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Abstract: Chuanxiong Rhizoma (Chuan-Xiong, CX), the dried rhizome of Ligusticum 

chuanxiong Hort. (Umbelliferae), is one of the most popular plant medicines in the World. 

Modern research indicates that organic acids, phthalides, alkaloids, polysaccharides, 

ceramides and cerebrosides are main components responsible for the bioactivities and 

properties of CX. Because of its complex constituents, multidisciplinary techniques are 

needed to validate the analytical methods that support CX’s use worldwide. In the past two 

decades, rapid development of technology has advanced many aspects of CX research. The 

aim of this review is to illustrate the recent advances in the chemical analysis and 

biological activities of CX, and to highlight new applications and challenges. Emphasis is 

placed on recent trends and emerging techniques. 

Keywords: Chuanxiong; organic acids; phthalides; alkaloids; polysaccharides; ceramides; 

cerebrosides 

 

1. Introduction 

Chuanxiong Rhizoma (named as Rhizoma Chuanxiong before 2010 in the Chinese Pharmacopoeia), 

the dried rhizome of Ligusticum chuanxiong Hort., known as Chuan-Xiong (CX) in folk medicine, and 

belonging to the Umbelliferae family, is one of the oldest and most popular herbal medicines in the 

World [1,2]. It has been used for thousands of years in traditional Chinese, Japanese, and Korean folk 

medicine [3]. It was firstly cited as “Xiong-Qiong” in Shennong’s Classic of Materia Medica  
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(200–300 A.D., Han Dynasty) an oldest Chinese herbal classical masterpiece [1,4]. Later, it was cited 

by the name “Chuan-Xiong”, which has been used until today, in Yixue Qiyuan (Jin Dynasty, Zhang 

Yuansu) [5,6]. This herb is otherwise known as Senkyu (Jananese), Ch’onkung (Korean), and 

Szechuan lovage root (English), respectively. Senkyu, the dried rhizome of Cnidium officinale Makino 

(syn. L. officinale Kitagawa, Umbelliferae) which is the original plant of the important crude drug CX 

in China, is one of the most frequently occurring drugs in the prescriptions of traditional Chinese 

medicines (TCMs) used in Japan [7–10]. According to study, C. officinale and L. chuanxiong are 

closely related species with 98% sequence identity [11]. Some studies have shown that both of them 

had antioxidative activities, through their high free radical scavenging ability, they may exert vascular 

relaxant effect, and inhibitory effects on DNA damage and apoptosis induced by ultraviolet B in 

mammalian cells [12–14]. However, it is L. chuanxiong that is recorded by the Chinese Pharmacopoeia 

and applied commonly in China. 

CX is an annual herb, and its growing period can be divided into six stages (Table 1). From ancient 

times until today, Chuanxiong Rhizoma has been harvested each year in late May. Furthermore, 

studies [15–17] also showed that the optimal harvest time for this herb is in the period from the middle 

of April to the end of May. The resources of CX are very rich and widespread, with the main 

production areas being Dujiangyan (original name: Guan County), Pengzhou, Xindu, and Chongzhou, 

Sichuan province, China. CX cultivated in Dujiangyan is traditionally recognized as the authentic and 

superior herb [18–20]. 

Table 1. The growth and development stages of CX. 

Stage Aug. Sept. Oct. Nov. Dec. Jan. Feb. March April May 

Seeding              
Stem emergence and growth              
Senescene              
Emergence of the secondary stems              
Tillering              
Rhizome expansion              

CX is warm in property and pungent in flavor, with the functions of activating qi, promoting blood 

circulation, expelling wind and alleviating pain, which has high medicinal value [21]. It is one of the 

major clinically used cardiovascular protective TCMs and a popular medicine widely used in 

prescriptions for the treatment of atherosclerosis [22], vasodilatation [23], thrombus formation [24], 

ischemic stroke [25,26], angina pectoris [27], and hypertension [28,29], because of its reputation for 

thousands of years in China of facilitating blood circulation and dispersing blood stasis [30,31]. 

Additionally, it also has antioxidant [7,14], neuroprotective [32,33], antiinflammatory [34], 

antibacterial [35], antiproliferative [36], and proapoptotic activities [37]. What is more, its medicinal 

value has been demonstrated by numerous experiments, pre-clinical studies and clinical trials [33,35]. 

Furthermore, it is widely applied in food preparation as a health protection, usually added to a soup, 

such as CX mutton soup and CX fish head soup [38]. It is not only used for medicinal purpose, but 

also for health care products, facial cosmetics, as a forage additive, tobacco flavor additive, natural 

preservative, and so on [39]. 
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These bioactivities are attributed to the chemical constituents of CX. So far, more than  

200 compounds have been isolated from this herb, more than 80 compounds of which belong to 

various different structural types that have been identified. These compounds can be grouped into five 

basic types believed to be responsible for the bioactivities of CX, namely phenols and organic acids, 

phthalides, alkaloids, polysaccharides, ceramides and cerebrosides. Except for these five major types, 

CX also includes mineral elements, and other types of compounds. The contents of these constituents 

may vary significantly due to geographic sources, harvesting and processing, and thus affect the 

therapeutic effects of CX. Therefore, comprehensive quality control is critical to ensure the efficacy 

and safety in clinical use. Due to the complicated chemical composition, sensitive, accurate and  

high-resolution analytical methods should be established for the simultaneous qualitative and 

quantitative analysis of constituents from CX. What is more, chemical analysis of TCMs is an 

important subject in biochemical, pharmaceutical and clinical researches. 

In the past two decades, rapid development of technology has advanced many aspects of  

CX research. Therefore, in this review, we summarize the progress in chemical analysis and 

pharmacology of the major five types of natural products from CX, and mainly focusing on the 

chemical structures, isolation, qualification, quantification, and biological activities. Due to the 

importance of fingerprint analysis [40,41], and the rich and wide spread of CX, the development of the 

chromatographic fingerprint of this herb is also discussed. 

2. Chemical Compounds and Bioactivities 

2.1. Phenols and Organic Acids 

2.1.1. Chemical Structures 

Phenols and organic acids are one kind of the major characteristic constituents in CX. So far, at 

least 18 phenols and organic acids have been obtained from this herb. The main chemical structures of 

these phenols and organic acids (compounds 1–18) are given in Figure 1 [42–49]. 

2.1.2. Sample Preparation for Chemical Analysis 

CX contains different types of compounds, among which there are hydrophilic or hydrophobic, 

polar or nonpolar ones. Therefore, good sample preparation methods are necessary to ensure that most 

compounds are efficiently extracted. Several methods have been reported for the separation of some 

organic acids from CX, including thin layer chromatography (TLC) [50], reversed-phase high performance 

liquid chromatography (RP-HPLC) [51,52], HPLC-mass spectrometry (HPLC-MS) [53], capillary 

zone electrophoresis (CZE) [54], and immobilized liposome chromatography for compound 1 [55], 

HPLC-MS for compound 13 [56], gas chromatography-MS (GC-MS) for compounds 1 and 6 [57], and 

capillary electrophoresis (CE) for compounds 1, 2 and 12 [58]. Zhao et al. [59] developed a RP-HPLC 

method for the determination of five kinds of phenolic acids in CX: 1, 2, 3, 8, and 12. And on the basis 

of this method, compounds 1 and 2 are found to be the main phenolic acids in CX. Up to now, most 

literatures about organic acids from CX focus on the analysis of compound 1. More important, 

compound 1 is found to exist in free form, and 2 in esterified or insoluble-bound form. The phenolic 
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acid, particularly compound 8, is unstable under alkaline conditions in air, and it is necessary to 

hydrolyze the sample under argon or nitrogen [60]. However, publications about other acids in CX are 

very few. Otherwise, several analysis methods for phenolic acids have been set up for a variety of 

other samples, such as Danggui [61], fruit [60], rice [62] and wine [63]. These works successfully 

demonstrate that, by optimizing the parameters for the eluent or carrier system, the high-resolution 

separation of a complicated acid mixture can be easily achieved. 

Figure 1. Chemical structures of the identified phenols and organic acids in CX:  

(1) ferulic acid; (2) caffeic acid; (3) protocatechuic acid; (4) p-hydroxybenzoic acid;  

(5) vanillic acid; (6) vanillin; (7) sedanonic acid; (8) gallic acid; (9) chrysophanol;  

(10) 3-methoxy-4-hydroxystyrene; (11) 1-hydroxy-1-(3-methoxy-4-hydroxyphenyl)-ethane; 

(12) chlorogenic acid; (13) coniferyl ferulate; (14) 5-hydroxymethyl-6-endo-3-methoxy-4-

hydroxyphenyl-8-oxa-bicyclo(3.2.1)-oct-3-one; (15) folic acid; (16) palmitinic acid;  

(17) linoleic acid; (18) sinapic acid. 
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2.1.3. Quantitative Analysis 

Compound 1, one of the main effective components in CX, is widely used as one of the marker 

compounds to assess the quality of CX and its products [64,65]. In the reported literatures, the 

concentration of 1 in CX varies within the range of 0.107–2.374 mg/g, quantified by a variety of 

methods (shown in Table 2) [42,51,66–76]. Additionally, it was also determined by other methods 

such as near-infrared spectroscopy (NIRS) [77]. Apart from the variation in natural abundance among 

the herb samples, the nature of extraction solvents and methods are likely to be a critical cause. CX 

sample is commonly extracted using a variety of solvents, namely: ethanol, methanol, methanol-water-

36% acetic acid (30:67:3), methanol-36% acetic acid (95:5), methanol-formic acid (95:5) and water 

under reflux, sonication, Soxhlet extraction and ultrasonic agitation, immersion extraction, decoction, 

followed by TLC, CE, and HPLC analysis. 
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Table 2. The concentration variation of ferulic acid (1) in CX analyzed by different methods. 

No. Extraction solvent Extraction method Analytical method Content (mg/g) Ref. 

1 95% ethanol  Reflux TLCS 0.9395 [67] 

2 70% ethanol Sonication HPCE 0.82~1.19 [66] 

3 Methanol  Sonication HPLC: PE-Pack C18 (4.6 mm × 150 mm, 5 µm), 1% glacial acetic 

acid:methanol (58:42), 0.5 mL/min, 313 nm 

0.146~0.778 [68] 

4 70% ethanol Ultrasonic agitation CE 0.82~1.19 [42] 

5 95% ethanol Soxhlet extraction HPLC: Waters C18 (10 m × 3.9 mm × 250 mm), 10% acetic 

acid:methanol (65:35), 1 mL/min, 320 nm 

1.234~1.368 [69] 

6 Methanol-water-36% acetic acid 

(30:67:3) 

Sonication HPLC: ODS C18 (250 mm × 4.6 mm), methanol:water:36% acetic 

acid (30:67:3), 1 mL/min, 322 nm 

0.653~1.327 [51] 

7 Methanol-36% acetic acid 

(95:5) 

Sonication HPLC: Kromasil C18 (250 mm  4.6 mm, 5 μm), 

acetonitrile:methanol:1% acetic acid (15:15:70), 0.6 mL/min 

0.327~0.723 [70] 

8 SFE - HPLC: Phenomenex (250 mm  4.6 mm, 5μm), 

methanol:water:glacial acetic acid (30:70:0.2), 1 mL/min, 320 nm 

0.8 [71] 

9 Water  Reflux  HPLC: DiamonsilTM C18 (250 mm  4.6 mm, 5 μm), 

methanol:water:glacial acetic acid (30:68:2), 1.0 mL/min, 320 nm 

1.87~2.17 [72] 

10 Methanol Sonication RP-HPLC: Inertsil C18 (250 mm × 4.6 mm, 5 μm), 

methanol:water:glacial acetic acid (35:65:0.5), 1.0 mL/min, 321 nm 

1.00~1.14 [73] 

11 Methanol-formic acid 

(95:5) 

Sonication HPLC: Kromasil C18 (250 mm × 4.6 mm, 5 μm), 1% acetic 

acid:acetonitrile, 1 mL/min, 320 nm 

0.107~2.374 [74] 

12 40% ethanol Water bath reflux HPLC: Lichrosorb C18 (4.6 mm × 250 mm, 5 μm), 1% acetic 

acid:methanol (70:30), 1 mL/min, 320 nm 

1.141 [75] 

13 70% methanol Reflux (1) HPLC: Agilent TC-C 18 (150 mm × 4.6 mm, 5 μm), 

acetonitrile:0.085% phosphoric acid (17:83), 1.0 mL/min, 316 nm 

(2) UPLC: Acquity UPLC HSS T3 (100 mm × 2.1 mm, 1.8 μm), 

acetonitrile:0.085% phosphoric acid (15:85), 0.3 mL/min, 316 nm 

1.21 

 

1.24 

[76] 
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2.1.4. Biological Activities 

Aromatic acids in the herbs are frequently used in TCM formula to stimulate blood circulation and 

to remove blood stasis by preventing platelet aggregation and antithrombus [78]. The pharmacological 

studies of organic acids mainly focus on the main constituents, including compounds 1, 2 and 12. 

Compound 1, a characteristic aromatic acid in CX, has been clinically used to treat angina pectoris and 

hypertensive diseases in China [79]. Previous investigations indicated that it could significantly 

improve blood fluidity, inhibit platelet aggregation, decrease serum lipids, prevent thrombus 

formation, protect neuron like pheochromocytoma cells (PC12), and exhibit strong antioxidant  

activity [28,80–84]. It was also reported that CX had anti-inflammatory action [85], could prevent 

ethanol-induced liver injury [86], contributed to the defense against viral infections including  

AIDS [87], as well as suppress the production of interleukin-8 (IL-8) which was the main cause of the 

local accumulation of neutrophils, and modulate various inflammatory reactions [85]. Compound 2 

(3,4-dihydroxycinnamic acid) possesses anti-oxidant properties as it scavenges a number of reactive 

species, including 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical [88], peroxyl [89] and hydroxyl 

radicals [90], as well as superoxide anion, peroxynitrite and mutagenic compounds such as 

nitrosamines [91]. It also could inhibit 5-lipoxygenase activity [92], and inhibit protein kinase C, 

protein kinase (PKA) and nuclear factor-B (NF-B) activation induced by ceramides in U937  

cells [93]. Compound 12 could inhibit carcinogenesis in the colon, liver, and tongue, and was against 

oxidative stress in vivo [94–96]. It has been claimed to modulate the glucose-6-phosphatase involved 

in glucose metabolism [97] and to reduce the risk of cardiovascular disease by decreasing oxidation of 

low density lipoprotein (LDL)-cholesterol and total cholesterol [98]. More recently, it has been 

reported that it can inhibit preadipocyte population growth, which may provide a proposed mechanism 

of reducing obesity [99]. 

2.2. Phthalides 

2.2.1. Chemical Structures 

Phthalides are one kind of active compounds in CX with a phthalide parent nucleus and are used as 

characteristic components for quality control. Chemical structures of the main phthalides in CX are  

shown in Figure 2a,b, containing monomeric phthalides (compounds 19–51) and phthalide dimers 

(compounds 52–66) [9,10,100–109]. Takashi et al. [100–103] isolated about 30 phthalides from this 

herb in the 1990s, several of which were reported for the first time. Nowadays, some new phthalide 

and dimeric phthalides are isolated from CX in succession, such as 4,7-dihydroxy-3-butylphthalide 

(43), ligusticoside A (63) (a novel phthalide derivative with a lactone ring), chuanxiongnolide A (64), 

chuanxiongnolide B (65), 4,5-dihydro-3,1'-dihydroxy-3-pentylphthalide, and 4-pentylcyclohex-3-ene-

1a,2b-diol [20,104,105]. Additionally, some compounds were found from this herb for the first time, 

such as n-hexadecanoic acid, daucosterol, 3-methylphthalide, and 3-butylidene-4,5-dihydro-2(1,3H)-1-

isobenzofuranone [50,106]. 
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Figure 2. Chemical structures of main monomeric phthalides in CX: (19) Z-ligustilide;  

(20) E-ligustilide; (21) senkyunolide A; (22) senkyunolide B; (23) senkyunolide C;  

(24) senkyunolide D; (25) Z-senkyunolide E; (26) E-senkyunolide E; (27) senkyunolide F; 

(28) senkyunolide G; (29) senkyunolide H; (30) senkyunolide I; (31) senkyunolide J;  

(32) senkyunolide K; (33) senkyunolide L; (34) senkyunolide M; (35) senkyunolide N;  

(36) senkyunolide Q; (37) senkyunolide R; (38) senkyunolide S; (39) 3-butylphthalide;  

(40) 3-butylidenephthalide; (41) 3-butylidene-7-hydroxyphthalide; (42) 3-butyl-4-

hydroxyphthalide; (43) 4,7-dihydroxy-3-butylphthalide; (44) 4,5-dihydro-3-butylphthalide; 

(45) 4,5-dihydro-3-butylidenephthalide; (46) 3-butylidene-6-hydroxy-5,6-dihydrophthalide; 

(47) cnidilide; (48) neocnidilide; (49) 2-(1-oxopentyl)-benzoic acid methyl ester;  

(50) Z-6,7-epoxyligustilide; (51) 3-carboxyethyl-phthalide. 
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Figure 2. Cont. Chemical structures of main phthalide dimers in CX: (52) senkyunolide O; 

(53) senkyunolide P; (54) levistolide A; (55) 3,8-dihydrodiligustilide; (56) tokinolide B; 

(57) ansaspirolide; (58) riligustilide; (59) (Z,Z')-6,8',7,3'-diligustilide; (60) angelicide;  

(61) Z,Z'-3,3',8,8'-diligustilide; (62) Z-ligustilide dimer E-232; (63) ligusticoside A;  

(64) chuanxiongnolide A; (65) chuanxiongnolide B; (66) wallichilide. 
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2.2.2. Sample Preparation for Chemical Analysis 

In most literatures the phthalide compounds in CX are extracted as a part of the volatile oil by steam 

distillation, solvent extraction, supercritical fluid extraction, circulation extraction coupling with 

adsorption and other methods [110]. Solid phase extraction could effectively enrich the phthalide 

components in CX, and eliminate the interference of other components [111]. In order to improve the 

extraction process and develop a greener extraction, a microwave-assisted extraction (MAE) method 

was investigated. The components of different polarity could be enriched in ionic liquids by choosing 

different extraction solvents. The ionic liquid MAE method takes a short time with high extraction 

efficiency and with less solvent and energy consumption [112]. 
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A RP-preparative-HPLC method for the isolation of compound 30 from CX was described by 

Zhang et al. [113]. Because it is difficult for traditional methods including semi-preparative HPLC and 

CE to avoid the adsorption on the solid phase, they are not very suitable for the separation of 

compounds 19 and/or 20 and their analogues. High speed counter current chromatography (HSCCC) is 

a kind of liquid-liquid chromatography separation technique which is developed in recent years, and 

provides an advantage over the conventional column chromatography by eliminating the use of a solid 

support where an amount of stationary phase is limited and dangers of irreversible adsorption from the 

support are inevitably present. And now, it is accepted as an efficient preparative technique, and 

widely used for separation and purification of various natural and synthetic products [114]. 

Compounds 19 and 21, the main components of volatile oil in CX, were separated in one step by 

HSCCC, and their purity could reach more than 95%, indicating that phthalides were fit to be 

separated and prepared by HSCCC with good resolution and high purity [115]. 

2.2.3. Quantitative Analysis 

Among the phthalides, compound 19 is frequently selected as a marker compound to evaluate the 

quality of CX. Concentration of ligustilide (19 and/or 20) in CX varies within the range of  

5.672–15.700 mg/g in the reported literatures, which are quantified by a variety of methods (shown in 

Table 3) [116–121]. HPLC is the main analytical method for quantification of 19 and 20. Although the 

content of 19 and/or 20 in CX was high, their instability and easy decomposition also brought about 

many problems for the determination. Compound 39 had a better stability than 19 and 20.  

Shan et al. [122,123] determined the content of 39 in the volatile oil and crude herb of CX by HPLC 

(shown in Table 3). The results indicated the content of 39 in the volatile oil of CX was more than  

17 times of that in CX crude herb. 

HPLC with ultraviolet (UV) detection is increasingly used to analyze phthalides [124]. However, 

the sensitivity and selectivity of UV is insufficient for their direct identification in complex mixtures. 

GC-MS is a method that combines the features of gas-liquid chromatography and mass spectrometry, 

which was successfully used for simultaneous quantification of eight phthalides in essential oils from 

Si-Wu-Tang, Fo-Shou-San, Angelica Radix and CX [125]. However, the instability and structural 

similarity also cause difficulties in their analysis. Some of the volatile phthalides such as 19 are 

unstable and are easily changed into other phthalides through oxidation, isomerization, dimerization, or 

rapid decomposition at high temperature because of their active dihydrobenzene structure [126,127]. 

The dimeric phthalides, however, are also thermolabile; and retro-Diels-Alder reactions can easily take 

place even below 100 °C, which can’t be detected by GC-MS [128]. Therefore, application of HPLC 

coupled with MS is an attractive option to separate and identify such components [129–131]. 

2.2.4. Biological Activities 

Phthalides exhibit an equally broad spectrum of bioactivity, including modulation of the central 

nervous system and cardiac function, protection against brain ischemia, smooth muscle relaxation, 

inhibition of smooth muscle cell proliferation, anti-platelet aggregation, anti-angina activity, 

antibacterial, antifungal, antiviral and phytotoxic activity [132–134]. 
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Table 3. The concentration variation of ligustilide (19 and/or 20) and butylphthalide (39) in CX analyzed by HPLC. 

No. Analytes 
Extraction 
solvent 

Extraction 
method 

Analytical 
method 

Stationary phase Mobile phase 
Flow rate 
(mL/min)

max 
(nm) 

Content 
(mg/g) 

Ref. 

1 ligustilide - - HPLC Nova-Pak C18 
(3.9 mm  150 mm) 

Methanol and water with 
10% isopropanol (53:47) 

0.8 280 15.7 
[116] 

2 ligustilide Methanol Sonication HPLC Luna 5 m silica 
(150 mm  4.6 mm) 

n-hexane:ethyl acetate: 
chloroform (92:3:5) 

0.8 320 15.27 ± 1.86 
[117] 

3 ligustilide Acetonitrile Shaking up RP-HPLC Hypersil ODS2 
(4.6 mm  200 mm,  
5 m) 

Methanol:acetonitrile:water 
(33:21:46) 

0.8 275 347.9 

(in volatile oil) [118] 

4 ligustilide Ethanol Reflux HPLC C18 
(4.0 mm  200 mm,  
5 m) 

Acetonitrile:water (both 
contain 0.1% acetic acid) 

0.76 280 8.2 
[119] 

5 ligustilide 70% 
ethanol 

Reflux HPLC ODS C18 
(4.6 mm  200 mm,  
5 m) 

Methanol:water:acetic acid 
(75.0:24.8:0.2) 

1.0 326 5.672~5.821 
[120] 

6 ligustilide Ethanol Sonication HPLC Alltima C18 
(4.6 mm × 150 mm,  
5 m) 

Acetonitrile:water 

(60:40) 

1.0 350 7.40 
[121] 

7 butylphthalide Acetonitrile Shaking up RP-HPLC Kromasil C18 
(250 mm × 4.6 mm,  
5 m) 

sodium acetate  
(0.05 mol/L):acetonitrile 

(45:55) 

1.0 228 131.2~138.3 

(in volatile oil) [122] 

8 butylphthalide Ethyl ether Sonication RP-HPLC Kromasil C18 
(250 mm × 4.6 mm,  
5 m) 

Acetonitrile:acetic acid  
(pH 4.0, 45:55) 

1.0 228 7.86~8.01 
[123] 
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Among the phthalides, the main bioactive constituent focuses on compound 19, which has been 

studied and demonstrated that it has properties of vasodilatation [135], antiasthmatic action [136,137], 

antiplatelet aggregation [138], analgesic [139], antithrombotic, antiproliferation [140], centrally acting 

on muscle relaxant [141], on central noradrenergic and/or γ-aminobutyric acid [GABA(A)] systems [142] 

In addition, recent studies showed that it exerted significant neuroprotective effects in transient 

forebrain ischemia, permanent cerebral focal ischemia, and chronic cerebral hypoperfusion [143–145]. 

Both constituents of 19 and 21 were reported to have an anti-inflammatory effect by inhibiting tumor 

necrosis factor-alpha (TNF-) production and TNF--induced NF-B activation in vitro [34,146], 

vasorelaxation activities in contractions to various contractile agents in rat isolated aorta [147]. Both 

compounds 19 and 40 can inhibit the abnormal proliferation of vascular smooth muscle cell (VSMC) 

induced by basic fibroblast growth factor (bFGF) [148], attenuate the suppressive effects of yohimbine 

(30 nmol, i.c.v.), methoxamine (200 nmol, i.c.v.) and a benzodiazepine inverse agonist FG7142  

(10 mg/kg, i.p.) on pentobarbital sleep in group-housed mice [138]. 

2.3. Alkaloids 

2.3.1. Chemical Structures 

Chemical structures of the main alkaloids from CX are shown in Figure 3 [45,63,149]. 

Tetramethylpyrazine (TMP, 67), the molecular formula C8H12N2, is a characteristic alkaloid isolated 

from CX. Because compound 67 had the same pharmacological roles as CX and was first isolated from 

this herb, it was named chuanxiongzine by researchers. 

Figure 3. Chemical structures of main alkaloids in CX: (67) tetramethylpyrazine;  

(68) L-isobutyl-L-valine anhydride; (69) L-valine-L-valine anhydride; (70) uracil;  

(71) adenine; (72) trimethylamine; (73) choline; (74) 1-acetyl-β-carboline; (75) 1-β-ethyl 

acrylate-7-aldehydo-β-carboline; (76) pelolyrine; (77) adenosine. 
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2.3.2. Sample Preparation for Chemical Analysis 

Compound 67 in CX was extracted by SFE with a new class of low-pressure solvent (Phytosol), 

which is a non-chlorinated halothane solvent. During the extraction, just 30 mL of Phytosol solvent 

were needed, which could be recovered at room temperature [150]. CX total extract with high quality 

and stable yield could be obtained by another method of ethanol reflux and separation with 
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macroporous resin. The extract yield was 0.6%, among which compound 67 accounted for 5%~7% [151]. 

Ultrasonic extraction was also used in the extraction of 67, which is a new technology in extraction 

and separation of the active components in the herbal medicine in recent years. Compared with the 

conventional method of decoction, distillation and solvent immersion, the ultrasonic method had the 

advantages of a low extraction temperature, high biological activity of the product, less solvent 

consumption, time and energy savings [152]; extraction time of ultrafine vibration extraction 

technology (UVET) was 1/6, solvent amount was 4/7, the extraction rates of marker components  

(1 and 67) were 1.09 and 1.19 times, respectively [153]. 

2.3.3. Quantitative Analysis 

Compound 67 has also been considered as one of the main bioactive components and is used as  

a chemical marker for quality control of CX herb and CX-containing preparations (shown in  

Table 4) [8,154–156]. However, literature results suggest that the content of 67 was very low in CX, 

which was often less than the lower detection limit by HPLC [8]. Therefore, it should not be considered a 

suitable chemical marker for the quality control of CX herb and CX-derived herbal products. 

Table 4. The concentration variation of TMP (67) in CX analyzed by different methods. 

Extraction solvent Extraction method Analytical method Content (mg/g) Ref. 

Benzene, ethyl ether, and 
ethyl acetate 

Refluxing HPLC-DAD  1.2  10−4 [8] 

Petroleum ether Counter current RP-HPLC 0.12  10−3~0.87  10−3 [154] 

Ethanol Sonication HSCCC 0.042 [155] 

80% ethanol (containing 
5% acetic acid) 

Sonication HPLC 0.01256~0.07252 [156] 

Total quaternary ammonium alkaloids in CX were determined by neutralization titration, acidic dye 

colorimetry, and Reinecke salt colorimetry. The results from acidic dye colorimetry showed that 

among three kinds of CX species (Nai-CX, Shan-CX, and CX), the content of total alkaloids in CX 

was the highest [157]. Acidic dye colorimetry, however, had weak sensitivity and complex sample 

processing, which could easily cause error. Therefore, the content of total alkaloids in CX was 

determined by Reinecke salt colorimetry. Determined by this method, the content of total alkaloids in 

CX was 0.265%. However, it was 0.237% determined by acidic dye colorimetry [158]. In order to 

inherit and develop our traditional “Paozhi” technology and better serve for clinic, the content of 

alkaloid in CX and CX-processed products (Cu-CX and Jiu-CX) were determined by neutralization 

titration and TLC scanning method [159]. The content of compound 67 in Jiu-CX was lower than that 

in CX raw herb, but the content of total alkaloids was higher. It was probably because the melting 

point of 67 was 80~82 C, so it was easily sublimed when it was heated. The contents of total alkaloids 

and compound 67 in Cu-CX both were higher than that in CX raw herb, which might be attributed to 

the salt formation from alkaloid and acid which could be easily extracted. 
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2.3.4. Biological Activities 

Compound 67, an active compound of CX, has been reported to be an agent against platelet 

aggregation [160], a vasodilator with calcium channel blocking activity [161], a scavenger of 

superoxide anion in human polymorphonuclear leukocytes [162], and a chemical with anti-portal 

hypertensive and hepatoprotective effects [163,164]. Recently, it was discovered to have protective 

effects on multiple organs and systems [165], to alleviate kidney and brain damage induced by 

ischemia/perfusion in rats via scavenging oxygen-free radicals [166], to postpone chronic renal 

allograft dysfunction associated with cold ischemia injury and chronic allograft rejection but to have 

no evident hepatic side effects [167]. Moreover, compound 67 could significantly suppress oxidative 

stress and attenuate cell death in neuronal cultures induced by glutamate analogue and iron-mediated 

oxidative stress [168,169]. It also shows anti-apoptotic effect in rabbit ischemic spinal cord and 

hydrogen peroxide (H2O2)-induced PC12 [170,171]. 

2.4. Polysaccharides 

2.4.1. Chemical Structures 

The components in CX have drawn the attention of researchers since around the 1950s. However, 

researchers have only started the study of polysaccharides in CX in 2004. Since then, studies have 

been gradually expanded. Four homogeneous polysaccharides were obtained from the water extract of 

CX for the first time, with the molecular weights of 3.1 × 104, 5.2 × 104, 9.0 × 104, and 3.6 × 104, 

respectively [172,173]. Polycose in CX is composed by arabinose (Ara), galactose (Gal) and glucose 

(Glc), in a molar ratio of 1:1.4:7.9, determined by filter paper chromatography, TLC, and vapor phase 

chromatography [174]. Additionally, three purified polysaccharides (LCA, LCB, and LCC) were 

obtained [38]. The estimated weight is around 2.83  104 Da, 1.23  104 Da, and 6.31  104 Da, 

respectively. LCA is -Glc linkaged pyranose, composed by Ara, Gal, and mannose (Man). LCB 

consists of Ara, Glc, Gal, and Man; while LCC comprises Ara, Glc, and Gal. The result of Sun et al. [175] 

were in agreement with other literatures, except for the LCP-3, which still included rhamnose, 

galacturonic acid except Glc, Gal, Ara and Man, as determined by HPLC method after derivatization. 

2.4.2. Sample Preparation for Chemical Analysis 

At present, there are many methods for the extraction of polysaccharides, including water 

diffusion, osmosis, reflux, basic, ultrasonic, microwave, enzyme, supercritical fluid extraction (SFE) 

and macroporous resin methods (shown in Table 5) [176–182]. As indicated, both the pectinase 

method and cellulose method had higher extraction rates of polysaccharide from CX. Additionally,  

the enzyme method had mild reaction conditions and relatively simple operation compared with  

other methods. 
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Table 5. The extraction methods of polysaccharide in CX. 

Extraction method Optimum technology Extraction rate (%) Ref. 

Ultrasonic Ultrasonic time: 40 min; ultrasonic power: 400 W; 
solid to liquid ratio: 1:10; extraction times: 2 

2.74 [176] 

Pectinase Compound pectinase: 1%; temperature: 60 C;  
pH value: 3.5; the heating time: 150 min 

11.3 [177] 

Basic Extraction temperature: 95 C; Extraction time:  
150 min; the concentration of NaOH: 0.8 mol/L;  
solid to liquid ratio: 1:200 g/mL 

2.69 [178] 

Enzymic Cellulase: 0.15%; the compound pectinase: 10%;  
time: 210 min; pH: 3.4; temperature: 60 C 

3.03 [179] 

Microwave assisted Microwave power: 231 W; solid to liquid ratio: 
1:40; extraction time: 10 min 

3.06 [180] 

Cellulose enzymic Cellulase: 0.25%; time: 120 min; pH value: 4.0; 
temperature: 50 C. 

7.26 [181] 

Basic Extraction temperature: 90 C; extraction time: 4 h. 6.7 [182] 

During the extraction of polysaccharide in CX, the color of the extract was very deep, which might 

interfere with the quantitative determination. Therefore, it is necessary to decolorize the extract using 

absorbite, H2O2 and macroporous adsorptive resins. The results showed that macroporous adsorptive 

resins S-8 had the best decolorization effect. The rate of decolorization was 92.7%, and the retention 

rate of polysaccharide of CX was 93.0% [183]. 

2.4.3. Quantitative Analysis 

Polysaccharides generally should be hydrolyzed before quantitative determination. Then, reducing 

sugars can be determined by the carbolic acid method, sulphuric acid method, anthrone method, 

salicylic acid colorimetric method, Fehling reagent method or phenol method. Through weight 

calculations, the yield of crude polycose was 6.7%. The polycose was 4.11% as determined by the 

carbolic acid method, sulphuric acid method, and anthrone method [174]. However, manual operation, 

which can’t accomplish rapid monitoring and on-line analysis, is slow and involves more consumption 

of reagent. Therefore, a simple and rapid method of flow injection on-line hydrolysis spectrophotometry 

for the determination of polysaccharide in CX was developed [184]. It has been applied to a rapid 

determination of polysaccharide in CX with satisfactory results. The content of polysaccharide in CX 

was 2.28%. 

2.4.4. Biological Activities 

It was shown that all purified polysaccharides (LCA, LCB, and LCC) exhibited antioxidation and 

cytotoxicity. Among them, LCB has the highest antioxidant and cytotoxic activity, and scavenging 

ability on hydroxyl radicals. It is possible that LCB can be explored as a novel potential antioxidant 

and cytotoxic natural bioactive macromolecule [38]. Additionally, the polysaccharides of CX have 

antibacterial activities and promote cell growth [185]. 
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2.5. Ceramides and Cerebrosides 

2.5.1. Chemical Structures 

Ceramides and cerebrosides, two families of sphingolipids, are important components of a wide 

variety of tissues and organs in biological systems (fungi, plants, animals, and marine organisms). 

Chemically, ceramide usually consists of a long-chain sphingosine or sphingol and an amide-linked 

long-chain fatty acid; cerebrosides are composed of a hexose and a ceramide moiety. Yang et al. [186] 

isolated three ceramides (compounds 78–80) and two cerebrosides (compounds 81, 82) from the 

petroleum ether extract of CX in 2009. Amongst them, compounds 78 and 79 were new ceramides, 

compound 80 was a known ceramide, 81 and 82 were two known ceramides, but 80–82 were isolated 

from CX for the first time. Their structures are shown in Figure 4. 

Figure 4. Chemical structures of the main ceramides and cerebrosides in CX: (78)  

(2R)-2-hydroxy-N-[(2S,3S,4R,8E)-1,3,4-trihydroxypentadec-8-en-2-yl]heptacosanamide; 

(79) (2R)-2-hydroxy-N-{(3S,4S,5S)-4-hydroxy-5-[(4E)-undec-4-en-1-yl]tetrahydrofuran-3-

yl}heptacosanamide; (80) (2R)-2-hydroxy-N-[(2S,3S,4R,8E)-1,3,4-trihydroxyicos-8-en-2-

yl]tetracosanamide; (81) (2R)-N-[(2S,3R,4E,8E)-1-(β-D-glucopyranosyloxy)-3-hydroxy-

dodeca-4,8-dien-2-yl]-2-hydroxydocosanamide; (82) (2R)-N-[(2R,3S,4R,8E)-1-(β-D-gluco-

pyranosyloxy)-3,4-dihydroxyoctadec-8-en-2-yl]-2-hydroxyhexadecanamide. 
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2.5.2. Biological Activities 

The content of ceramides and cerebrosides in plants is very low. However, they have strong 

biological activities. A growing amount of evidence has indicated that ceramides and cerebrosides 

have a wide range of biological functions regulating cell growth and variation, participating in protein 

secretion and immunologic processes, protecting nerves, angiocarpy and liver cells. Biologically, 

cerebrosides have been proven to serve as structural supports and texture determinants of cell 

membranes, and to act as mediators of biological events [186–188]. 

2.6. Other Compounds 

In addition to the above five types of components, CX also contains other compounds. Chemical 

components of CX aerial parts were studied using various separation methods, such as silica gel 

column chromatography, ODS column chromatography, and Sephadex LH-20. Twenty five 
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compounds were separated and purified from a 80% ethanol extract of CX aerial parts. According to 

the physical and chemical properties, six compounds which were isolated from CX for the first time 

were identified using MS, 1H-NMR, 13C-NMR, distortionless enhancement by polarization transfer 

(DEPT), heteronuclear single quantum coherence (HSQC) and heteronuclear multiple-bond correlation 

(HMBC). Scopoletin (83) and astragalin (84) were separated from the ethyl acetate fraction of the 

dried 80% ethanol extract of CX aerial parts; ergosterol peroxide (85), daidzein (86), aurantiamide 

acetate (87) and lignoceric acid (88) were separated from the petroleum ether fraction [189]. Eleven 

compounds were separated and purified from 95% ethanol extract of CX by Hao et al. by repeated 

purification on a silica gel column, Sephadex LH-20 column chromatography, preparative TLC, and 

semi-preparative HPLC. Monopalmitin (89) and succinic acid (90) were separated from the petroleum 

ether and chloroform fractions of the dried 95% ethanol extract of CX [190]. Furthermore, the dried 

methanol extract of the 80% ethanol crude extract was subjected to column chromatography on silica 

gel eluted with a gradient system of chloroform/methanol (100:0 to 80:20) to afford 12 fractions.  

(−)-Alloaromadendrane-4β,10α,13,15-tetrol (91) was separated and purified from the fraction eluted 

from silica gel with chloroform/methanol (20:1), followed by reverse phase column chromatography 

eluted with methanol/H2O (30:70). The fraction eluted with petroleum ether/ethyl acetate (15:1 to 12:1), 

was further subjected to column chromatography on silica gel to yield campest-4-en-3-one (92) [191]. 

Isolated compounds 91 and 92 were tested for their abilities to inhibit the growth of microorganisms, 

and the results showed that they all had mild antimicrobial activities. Their structures are shown in 

Figure 5. 

Figure 5. Chemical structures of other compounds in CX: (83) scopoletin; (84) astragalin; 

(85) ergosterol peroxide; (86) daidzein; (87) aurantiamide acetate; (88) lignoceric acid;  

(89) monopalmitin; (90) succinic acid; (91) (−)-alloaromadendrane-4β,10α,13,15-tetrol;  

(92) campest-4-en-3-one. 
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3. Analytical Methods for Simultaneous Determination of Different Types of Chemical Compounds 

3.1. HPLC and HPLC-MS 

According to the development profile of CX (Table 1), fresh CX samples (October 8, 2002;  

October 30, 2002; December 2, 2002; January 2, 2003; February 11, 2003; March 9, 2003; April 11, 

2003; April 17, 2003; April 24, 2003; May 2, 2003; May 9, 2003; May 15, 2003; and May 20, 2003) 

were collected and analyzed using HPLC-UV, and the results showed that all samples contained 

compounds 13, 19 and 21 as the major and compounds 1 and 40 as the minor components, while only 

trace amounts of components 54 and 58 were found in some of the samples. Compounds 29 and 30 

were not detected in fresh CX herb, but detected in commercial dried and/or processed CX, which 

suggests they might be generated by the chemical conversion of the major phthalide 19 during 

processing and/or storage. Both individual and total contents of all main bioactive components 

gradually increased from the beginning of October to the middle of next April; and the weight of a 

single rhizome reached a plateau at the end of May, whilst the content of the major ingredients (13, 19 

and 21) peaked in the middle of April. Therefore, the optimal harvest time for this herb is in the period 

from the middle of April to the end of May when the node of the plant stem becomes swollen and 

purplish [16]. 

To date, HPLC has been extensively applied to the qualitative and quantitative analysis of chemical 

constituents of CX, including organic acids, phthalides, and alkaloids, and remains the prime method in 

compositional analysis of this herb. Representative HPLC methods developed for the simultaneous 

determination of chemical analysis of CX are summarized in Table 6 [8,59,110,119,192–201]. From it 

we can see that most HPLC separations of CX were carried out on reversed phase C18 columns,  

and some were on reversed phase C8 columns. In recent years, hyphenated HPLC techniques like 

HPLC-MS coupled with DAD, UV, and ESI focusing on structure elucidation have become widely 

available. With the aid of these modern spectroscopic techniques, multiple components of CX were 

simultaneously determined and identified. Phthalide dimers, present in smaller amounts, also have 

been identified by HPLC-UV and HPLC-MS. Stereochemical features of some phthalide monomers 

have been determined by detailed spectroscopic studies for the first time [202]. Additionally, some 

phthalides of CX are unstable and difficult to analyze by GC-MS. But they can unambiguously be 

identified by optimized LC-MS, and characteristic fragments of them can be obtained using homemade 

reference standards [203]. What is more, as a typical form of multi-dimensional separation system, a 

comprehensive two-dimensional LC system has been widely used to characterize and separate 

biomolecules, polymers, and other complex mixtures due to its high peak capacity, powerful 

separation and resolution ability since it appeared in 1978 [204]. The comprehensive two-dimensional 

system can provide maximum information with minimal amounts of material and allow rigorous 

quantitative interpretation of the results. Therefore, a comprehensive two-dimensional LC separation 

system based on the combination of a CN column and an ODS column was developed for the 

separation of components of CX [205]. Two columns are coupled by a two-position, eight-port valve 

equipped with two storage loops and controlled by a computer. More than 52 components in the 

methanol extract of CX were resolved and 11 (compounds 1, 2, 3, 6, 19, 29, 30, 39, 40, 42, and 44) of 

them were preliminary identified according to their UV and mass spectra. 
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Table 6. HPLC methods developed for simultaneous chemical analysis of CX. 

No. Analytes Detection mode Stationary phase Mobile phase Ref. 

1 1, 6, 29, 30 and 67 HPLC-MS Zorbax SB-C18 

(250 mm × 4.5 mm, 5 µm) 

Methanol:water:acetic acid (45:55:0.5, 

v/v/v) 

[8] 

2 1, 6, 13, 19, 21, 27, 29, 30, 31, 39, 40, 47, 48, 53, 54, 56 and 58 HPLC-DAD-MS Waters symmetry C18 

(150 mm × 2.1 mm, 5 µm) 

0.25% aqueous acetic acid and methanol [192] 

3 1 and 19 HPLC-MS C18 

(4.0 mm × 200 mm, 5 µm) 

Acetonitrile with 0.1% acetic acid and 0.1% 

acetic acid 

[119] 

4 1, 2, 3, 8 and 12  HPLC-UV Zorbax SB-C18 

(250 mm × 4.6 mm, 5 µm) 

Water with 0.1% acetic acid and methanol [59] 

5 19, 21, 29 and 30  HPLC-DAD Eclipse XDB-C8 

(4.6 mm i.d. × 150 mm) 

Methanol and water with 1% formic acid [110] 

6 1, 6, 13, 19, 21, 29, 30, 40, 48, 54, 58 and 67 HPLC-UV Waters symmetry C18 

(150 × 4.6 mm, 5 µm) 

0.25% aqueous acetic acid and methanol [193] 

7 1, 13, 19, 20, 21, 27, 29, 30, 31, 39, E-40, Z-40, 47, 53, 54, 56, 

58, 60, 61 and 62 

HPLC-DAD-MS Alltima C18 

(4.6 mm × 250 mm, 5 µm) 

0.5% acetic acid in water and acetonitrile [194] 

8 21, 19, 48, 39, 62 HPLC-MSn Eclipse XDB-C18 

(4.6 mm × 150 mm, 5 µm) 

0.25% acetic acid and methanol (containing 

0.25% acetic acid) 

[195,196] 

9 1, 13, 19, 20, 21, 27, 29, 30, 39, E-40 and Z-40 HPLC-ESI-MS Alltima C18 

(4.6 mm × 250 mm, 5 µm) 

Water and acetonitrile [197] 

10 1, 42 and 6,7-di-hydroxyligustilide HPLC-DAD Shinwa-ODS 

(250 mm × 4.6 mm, 5 µm) 

Methanol and 0.1% acetic acid [198] 

11 1, 19, 39, 40 and 67 RP-HPLC-DAD Grace Smart RP C18 

(250 mm × 4.6 mm, 5 µm) 

Acetonitrile and 0.1% phosphoric acid [119] 

12 19 and 21 HPLC-DAD Zorbax SB-C18 

(4.6 mm × 250 mm, 5 µm) 

Acetonitrile and 1% acetic acid [200] 

13 1, 2, 12, 19, 29, 30 and 40 HPLC-DAD Alltima-C18 

(250 mm × 4.6 mm, 5 μm) 

0.2% aqueous formic acid and acetonitrile [201] 
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3.2. GC-MS 

Nowadays, modern sample preparation techniques in analytical chemistry are characterized by 

simplification, miniaturization, high enrichment and minimization of sample and solvent amounts. The 

volatile compounds in CX are recognized as an important part for its pharmacological activities [14]. 

For the analysis of the volatile compounds, some publications are available using GC-MS following 

steam distillation extraction, SFE, and other extraction methods [206]. Representative GC-MS 

methods developed for the chemical analysis of CX are summarized in Table 7 [20,59,108,207–213]. 

According to different chromatographic conditions, several or even hundreds of components of CX 

can be simultaneously determined by this method. The column temperature commonly uses 

programmed temperatures. 

Among these methods, GC-MS sometimes was used to analyze and identify the volatile chemical 

components of CX by the combination of chemometric local resolution techniques such as subwindow 

factor analysis (SFA), orthogonal projection resolution (OPR) [209], heuristic evolving latent 

projections (HELP), the overall volume integration method [212], and other methods. With the help of 

chemometric approaches, the purity of chromatographic peaks can be identified. The combination of 

GC-MS with chemometric local resolution methods could greatly improve the chromatographic 

separation ability by means of mathematical approaches, indicating the reliability and practicability of 

these combined techniques. A headspace solid-phase microextraction (HS-SPME) method followed  

by GC-MS was described and a comparison between HS-SPME-GC-MS and steam distillation  

(SD)-GC-MS methods was made [213]. The results showed that HS-SPME method could achieve 

comparable results (73 compounds) with those by SD method (about 50 compounds), using much less 

sample, shorter extraction time and a simpler procedure. Additionally, effective components 19/20 and 

40 were screened and identified using a cell membrane chromatography (CMC) and a simple capillary 

GC-MS method [14,206]. The volatile oils of 23 CX samples from four different regions  

were analyzed by comprehensive two-dimensional GC/time-of-flight/MS (GC-TOF-MS) [214]. The  

group-type separation of four terpenoids (monoterpenes, oxygenated monoterpenes, sesquiterpenes, 

and oxygenated sesquiterpenes) and phthalides was well accomplished based on a DB-Petro × DB-17 

column system. With the MS library search, 215 compounds were tentatively identified based on the 

NIST database and 43 compounds of them were confirmed. Twenty three samples were apparently 

classified into four groups by partial least square-discriminant analysis (PLS-DA). All the results indicated 

that phthalides exerted a great influence on the chemical and biochemical classifications of CX. 
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Table 7. GC-MS methods developed for the chemical analysis of CX. 

No. Analytes Detection mode Stationary phase Temperature Ref. 

1 19, 39, 40, 47, 48 and senkyunolide HP 5890 SERIES I GC Gross-Linked Methyl Silicone 

Gum Phase (25 m × 0.2 mm) 

Column: 80 C; injector and detector:  

250 C; source: 200 C; interface: 280 C 

[207] 

2 19, 20, 21, 22, 27, 29, 30, 39, 40 and 48  HP6890 (GC) and a mass 

selective detector (HP5973) 

HP-5 MS capillary column 

(30 m × 0.25 mm, 0.25 µm) 

Column: 80 C–280 C; injector: 250 C; 

source: 250 C 

[59] 

3 45 components were identified. HP5988A GC-MS SE-30 capillary column 

(30 m × 0.25 mm, 0. 25 µm) 

Column: 90 C–250 C; injector: 260 C [208] 

4 About 127 chemical components be 

separated and 81 of them identified. 

Shimadzu 

GC-17A  

OV-17 capillary column 

(30 m × 0.25 mm) 

Column: 40 C–230 C; injector: 250 C; 

source: 230 C 

[209] 

5 59 components were identified. Agilent 6890N 5973N GC-MS HP-1 capillary column 

(30 m × 0.25 mm) 

Column: 40 C–230 C; injector: 280 C; 

source: 230 C; interface: 280 C 

[210] 

6 19 and 21 Shimadzu GC-14B SE-54 quartz capillary column 

(50 m × 0.2 mm) 

Column: 240 C; injector and  

detector: 280 C 

[211] 

7 52 volatile chemical components were 

determined. 

Agilent 6890N 5973N GC-MS HP-5MS capillary column 

(30 m × 0.25 mm) 

Column: 60 C–250 C; injector: 250 C; 

source: 230 C; interface: 280 C 

[212] 

8 73 compounds were identified. HP 5973 GC-MSD HP-INNOWAX 

(30 m × 0.25 mm, 0.25 µm) 

Column: 50 C–210 C; injector: 250 C; 

source: 250 C; interface: 280 C 

[213] 

9 62 components were identified.  Trace MS 2000 GC-MS DB-5 capillary column 

(0.25 mm × 30 m, 0.25 µm) 

Column: 50 C–240 C; injector: 270 C; 

source: 200 C; interface: 250 C 

[20] 

10 52 compounds were identified. HP 6890 N GC HP-5 

(30 m × 0.32 mm, 0.25 µm) 

Column: 40 C–100 C; injector: 260 C; 

source: 200 C; interface: 220 C 

[108] 
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3.3. CE 

CE is increasingly recognized as an important analytical separation technique because of its speed, 

efficiency, reproducibility, ultra-small sample volume, less consumption of solvent and ease of 

clearing up the contaminants [215]. CZE, which was first reported in 1981 [216], is an important 

model of CE. The content of compound 1 in CX was easily determined within 15 min with no 

pretreatment and interference by CZE [42]. Because of the complex constituents of CX, the column is 

easily polluted by the volatile oil, saccharide, and other components of this herb when detected by 

HPLC, thus leading to shortened life expectancy. However, those shortcomings can be overcome by 

HPCE. In recent years, HPCE has been developed as a powerful multi-dimensional separation 

technique [217], which is a hybrid technique that combines the advantages of HPLC and CE, also one 

of the very suitable analysis techniques for the multi-components analysis of TCM. This method has 

been recorded by the appendix of Chinese Pharmacopoeia (the 2005 edition), indicating it has become 

an official analysis technique for TCMs. The chemical composition spectrum of aqueous solution of 

CX was analyzed by HPCE, and compound 67 was identified [218]. However, in practice, when 

capillary electrochromatography (CEC) is used without pressure, often on a commercial CE 

instrument, there are problems associated with bubble formation in CEC, occurring initially in the 

unpacked section of the capillary, probably as a result of differences in velocity of the liquid eluent 

between the packed and unpacked sections of the capillary and column dry out [219]. The use of 

supplementary pressure has proved effective to stabilize the flow conditions. Compared with 

traditional HPLC and CE, the mobile phase in the pressurized CE (pCEC) system is driven by a 

pressurized flow and an electroosmotic flow simultaneously, reducing band broadening and improving 

separation efficiency. Now pCEC has become an attractive technique for pharmaceutical analysis 

because of its combination of the inherent advantages of two major separation techniques [220,221]. In 

addition, with amperometric detection (AD), CE-AD affords high sensitivity and good selectivity for 

electroactive species. Bioactive ingredients of CX including compounds 1, 2, 3, 4, 5, 6, 8, and 12 were 

determined by CE-AD as marker compounds, and the characteristic “electrochemical profiles” of CX 

was studied [60,215]. 

4. Fingerprinting 

Fingerprint analysis is considered as one of the most powerful approaches in quality control of 

TCMs. Conventional research focuses mainly on the determination of the most active components, 

while fingerprinting can offer characterization of a complex system with a degree of quantitative 

reliability, which is consistent with the theory that all the components, not just the few active 

compounds. in TCMs are held to be responsible for the beneficial effects Furthermore, fingerprint 

analysis can be used for identifying and assessing the authenticity, stability, plant anatomy, 

geographical origins, and harvest time of medicinal herbs. Nowadays, chromatographic techniques 

have been widely used in fingerprint analysis for quality control of CX, such as HPLC [222,223], 

HPCE [218,224], pCEC [221], hydrophilic interaction chromatography (HILIC)-RPLC [30],  
1H-NMR-HPLC [225], HPLC-DAD-MS [226], and GC-MS [227,228]. 
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Fingerprint similarity analysis of CX from three producing areas (Jiangxi, Sichuan, and Guangdong 

province of China) was studied by HPLC, and the peak areas of fifteen common components in their 

chromatograms were used to construct the fingerprints [222]. Principal component analysis (PCA) was 

applied to the fingerprint. It showed that the original region will cause significant differences. A vector 

of differences was defined between two fingerprints. The scalar mean of the different vector was  

taken as a statistic and both the t-test and Bayesian hypothesis testing were implemented to provide a 

one-to-one comparison of the fingerprints. Compared with PCA, correlation coefficient and vector 

cosine, the new method offers a better differentiation of the similarity or difference between the 

fingerprints from same sample of CX. Xie et al. [221] successfully developed a characteristic 

fingerprint by using pCEC and HPLC simultaneously for identifying raw CX herb. Two mathematical 

methods, correlation coefficient and the included angle cosine were applied for quantitative studies of 

the similarity of 10 batches of CX. Characteristics of pCEC and HPLC methods used to develop TCM 

fingerprint were summarized. It was proved that pCEC could be used as an alternative or 

supplementary technique for the development of fingerprint analysis of TCM through HPLC 

procedures. A binary chromatographic fingerprint analysis using HILIC and RPLC was developed to 

gain more chemical information about polar compounds and weakly polar compounds, which was used 

to construct a chromatographic fingerprint of CX [30]. Data from the analysis of CX samples were 

processed with similarity analysis, with correlation coefficients and congruence coefficients. To 

compare the quality of 14 samples, the change trend of similarity among the 14 samples calculated 

with four different methods (correlation coefficients and congruence coefficients with median and 

average data) was described. The production area of CX was relatively localized, mainly in Sichuan 

Province, and there was no obvious difference in the quality of samples from several areas in Sichuan 

Province, e.g., samples from Peng region and Guan region showed quality consistent with those from a 

genuine production area (Dujiangyan region). The technique of 1H-NMR and HPLC fingerprinting 

analysis is rapid, reproducible and stable with time for the authentication of medicinal plant  

species [229,230]. The 1H-NMR fingerprints of fractionated non-polar extracts (control substance for a 

plant drug, CSPD A) from CX of seven specimens from different sources were measured on Fourier 

Transform-NMR spectrometer and assigned by comparing them with the 1H-NMR spectra of the 

isolated pure compounds. The 1H-NMR fingerprints showed exclusively characteristic resonance 

signals of the major special constituents of the plant. Although the differences in the relative intensity 

of the 1H-NMR signals due to a discrepancy in the ratio of the major constituents among these samples 

could be confirmed by HPLC analysis, the general features of the 1H-NMR fingerprint established for 

an authentic sample of the rhizomes of CX exhibited exclusive data from those special compounds and 

could be used for authenticating CX species [225]. 

In the study of TCM fingerprints, the combination of chromatography and MS has better specificity 

than a single chromatography, and provides a more reliable basis for quality control. All the fingerprint 

results showed that place of origin significantly influenced the kinds and content of components in 

crude TCMs, and hence affected their quality. 
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5. Conclusions 

We have summarized the recent progress in the chemical analysis of CX. Organic acids, phthalides, 

alkaloids, polysaccharides, ceramides and cerebrosides are believed to be the main bioactive 

constituents of CX. A variety of technologies have been used for the qualitative and quantitative 

analyses of these compounds in CX and its preparations. Currently, HPLC, HPLC-MS and GC-MS are 

mostly used for CX analysis. However, the qualitative information using HPLC-MS under multiple 

reaction monitoring (MRM) mode is not enough to elucidate the structure. Though in the full-scan 

mode this information can be obtained, the lack of sensitivity and the lack of compound databases and 

mass-spectral libraries may be obstructive to the qualitative analysis. So far, no satisfactory method 

has been reported for the simultaneous analysis of all the major components of CX. A novel approach 

to chromatographic separation is ultra performance liquid chromatography (UPLC), which is based on 

the use of columns with smaller packing and operated at higher pressures [231]. Compared with 

traditional HPLC, UPLC provides a higher peak capacity, greater resolution, increased sensitivity and 

higher speed of analysis. When coupled with orthogonal quadrupole time-of-flight mass spectrometry, 

UPLC-Q-TOF-MS provides several advantages in the separation of complicated samples such as the 

field of TCMs, metabolomics, and drug metabolism [232,233]. The advantages of its higher resolution 

and the accuracy in mass measurements make it a powerful tool for identification of the analytes, 

therefore, UPLC-Q-TOF-MS facilitates the rapid and sensitive characterization of CX extracts even 

when pure standards are not available. Furthermore, MRM using tandem quadrupole mass 

spectrometry (TQ-MS), which monitors both the specific precursor ions and product ions of each 

metabolite, is a standard technique in targeted metabolomics, as it enables high sensitivity, 

reproducibility and a broad dynamic range. By UPLC-TQ-MS analysis, more analytes and metabolites 

can be quantified in each crude herb extract or its biological sample [234,235]. Given these 

advantages, we can expect that they will find applications in many aspects of CX analyses, such as 

chemical fingerprinting, which globally addresses the organic acids, phthalides, alkaloids and other 

compounds; the simultaneous determination of most major organic acids, phthalides and alkaloids for 

the quality control. All these studies are critically important for the quality control of CX,  

so as to ensure its safety and efficacy in clinical applications. What is more, the characteristics of 

UPLC-Q-TOF-MS, UPLC-TQ-MS, and other techniques such as UPLC-high definition mass 

spectrometry (HDMS) will be the method of choice for the in vivo metabolism, metabolomics and 

pharmacokinetic studies of CX. 
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