
Fast Mapping of Short Sequences with Mismatches,
Insertions and Deletions Using Index Structures
Steve Hoffmann1,2, Christian Otto1, Stefan Kurtz3, Cynthia M. Sharma4, Philipp Khaitovich9, Jörg Vogel4,

Peter F. Stadler1,2,5,6,7,8, Jörg Hackermüller5*

1 Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany, 2 Interdisciplinary Center for Bioinformatics, University of Leipzig,

Leipzig, Germany, 3 Center for Bioinformatics, University of Hamburg, Hamburg, Germany, 4 Max Planck Institute for Infection Biology, Berlin, Germany, 5 RNomics Group,

Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany, 6 Santa Fe Institute, Santa Fe, New Mexico, United States of America, 7 Department of

Theoretical Chemistry, University of Vienna, Vienna, Austria, 8 Max-Planck-Institute for Mathematics in Sciences, Leipzig, Germany, 9 Comparative Biology Group, Partner-

Institute for Computational Biology, Shanghai, China

Abstract

With few exceptions, current methods for short read mapping make use of simple seed heuristics to speed up the search.
Most of the underlying matching models neglect the necessity to allow not only mismatches, but also insertions and
deletions. Current evaluations indicate, however, that very different error models apply to the novel high-throughput
sequencing methods. While the most frequent error-type in Illumina reads are mismatches, reads produced by 454’s GS FLX
predominantly contain insertions and deletions (indels). Even though 454 sequencers are able to produce longer reads, the
method is frequently applied to small RNA (miRNA and siRNA) sequencing. Fast and accurate matching in particular of short
reads with diverse errors is therefore a pressing practical problem. We introduce a matching model for short reads that can,
besides mismatches, also cope with indels. It addresses different error models. For example, it can handle the problem of
leading and trailing contaminations caused by primers and poly-A tails in transcriptomics or the length-dependent increase
of error rates. In these contexts, it thus simplifies the tedious and error-prone trimming step. For efficient searches, our
method utilizes index structures in the form of enhanced suffix arrays. In a comparison with current methods for short read
mapping, the presented approach shows significantly increased performance not only for 454 reads, but also for Illumina
reads. Our approach is implemented in the software segemehl available at http://www.bioinf.uni-leipzig.de/Software/
segemehl/.

Citation: Hoffmann S, Otto C, Kurtz S, Sharma CM, Khaitovich P, et al. (2009) Fast Mapping of Short Sequences with Mismatches, Insertions and Deletions Using
Index Structures. PLoS Comput Biol 5(9): e1000502. doi:10.1371/journal.pcbi.1000502

Editor: David B. Searls, Philadelphia, United States of America

Received February 19, 2009; Accepted August 7, 2009; Published September 11, 2009

Copyright: � 2009 Hoffmann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been supported in part by the European Framework Program 6 Project SYNLET (EC contract number 043312), a formel.1 grant by the
Medical Faculty, University of Leipzig (http://www.med.uni-leipzig.de), and the Leipzig Interdisciplinary Research Cluster of Genetic Factors, Clinical Phenotypes
and Environment (LIFE) funded by the State of Saxony (http://www.life.uni-leipzig.de). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: joerg.hackermueller@izi.fraunhofer.de

Introduction

Since the 454 pyrosequencing technology [3] has been

introduced to the market, the need for algorithms that efficiently

map huge amounts of reads to reference genomes has rapidly

increased. Later, high throughput sequencing (HTS) methods such

as Illumina [4] and SOLiD (Applied Biosystems) have intensified

the demand. The development of read mapping methods

decisively depends on specifications and error models of the

respective technologies. Unfortunately, little is known about

specific error models, and models are likely to change as

manufactures are constantly modifying chemistry and machinery.

Increasing the read length is a key aim of all vendors — tolerating

a trade-off with read accuracy. In a recent investigation on error

models of 454 and Illumina technologies, it has been shown that

454 reads are more likely to include insertions and deletions while

Illumina reads typically contain mismatches [5,6]. Currently

available read mapping programs are specifically designed to allow

for mismatches when aligning the reads to the reference genome.

Most of the programs, e.g. MAQ [7], SOAP [8], SHRiMP [9] or

ELAND (proprietary), use seeding techniques that gain their speed

from pre-computed hash look-up tables. Some of these programs,

in particular SOAP and MAQ, are specifically designed to map short

Illumina or SOLiD reads. Longer sequences cannot be mapped by

these tools. The matching models of MAQ, ZOOM [10], SOAP,

SHRiMP, Bowtie [11], and ELAND focus on mismatches and

largely neglect insertions and deletions. Indels are only considered

during subsequent alignment steps but not while searching for

seeds. With indels accounting for more than two thirds of all 454

sequencing errors, this is a major shortcoming for these kinds of

reads [5]. Only PatMaN [12] and BWA [13] are able to handle a

limited number of indels.

Mapping is aggravated by the manufacturers’ overestimation of

their read accuracies. While an overall error rate of 0.5% has been

observed for 454, the error rate increases drastically for reads

shorter than 80 bp and longer than 100 bp [5], leading to

considerably larger error frequencies in real-life datasets. This

implies that, sequencing projects aiming to find short transcripts

such as miRNAs lose a substantial fraction of their data, unless a

matching strategy is used that takes indels into account. In

PLoS Computational Biology | www.ploscompbiol.org 1 September 2009 | Volume 5 | Issue 9 | e1000502



Illumina reads, error rates of up to 4% have been observed [6].

This differs significantly from Illumina’s specification. Compared

to 454, the frequency of indels is significantly lower. Moreover,

differences between reads and reference genome might also occur

due to genomic variations such as SNPs. We present a matching

method that uses enhanced suffix arrays to compute exact and

inexact seeds. Sufficiently good seeds subsequently trigger a full

dynamic programming alignment. Our method is insensitive to

errors and contaminations at the ends of a read including 39 and 59

primers and tags. The results section describes the basic ideas and

an evaluation of our segemehl software implementing our

method. The technical details of the matching model are described

in the Methods section at the end of this contribution.

Results

Outline of the Algorithmic Approach
A read aligner should deliver the original position of the read in

the reference genome. Such a position will be called the true position

in the following. Optimally scoring local alignments of the read

and the reference genome can be used to obtain a possible true

position, but because an alignment of the read with the reference

genome at the true position does not always have an optimal score

according to the chosen scoring scheme, this method does not

always work. Nevertheless, there are no better approaches

available unless further information about the read is at hand.

We present a new read mapping approach that aims at finding

optimally scoring local alignments of a read and the reference

genome. It is based on computing inexact seeds of variable length

and allows to handle insertions, deletions (indels; gaps), and

mismatches. Throughout the document the notion of differences

refers to mismatches, insertions and deletions in some local

alignment of the read and the reference genome, irrespective of

whether they arise from technical artifacts or sequence variation.

A single difference is either a single mismatch, a single character

insertion or a single character deletion. Although not limited to a

specific scoring scheme, we have implemented our seed search

model in the program segemehl assigning a score of 1 to each

match and a score of 21 to each mismatch, insertion or deletion.

Our matching strategy derives from a simple and commonly used

idea. Assume an optimally scoring local alignment of a read with

the reference genome with exactly two differences. If the positions

of the differences in the alignment are sufficiently far apart, we can

efficiently locate exact seeds which in turn may deliver the position

of the optimal local alignment in the reference genome. Likewise,

if the distance between the two differences is small, two continuous

exact matches at the ends of the read possibly allow to map the

read to this position. To exploit this observation, the presented

method employs a heuristic based on searches starting at all

positions of the read. That is, for each suffix of the read the longest

prefix match, i.e. the longest exact match beginning at the first

position of the suffix with all substrings of the reference genome is

computed. If the longest prefix match is long enough that it only

occurs in a few positions of the reference genome, it may be

feasible to check all these positions to verify if the longest prefix

match is part of a sufficiently good alignment. While this approach

works already well for many cases, we need to increase the

sensitivity for cases where the computation of the longest prefix

match fails to deliver a match at the position of the optimally

scoring local alignment. This is the case when a longer prefix

match can be obtained at another position of the reference

genome by exactly matching characters that would result in a

mismatch, insertion or deletion in the optimal local alignment (cf.

Fig. 1). Therefore, during the computation of each longest prefix

match we check a limited number of differences by enumerating at

certain positions all possible mismatches and indels (cf. Fig. 2).

To efficiently compute the longest prefix matches, we exploit

their properties for two consecutive suffixes of a read, i.e. for two

suffixes starting at position i and i+1. If the suffix starting at

position i has a longest prefix match of length ,, then the suffix

starting at position i+1 has a longest prefix match of length at least

,21. For example, assume a read ACTGACTG. If the second suffix

has a longest prefix match of length 4, i.e. CTGA, with the reference

genome, we immediately see that the third suffix has a longest

prefix match not shorter than 3—because we already know that

the substring TGA exists in the reference genome. Using an

enhanced suffix array of the reference sequence, we can easily

exploit this fact and determine the longest prefix match of the next

suffix without rematching the first ,21 characters. Likewise, the

enumeration of mismatches and indels is also restricted to the

remaining characters of the suffix in our model.

For each suffix of a read, we thus obtain a set of exact matches

and alternative inexact matches and their respective positions in

the reference sequence. These exact and inexact matches act as

seeds. If a seed occurs more than t times in the reference genome,

then it is omitted, where t is a user specified parameter (segemehl
option –maxocc). The heuristics rigorously selects the exact or

inexact seed with the smallest E-value, computed according to the

Blast-statistics [14]. If this E-value is smaller than some user

defined threshold (segemehl option -E), the bitvector algorithm

of [1] is applied to a region around the genomic position of the

seed to obtain an alignment of the read and the reference

sequence. While the score based search for local alignment seeds

controls the sensitivity of our matching model, the bitvector

alignment controls its specificity: if the alignment has more

matching characters than some user specified percentage a of the

read (segemehl option -A) the corresponding genomic position is

reported (see Methods).

The computation of the longest prefix match is implemented by

a top-down traversal of a conceptual suffix interval tree, guided by

the characters of the read. The suffix interval tree is equivalent to a

suffix trie (see Methods). The traversal delivers a matching stem.

Author Summary

The successful mapping of high-throughput sequencing
(HTS) reads to reference genomes largely depends on the
accuracy of both the sequencing technologies and
reference genomes. Current mapping algorithms focus
on mapping with mismatches but largely neglect inser-
tions and deletions—regardless of whether they are
caused by sequencing errors or genomic variation.
Furthermore, trailing contaminations by primers and
declining read qualities can be cumbersome for programs
that allow a maximum number of mismatches. We have
developed and implemented a new approach for short
read mapping that, in a first step, computes exact matches
of the read and the reference genome. The exact matches
are then modified by a limited number of mismatches,
insertions and deletions. From the set of exact and inexact
matches, we select those with minimum score-based E-
values. This gives a set of regions in the reference genome
which is aligned to the read using Myers bitvector
algorithm [1]. Our method utilizes enhanced suffix arrays
[2] to quickly find the exact and inexact matches. It maps
more reads and achieves higher recall rates than previous
methods. This consistently holds for reads produced by
454 as well as Illumina sequencing technologies.

Short Read Mapping with Gaps

PLoS Computational Biology | www.ploscompbiol.org 2 September 2009 | Volume 5 | Issue 9 | e1000502



Note that for the DNA alphabet there are at most four edges

outgoing from each node of the suffix interval tree. To introduce

mismatches, the traversal is simply continued with alternative

edges, i.e. edges diverging from the matching stem. To introduce

insertions, the traversal is not regularly continued, but characters

of the read are skipped. Deletions are simulated by skipping nodes

of the suffix interval tree and continuing the search at their child

nodes (see Methods). We refer to these alternative paths that

branch off from the matching stem as branches. The maximum

number of branches to be considered is controlled by the seed

differences threshold k (segemehl option -D). Note, that while

matching character by character along a suffix of a read, the

number of branches is expected to decrease quickly.

Performance Tests
segemehl constructs indices either for each chromosome of a

genome and the matching is performed chromosome-wise or,

depending on the available RAM, chromosomes are combined to

larger sequences. Compared to other methods, the index structure

used by segemehl is significantly larger. For example, the

enhanced suffix array of human chromosome 1 occupies

approximately 3 GB of space. As it is stored on disk, the index

only needs to be computed once. The construction of the index

requires linear time. For example, on a single CPU, the

construction of the complete enhanced suffix array for human

chromosome 1 takes approximately 15 minutes. For our compar-

ison, we ran segemehl with maximum occurrence parameter

t = 500. The maximum E-value for seeds was set to 0.5 and

minimum identity threshold to a = 85% which corresponds to a

maximum of q0.15?mr differences in an alignment of the read of

length m.

We compared segemehl to Bowtie v0.9.7 with option –all,

BWA v0.2.0, MAQ v0.7.1, PatMaN v1.2.1 and SOAP v1.11 with option

–r 2. MAQ and SOAP are based on ungapped alignments which are

computed by hash lookups [7,8,13]. Due to length restrictions, MAQ
is limited to Illumina (and SOLiD) reads. It additionally takes

quality scores into account. The quality values needed by MAQ were,

for all nucleotides, uniformly set to a value corresponding to the

error rate. Bowtie [11] and BWA [13] index the reference genome

with the Burrows-Wheeler transform. BWA allows a limited number

of indels. PatMaN [12] matches the reads by traversing a non-

deterministic suffix automaton constructed from the reference

genome. Except for PatMaN, all programs only report matches with

the smallest edit distance. BWA and Bowtie each need about

10 minutes to build their index. The fastq files needed by MAQ are

built in approximately 2 minutes. PatMaN and SOAP require no

indexing steps. The options for the other programs were chosen so

as to achieve results similar to segemehl. For our comparison, we

performed tests on simulated as well as real-life read data sets. For

the simulation we generated read sets representing different error

rates, types and distributions. We used three distinct error sets, one

containing only mismatches, one containing only indels and a last

one representing reads with mismatches and indels at a ratio of 1:1.

Additionally, different error distributions were used to model error

scenarios such as terminal contamination (e.g. linker, poly-A tails) or

decreasing read quality. We chose uniform, 59, 39 and terminal

error distributions.

Each simulated dataset contained 500 000 simulated reads, each

of length 35 bp, sampled from a 50 MB large region of the human

genome (chromosome 21). We introduced errors to each simulated

read according to previously defined rates, error types and

distributions. For the 50 MB region we constructed the indexes

required for segemehl and Bowtie. For MAQ we constructed the

index for the read set under consideration. Index construction took

approximately one minute for Bowtie and BWA. The construction

for the enhanced suffix array for segemehl took 3.5 minutes. The

binary fastq files for MAQ were created in about 20 seconds.

We ran segemehl with seed differences threshold k = 0 and

k = 1. For k = 0, only exact seeds are computed and for k = 1 seeds

with at most one difference are computed. All programs were

executed single-threaded on the same machine. The results for a

uniform error distribution for mismatches only as well as for

mismatches and indels are shown in Fig. 3. We measured the

performance in terms of running time (Fig. 3 (A)) and recall rates,

i.e. the percentage of reads mapped to the correct position.

segemehl has recall rates of more than 95% (k = 1) and 80%

(k = 0) in each setup with not more than two errors in the reads.

With four uniformly distributed errors in the reads, the recall rate

drops below 80% (k = 1) and 50% (k = 0), respectively. Hence, for

k = 1 segemehl outperforms all other methods in terms of recall

rates. For reads containing only mismatches and k = 0, segemehl
is comparable to other methods (Fig. 3 (B)) while it has a

significantly better recall rate as soon as insertions and deletions

are involved (Fig. 3 (C)). As expected, the recall rate of most short

read aligners drops if insertions and deletions are introduced into

the reads. The running time of segemehl for k = 0 is comparable

to other short read aligners. For k = 1, the running time increases

by a factor of 10.

Figure 1. Longest prefix matches may fail to deliver the
position of the optimally scoring local alignment. Assume a
simple scoring scheme that assigns a score of +1 to a single character
match and a score of 0 to a single character mismatch, a single
insertions or deletion. Using longest prefix matches bears the risk of
ignoring differences in the best, i.e. optimally scoring, local alignment.
Its retrieval fails if a longer match can be obtained at another position
of the reference sequence by matching a character, that is inserted,
deleted, or mismatched in the best local alignment. Depending on the
length of the reference genome and its nucleotide composition the
probability is determined by the length of the substring that can be
matched to the position of the best local alignment before the first
difference occurs. (A) The optimally scoring alignment of the read
P: = cttcttcggc begins at position 3 of the reference genome
S: = atacttcttcggcaga. Let Pi denote the ith suffix of the read P. For each
Pi, the starting positions of the longest match in S comprise the position
of Pi in the best local alignment (solid green lines). That is, the longest
match of P0 begins at position 3, the longest match of P1 begins at
position 4, the longest match of P2 begins at position 5 and so forth. (B)
For the read P: = cttcgtcggc, the retrieval of the best local alignment
fails for all Pi, i,5 (dashed red line) due to the inclusion of a character
that results in a mismatch in the optimally scoring local alignment. (C)
The read P: = cttctgcggc contains, with respect to the best local
alignment, a mismatch at position 5 of the read. Here the position 5 of
the read is not included in the longest prefix match and nearly all
substrings align correctly to the reference genome.
doi:10.1371/journal.pcbi.1000502.g001

Short Read Mapping with Gaps

PLoS Computational Biology | www.ploscompbiol.org 3 September 2009 | Volume 5 | Issue 9 | e1000502



Figure 3. Comparison of recall rates and running time for several short read aligners. Average running time for the different programs (A)
in matching runs with 500 000 reads in two different data sets (logarithmic scale; S refers to segemehl). The differences are uniformly distributed
and consist of only mismatches (B) or mismatches, insertions and deletions (C). The recall rate describes the fraction of reads which was mapped to
the correct position. All programs were used with default parameters. Bowtie was called with option –all and SOAP with option –r 2.
doi:10.1371/journal.pcbi.1000502.g003

Figure 2. Matching stems and matching branches. We give an explanation based on a suffix trie which is equivalent to the suffix interval tree
shown in Fig. 5 (see Methods). The suffix trie for S$ with S: = acttcttcggc (left) holds twelve leaves. Each numbered leaf corresponds to exactly one
suffix in S. Nodes with only one child are not explicitly shown. Note, that internal nodes implicitly represent all leafs in their respective subtree. Thus,
internal nodes can be regarded as sets of suffixes. The right panel holds the longest matches for different matching paths in the trie. Matching the
first three suffixes of the read P: = cgtcggc results in three different paths in the suffix trie. Each path is equivalent to a sequence of suffix intervals, a
matching stem, in the enhanced suffix array. LetMi denote the matching stem for Pi = ith suffix of P. The qth interval inMi , denoted byMq

i , implicitly
represents the set of suffixes in S matching P[i..i+q21]. The path for the first suffix P0 is of length two (green solid line). Hence, the equivalent
matching stem M0 is a sequence of three intervals: M0

0 , M1
0 and M2

0 . Since M2
0 only represents the suffix S7, the longest prefix match of P0 is of

length 2 occurring at position 7 of the reference sequence (right panel). The matching stem M1 for P1 (red solid line) ends with M2
1 . Therefore,

matches of length one occur at positions 8 and 9 in S. The longest prefix match for P3 occurs at position 6 of S (dashed orange line). Note, that the
intervals M3

3 � � �M5
3 of M3 equivalently represent S6. An alternative path leads to a match with position 4. The branch Br0 M1

0,1,1,MM
� �

denotes
the alternative that accepts the mismatch of g and t at position 1 of P0.
doi:10.1371/journal.pcbi.1000502.g002

Short Read Mapping with Gaps

PLoS Computational Biology | www.ploscompbiol.org 4 September 2009 | Volume 5 | Issue 9 | e1000502



In contrast to Bowtie, BWA, MAQ, and SOAP, segemehl reports,

by default, multiple matches for a read within the reference

genome if the corresponding alignments have an E-value smaller

than some user defined threshold. This behavior leads to an

increase in the running time and a decrease in specificity.

Compared to PatMaN, which is also able to report multiple

matches, segemehl can cope with more than two differences and

still is on average faster by a factor of 1.7 (k = 1) and 14 (k = 0). As

expected, the worst segemehl results are seen for high error rates

with a uniform error distribution (Fig. 4). Terminal, 39 and 59

error distributions yield better results, suggesting that segemehl
implements a robust method that is insensitive to leading and

trailing contaminations. Next, we compared segemehl, Bowtie
and MAQ on two real-life data sets. We used Bowtie with option –
all and MAQ with option –C 513 as suggested in the manuals to

achieve maximum sensitivity. segemehl’s sensitivity was con-

trolled by option –M 500 to omit all seeds occurring more than 500

times in the reference sequence.

The data set ERR000475 of 20 million Illumina reads (length

45) for H. sapiens was downloaded from the NCBIs Short Read

Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/). The second

data set comprised about 40 000 short 454 reads from the

arabidopsis mpss plus database (http://mpss.udel. edu/at/). The

average length of the 454 reads was 23 bp.

We partitioned the 454-set into subsets of equal size, to satisfy

input requirements for MAQ. An average quality value was assigned

to each base.

Mapping multiple reads to a reference genome is a task which

can easily be parallelized. Like all other methods, segemehl offers

a parallelization option to run the program on multiple cores.

segemehl runs for the ERR000475 dataset were carried out in

eight parallel threads on a single machine with two Quadcore

CPUs and 16GB of RAM. Seven enhanced suffix arrays were

constructed representing the whole human genome. segemehl
mapped 92% of the reads to the reference sequence while MAQ

mapped 85% without and 89% with quality values. The

corresponding values for Bowtie are 81% and 89%. The largest

difference between the three tools is for the total number of exact

matches. Although MAQ was, according to the manual, running in

maximum sensitivity mode, segemehl computes 20 times more

matches than MAQ (Tab. 1 (a)). Bowtie reports 2.5 billion matches

which is much more than the two other tools. As expected, for the

454-set, the difference among the compared programs is even

larger. While Bowtie is able to map 71% of all reads, segemehl
achieves 95%. MAQ, a program explicitly designed for Illumina

reads, matches 79% of the reads. Interestingly, compared to

Bowtie, MAQ reports more matches with two mismatches.

segemehl mainly achieves this result by mapping more reads

with one or two errors. In fact, by allowing insertions and deletions

segemehl doubles the number of reads matched at the unit edit

distance of 1 (Tab. 1 (b)).

Discussion

We have presented a novel read mapping approach that is able

to efficiently handle 39 and 59 contaminations as well as

mismatches, insertions and deletions in short and medium length

reads. It is based on a matching model with inexact seeds

containing mismatches, insertions and deletions. The sensitivity

and specificity of our method is controlled by a maximum seed

differences threshold, a maximum occurence threshold, an E-value

threshold and an identity threshold. Compared to previous

methods, our approach yields improved recall rates especially for

reads containing insertions and deletions. Since indels have been

reported to be the predominant error type in 454 reads, allowing

for indels is most important to achieve a correct mapping. While

PatMaN, by default, fully enumerates all matches with up to two

differences, segemehl’s heuristic reports only best-scoring match-

es. The price for the gain in sensitivity is an increase in running

time: with k = 1 our method is approximately ten times slower than

Bowtie, the fastest program in our comparison. As we used

enhanced suffix arrays, matching against a large mammalian

genome has to be done chromosome by chromosome when off-

the-shelf hardware is used. However, the gain in sensitivity for

reads with mismatches and the failure of other methods when

dealing with indels may be, depending on the users demands, a

reasonable trade off for these shortcomings. Our method is not

limited to a specific technology or read length. Although quality

values are not considered yet, the matching strategy can easily be

adapted to evaluate low quality bases specifically. In principle, we

show that for k = 0, i.e. exact seeds, our method is sufficiently

sensitive to map reads with up to two differences. This is an

interesting result since most of the current methods do not tolerate

insertions and deletions. In summary, segemehl with k = 0 is

among the fastest mapping algorithms. For k = 1, segemehl is

able to achieve good recall rates beyond the two error barrier. This

is especially interesting since manufacturers try to increase their

read lengths at the cost of higher error rates. The increased

sensitivity of the presented matching model, along with its ability

to handle leading and terminal contaminations is a trade off for the

large memory requirements of the enhanced suffix arrays. In the

future, compressed index structures like the FM-index [15] may be

a suitable framework to implement our matching model with

smaller memory requirements.

Methods

Our strategy, based on enhanced suffix arrays, aims to find a

best local alignment of short reads and reference sequences with

respect to a simple scoring system. It does so by determining, for

Figure 4. segemehl recall rates for varying difference values
and distributions. Recall rates are depicted for k = 0 (dashed) and
k = 1 (solid). For terminal–, 39– and 59– increased difference distribu-
tions, segemehl achieves a recall rate above 80% for reads with 4
errors.
doi:10.1371/journal.pcbi.1000502.g004

Short Read Mapping with Gaps

PLoS Computational Biology | www.ploscompbiol.org 5 September 2009 | Volume 5 | Issue 9 | e1000502



each suffix of the read, the longest prefix occurring as a substring

in the reference sequence. This gives a matching backbone, from

which a limited number of branches are derived by mismatches,

insertions and deletions (Fig. 2). The concept of a matching

backbone is equivalent to the concept of matching statistics

introduced in [16]. We introduce the concept of matching

backbone and branches via a conceptual tree of suffix intervals.

Our heuristic approach delivers a small number of inexact seeds of

variable length that are subsequently checked by the bitvector

algorithm of Myers [1] to verify the existence of alignments with a

limited number of differences. First, a short introduction to the

basic notions for sequence processing and enhanced suffix arrays

will be given, before the concept of suffix intervals is defined.

Subsequently, we introduce our new matching strategy.

Basic Notions for Sequence Processing
We consider sequences over the DNA alphabet SDNA = {A, C,

G, T, N}, where N denotes an undetermined base. In our

approach the alignment of N with any character, including N

itself, results in a mismatch.

Enhanced suffix arrays. First we introduce basic notions for

the suffix array and enhanced suffix array. We then formally

introduce the concept of a suffix interval.

Suppose that S is a sequence of length n. We index S from

position 0. That is, S[i] denotes the character at position i in S, for

0#i#n21. For i#j, S[i..j] denotes the substring of S starting with

the character at position i and ending with the character at

position j. For i.j, S[i..j] denotes the empty string. occS(w) denotes

the set of occurrences of some string w[S�DNA in S, i.e. the set of

positions i, 0#i#|S|2|w| satisfying w = S[i..i+|w|21]. A sub-

string of S beginning at the first position of S is a prefix of S and a

substring ending at the last position of S is a suffix of S. To prevent

that suffixes have a second occurrence in S, we add a sentinel

character $ (not occurring in S) to the end of S. For each i, 0#i#n,

Si = S[i..n21]$ denotes the i-th non-empty suffix of S$, i.e. the

suffix beginning at position i in S$. We identify a suffix of S$ by its

start position. That is, by suffix i we mean Si.

The concept of suffix arrays is based on lexicographically sorting

the suffixes of S$. Suppose that the characters are ordered such

that A,C,G,T,N,$. This character order induces an order

on all non-empty suffixes of S$, which is captured in the suffix

array. Formally, the suffix array suf of S is an array of integers in

the range 0 to n, specifying the lexicographic order of the n+1 non-

empty suffixes of S$. In other words, Ssuf[0], Ssuf[1], …, Ssuf[n] is the

sequence of suffixes of S in ascending lexicographic order.

The lcp-table lcp is an array of integers in the range 0 to n21. For

each h, 1#h#n, lcp[h] is the length of the longest common prefix of

Ssuf[h21] and Ssuf[h]. Since the suffix Sn = $ is the last suffix in the

lexicographic order of all non-empty suffixes, Ssuf[n] = $. Hence we

always have lcp[n] = 0. The enhanced suffix array is the combination

Table 1. Comparison of the performance of Bowtie, MAQ, and segemehl on two real-life datasets.

total mismatches+insertions+deletions

0 1 2 $3

(a) Human genomic data set ERR000475 (Illumina)

Bowtie (-all) all matches 2 692 341 844 631 194 732 925 094 123 1 136 952 989 -

reads found 16 011 867 (81%) 12 006 627 2 824 359 1 180 881 -

Bowtie (-all) with

qualities

all matches 9 264 604 839 631 194 732 914 965 615 1 098 260 521 6 620 183 971

reads found 17 693 135 (89%) 12 006 627 2 806 842 1 162 905 1 716 761

MAQ all matches 67 108 174 22 545 585 15 999 878 14 913 062 13 649 649

reads found 16 762 361 (85%) 12 006 627 2 829 601 1 199 110 727 023

MAQ with qualities all matches 96 980 574 15 084 354 9 867 729 10 987 486 61 041 005

reads found 17 725 314 (89%) 11 277 928 2 928 839 1 364 477 2 154 070

segemehl all matches 701 943 169 464 294 770 112 471 308 42 794 605 57 262 900

reads found 18 191 858 (92%) 12 002 123 2 872 615 1 221 313 2 095 807

(b) A. thaliana short RNA data set (454)

Bowtie (-all) all matches 156 621 85 254 42 443 28 924 -

reads found 26 969 (71%) 18 739 5 390 2 840 -

MAQ all matches 74 994 26 890 15 078 14 482 18 544

reads found 29 987 (79%) 18 738 5 389 3 093 2 767

segemehl all matches 262 262 72 328 83 070 51 048 55 816

reads found 35 942 (95%) 18 737 10 525 3 744 2 936

(a) The genomic paired DNA library with 19 812 604 Illumina reads was matched using MAQ (chromosome by chromosome), Bowtie (single index), and segemehl
(seven enhanced suffix arrays each representing a disjoint subset of the human chromosomes). Bowtie was used with and without quality values. To simulate a MAQ
run without quality information, an average quality value was assigned to all bases of the Illumina data set. The total number of matches differs significantly: Bowtie
outnumbers all other programs. segemehl still reports ten times more matches than MAQ without quality values. The number of exact matches shows a 20-fold
increase. Although MAQ improves when quality values are used, the total number of matches remains small in contrast to the other programs. Differences in the
number of exactly matching reads reflect the distinct handling of repetitive and uninformative reads. In segemehl, all reads matching more often than t = 500 times
are dropped. (b) 38171 reads of a small short RNA library sequenced with 454 were matched to the A. thaliana genome. Compared to Bowtie and MAQ, segemehl
mapped significantly more reads. Allowing for one error, segemehl matches twice as many reads as Bowtie, due to the fact that segemehl, unlike Bowtie,
allows for indels. Note that segemehl discarded a few perfect matches since the corresponding seeds occur more than t = 500 times in the reference sequence.
doi:10.1371/journal.pcbi.1000502.t001

Short Read Mapping with Gaps

PLoS Computational Biology | www.ploscompbiol.org 6 September 2009 | Volume 5 | Issue 9 | e1000502



of the suffix array, the lcp-table and two other tables from [2] not

defined here, namely the child-table and the suffix link table.

We now formally introduce the notion of suffix intervals that is at

the heart of our matching strategy in enhanced suffix arrays.

An interval [l..r, h] is a suffix interval if the following holds:

1. 0#l#r#n

2. 0#h#n+1

3. lcp[i]$h for all i, l+1#i#r

4. l = 0 or lcp[l],h

5. r = n or lcp[r+1],h

A suffix interval [l..r, h] refers to table suf, denoting the set Q([l..r,

h]) = {suf[j] |l#j#r} of suffixes of S$. l and r are the interval

boundaries of [l..r, h]. We say that suffix Si is in the suffix interval

[l..r, h] if iMQ([l..r, h]). r2l+1 is the width of [l..r, h].

All suffixes of S$ in a suffix interval [l..r, h] have a common

prefix, say w, of length h. Vice versa, all suffixes of S$ having prefix

w are in [l..r, h]. Due to this correspondence, we say that [l..r, h] is

the suffix interval for w. Note that Q([l..r, h]) = occS(w) whenever [l..r, h]

is the suffix interval for w.

The notion of suffix intervals slightly generalizes the notion of

lcp-intervals, as introduced in [2]. A suffix interval [l..r, h] of width

at least 2 is an lcp-interval if, besides condition 1.–5. above, we

additionally have lcp[i] = h for at least one i, l+1#i#r. This

condition requires that at least one pair of consecutive suffixes in

the suffix interval has a longest common prefix of length exactly h

(Fig. 5). In other words, a suffix interval [l..r, h] of width 2 which is

not an lcp-interval does not have a maximum lcp-value h, implying

that [l..r, h+1] is also a suffix interval.

While suffix intervals correspond one-to-one to the nodes of a

suffix trie for S$ (cf. [17]), lcp-intervals correspond to the branching

nodes of a suffix tree for S$ (cf. [2]). Interpreting the additional

condition for lcp-intervals for trees means that in suffix trees nodes

with a single child are omitted, while they are allowed in suffix tries.

Matching Concept
Consider the suffix interval [l..r, h] for w. A child of [l..r, h] is a

suffix interval [l9..r9, h+1] satisfying l#l9#r9#r. We call [l9..r9, h+1]

the a-child of [l..r, h] if there is a character aMSDNA such that [l9..r9,

h+1] is the suffix interval for wa. Note that for all q, l9#q#r9, we

have a = Ssuf[q][h]. Hence we can easily determine a from [l9..r9,

h+1] or split [l..r, h] into its children. A method computing the a-

child of a suffix interval in constant time is described in [2].

Let M~ l::r,h½ � be a suffix interval. For the empty sequence e
we define E M,eð Þ~M. For any character a and any sequence u

we recursively define

E M,auð Þ~
M if there is no a-child of M

E M’,uð Þ otherwise

(

whereM’ is the a-child of M

That is, E M,vð Þ delivers the interval M’’~ l’’::r’’,q½ �, obtained

by greedily matching the characters in v beginning at the suffix

interval M and q is the length of the matching prefix of v.

Let P denote a sequence of length m neither containing a wildcard

symbol N nor the sentinel $. For any i, 0#i#m, Pi = P[i..m21] denotes

the suffix of P beginning at position i. Let ,i be the length of the longest

prefix of Pi occurring as a substring of S. Then P[i..i+,i21] occurs in S

and either i+,i = m or P[i..i+,i] does not occur in S. Moreover, there is a

sequence of suffix intervalsMi~ M0
i ,M1

i , . . . ,M‘i

i

� �
, such that for

all q, 0#q#,i, Mq
i is the suffix interval for P[i..i+q21]. This implies

Figure 5. The enhanced suffix array yields a tree structure of nested suffix intervals. The enhanced suffix array for the sequence
S: = attcttcggc (left) and its suffix interval tree (right), equivalent to the suffix trie in Fig. 2, is shown. The array suf represents the lexicographical order
of the suffixes in S$. In other words, Ssuf[0], Ssuf[1], …, Ssuf[n] is the sequence of suffixes of S$ in ascending lexicographic order. The lcp-table lcp is an
array of integers such that for each h, 1#h#n, lcp[h] is the length of the longest common prefix of Ssuf[h21] and Ssuf[h]. A suffix interval [l..r, h] denotes
an interval in the suffix array with lcp[i]$h for all i, l+1#i#r, i.e. all suffixes in the interval [l+1..r] have a longest common prefix of length at least h.
Additionally, requiring l = 0 or lcp[l],h makes the suffix interval left maximal and requiring r = n or lcp[r+1],h makes it right maximal. The suffix
interval [0..10, 0] spans the whole suffix array and is equivalent to the root of a suffix interval tree. This interval contains five subintervals, one for each
character in S$, with h = 1. Equivalently, the root node of the suffix interval tree has five children. Note, that two children, labeled by 0 and 11, are
singletons. The child nodes of singletons are not explicitly shown here.
doi:10.1371/journal.pcbi.1000502.g005

Short Read Mapping with Gaps

PLoS Computational Biology | www.ploscompbiol.org 7 September 2009 | Volume 5 | Issue 9 | e1000502



that Q Mq
i

� �
~occS P i::izq{1½ �ð Þ. We call Mi a matching stem.

Obviously, for any i, 0#i#m, M0
i ~ 0::n,0½ �. For any i, 0#i#m and

any q, 1#q#,i,Mq
i is the a-child ofMq{1

i where a = S[t+q21] for any

t[Q Mq
i

� �
. (Note that all suffixes in Mq

i have the common prefix

P[i..i+q21] and a is the last character of this prefix.) The ,i-values are

determined in the same way as the length-values of the matching

statistics, introduced in [16]. Using the suffix link table, the ,i-values

can be computed in O(m) time altogether (cf. [2]).

We now consider the relation of matching stems of two neighboring

suffixes Pi21 and Pi for some i.0. First note that ,i21#,i+1. Moreover,

for each q, 1#q#,i21 we have occS P i{1::izq{2½ �ð Þ+1
~Q Mq

i{1

� �
+1(Q Mq{1

i

� �
~occS P i::izq{2½ �ð Þwhere M % y =

{x + y | x M M} denotes the elementwise addition for any set M. That is,

any suffix inMq
i{1 can be found inMq{1

i with offset one.

To allow differences in our matching heuristic, we introduce the

concept of matching branches which branch off from sets of the

matching stem. We describe the branching in terms of a

transformation of some suffix interval Mq
i .

Let i, 0#i#m21 be arbitrary but fixed. Let q be such that

i+q21,m. Consider some suffix intervalM~ l::r,h½ � such that the

unit edit distance of S[suf[l]..suf[l]+h21] and P[i..i+q21] is exactly

d#k. Then, for the edit operations xM{MM, I, D}, we define the

matching branch Bri M,q,d,xð Þ as follows:

Bri M,q,d,MMð Þ~ M’,qz1,dz1ð Þjdz1ƒk,f

izqvm,

a[SDNA\P izq½ �,

M’ is the a-child of Mg

Bri M,q,d,Ið Þ~ M,qz1,dz1ð Þjdz1ƒk,f

izqvmg

Bri M,q,d,Dð Þ~ M’,q,dz1ð Þjdz1ƒk,f

a[SDNA,

M’ is the a-child of Mg

Any computation of a triple (M’, q9, d+1) according to these

equations is called branching step. The MM-branching step

implies a mismatch of a?P[i+q] (in the reference sequence) with

P[i+q] (in the read). The I-branching step implies an insertion of

character P[i+q] in the read. The D-branching step implies a

deletion of character aMSDNA in the read.

Note that in case some a-child ofM does not exist, there is no

corresponding contribution to the matching branch. We combine

the different types of matching branches by defining:

Bri M,q,dð Þ~Bri M,q,d,MMð Þ|Bri M,q,d,Ið Þ|Bri M,q,d,Dð Þ

Obviously, any element in Bri M,q,dð Þ can itself be extended by

branching from it. To define this, we introduce for all j$1 the

iterative matching branch Br
j
i M,q,dð Þ as follows:

Br
j
i M,q,dð Þ

Bri M,q,dð Þ if j~1

| M’,q’,d ’ð Þ[Bri M,q,dð ÞBr
j{1
i M’,q’,d ’ð Þ otherwise

(

Figure 6. The branch closure. The suffix interval [l..r, h], representing some string w[S�DNA of length h, is split into its children [l..u, h+1], [u+1..v,
h+1] and [v+1..r, h+1] by matching an additional character aM{A, C, T}. We proceed buildingMi by matching the character C (solid bold green line).
Beforehand, alternative suffix intervals are stored in Br1

i , either representing mismatches (dashed red line), insertions (dashed dotted black line) or
deletions (dotted blue line). Br2

i holds suffix link intervals that in turn branch off from Br1
i . The branch closure Br�i holds all such alternative intervals.

doi:10.1371/journal.pcbi.1000502.g006

Short Read Mapping with Gaps

PLoS Computational Biology | www.ploscompbiol.org 8 September 2009 | Volume 5 | Issue 9 | e1000502



This gives us the matching branch closure Br�i M,q,dð Þ, defined

by

Br�i M,q,dð Þ~
[
j§1

Br
j
i M,q,dð Þ

That is, Br�i M,q,dð Þ is the set of matching branches that can be

derived by one or more branching steps from (M, q, d) (Fig. 6). Of

course, since each step increases the difference value d, the number

of steps is limited by k – d. Each element M’,q’,d ’ð Þ[Br�i M,q,dð Þ
is extended by exactly matching P[i+q9..m21] against the

enhanced suffix array beginning at the suffix interval M’. That

is, we compute E M’,P izq’::m{1½ �ð Þ.
While we have defined matching branches for any element in a

matching stem, we only compute them for a few elements of the

matching stem which make up the matching backbone: Let

Bb Pð Þ~ Mq
i 0ƒiƒm{1j ,qmin

i ƒqƒ‘i

� �
, where qmin

i is defined

by

qmin
i ~

0 if i~0

‘i{1z1 otherwise

�

Thus, for each suffix i, qmin
i is the position in P from which to

continue processing the next suffix. For any Mq
i [Bb Pð Þ, we

compute Br�i M
q
i ,q,0

� �
. That is, we omit computing Br�i M

q
i ,q,0

� �
for qvqmin

i . This is due to the fact that some of the suffixes inMq
i

are already included (with offset one) in Mq
i{1, see equation (1).

All in all, we arrive at a set Q(P, k) of 4-tuples (i,M, q, d) such that

the unit edit distance of P[i..i+q21] and w is d#k and M is the

suffix interval for w. The Figure 7 gives pseudocode for computing

Q(P, k) (which includes the matching backbone).

Turning to the analysis of the algorithm, first note that

Bb Pð Þj j~‘0z1z
Xm{1

i~1

‘i{‘i{1z1ð Þƒmz1:

That is, the matching backbone contains at most m+1 elements

and thus the statements in the inner loop of the algorithm (Fig. 7)

are executed O(m) times altogether. Obviously Bri M,q,d,MMð Þ
contains up to 5 elements, Bri M,q,d,Ið Þ contains at most 1

element and Bri M,q,d,Dð Þ contains at most 6 elements. Since

there can be k iterations when computing Br�i M
q
i ,q,0

� �
, the size of

this set is at most (12)k. Hence the total number of all matching

branches is (m+1) ? (12)k. Each matching branch is generated from

a previously generated element in constant time. Hence the

algorithm runs in time proportional to (m+1) ? (12)k.

From the matching backbone and from the set of all matching

branches we select an element achieving a maximum score according

to a simple scoring scheme where a character match scores +1 and a

mismatch, an insertion and a deletion scores 21. The maximum

score element (i, [l..r, h], q, d) defines a set of substrings of S which are

aligned to P. More precisely, for any j, l#j#r, P is matched against the

reference substring S[suf[j]2(i+k)..suf[j]+(m2i+k)] using the bit vector

algorithm of Myers [1]. For this, we allow a maximum number

r~q1{ a
100

r:m of differences, according to the the identity threshold

Figure 7. Algorithm. Enumeration of exact and inexact seeds.
doi:10.1371/journal.pcbi.1000502.g007

Short Read Mapping with Gaps

PLoS Computational Biology | www.ploscompbiol.org 9 September 2009 | Volume 5 | Issue 9 | e1000502



a. Myers algorithm runs in O(m/v ? ,) time where , = 2k+m+1 is the

length of the reference substring and v is the word size of the

machine. As v = 64 in our implementation, for reads of size up to 64,

we have m/v = 1 and so the algorithm runs in O(m+k) time. Note that

this running time is independent of a. In summary, by specifying k

along with some E-value [14] we set the thresholds to search for local

alignment seeds. Subsequently, we use Myers algorithm to discards all

seeds that produce poor semi-global alignments, according to

parameter a, typically loosely set to values around 80% (which

corresponds to r~q1{
80

100
r:m~q0:2mr).

Acknowledgments

The authors thank Thomas Margraf and Nico Scherf for their valuable

suggestions.

Author Contributions

Conceived and designed the experiments: SH SK PK JV PFS JH.

Performed the experiments: SH CO CMS. Analyzed the data: SH CO

CMS PK PFS JH. Contributed reagents/materials/analysis tools: SH SK

PK JV PFS. Wrote the paper: SH.

References

1. Myers G (1999) A fast bit-vector algorithm for approximate string matching

based on dynamic programming. J ACM 46: 395–415.

2. Abouelhoda MI, Kurtz S, Ohlebusch E (2004) Replacing suffix trees with

enhanced suffix arrays. J Discr Algorithms 2: 53–86.

3. Rothberg JM, Leamon JH (2008) The development and impact of 454

sequencing. Nat Biotechnol 26: 1117–1124.

4. Bennett S (2004) Solexa Ltd. Pharmacogenomics 5: 433–438.

5. Huse S, Huber J, Morrison H, Sogin M, Welch D (2007) Accuracy and quality

of massively parallel DNA pyrosequencing. Genome Biology 8: R143.

6. Dohm JC, Lottaz C, Borodina T, Himmelbauer H (2008) Substantial biases in

ultra-short read data sets from high-throughput DNA sequencing. Nucl Acids

Res 36: e105.

7. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and

calling variants using mapping quality scores. Genome Res 18: 1851–8.

8. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide

alignment program. Bioinformatics 24: 713–714.

9. Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, et al. (2009) SHRiMP:

Accurate mapping of short color-space reads. PLoS Comput Biol 5: e1000386.

10. Lin H, Zhang Z, Zhang MQ, Ma B, Li M (2008) ZOOM! Zillions of oligos
mapped. Bioinformatics 24: 2431–2437.

11. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome

Biology 10: R25.

12. Prüfer K, Stenzel U, Dannemann M, Green RE, Lachmann M, et al. (2008)
PatMaN: rapid alignment of short sequences to large databases. Bioinformatics

24: 1530–1531.
13. Li H, Durbin R (2009) Fast and Accurate Read Alignment with Burrows-

Wheeler Transform. Bioinformatics 25: 1754–1760.

14. Karlin S, Altschul SF (1990) Methods for assessing the statistical significance of
molecular sequences features by using general scoring schemes. Proc Natl Acad

Sci USA 87: 2264–2268.
15. Ferragina P, Manzini G (2000) Opportunistic data structures with applications.

In: IEEE Symposium on Foundations of Computer Science. pp 390–398.

16. Chang W, Lawler E (1994) Sublinear approximate string matching and
biological applications. Algorithmica 12: 327–344.

17. Crochemore M, Hancart C, Lecroq T (2007) Algorithms on Strings. Cambridge
University Press.

Short Read Mapping with Gaps

PLoS Computational Biology | www.ploscompbiol.org 10 September 2009 | Volume 5 | Issue 9 | e1000502


