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Summary
Power analysis is a key component for planning 
prospective studies such as clinical trials. However, some 
journals in biomedical and psychosocial sciences ask for 
power analysis for data already collected and analysed 
before accepting manuscripts for publication. In this 
report, post hoc power analysis for retrospective studies 
is examined and the informativeness of understanding 
the power for detecting significant effects of the results 
analysed, using the same data on which the power 
analysis is based, is scrutinised. Monte Carlo simulation 
is used to investigate the performance of posthoc power 
analysis.

Introduction
Power analysis plays a key role in designing 
and planning prospective studies. For clinical 
trials in biomedical and psychosocial research, 
power analysis provides critical information 
about sample sizes needed to detect statis-
tically significant and clinically meaningful 
differences between different treatment 
groups. Power analysis also provides crit-
ical information for evaluating cost–benefit 
ratios so that studies can be conducted with 
minimal resources without compromising on 
scientific integrity and rigour.

What is interesting is that some journals 
also ask for power analysis for the study data 
that were already analysed and reported in 
a manuscript before considering its publica-
tion. Although the exact purposes of such 
requests are not clearly stated, it seems that 
this often happens when manuscripts include 
some non-significant results. As such post 
hoc power analysis is conceptually flawed, 
concerns have been raised over the years.1–4 
Despite these warnings, some journals 
continue to ask for such information and use 
it as part of their decision process for manu-
script publications.

As most research studies are conducted 
based on a random sample from a study 
population of interest, results from power 
analysis become meaningless, as the random 
component in the study disappears once 
data are collected. Power analysis shows the 

probability, or likelihood, for a statistical test 
or model to detect, say, hypothesised differ-
ences between two populations, such as the t 
statistic for comparing, say, mean blood pres-
sure level between two groups in a sample of 
interest in a prospective study. If a sample is 
selected, outcomes are no longer random 
and power analysis becomes meaningless for 
this particular study sample.

Nevertheless, some continue to argue that 
such power analyses may help provide some 
indication whether a hypothesis still may be 
true.2 4–6 For example, if a power analysis 
based on observed outcomes of interest in 
a study shows that the sample has low power 
such as 60% to detect, say, a medium effect 
size, or Cohen’s d=0.5 when comparing the 
means of two group,1 they argue that this 
explains why the study fails to find statistically 
significant results. Therefore, the question is 
not whether post hoc power analyses makes 
conceptual sense, but rather if such power 
estimates can inform power for detecting 
significant results.

In this article, we focus on comparing the 
means between two groups on a continuous 
outcome, and use Monte Carlo simulation 
to investigate the performance of post hoc 
power analysis and to see if such power esti-
mates are informative in terms of indicating 
power to detect statistically significant differ-
ences already observed. We begin our discus-
sion with a brief overview of the concept and 
analytic evaluation of power analysis within 
the context of two independent samples, or 
groups.

Power analysis for comparing two 
population Means
We have considered to use two indepen-
dent samples and let Yik denote a continuous 
outcome of interest from subject i and group 
k (1≤i≤nk, k=1,2). For simplicity and without 
loss of generality, we assume that for both 
groups, Yik follows a normal distribution of 
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population mean μk and common population variance σ2, 
denoted as

‍N
(
µk,σ2) (1 ≤ i ≤ nk, k = 1, 2).‍

The most common hypothesis in this setting is whether 
the population means are equal to each other. In statis-
tical lingo, we state the hypothesis as follows:

	﻿‍ H0 : µ1 − µ2 = 0 vs. Ha : µ1 − µ2 = δ ̸= 0‍� (1)

where δ is a known (unknown) constant for power (data) 
analysis, and H0 and Ha are known as the null and alternative 
hypotheses, respectively. The above is known as a two-sided 
hypothesis, as no direction of effect is specified in the alter-
native hypothesis ‍Ha : µ1 − µ2 = δ ̸= 0‍. If the directional 
effect is also indicated, the alternative becomes a one-sided 
hypothesis. For example, if the alternative is specified as: 
‍Ha : µ1 − µ2 = δ > 0‍, it is one sided and μ1 is hypothe-
sised to be larger than μ2 under Ha. As two-sided alternatives 
are the most popular in clinical research, we only consider 
two-sided alternatives in this paper unless stated otherwise. 
Note also that when testing the hypothesis in equation (1) 
with data as in data analysis, δ is an unknown constant and 
p values are calculated based on the null H0 without any 
knowledge about δ in the alternative Ha. For power analysis, 
the difference δ must be specified, since power depends 
on this parameter. In practice, the normalised difference, 

‍d =
|µ1−µ2|

σ ‍, is often used, as it is more succinct and gener-
ally has a more meaningful interpretation. This normalised 
difference is known as Cohen’s d.1

The hypothesis in equation (1) is generally tested 
using the two sample t-test. Let ‍Ȳk· = 1

nk

nk

i=1
Yki‍ denote the 

sample mean of the kth group (k=1,2). The difference 
between the two sample means ‍̄Y2· − Ȳ1·‍ should be close 
to 0 if H0 is true. Again, because ‍̄Y2·‍ and ‍̄Y1·‍ are random, 
it is still possible for ‍̄Y2· − Ȳ1·‍ to be very different from 0, 
although such probabilities are small, especially for large 
sample size n, a statistical result known as the law of large 
numbers.7 To address this sampling variability in causing 
wrong conclusions about the hypothesis, type I error, 
typically denoted by α, is used to indicate the extent to 
which the difference, ‍̄Y2· − Ȳ1·‍, departs from 0. This error 
rate is typically set at α=0.05 for most studies. For very 
large sample sizes, α is generally set at a more stringent 
level, α=0.01. Given α, power is the probability that H0 is 
rejected when Ha in fact is true.

If ‍H0 : µ1 − µ0 = 0‍ is true, the probability of rejecting 
H0, therefore committing type I error a, is the probability:

	﻿‍
P

(�����
Ȳ1·−Ȳ2·

s
√

1
n1

+ 1
n2

����� ≥ zα/2

)
,
‍�

(2)

where zα/2 is the upper α/2 quantile of the standard 
normal distribution, P(A) denotes the probability of the 
occurrence of an event A and s is the pooled SD:

	
‍
s =

√ (
n1−1

)
s2
1+
(
n2−1

)
s2
2

n1+n2−2 , s2
k = 1

nk−1

nk∑
i=1

(
Yki − Ȳk·

)2 , k = 1, 2.
‍

�

The probability in equation (2) is readily evaluated 
using the t distribution.

Note that like the effect size, the difference between the 
sample means in equation (2) has also been normalised 
(by the pooled SE) so that the type I error a does not 
depend on other artefacts such as different scales that 
may be used for the outcomes. Note also that we assume 
a common SD (or variance) between the groups for the 
t-statistic in equation (2). If this is not the case, we can use 
the version of the two sample t-test for unequal variances, 
called the Welch’s t-test. For simplicity and without loss 
of generality, we focus on the equal variance version in 
equation (2) in what follows. The same conclusions also 
apply to the Welch’s t-test.

For power analysis, we want to determine the probability 
to reject the null H0 in favour of the alternative Ha. Given 
the type I error α, sample size n1 and n2, and H0 and Ha, we 
can calculate power for reject the null H0:

	﻿‍
power

(
n1, n2, α, H0, H1

)
= P

(�����
Ȳ1·−Ȳ2·

s
√

1
n1

+ 1
n2

����� ≥ zα/2 | Ha

)
.
‍

� (3)

Although similar in apperance, equation (3) is actually 
quite different from equation (2). equation (2) is gener-
ally used to compute p values, in which case ‍δ = Ȳ1· − Ȳ2·‍ 
and s are all readily computed from the sample means and 
sample SD from the observed outcomes. As none of these 
quantities is available when performing power analysis for 
prospective studies, the power function in equation (3) is 
evaluated based on sample sizes, n1 and n2, the population 
mean difference δ and SD σ. Thus, unlike data analysis, all 
these parameters must be explicitly specified in order to 
compute power. Although results from similar studies may 
be used to help suggest and specify δ and σ, they are both 
conceptually and analytically different from their sample 
counterparts. Conceptually, δ and σare determined by the 
entire study population, while δ and s are specific to a 
random sample from the study population. Analytically, δ 
and σ are population-level constants, whereas δ and s are 
random quantities and vary from sample to sample. The 
population parameters can be quite different from their 
sample counterparts.

In practice, we often set power at some prespecified 
levels and then perform power analysis to determine 
the minimum sample size to achieve the desired levels 
of power. We can use the power function equation 
(3) for this purpose as well. For example, if we want 
to determine sample sizes n1 and n2 to achieve, say, 
0.8 power, we can solve for n1 and n2 in the following 
equation:8

	﻿‍ power
(
n1, n2, α, H0, H1

)
≥ 0.8.‍� (4)

Note also that power functions can also be evaluated 
by replacing the mean difference δ and SD σ with the 
composite effect size d. Unlike δ, d is unit free and well 
interpreted, with d=0.2, 0.5 and 0.8 representing small, 
medium and large effect size.1
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Post hoc power analysis for comparing two 
population means
In the preceding section, we discussed power analysis for 
comparing two population means for prospective studies. 
To evaluate power, we must specify the mean difference 
between the two population means, regardless of whether 
we want to estimate power for the given sample size or 
vice versa. Such a difference is study specific, which, 
although may be suggested by similar studies, should 
not be exclusively determined by one single study. This 
is because unlike the difference between population 
means δ, difference calculated based on a particular study 
sample δ is random and can be quite different from δ. As 
a result, power or sample size determined from sample-
based mean difference δ can be quite different from the 
true power for prospective studies.

The difference between the population and sample-
based parameters underscores the problem with post 
hoc power analysis. Not only is power analysis performed 
based on the sample-based mean difference, power esti-
mates are also applied back to the same data to indicate 
power. Post hoc power analysis identifies population-level 
parameters with sample-specific statistics and makes no 
conceptual sense. Analytically, such analysis can yield 
quite different power estimates that are difficult and can 
be misleading.

To see this, consider again the problem to test the 
hypothesis in equation (1). Following the discussion 
in the preceding section, we can use equation (3) to 
computer power or use equation (4) to determine sample 
size for a desired level of power. When calculating power 
or sample size for post hoc analyses for a study with the 
outcomes already observed, the mean difference δ and 
SD σ will be set to their sample-based counterparts. Let 
‍̄X1·‍ and ‍̄X2·‍ denote the sample means, and s denote the 
pooled sample SD from the study sample. By replacing δ 
with ‍δ = X̄1· − X̄2·‍ and σ with s in equation (3), we obtain 
the power function for post hoc power analysis.

To help see the difference, we express the two power 
function side-by-side as follows:

	﻿‍

Prospective Power Analysis : power (n1, n2,α, H0, H1) =

P

[�����
Ȳ1−Ȳ2

S
√

1
n1

+ 1
n2

����� ≥ Zα/2|σ, δ

]
,

Post − hoc Power Analysis : power (n1, n2,α, H0, H1) =

P

[�����
Ȳ1−Ȳ2

S
√

1
n1

+ 1
n2

����� ≥ Zα/2|S, δ

]
,

‍
� (5)

The prospective power function is determined by the 
population mean difference δ and SD σ, but the post hoc 
power function depends on the sample mean difference δ 
and sample SD s. For large sample sizes, both δ and s will be 
close to their respective population counterparts, which 
is guaranteed by the law of large numbers. However, for 
relatively small sample sizes, δ, s or both can become quite 
different from their respective population parameters, in 
which case the two power functions in equation (5) can 

yield very different values. Next, we use simulation studies 
to compare performance of the two power functions.

Illustrations
In this section, we use Monte Carlo simulation to compare 
the prospective and post hoc power functions. In all 
cases, we set a two-sided alpha at α=0.05 and Monte Carlo 
sample size at 1000.

We again assume a normal distribution ‍N
(
µk,σ2

)
‍ for 

the outcomes Yik, with μk denoting the (population) mean 
of group k and σ2 the common (population) variance. We 
set the population-level parameters as follows:

	﻿‍ µ1 = 0, µ2 = µ1 + δ, σ = 1.‍�
For convenience, we assume a common sample size for 

both groups, that is, n1=n2=n. We set δ and n to different 
values so we can see how the two power functions change 
for different effect size and sample size.

Given all these parameters, we can readily evaluate the 
prospective power function in equation (5). For post hoc 
power analysis, we simulate a sample from the normal 
distributions, compute the sample mean difference δ and 
sample SD s based on the simulated outcomes and evaluate 
the post hoc power function in equation (5). Unlike its 
prospective counterpart, this power function depends on 
the particular sample simulated. If δ and s are close to δ 
and σ, the two power functions will be close to each other. 
As indicated earlier, this will be the case for large sample 
sizes thanks to the law of large numbers. For relatively small 
samples, δ, s or both can be quite different from their popu-
lation counterparts, in which case using the post hoc power 
function to informative power can be misleading.

With Monte Carlo simulation, we can readily examine 
the difference between the two power functions. By 
repeatedly simulating samples from the population distri-
butions, we can look at the variability of the post hoc 
power function and see how it performs with respect to 
predicting true power.

Shown in figure 1 are the histograms of the post hoc 
power function based on 1000 Monte Carlo sample 
sizes with the mean difference δ=0.5 (figure  1A), δ=1 
(figure 1B) and δ=2 (figure 1C) and n=50, along with the 
power from the prospective power function (the vertical 
line segment). As expected, the true power increases as 
the mean difference δ becomes large. For δ=2, true power 
is close to 1 and there is not much variability in the post 
hoc power function. For the other two values of δ, there is 
quite a large amount of variability in the post hoc power, 
covering the entire power function range between 0 and 
1. The direction of skewness of the histogram changes 
from right skewed for δ=0.5 to left skewed for δ=1 to more 
left skewed at δ=2. Unless the true power is at its upper 
bound 1, post hoc power is too variable to be informative 
for the true. For δ=2, although there is not much vari-
ability, post hoc power is not really informative for any 
piratical purposes either, since the true power is close to 
1.
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Figure 2  Histograms of post hoc power, along with true power, based on 1000 Monte Carlo sample sizes with the mean 
difference: (A) δ=0.5, (B) δ=1 and (C) δ=2 and a sample size n=100.

Figure 1  Histograms of post hoc power, along with true power, based on 1000 Monte Carlo sample sizes with the mean 
difference: (A) δ=0.5; (B) δ=1 and (C) δ=2 and a sample size n=50.

Shown in figure 2 are three histograms of the post hoc 
power function based on the same parameters, but with 
a large sample size n=100. Both the prospective and post 
hoc power functions show the same patterns as observed 
in figure 1, as δ increases. Even with the true power close 
to 1 in the case of δ=1, there is still variability in the post 
hoc function as shown in figure 2B.

Discussion
Power analysis is an indispensable component of planning 
clinical research studies. However, when used to indi-
cate power for outcomes already observed, it is not only 
conceptually flawed but also analytically misleading. Our 
simulation results show that such power analyses do not 
indicate true power for detecting statistical significance, 
since post hoc power estimates are generally variable in 
the range of practical interest and can be very different 
from the true power.

In this report, we focus on the relatively simple statis-
tical model for comparing two population means of 
continuous outcomes. The same considerations and 
conclusions also apply to non-continuous outcomes and 
more complex models such as regression. In general, post 
hoc power analyses do not provide sensible results.
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