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Abstract

Angiogenesis is the generation of mature vascular networks from pre-existing vessels. Angiogenesis is crucial during the
organism’ development, for wound healing and for the female reproductive cycle. Several murine experimental systems are
well suited for studying developmental and pathological angiogenesis. They include the embryonic hindbrain, the post-
natal retina and allantois explants. In these systems vascular networks are visualised by appropriate staining procedures
followed by microscopical analysis. Nevertheless, quantitative assessment of angiogenesis is hampered by the lack of readily
available, standardized metrics and software analysis tools. Non-automated protocols are being used widely and they are, in
general, time - and labour intensive, prone to human error and do not permit computation of complex spatial metrics. We
have developed a light-weight, user friendly software, AngioTool, which allows for quick, hands-off and reproducible
quantification of vascular networks in microscopic images. AngioTool computes several morphological and spatial
parameters including the area covered by a vascular network, the number of vessels, vessel length, vascular density and
lacunarity. In addition, AngioTool calculates the so-called ‘‘branching index’’ (branch points / unit area), providing a
measurement of the sprouting activity of a specimen of interest. We have validated AngioTool using images of embryonic
murine hindbrains, post-natal retinas and allantois explants. AngioTool is open source and can be downloaded free of
charge.
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Introduction

The formation of new blood vessels from a pre-existing vascular

plexus is called angiogenesis. This is a complex process that

depends on tight co-ordination of several important cellular

activities, including proliferation, differentiation and migration [1].

In addition to being a requirement for healthy growth during

development, for wound healing, the female reproductive cycle

and the placenta, aberrant angiogenesis also underpins a series of

pathological conditions, most notably tumour progression [2].

Recent years have seen the identification of many important

regulators of angiogenesis. Due to the vital role angiogenesis plays

during embryonic development, knocking out such regulators

often leads to embryonic lethality, typically from mid-gestation.

This restricts in vivo analysis of angiogenesis to earlier embryonic

stages, or demands lengthy breeding of conditional knock-out

systems to allow inducible deletion at later stages.

Many experimental systems allow studying different aspects of

angiogenesis. These can be broadly divided into two groups. In

vitro assays rely on cultured endothelial cells and assay a particular

aspect of endothelial cell biology such as cell motility in a transwell

or tube formation in a three-dimensional matrix. In vivo assays give

a wealth of information on many aspects of endothelial cell biology

and are particularly useful when genetically altered model

organisms are being examined. A well-established model system

in the mouse, which allows characterization of developmental

sprouting angiogenesis in embryos from E10, is the embryonic

hindbrain [3]. The murine post-natal retina is perhaps the most

commonly used, comprehensive in vivo experimental system today.

An advantage of retinal angiogenesis is that the effects of activators

or inhibitors of proteins of interest on angiogenesis can be analysed

after intravitreal or systemic administration of such substances [4].

In addition, post-natal retinal angiogenesis is commonly used for

studies involving the control of tip cells, found at the leading front

of new vascular sprouts, since their characteristic filopodia are

particularly apparent in this system [5]. Finally, and often con-

currently, the retinal model is used for the analysis of conditional

knock-outs in which germ-line deletion leads to embryonic death

[6]. This demands the generation of a suitable, inducible mouse

model, and intravitreal or systemic administration of agents

inducing deletion of the floxed gene of interest. Whilst very

instructive, this is a lengthy and expensive experimental strategy

due to the breeding involved.

Embryonic explants, taken at an early developmental stage

(typically around E8) allow for immediate ex vivo analysis of

developmental angiogenesis even in the majority of embryonically
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lethal mutants, given they are taken before the onset of embryonic

wasting (typically from E9 or later). Growing in a tissue culture

incubator under defined conditions, explant cultures avoid

potentially deleterious external influences, such as placental

defects, heart defects or hypoxia. Two types of explants are

commonly used. Para-aortic splanchnopleural explants grow over

a period of two weeks on a layer of OP9 feeder cells and allow

distinguishing between vasculogenesis and angiogenesis defects

[7]. Allantois explants grow in a fibronectin-coated tissue culture

dish and produce a complex vascular network by sprouting

angiogenesis in less than 24 hours [8,9]. In common with the in

vivo assays described above, allantois explants are useful for the

analysis of several endothelial cell parameters, including cell

proliferation, cell migration and sprouting.

Quantitative analysis of the vascular networks in the above

systems is not standardized and tends to be done in a non-

automated fashion, making the analysis process labour intensive

and prone to human error. There is a lack of easily accessible and

user-friendly software tools designed to perform comprehensive

quantitative analysis of vascular networks. To remedy this, we

designed AngioTool, a software for the quantitative analysis of

angiogenesis with user-friendly interface and analysis flow.

AngioTool computes several morphological and spatial parame-

ters including the overall size of the vascular network, total and

average vessel length, vascular density as well as lacunarity, which

characterizes vessel non-uniformity by assessing the variation in

foreground and background pixel mass densities across an image.

Lacunarity is able to characterise oddities found when vessel

organisation has been disturbed significantly, and may be useful to

characterise and quantitatively analyze vascular networks in drug

treated specimens or pathological vasculature as has been shown

in patients’lung tumours where this parameter correlates with

stages of aggressiveness [10]. Finally, AngioTool provides a

measure of angiogenic sprouting activity by computing the

‘‘branching index’’ (branch points / unit area) of the vascular

networks analysed. The present work describes and validates the

use of AngioTool in the analysis of angiogenesis in murine

embryonic hindbrains, post-natal retinas and allantois explants.

Results

We previously analysed the function of ARAP3, a PI3K

regulated dual GTPase activating protein, in angiogenesis [11].

For the analysis of vascular networks in allantois explants derived

from control and Arap3 mutant embryos, we devised a computa-

tional analysis method, which evaluated the ‘‘branching index’’,

the number of vessel branch points per unit area. We have since

developed this into a standalone application named Angio-

Tool, which allows performing comprehensive quantitative assess-

ments of angiogenesis in a visually user-friendly fashion. AngioTool

Figure 1. AngioTool’s GUI and analysis flow. (A) AngioTool GUI for analysis of angiogenesis networks. A detailed quick analysis guide can be
accessed through the help button. (B) Representation of the logical analysis flow performed by AngioTool which is based on identification of vessels
using multiscale Hessian analysis and skeletonization. The analysis process is mostly automated (yellow boxes) with minimal user intervention
required to select the test image and during the visual identification of vessels (green squares).
doi:10.1371/journal.pone.0027385.g001

AngioTool Analyses Vascular Networks
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Figure 2. Angiogenesis in the embryonic hindbrain. Hindbrains were dissected, stained and microscopic photographs were taken and
assembled as described. (A) Representative E11 hindbrain. (B) Result image after analysis of the hindbrain shown in (A). (C) Enlarged area from
skeleton shown in (B). The outline of the vasculature is shown in yellow, the skeleton representation of vasculature in red and branching points are
blue. (D) Graphical representation of the analysis performed on three individual hindbrains.
doi:10.1371/journal.pone.0027385.g002

AngioTool Analyses Vascular Networks
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computes the branching index and several other morphometric

parameters such as total explant area, average and total vessel

length, number of endpoints, vessel density, and average lacunarity.

AngioTool
AngioTool’s graphical user interface (GUI) contains a top row

with buttons and two tabs containing controls to run analysis and

to customize the numeric and graphical output (Fig. 1A). The

basic analysis flow implemented by AngioTool includes segmen-

tation, skeletonization and analysis of the vasculature (Fig. 1B). On

opening an image, AngioTool identifies vessel profiles according to

the software’s preset parameters. Identified vessels are demarcated

with an outline on the displayed image which dynamically updates

its shape in response to adjustments done using the controls

included in the analysis tab. Once the outline overlay matches the

vessels in the displayed image, the analysis can be carried out. On

Figure 3. Post-natal angiogenesis in the murine retina. Retinas were dissected, stained, flat mounted and microscopic photographs were taken
and assembled as described. (A) Representative P6 retina and (B) the resulting image after analysis (C) Graphical representation of the analysis performed
on four individual retinas. (D) Enlarged area from (B). Vessels outlines are shown in yellow, the skeleton in green and branching points in blue.
doi:10.1371/journal.pone.0027385.g003

AngioTool Analyses Vascular Networks
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completion of the analysis, the resulting image shows an overlay,

which indicates the area encompassing all vessels, a skeletal

representation of the vascular network and the computed

branching points inside this area. This image is saved together

with an Excel file containing the analysis parameters and the

computed results. AngioTool features several controls to customize

the analysis and the output image under the settings tab and a

Help button that displays a guide to installation of the software

and analysis steps.

Validating AngioTool
We tested AngioTool using three different sets of images:

murine embryonic hindbrains, post-natal retinas and allantois

explants. All of these images are available as supplemental files.

Endomucin-stained E11.5 embryonic hindbrains (for raw

images, see Figs S1, S2, S3) show the developing subventricular

plexus (Fig. 2). Generation of skeletons for these complex vascular

networks required only minor adjustments to AngioTool’s pre-

computed parameters (Fig. 2B,C) and analysis was typically

achieved within less than five minutes per image. Analysis of three

separate E11.5 wild-type hindbrains (43–5 somites) with Angio-

Tool rendered consistent results across all analysed parameters

(Fig. 2D).

We next stained the retinal vasculature of P6 wild-type pups

using isolectin B4, visualising a large and complex vascular

structure, manual analysis of which would be extremely lengthy

(Fig. 3; raw images Figs S4, S5, S6, S7). As with the hindbrains

images, only minor adjustments to the pre-set parameters were

required and the analysis with AngioTool was typically done

within less than five minutes (Fig. 3B,D). As illustrated in the

graphical representations (Fig. 3C), the analysis of four P6 retinas

taken from littermates produced consistent read-outs (total vessel

length, branching index and lacunarity), in line with the notion

that post-natal angiogenesis in these retinas should proceed at a

very similar rate.

Development of vascular networks generated ex vivo in allantois

explants follows a less predictable pattern than those found in the

well-characterised developing embryonic hindbrains or post-natal

retinas. Allantois explants are not only useful for the analysis of

angiogenesis in mice with embryonic lethal phenotype but also

amenable to the presence of agents such as inhibitors [11,12],

blocking antibodies [9,13] or viral transduction [14] without the

need for any invasive animal experimentation.

We performed two sets of experiments, in each of which

allantois explants were either treated with a well-characterised

inhibitor, or with its vehicle (Figs 4, 5). Vehicle-treated allantois

explants were disk-like structures that typically exhibited few large,

central vessels, a large number of intermediate vessels and many

small sprouts (Fig. 4A, upper panels). The first inhibitor we used

was the well characterised, stable pan PI3K inhibitor LY294002

[15]. The p110alpha catalytic subunit of agonist activated PI3K

has been shown to be required for both developmental and

pathological angiogenesis [16,17]. LY294002 caused a severe

defect in allantois explant angiogenesis, with treated explants

visually exhibiting smaller size, reduced complexity and fewer

sprouts (Fig. 4A, lower panels; raw control images Figs S8, S9,

S10, S11, S12, S13, S14, S15, LY294002 treated Figs S16, S17,

S18, S19, S20, S21, S22, S23). Given that LY294002 is a

pan-PI3K inhibitor with known off-target effects on several protein

kinases [18], this striking defect was in keeping with the milder

defect observed with the more p110alpha PI3K isoform selective

inhibitor PI-103 used in our previous work [11].

Optimising parameters for producing skeletons that truthfully

represented the structures in allantois explants was more challeng-

ing than it had been for the more evenly sized vessels in hindbrains

and retinas. Accurate vessel segmentation was achieved by choosing

several vessel diameter scales in combination with intensity settings

that detected weakly stained structures. Occasionally, this caused

segmentation of false positive structures, which were subsequently

removed by elimination of small particles and careful optimization

of the fill holes function such that only true vessels were labelled. In

our hands, optimising explant skeletons took on average 10–20

minutes, depending on the complexity of the explant.

The analysis of eight vehicle and eight LY294002-treated

allantois explants showed statistically very significant defects in all

parameters analysed in the explants treated with the PI3K

inhibitor: Total explant area, percentage of the area covered by

vessels, total vessel length, branching index and lacunarity are all

plotted in Fig. 4B. Given the severe defects of the LY294002-

treated explants, this was an expected and reassuring result.

Inhibition of RhoA or of its effector ROCK have been shown to

reduce vessel formation in vitro and in vivo [19]. ROCK activation

was shown to lead to increased tumour invasiveness and higher

blood vessel densities in an in vivo model [20]. Other reports

indicated a pro-angiogenic effect upon ROCK blockage, with

increased vessel length and lumens measured in tumours treated

with ROCK inhibitor [21] and increased VEGF-induced sprouting

in HUVEC spheroids [22], suggesting that ROCK may have a

context-dependent role. To test the effect of ROCK inhibition

on allantois explants, we used the well-characterised ROCK

inhibitor Y27632 [23,24]. In our experiment, explants treated

with this inhibitor were large, though less uniformly shaped than

vehicle-treated controls (Fig. 5A; raw control images Figs S24,

S25, S26, S27, S28, S29, S30, Y27632 treated S31, S32, S33,

S34, S35, S36, S37, S38, S39, S40). Y27632-treated explants

contained areas with characteristically enlarged vessels, often

juxtaposed to very fine vessels; the extent of these features was

variable between individual Y27632-treated explants. AngioTool

allowed for careful adjustment of parameters in order to

efficiently detect fine vessels, whilst avoiding artifacts in distended

areas on careful selection of vessel diameter, intensity and particle

criteria (Fig. 4A, enlarged right hand panels). The analysis

performed by AngioTool confirmed that treatment with Y27632

caused explants to have a significantly reduced branching index,

and reduced total vessel length (Fig. 5B). As expected, the analysis

showed no differences in the total explant area. Similarly, trends

of increased lacunarity and vessel density in ROCK inhibitor

treated explants were not statistically significant. Whilst we are

not aware of experiments performed with ROCK inhibitor

treated allantois explants elsewhere, our results support a subtle,

and likely context-dependent effect of ROCK inhibition on

sprouting angiogenesis, in-line with the results reported by others

in a range of different assay systems [19,20,21,22].

Figure 4. Analysis of angiogenesis in LY294002 treated allantois explants. Allantois explants were cultured in the presence of inhibitor or
its vehicle, fixed, stained and microscopic photographs taken as described. (A) Representative images of a control (top) and a LY294002-treated
(bottom) allantois explant (left), the resulting images after analysis (middle panels) and a representative, enlarged part of the result images shown in
the middle panels. The vessel outlines are shown in yellow, the skeletons in red and the branching points in blue (B) Graphical representations of the
analysis with AngioTool performed on eight control and eight LY294002-treated explants. Statistical analysis was by T-test (Mann Whitney) ***,
p,0.001, **, p,0.01.
doi:10.1371/journal.pone.0027385.g004
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Strengths and Weaknesses
Despite being originally devised for analysis of allantois explants,

the usefulness of AngioTool extends to other assay systems, such as

those found in the murine embryonic hindbrain or post-natal

retinas. As with any automated assessment, AngioTool reduces

subjectivity and likelihood of human error and streamlines analysis

of features which could alternatively be performed manually, such

as counting the number of endpoints or numbers of junctions per

image. Other features of the analyses performed would be very hard

to perform manually (vessel density, sprouting index) since they are

normalised to the area of the analysed network. To our minds, these

features make AngioTool particularly useful.

To ascertain the reproducibility of the results obtained, we

routinely compared analyses performed by different users. Trends

and ratios in the results obtained from user independent analysis

were consistent throughout, demonstrating the robustness of the

software. In Figure 6 we plotted the analysis images of the

LY294002 and DMSO treated allantois explants carried out

independently by two of the authors to illustrate this point. Whilst

inhibitor treatment had a very significant effect on the parameters

analysed, the investigator did not. It ought to be stressed, however,

that the consistency of the values obtained in the analysis depends

on the careful optimisation of the skeleton at the initial stage of the

analysis. Figure 7 demonstrates this point, showing a stained

fragment of a control allantois explant (A) together with skeletons

generated with the non-optimised parameters (C) or after

optimisation (C’). Careful optimisation of all four parameters

allowed the detection of faint and thin vessels and junctions (C’),

resulting in significantly different branching indices obtained (B).

This underlines the importance of establishing clear morphological

criteria prior to engaging in the automated assessment of vascular

networks with AngioTool.

Design and Implementation

AngioTool is written in Java and leverages the open source

ImageJ (image processing and analysis; http://rsbweb.nih.gov/ij/)

and several ImageJ plugins, the Mines Java Toolkit (http://inside.

Figure 5. Analysis of angiogenesis in Y-27632 treated allantois explants. Allantois explants were cultured in the presence of inhibitor or its
vehicle, fixed, stained and microscopic photographs taken as described. (A) Representative images of a control (top) and a Y-27632 treated (bottom)
allantois explant (left), their skeletonised images (middle panels) and a representative, enlarged part of the skeletonised images shown in the middle
panels. The vessels outlines are represented in yellow, the skeleton in red and the branching points in blue. (B) Graphical representations of the
analysis with AngioTool performed on seven control and ten Y-27632 treated explants. Statistical analysis was by T-test (Mann Whitney) *, p,0.05; **,
p,0.01.
doi:10.1371/journal.pone.0027385.g005

Figure 6. Reproducibility of image analysis using AngioTool. The eight images of control DMSO- and LY294002-treated allantois explants
(see Fig. 4) were analysed independently by two investigators. The results obtained are plotted. White bars, analysis performed by person 1, grey
bars, analysis performed by person 2. Results obtained were subjected to statistical analysis by 2-way ANOVA. This showed highly significant
differences for LY294002 treatment under all conditions tested (p,0.001) whilst there were no significant differences between the results obtained
by the two investigators (p.0.66).
doi:10.1371/journal.pone.0027385.g006
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Figure 7. Optimising skeletons for a thorough analysis. The control allantois explants for the experiment shown in Fig. 5 were overlaid
according to the pre-set parameters (skeletons not optimised) or after careful optimisation. This lead to significantly different branching indices (B;
p,0.001, Mann Whitney T-test). (A) shows an enlarged area of a stained explant; the same area is shown after skeletonisation using the pre-set
parameters (C) or after optimisation (C’. A few examples of missed vessels and junctions in the non-optimised skeleton are highlighted by ringed
areas and arrowheads.
doi:10.1371/journal.pone.0027385.g007

Table 1. Summary of angiogenesis related parameters computed by AngioTool.

Parameter Description

Explant area The area occupied by the convex hull containing the vessels in the image

Vessels area The area of the segmented vessels

Vessel density The percentage of area occupied by vessels inside the explant area

Total number of junctions The total number of vessel junctions in the image

Branching index The number of vessel junctions normalized per unit area

Total vessel* length The sum of Euclidean distances between the pixels of all the vessels in the image

Average vessel length Mean length of all the vessels in the image

Total number of endpoints The number of open ended segments

Lacunarity Mean lacunarity over all size boxes

*A vessel is defined after segmentation as a segment between two branching points or a branching point and an end point.
doi:10.1371/journal.pone.0027385.t001
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mines.edu/˜dhale/jtk/index.html), Apache POI (Excel compati-

bility; http://poi.apache.org/), and JIDE Common Layer (Swing

components; http://www.jidesoft.com/) libraries. AngioTool is

open source and is distributed as a Windows executable.

8, or 16 bit greyscale and 24-bit colour images, 1.0 pixel aspect

ratio, displaying labelled vasculature on a dark background are

compatible with AngioTool. Segmentation of the vessel profiles is

achieved using a fast multiscale Hessian-based enhancement filter

[25,26,27]. Images are first convolved with fast recursive Gaussian

kernel and tube-like structures and then computed based on a

combination of the eigenvalues of the 2D Hessian matrix. The

vesselness response is computed for a set of scales (sigmas, which

denote the standard width of the Gaussian filter and is interpreted as

vessel diameter in the GUI) chosen by the user. After segmentation,

vessels are skeletonized [28] and analyzed (implementation based

on [29]). Several morphometric parameters are computed including

total and average vessel length, branching point density, and

vascular density (Table 1). Some metrics are normalized to the area

of the convex hull containing the region covered by the vessels

allowing for comparison of differently sized vascular networks.

Additionally, a fast box counting algorithm has been implemented

for computation of lacunarity, an index for vascular structural

nonuniformity [30], which is reported as the average lacunarity over

all box sizes. AngioTool implements new concurrency features

included in Java 7 to speed up computation-intensive tasks allowing

for real-time analysis of vascular networks in multicore systems.

Also, analysis time is significantly reduced as the number of central

processing units in the system being used increases.

The images reported in this study are provided as test images

together with a quick operation guide at AngioTool’s website site.

Availability and Future Directions

AngioTool is open source and can be downloaded at http://

angiotool.nci.nih.gov. AngioTool’s installation file is distributed as

a windows executable. The installation process which is guided by

a self-explanatory step-by-step wizard and instructions can be

found at AngioTool’s download website site. AngioTool has been

tested in Windows 32-bit platforms, it is self-contained and only

requires pre-installation of JavaTM 7.

Based on user feedback, future versions of AngioTool will

include potential bug fixes and are expected to feature new metrics

which may prove useful under certain experimental conditions,

such as tube thickness and graphical and topographical analysis of

vascular networks. New capabilities can also be added to the GUI

to facilitate analysis such as zooming of the analysis window and

reporting raw data on each vessel segment.

Materials and Methods

Ethics Statement
This work was conducted under the control of UK Home Office

Certificate of Designation PCD80/4804 to the Babraham

Research Campus and approved by the Babraham Institute

institutional animal care committee (PPL 80/2335).

Retinal angiogenesis
Postnatal P6 eyes were briefly fixed with 2% PFA in PBS at 4uC,

then retinas were dissected and stored in methanol at -20uC.

Immediately prior to staining retinas were re-fixed in 4% PFA for

20 minutes. PBS-washed retinas were stained with biotinylated

isolectin B4 (Vectorlabs) followed by streptavidin-alexafluor 568

(Molecular Probes) and flat mounted for epifluorescence analysis

on a CellR microscope (Olympus).

Hindbrain angiogenesis
Hindbrains were dissected clean from surrounding tissue

followed by fixation steps, dehydration and rehydration steps as

described [3], prior to being whole-mount stained using a rat anti

endomucin antibody (Santa Cruz Biotechnology). Samples were

analysed from the ventricular side. Several overlapping photo-

graphs were taken of each hindbrain imaged using an epifluor-

escence microscope (CellR, Olympus). Images were assembled

using Photoshop software.

Allantois explant
Allantoises were dissected from E8.5 embryos and cultured for

18 hours in 8-well m-slides (Ibidi) coated with bovine fibronectin

(Sigma) in DMEM (Gibco) supplemented with 10% fetal calf

serum (Invitrogen) in a humidified tissue culture incubator at 37uC
and 5% CO2 (Sanyo). Inhibitors were made up as per

manufacturer’s instructions and added into the growth medium

when setting up the culture. Control explants were vehicle treated.

Inhibitors were obtained from Calbiochem and used at the

following concentrations: LY294002, 10 mM; Y-27632, 10 mM.

Allantois explants were fixed with 4% paraformaldehyde, followed

by wholemount staining with rat anti-VE-cadherin antibody (BD

Biosciences) together with rat anti-endomucin. Overlapping

pictures of the explants were taken with an inverted epifluores-

cence microscope (Olympus CellR), making sure that no area was

over-or underexposed. Photographs were assembled using the

panorama function of Photoshop software.

Supporting Information

Figure S1 Microscopic hindbrain image used for anal-
ysis shown in Figure 2.

(TIF)

Figure S2 Microscopic hindbrain image used for anal-
ysis shown in Figure 2.

(TIF)

Figure S3 Microscopic hindbrain image used for anal-
ysis shown in Figure 2.

(TIF)

Figure S4 Microscopic retina image used for analyses
shown in Figure 3.

(TIF)

Figure S5 Microscopic retina image used for analyses
shown in Figure 3.

(TIF)

Figure S6 Microscopic retina image used for analyses
shown in Figure 3.

(TIF)

Figure S7 Microscopic retina image used for analyses
shown in Figure 3.

(TIF)

Figure S8 Microscopic image of a DMSO treated
control allantois explant used for analysis shown in
Figures 4 and 6.

(TIF)

Figure S9 Microscopic image of a DMSO treated
control allantois explant used for analysis shown in
Figures 4 and 6.

(TIF)
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Figure S10 Microscopic image of a DMSO treated
control allantois explant used for analysis shown in
Figures 4 and 6.
(TIF)

Figure S11 Microscopic image of a DMSO treated
control allantois explant used for analysis shown in
Figures 4 and 6.
(TIF)

Figure S12 Microscopic image of a DMSO treated
control allantois explant used for analysis shown in
Figures 4 and 6.
(TIF)

Figure S13 Microscopic image of a DMSO treated
control allantois explant used for analysis shown in
Figures 4 and 6.
(TIF)

Figure S14 Microscopic image of a DMSO treated
control allantois explant used for analysis shown in
Figures 4 and 6.
(TIF)

Figure S15 Microscopic image of a DMSO treated
control allantois explant used for analysis shown in
Figures 4 and 6.
(TIF)

Figure S16 Microscopic image of a LY294002 treated
allantois explant used for analysis shown in Figures 4
and 6.
(TIF)

Figure S17 Microscopic image of a LY294002 treated
allantois explant used for analysis shown in Figures 4
and 6.
(TIF)

Figure S18 Microscopic image of a LY294002 treated
allantois explant used for analysis shown in Figures 4
and 6.
(TIF)

Figure S19 Microscopic image of a LY294002 treated
allantois explant used for analysis shown in Figures 4
and 6.
(TIF)

Figure S20 Microscopic image of a LY294002 treated al-
lantois explant used for analysis shown in Figures 4 and 6.
(TIF)

Figure S21 Microscopic image of a LY294002 treated
allantois explant used for analysis shown in Figures 4
and 6.
(TIF)

Figure S22 Microscopic image of a LY294002 treated
allantois explant used for analysis shown in Figures 4
and 6.
(TIF)

Figure S23 Microscopic image of a LY294002 treated al-
lantois explant used for analysis shown in Figures 4 and 6.
(TIF)

Figure S24 Microscopic image of a water treated
control allantois explant used for analysis shown in
Figure 5.
(TIF)

Figure S25 Microscopic image of a water treated control
allantois explant used for analysis shown in Figure 5.
(TIF)

Figure S26 Microscopic image of a water treated control
allantois explant used for analysis shown in Figure 5.
(TIF)

Figure S27 Microscopic image of a water treated
control allantois explant used for analysis shown in
Figure 5.
(TIF)

Figure S28 Microscopic image of a water treated
control allantois explant used for analysis shown in
Figure 5.
(TIF)

Figure S29 Microscopic image of a water treated
control allantois explant used for analysis shown in
Figure 5.
(TIF)

Figure S30 Microscopic image of a water treated
control allantois explant used for analysis shown in
Figure 5.
(TIF)

Figure S31 Microscopic image of a Y27632 treated
allantois explant used for analysis shown in Figure 5.
(TIF)

Figure S32 Microscopic image of a Y27632 treated
allantois explant used for analysis shown in Figure 5.
(TIF)

Figure S33 Microscopic image of a Y27632 treated
allantois explant used for analysis shown in Figure 5.
(TIF)

Figure S34 Microscopic image of a Y27632 treated
allantois explant used for analysis shown in Figure 5.
(TIF)

Figure S35 Microscopic image of a Y27632 treated
allantois explant used for analysis shown in Figure 5.
(TIF)

Figure S36 Microscopic image of a Y27632 treated
allantois explant used for analysis shown in Figure 5.
(TIF)

Figure S37 Microscopic image of a Y27632 treated
allantois explant used for analysis shown in Figure 5.
(TIF)

Figure S38 Microscopic image of a Y27632 treated
allantois explant used for analysis shown in Figure 5.
(TIF)

Figure S39 Microscopic image of a Y27632 treated
allantois explant used for analysis shown in Figure 5.
(TIF)

Figure S40 Microscopic image of a Y27632 treated
allantois explant used for analysis shown in Figure 5.
(TIF)
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