chronologic 

Age by >7 y (N=11) P Value†

No comorbidities 18 (18%) 0 11 (28%) 7 (64%) <0.01

Hypertension 56 (56%) 36 (73%) 16 (40%) 4 (36%) <0.01

Diabetes mellitus 33 (33%) 16 (33%) 17 (43%) 0 (0%) 0.03

Low ejection fraction (EF <50%) 20 (20%) 19 (39%) 1 (3%) 0 (0%) <0.01

Myocardial infarction 16 (16%) 15 (31%) 1 (3%) 0 (0%) <0.01

Atrial fibrillation 27 (27%) 22 (45%) 5 (13%) 0 (0%) <0.01

Coronary artery disease 47 (47%) 41 (84%) 6 (15%) 0 (0%) <0.01

Any cardiac surgery 25 (25%) 25 (51%) 0 (0%) 0 (0%) <0.01

*A given patient could be included in multiple different comorbidity categories. In other words, a given patient may have both atrial fibrillation and 
diabetes mellitus.

†χ2analysis used to determine significance of difference in disease incidence between groups.
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ering the nature of the data inputted and resultant 
generalizability to real-world cohorts. For example, 
all of our cases were, effectively, patients, whether 
for general wellness evaluations or for evaluation of 
active cardiac conditions. Our population (both those 
used to train the algorithm and those in whom a 
deeper dive was performed) was randomly selected, 
but we cannot specifically speak to the percentage 
that had total absence of any cardiovascular disease. 
Thus, future work on (1) whether algorithms derived 
from such a cohort are relevant when studied in an 
ostensibly healthy population and (2) whether other 
demographic differences may exist in our popula-
tion (eg, ethnicity, age distribution, etc) that further 
impact generalizability will need to be done.

Future Research and Potential 
Implications
Sex Identification
It is well recognized that hormonal concentrations can 
impact electrocardiographic findings. Prior work has sug-
gested that sex might be identifiable using electrocar-
diography. Features that contribute to sex identification 
may include QT interval characteristics, ST segment, and 
others.9,16,18 The value of demonstrating that the ECG 
can accurately identify sex has implications for future 
research.15 It is possible that the hormonal shifts may 
drive changes on ECG. Furthermore, these findings may 
suggest that the ECG can be used in large population-
based studies to reconfirm manual data entry regarding 
sex. These studies also question the relevance of includ-

Figure 6. Example electrocardiograms from patients comparing actual age and sex against CNN-predicted age and sex.  
Shown are 4 examples of patient ECGs. Patient (A) is a moderately healthy man without significant cardiovascular disease whose CNN-predicted age and sex were 
similar to actual. Similarly, patient (C) is a moderately healthy woman without significant cardiovascular disease whose CNN-predicted age and sex were similar to 
actual. Patient (B) is a man with history of myocardial infarction, hypertension, and diabetes mellitus whose CNN-predicted age was >10 y above his actual age. 
Finally, patient (D) is a very healthy 85 y old woman with no significant diseases who underwent a routine stress test as part of a general check-up.
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ing both sex and ECG in risk prediction models. Prior 
work suggested that the addition of age and sex to the 
ECG did not result in improved prediction of a low ejec-
tion fraction.2 This may be due to the fact that elements 
of the ECG are already accounting for both these factors. 
Finally, further work is needed to understand the poten-
tial relevance when there exists discordance between the 
CNN-predicted sex and actual sex. This last point is prob-
ably the most interesting as the question of why such an 
algorithm is wrong when it is generally correct may occur 
due to any number of factors (eg, exogenous hormone 
intake [whether illicit or prescribed], transgender status 
or efficacy of appropriate therapy in achieving gender 
transition).

Age Identification
While we generally define age as the number of years 
passed since birth, patients with the same biologic age 
may have different health statuses, resulting in differ-
ences in physiological age. Whether the age predicted 
by the CNN is more characteristic of physiological age 
(ie, accounting for a patient who may appear older than 

stated age) than biologic age and thus predict individu-
als more likely to have shorter life expectancy is unclear. 
Our review of a small but randomly identified cohort of 
patients supports the concept of a correlation between 
incident and chronic diseases and deviations between 
CNN-predicted age and chronologic age. However, this 
cohort reflected a subset of patients with multiple ECGs 
over decades, and thus many may have had an indi-
cation for serial ECGs, reflecting a sicker cohort. Thus, 
further research is needed to understand why the CNN 
over or underestimates a patient’s age in certain clini-
cal situations. The algorithm output, the ECG age may 
indicate a risk for or protection against future morbid-
ity and mortality. For example, if a patient’s biologic 
age is 60 but their ECG age predicts that they are 70, 
it may suggest underlying disease and potential risk. 
Future research into whether CNN-predicted age may 
predict short and long-term patient outcomes ought to 
be performed, especially given our study was focused 
on predicting age at a point in time a specific ECG was 
obtained, and not purposed to predict future aging. 
Finally, identifying objective factors that differentiate 

Figure 7. Potential use of linear regression modeling of ECG-estimated age progression as a biomarker. Shown are examples from 2 patients—one whose ECG-
estimated age increased faster than chronologic age (A) and one whose ECG-estimated age increased slower than chronologic age (B). In these 2 patients’ cases, 
patient (A) had an incident MI around age 50 and eventually developed a low ejection fraction. Patient (B) had hospitalizations in his late 60s for infectious and 
cancer issues but had no significant cardiovascular disease later in life along with resolution of his infectious and cancer diagnoses. The patient in (A) died at the 
age of 65 due to cardiovascular causes while the patient in (B) is still alive at the age of 85.
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individuals’ physiological health beyond chronologic 
age may also allow for an objective means to quan-
tify individual health status. However, further outcomes 
research will be necessary to validate these concepts.

Given the small population in whom ECGs were 
acquired over decades, and given that our popula-
tion had a preexisting indication for multiple ECGs and 
thus may be sicker than the general population (eg, 
the average age of our cohort was 58 years), implica-
tions of how people age (ie, temporal progression of 
their ECG-estimated age relative to their chronologic 
age) was beyond the scope of this study. However, it 
could be hypothesized that the CNN-predicted age 
may not just reflect preexisting comorbidities or the 
impact of incident events, but that temporal progres-
sion of CNN-predicted age relative to chronologic age 
per individual ECGs obtained over time could serve as 
a predictive biomarker for future events. Thus, future 
population-based research focusing on the potential 
for risk stratification based on the relative progression 
of CNN-predicted age compared with chronologic age 
is also necessary. (Figure 7)

Limitations
One key limitation to these results is that all individuals 
included were patients, and thus an ECG was obtained 
for some clinical indication. Whether these results are 
similarly accurate among an ostensibly healthy popula-
tion is unknown and revalidation in such a cohort will be 
critical. The population as a whole was randomly selected 
and thus not precharacterized according to presence or 
absence of specific diseases or other factors thus making 
assumptions regarding their disease status or presence 
or absence of comorbidities difficult to assume since they 
were not rigorously characterized for this specific pur-
pose. Furthermore, we are unable to indicate which fea-
tures of the ECG contributed to the final network output 
and how the final output was reached, due to the very 
nature of neural networks. Finally, we could not consider 
other clinical characteristics (eg, we could only consid-
er patients’ self-reported sex) in the data set and thus 
understanding why certain outliers were in fact outliers 
is not possible with the current data set. This does reflect 
one critical limitation of our study as we could only con-
sider sex as reported in the ECG system, where male/
female is based on self-reported sex of the individual, 
and further details were not readily extractable from the 
health record without manual abstraction.

Conclusions
Applying AI to the ECG allows robust detection of 
patient sex and estimation of age. The ability of an AI 
algorithm to determine physiological age, with further 
validation, has the potential to serve as a rapid mea-

sure of overall health status, though will require further 
validation in well-characterized, prospectively followed 
cohorts.
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