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Abstract

The diversity and scope of multiplex parallel sequencing applications is steadily increasing. Critically, multiplex parallel
sequencing applications methods rely on the use of barcoded primers for sample identification, and the quality of the
barcodes directly impacts the quality of the resulting sequence data. Inspection of the recent publications reveals a
surprisingly variable quality of the barcodes employed. Some barcodes are made in a semi empirical fashion, without
quantitative consideration of error correction or minimal distance properties. After systematic comparison of published
barcode sets, including commercially distributed barcoded primers from Illumina and Epicentre, methods for improved,
Hamming code-based sequences are suggested and illustrated. Hamming barcodes can be employed for DNA tag designs
in many different ways while preserving minimal distance and error-correcting properties. In addition, Hamming barcodes
remain flexible with regard to essential biological parameters such as sequence redundancy and GC content. Wider
adoption of improved Hamming barcodes is encouraged in multiplex parallel sequencing applications.
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Introduction

Multiplex deep sequencing is a very powerful approach

whenever relatively small DNA fragments should be sequenced

within a big number of samples. Instead of analyzing those

samples one at a time, DNA samples can be mixed together and

sequenced in one run using modern high throughput sequencing

machines. This approach requires specific sequence tags that allow

finding and identifying the address of any sequence in the mixture

and assigning it back to the original sample. Considering that deep

sequencing is noisy [1,2] it imposes several requirements on the tag

design. On the one hand those tags should be relatively short to

save most of the space to the sample sequencing, on the other

hand those tags should be substantially different from one another

to prevent cross mutation of sample tags into each other, which

correspondingly will cause a cross contamination of the samples.

Further, tags might contain some code for fast determination of

whether it is authentic or mutated. Finally, tag designs must be

flexible to satisfy biological requirements that could be imposed

depending on the nuances of the application: such as GC content,

sequence redundancy, presence of palindromes etc.

Every tag design relies on the simple combinatorial rule that,

with a given number of bases q and defined length of the sequence

d, the total number of combinations is qd. This predetermines a

minimal required length of the tag and generates enough barcoded

primers for all samples. The difference in approaches resides in the

way of selecting barcodes out of all possible combinations. A

literature research revealed a great diversity of selection approach-

es. The first DNA barcodes were probably designed by random

selection, for instance by Bonaldo et al. [3]. Later the problem was

dealt with by introducing thorough selection principles out of all

possible sequences of a given length [4–6]. In some cases,

unfortunately, selection principles were not revealed [7–9].

Commercially available barcoded primers from Illumina

(https://icom.illumina.com/download/summary/

ATZRuMiBPkukcRQOJ792Xg) and Epicentre (http://www.

epibio.com/pdftechlit/312pl1110.pdf) belong to this group as

well. Finally, some proportion of designs (not all of them were

aimed at barcodes generation) used not only well defined strategies

for the selection of DNA oligonucleotides, but also used elements

of coding theory [10–15]. All those designs appeared several

decades after the pioneering works of Shannon [16], Hamming

[17], Reed and Solomon [18] and Levenshtein [19], who

established the basics of the coding principles as well as correction

of errors in corresponding code words. Considering such a variety

of approaches, using coding principles or not, one can argue that

since code-containing and code –free barcodes are equally

popular, it proves that coding theory is not strictly required for

such barcode designs. This is partially true: an invariant property

of the DNA barcodes is not a coding principle, but sequence

difference between those barcodes. Measures of such differences

are known in coding theory as either Hamming or Levenshtein

distance, and it is a built-in component of error-correcting codes.

In the case of code-free designs, this distance must be achieved

using an alignment algorithm and by counting mismatches.

Although minimal distance can be achieved by various restrictive

algorithms or by simple hand-picking, one is never sure that the

best solution has been found. An analysis by alignment is

computationally intense, and it often requires custom scripts
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especially for analysis of short tags. As I will demonstrate here, the

benefit of using coding theory is that one can achieve a better

result with less computational effort. As a bonus it will retain the

benefit of error detection and correction without use of alignment.

Considering constraints of size and the subject area, I will focus on

linear codes, based mostly on the design of Hamming [17], while

not discussing edit-metric codes. This paper aims to provide

relatively easy and ready-made examples, to be used by molecular

biologists whenever they need to select their own list of tags suited

to their application in order to achieve the best possible result.

Materials and Methods

Scripts and Analysis
All Hamming codes were made with scripts written in VBA for

Excel 2010, some scripts are also duplicated in Python for

Gnumeric (http://projects.gnome.org/gnumeric/) spreadsheets.

Barcodes generated by others were downloaded when available.

All sets of barcodes were re-analyzed in spreadsheet programs

mentioned above for minimal distance, GC and sequence

redundancy. A decoder script for quaternary codes utilizes

Hamming decoder principle (to estimate position of the error),

in addition the script contains estimation of the error type and

consequently correct code value. This part relies on the modulo

operation, which can be of two types: one is ‘‘continuous modulo’’

which counts from negative infinity (in Python and in excel mod

function), another one is ‘‘zero-flipping modulo’’, which takes zero

point as the reference (such function is provided in Excel VBA

scripts). Some comments on this issue are given by Guido van

Rossum (http://python-history.blogspot.com/2010/08/why-

pythons-integer-division-floors.html). The decoding algorithm

described here relies on a continuous modulo function.

General Parameters of Codes
Each code contains data bits d that in the simplest case

represents all possible combinations of given bits, digits or any

letters ordered by some principle (alphabetic, low-high etc.); d

therefore stands for a numeric counter or an index. Note that

code-free tags contain only these types of bits (letters, bases).

Coded words also contain control or parity bits p to detect and

possibly correct errors whenever they occur. Therefore for each

code word the total length, n, will be n = d+p. In case of a DNA

barcode design it is relevant to define coding redundancy, namely

n/d (which is the reciprocal of a code rate), this parameter

measures the compactness of the design, it is convenient for

comparison of different coding strategies. In addition one would

be interested in a total possible number of code words, which

should be in agreement with experimental design. Depending on

the size of the alphabet, q, the coding capacity will be qd, which is

4d for DNA code, or 2d for binary code. Parity bits do not extend

the number of possible combinations. Importantly, those parity

bits add to the differences between codes. To measure those

differences the Hamming distance, dmin, can be used. For two code

words c1 and c2 of equal length, the number of differing positions is

denoted as d(c1,c2). For instance d(‘‘AGC’’, ‘‘AGT’’) = 1; d(‘‘ATT’’,

‘‘AAA’’) = 2; d(‘‘TAG’’, ‘‘GTA’’) = 3. Codes with the minimal

distance dmin = 2t+1 will be able to correct t substitution errors [17].

Therefore, in order to correct one or more substitution errors the

Hamming distance should be 3 or higher.

Because we deal with DNA, a few more general parameters are

essential, namely sequence redundancy, in this paper denoted as

Seqr, it is the size of the longest uninterrupted repetition of the same

base in a given tag. For instance Seqr(‘‘TAAAAC’’) = 4. In some

cases GC content might be important, especially in microarray

applications, because it defines strength of interactions between

complementary DNA fragments. Those parameters can also be

manipulated during the selection of the coding strategy, otherwise

remained uncontrolled. Through the whole manuscript we will

aim for a DNA tag length of 6–8 bases as it is most commonly used

in the literature.

General Concept of Hamming Codes
This coding system is unique in its compactness regarding

numbers of possible tags generated with a minimal distance of 3

and higher as well as for its algorithm that corrects substitution

errors. Briefly, a Hamming code is a binary code constructed from

data bits interrupted by parity bits at every 2n position. Parity bits

are used for checksum function over different subsets of the data

bits, allowing the identification of substitution errors [17].

Hamming used a rather elaborate checksum scheme: the 1st

parity bit checks every odd position of the code word starting from

the 1st position, the second parity bit checks consecutive pairs of

bits starting with the 2nd position and interval of 2 bits, the 3rd bit

will check 4 bits in a row starting from position 4 and interval 4,

and so on. The whole reason for this system is to have simple error

detection algorithm that operates in a binary code only. The

classic version of the Hamming code has a length of 7 bits

composed of 4 data and 3 parity bits, denoted as Hamming(7,4)

code. In a context of DNA coding we might need a binary code

with an even number of bits. For this case Hamming suggested

adding extra parity position at the end of the code word to check

all bits in the word. From this perspective the Hamming(7,4) code

can be extended to Hamming(8,4), consequently Hamming(15,11)

will be extended to the Hamming(16,11) code. Details of the code

design are provided in the Supplementary File S1.

Results

Linear Binary-quaternary Code Conversion
Every quaternary symbol (A,C,G,T) can be encoded as a binary

word of a length of two bits, for instance using an alphabetical

order ‘‘A’’ will be encoded as 00, ‘‘C’’ as 01, ‘‘G’’ as 10, and ‘‘T’’

as 11. With this conversion scheme Hamming binary codes will be

translated into a nucleotide sequence by converting every two

consecutive bits into the quaternary DNA code. Using the

Hamming (16,11) code the 8-base tags can be created as shown

in table 1. In binary format such code provides dmin = 4, therefore it

should be capable of a single bit error correction and double bit

error detection (for details of definitions see Methods). An

advantage of this approach is that this encoding –decoding

scheme is simple and the error correction algorithm stays intact as

created by Hamming. Coding capacity is exceptionally high.

However, two aspects of this approach are problematic: since we

deal with real DNA, one must consider errors occurring with the

DNA sequence, not bits. Each base is 2 binaries, the distance

between bases can be either 1 bit (mutation of A to C is 00 to 01,

or G to T is 10 to 11) but also two bits, such as A to T conversion is

a 01 to 10 mutation. As a result this approach has a serious flaw,

namely real minimal distance when converted from binary code

into DNA tags is only 2 bases. Hamady et al [14] used such an

approach, mistakenly assuming that if Hamming (16,11) code has

5 parity bits it will be sufficient to correct all errors occurring at the

DNA level. They further restricted the original Hamming set to

those words that generate barcodes with GC content in a range of

40–60% and allowed a sequence redundancy up to 2 bases.

Further, Erlich et al [20] restricted this set by selecting every 4th

barcode from the Hamady’s list. Potential reduction of the set can

increase the minimal distance (http://www.ee.unb.ca/cgi-bin/

Generalized DNA Hamming Codes
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tervo/hamming.pl). However, direct inspection of selected tags

provided by Hamady et al [14] and Erlich et al [20] revealed that

this sub-selection still has a dmin = 2 bases. Therefore, despite the

authors claim, this set is not error correcting.

Linear Conversion with Overlap
Because linear conversion of the Hamming code shown above is

flawed by the nature of the errors, we can check for alternative

conversions. The following approach is based on the Ham-

ming(7,4) code which can be used only for small sets of barcodes.

The first steps are identical to the linear binary coding, but

conversion of binaries to quaternary code occurs by reading two

consecutive bits in 1 bit step frame. In this approach, the sequence

001011 will be read as {00, 01, 10, 01, 11}. Thus, a sequence of

the length of n bits will generate DNA codes of the length n-1.

Table 2 represents all possible barcodes using Hamming(7,4) code.

An advantage of this code is that it acquires extra possibilities of

error correction since every binary position is double checked. The

dmin = 3 both in a binary and quaternary formats. Hamming(8,4)

code made by adding 1 extra parity bit will generate quaternary

dmin = 4. Thus, such a coding scheme restores dmin yet shrinks the

coding capacity of the set. The sequence redundancy is quite high,

which makes such a set unpractical, especially for machines that

use pyrosequencing techniques [1]. This parameter can be

improved by adding a randomizing function to the sequence,

which will for instance invert the bit values every time when two

consecutive bits in Hamming code are identical. For conversion

into nucleotide sequence we take one bit from the Hamming code

sequence and one bit from the randomizer sequence, step size 1

bit. The results are presented at Table 2. The resulting code still

holds dmin = 3, Seqr = 1. However, one can see that the generated

sequences are full of simple dimer repeats. Although the idea is

useful, all error correcting codes operating in a binary format show

quite low coding capacity. One way to improve this is by

increasing barcode length to at least n = 9. However, a better way

is to switch to the quaternary codes.

Linear Codes in a Quaternary Format
The whole elegance of Hamming coding system resides in

detecting and correcting errors. The positioning of parity bits is

made in such way that when corresponding checksums are put

together in one row, they indicate the position of the error in

binary format. In principle, Hamming codes can be redefined in a

quaternary alphabet thus excluding code conversion. In program-

ming languages, parity check is performed by using modulo

function. This function finds the remainder of division of one

number by another. For binary code mod 2 is used, correspond-

ingly mod 4 is used for quaternary code. Bases A,C,G,T will be

encoded as 0,1,2,3 correspondingly. The original Hamming error

correction principle can be easily adjusted to quaternary code (or

any other metrics). The outline is given in Fig. 1. For example, in a

Hamming(7,4) code when an error occurs, 1 of the 3 checksums

will become non-zero, when put together in a row, Ch3,Ch2,Ch1

will show the position of the error in binary format. For instance

binary 010 will report error in the position 2, binary 011 will

report error in the position 3 (000 stands for no errors). In binary

code the error type is not specified since it is either of two states. In

quaternary format when calculating checksum over the bases

values, the occurring error will generate checksum values from 1 to

3. This value will be used to identify the correct base relatively to

the base produced by error. In addition to this an extra step will be

taken, namely converting all non-zero checksums to 1, which will

restore the original Hamming error position detection algorithm.

An advantage of such an approach is that instead of converting

whole codes we only convert the decoding algorithm. Details of

such a quaternary Hamming code correction are given in a

Supplementary File S2. Note that this decoding algorithm is not

limited to the quaternary codes only.

Table 1. Linear conversion of the Hamming(16,11) code into DNA sequence.

Decimalcounter Binary data counter Hamming code Linear translation into DNA sequence

0 00000000000 0000000000000000 AAAAAAAA (00,00,00,00,00,00,00,00,)

1 00000000001 1101000100000011 TCACAAAT (11,01,00,01,00,00,00,11,)

2 00000000010 0101000100000100 CCACAACA (01,01,00,01,00,00,01,00,)

3 00000000011 1000000000000111 GAAAAACT (10,00,00,00,00,00,01,11,)

4 00000000100 1001000100001000 GCACAAGA (10,01,00,01,00,00,10,00,)

5 00000000101 0100000000001011 CAAAAAGT (01,00,00,00,00,00,10,11,)

6 00000000110 1100000000001100 TAAAAATA (11,00,00,00,00,00,11,00,)

7 00000000111 0001000100001111 ACACAATT (00,01,00,01,00,00,11,11,)

8 00000001000 0001000100010001 ACACACAC (00,01,00,01,00,01,00,01,)

9 00000001001 1100000000010010 TAAAACAG (11,00,00,00,00,01,00,10,)

10 00000001010 0100000000010101 CAAAACCC (01,00,00,00,00,01,01,01,)

11 00000001011 1001000100010110 GCACACCG (10,01,00,01,00,01,01,10,)

12 00000001100 1000000000011001 GAAAACGC (10,00,00,00,00,01,10,01,)

13 00000001101 0101000100011010 CCACACGG (01,01,00,01,00,01,10,10,)

14 00000001110 1101000100011101 TCACACTC (11,01,00,01,00,01,11,01,)

15 00000001111 0000000000011110 AAAAACTG (00,00,00,00,00,01,11,10,)

16 00000010000 1100000100100000 TAACAGAA (11,00,00,01,00,10,00,00,)

Note: Data bits are intercepted by parity bits at every 2n position. Full list of codes are provided in a supplementary File S1.
doi:10.1371/journal.pone.0036852.t001
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By preserving the Hamming decoding system, quaternary

Hamming codes have a much greater coding capacity due to

the larger capacity for data counters. The coding capacity of

quaternary Hamming(7,4) is 44 = 256 barcodes, which by size

would satisfy most of the publications so far. It can be further

expanded and reduced according to the requirements of the

experiment. Hamming(7,4) code can be reduced to 6-bases code,

the coding capacity will be reduced to 64 codes. An example of 6-

base long quaternary codes is given in a Table 3. Adding extra

parity bases (the same way as in binary code) to Hamming(7,4) will

not affect the coding capacity, however it will increase minimal

distance from 3 to 4 bases. Full lists of such codes are given in

supplementary. The coding efficiency can be further increased by

adding more data bases to the code. For instance a Hamming(9,5)

code will have the coding capacity 45 = 1024 words. This code is

truly error correcting and by size is comparable to the set reported

by Hamady et al [14] Hamming(10,6) will give 46 = 4096 words

and so on (see also supplementary Files S2 and S3). To my

knowledge such version of coding has not been reported in the

literature.

Optimization of Sequence Redundancy
One might notice that all designs mentioned above are not

restrictive to the G+C content or sequence redundancy. Table 4

summarizes general properties of some quaternary Hamming

codes (as well as other reported tag sets). As one could notice from

all previously shown tables, some DNA sequences generated by

Hamming codes (e.g. the very first tag) are completely redundant.

Such codes should be identified by measuring redundancy and

discarded from use in real biological applications. Stringency of

filtering depends on the application and sequencing chemistry.

Roche 454 pyrosequencing chemistry for instance, imposes serious

restriction on this parameter. Solexa platforms and their recent

upgrades seem to be very robust in reading homopolymers. In

addition, since all high throughput sequencers are tuned up to

analyze statistically randomized DNA sequences, it is desirable to

have well randomized tags as well. Therefore it is important to

identify and eliminate most extreme deviations from random.

Although it can be potentially done algorithmically, it is also easy

to eliminate it post-algorithmically by simply measuring this

parameter and apply a filtering limit. To optimize this parameter

Hamady et al [14] used linear Hamming code system followed by

removing all ‘‘bad’’ tags by scanning all of them post algorithmi-

cally. Meyer et al [4] and Parameswaran et al [5] also used

elaborate restrictive approach using code-free barcodes.

Optimizing GC Content
For optimization of the GC content previously published

strategies can be applied [12,13]. These schemes however, operate

in a binary format, therefore for short sequences coding efficiency

is low. In fact, those ‘‘bad’’ sequence redundant tags are also

extreme in GC content. Therefore if Seqr -based filtering is

applied to those barcodes, they would be eliminated. The rest of

the code words show peculiar multimodal distribution of GC

frequencies (Table 4). In agreement with the notion of Hamady et

al [14] the order of bases coding has an effect on the GC content.

When we encode the barcode using alphabetically ordered bases,

for S = {0,1,2,3} Cs = {A,C,G,T}, a quaternary Hamming(8,4)

code will generate 4 sequences having either all or none of G or C

bases, further there will be 112 barcodes with either 2 or 6 G+C

bases. The remaining 140 barcodes will have exactly half of the

bases strong or weak. If we transpose A and G in the original

coding table, Cs = {G,C,A,T}, then a number of 50% GC

containing barcodes will increase from 112 to 224, which is

significant improvement in equalizing the GC content across the

barcode set. Note that this effect will persist in Hamming codes of

every length, yet the distribution of frequencies will vary.

Table 2. Hamming(7,4) codes read with overlap or randomizer.

Decimal
counter

Binary data
counter Hamming (7,4) Conversion Randomizer

Conversion with
randomizer Hamming (8,4) Converted

0 0000 0000000 AAAAAA 0101010 ACACACA 00000000 AAAAAAA

1 0001 1101001 TGCGAC 0111100 GTCTCAG 11010010 TGCGACG

2 0010 0101010 CGCGCG 0000000 AGAGAGA 01010101 CGCGCGC

3 0011 1000011 GAAACT 0010110 GACACTG 10000111 GAAACTT

4 0100 1001100 GACTGA 0011001 GACTGAC 10011001 GACTGAC

5 0101 0100101 CGACGC 0001111 AGACTCT 01001011 CGACGCT

6 0110 1100110 TGACTG 0110011 GTCAGTC 11001100 TGACTGA

7 0111 0001111 AACTTT 0100101 ACAGTGT 00011110 AACTTTG

8 1000 1110000 TTGAAA 0100101 GTGACAC 11100001 TTGAAAC

9 1001 0011001 ACTGAC 0110011 ACTGACT 00110011 ACTGACT

10 1010 1011010 GCTGCG 0001111 GAGTCTC 10110100 GCTGCGA

11 1011 0110011 CTGACT 0011001 AGTCAGT 01100110 CTGACTG

12 1100 0111100 CTTTGA 0010110 AGTGTCA 01111000 CTTTGAA

13 1101 1010101 GCGCGC 0000000 GAGAGAG 10101010 GCGCGCG

14 1110 0010110 ACGCTG 0111100 ACTCTGA 00101101 ACGCTGC

15 1111 1111111 TTTTTT 0101010 GTGTGTG 11111111 TTTTTTT

Each base is read from 2 bit code word, overlap: read 2 consecutive bits from Hamming code with 1 bit step. Randomizer: read 1 bit from Hamming code and 1 bit from
randomizer. Both versions have Dmin = 3. Hamming(8,4) shows Dmin = 4.
Note: randomizer flips bit value in case if 2 consecutive bits in Hamming code are identical.
doi:10.1371/journal.pone.0036852.t002

Generalized DNA Hamming Codes

PLoS ONE | www.plosone.org 4 May 2012 | Volume 7 | Issue 5 | e36852



6-base Long Codes
Since Illumina and Epicentre commercialized primers containing

6-base barcodes it is worthwhile to have a closer look at their

product. Basic properties are already listed in a table 3. As one can

see both Illumina and Epicentre seemingly use random selection of

barcodes. Those barcodes show a variable minimal distance of 2–3

and 3–4 bases correspondingly. The GC content varies in a range 0–

5 for Illumina and 2–4 for Epicentre. Sequence redundancy varies

from 2–4 in Illumina tags, and in Epicentre tags it is Seqr = 2 in all

tags. Both sets can be successfully challenged by quaternary

Hamming(6,3) and Hamming(6,2) codes. Only 2–4 barcodes should

be excluded from the code set which exceed the threshold for GC or

sequence redundancy. GC content can be made more uniform by

using transposed coding table: GT transposition will result in

uniform GC content of 4, and AC transposition will yield GC

content of 2 uniformly in all barcodes. Other parameters such as

coding capacity and minimal distance will be better than in

corresponding commercial sets.

At the end, one can see that classical Hamming code adapted to

the quaternary coding format is very efficient tool to generate

barcodes for multiplex sequencing applications. Only a few tags

need to be removed due to sequence redundancy, and GC variations

can be optimized by finding the most suitable base –code conversion

table. However, every optimization step will come with a cost of

Figure 1. A concept of Hamming error correction in quaternary format. A 7-base sequence is indexed by position and value of each base is
provided. With those values checksums are calculated and possible error is detected (in the given example ‘‘T’’ is an error). Max(Chi) = 2 gives the type
of the error, sequence Ch3,Ch2,Ch1 = 202 is transformed to binary 101 (with the rule: if Chi.0 then Chi = 1), which is equal to decimal 5. This defines
position of the error. Since the value at erroneous position is 3 (for Cs = ’’T’’ S = 3), the correct value should be 322 = 1. For S = 1, Cs = ’’C’’. Thus, the
barcode should be corrected at the position 5, the correct base is ‘‘C’’. Note when calculating correct base: if Strue,0 then use ‘‘the wheel rule’’ (23 is
1, 21 is 3, 22 is 2), which can be often (not always!) replaced by mod 4 operation. In short: Strue = (erroneous base value - error type) mod 4.
doi:10.1371/journal.pone.0036852.g001
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reduced coding capacity or increased coding redundancy. Yet it will retain the advantage of the code detection and correction of errors

and robust minimal distance.

Table 3. Examples of quaternary Hamming encoded barcode sequences.

Decimal counter Quaternary data counter Hamming(6,2) Conversion Hamming (6,3) Conversion

0 000 000000 AAAAAA 000000 AAAAAA

1 001 300311 TAATCC 030301 ATATAC

2 002 200222 GAAGGG 020202 AGAGAG

3 003 100133 CAACTT 010103 ACACAT

4 010 331001 TTCAAC 300310 TAATCA

5 011 231312 GTCTCG 330211 TTAGCC

6 012 131223 CTCGGT 320112 TGACCG

7 013 031130 ATCCTA 310013 TCAACT

8 020 222002 GGGAAG 200220 GAAGGA

9 021 122313 CGGTCT 230121 GTACGC

10 022 022220 AGGGGA 220022 GGAAGG

11 023 322131 TGGCTC 210323 GCATGT

12 030 113003 CCTAAT 100130 CAACTA

13 031 013310 ACTTCA 130031 CTAATC

14 032 313221 TCTGGC 120332 CGATTG

15 033 213132 GCTCTG 110233 CCAGTT

Note: Hamming(6,3) code is incomplete, full set can be found in the supplementary File S2.
doi:10.1371/journal.pone.0036852.t003

Table 4. Comparison of commercially available and quaternary Hamming based barcodes.

Barcode set name Set size Dmin GC frequencies Sequence redundancy

0 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

6-mers

Epicentre set 12 3–4 0 0 3 8 1 0 0 5 7 0 0 0 0

H4(6,2) 16 4 1 0 6 0 9 0 0 2 10 2 1 0 1

H4(6,2) filtered 12 4 0 0 6 0 6 0 0 2 10 0 0 0 0

H4(6,2) filtered GT transposed 12 4 0 0 0 0 12 0 0 2 10 0 0 0 0

H4(6,2) filtered AC transposed 12 4 0 0 12 0 0 0 0 2 10 0 0 0 0

Illumina set 48 2–3 1 1 13 20 8 5 0 17 26 3 2 0 0

Craig et al., 2008 48 2 4 0 20 16 0 8 0 0 32 13 0 3 0

H4(6,3) 64 3 1 3 18 26 9 3 4 21 31 8 3 0 1

H4(6,3) filtered 57 3 0 3 17 26 8 3 0 21 29 7 0 0 0

7-mers

H(7,4) 256 3 2 14 42 70 70 42 14 2 76 60 68 32 12 4 4

H(7,4) AC transposed 256 3 16 0 0 112 112 0 0 16 76 60 68 32 12 4 4

H(7,4) AC transposed filtered 224 3 0 0 0 112 112 0 0 0 72 56 64 24 8 0 0

8-mers

H(8,4) 256 4 2 0 56 0 140 0 56 0 2 76 32 88 20 28 8 0 4

H(8,4) AG transposed 256 4 16 0 0 0 224 0 0 0 16 76 32 88 20 28 8 0 4

H(8,4) AG transposed filtered 224 4 0 0 0 0 224 0 0 0 0 72 32 80 16 24 0 0 0

H(16,11) 2048 4 31 0 383 0 1216 0 384 0 32 325 1166 447 73 30 1 1 3

Hamady et al., 2007 1544 2 0 0 0 0 1544 0 0 0 0 536 1008 0 0 0 0 0 0

Erlich et al., 2009 385 2 0 0 0 0 385 0 0 0 0 122 263 0 0 0 0 0 0

Note: H stands for binary Hamming codes, H4 stands for quaternary Hamming codes.
doi:10.1371/journal.pone.0036852.t004
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Discussion

In biological literature the barcode (a.k.a. bar code or bar-code)

stands for a variety of DNA sequences, which can be natural (in

case of molecular evolution studies) or artificial (vector libraries,

microarrays, multiplexing). By its origin the barcode became

public due to the introduction of the Universal Product Code

more than 50 years ago. From that time on, barcodes, as familiar

to the general consumer society encode commercially available

product IDs using visual geometrical symbols. Importantly, this

code contains data and parity digits, as well as extra digits for word

positioning. When applied to molecular biology, it is appropriate

to draw an analogy between the printed stripes and DNA bases. In

my opinion, a barcode without a coding part is a sequence tag or

DNA oligonucleotide etc. It is ironic to observe a wide range of

tags named ‘‘barcode’’, with substantial variations in their coding

qualities or missing the coding component completely. Commer-

cially available barcoded primers from Illumina and Epicentre also

contribute to the overall confusion: they are code-free, most likely

designed with random generator, and the only rationale behind

their design is being different (LB, personal inquiry). A major

drawback of random tag design is that none of the essential

parameters, dmin, Seqr, GC%, etc, can be properly controlled.

Instead, each of those parameters should be verified in separate

protocol to remove failed cases from the list. Note that while Seqr

and GC% are intrinsic tag properties, a dmin parameter belongs to

the group of tags. Therefore randomly synthesized tags will have

fluctuating differences within the group depending on the length of

the tag and number of tags in a group. A process of tag selection to

fit to the required minimal distance can be time consuming, since

each tag should be cross compared with all other tags in the group.

Their designs could be easily replaced by Hamming (6,3) or

Hamming (6,2) quaternary codes (Tables 3, 4) providing more

robust minimal distance, minimize sequence redundancy and

achieve more tags than presented both by Epicentre and Illumina

together. Early designs of barcodes used for DNA microarray

provide interesting algorithms with sufficient minimal distance and

error correcting capacity [11,13], yet they were made for longer,

microarray type of oligonucleotides and were left unused in recent

publications. Currently, multiplex parallel sequencing is steadily

growing in its diversity and extent of application. Recent

applications demand the concurrent sequencing of several

thousand samples in parallel. [14,20]. Under these circumstances,

the highest quality barcodes are critical to the success of the

analysis. Flawed barcode design can have dire consequences such

as erroneously assigned sequences and cross contamination of data

sets. Two recent publications, although used a coding concept

[14,15], both provided barcode sets with a dmin = 2, which is not

enough to correct single substitution errors. Minimal distance is

important not only to correct errors, but also to protect samples

against cross contamination and keep the noise in the sequencing

data at a minimum. It is concerning that those flawed designs

remained undetected while used by others. Here I show that

possible applications of the Hamming codes in DNA tagging are

not fully explored. With a few examples in this paper one can see

that by employing different coding systems we can obtain sets of

primer tags of different sizes, length and error correcting capacity.

Whereas binary Hamming code based tags proposed by Hamady

et al., [14] will fail with 1/3 of all base substitution errors,

quaternary Hamming code based tags will correct all of them.

It is fair to say, that Hamming codes are sensitive to insertion/

deletion (indel) mutations which cannot be corrected with the

existing algorithm. The major source of errors in Solexa type

machines are substitutions [2]. Therefore linear codes are quite

suitable for this application. Pyrosequencing based instruments,

like 454 GS-FLX by Roche, make indel type of errors when

reading homopolymer sequences. This, however, can be circum-

vented by controlling sequence redundancy as it was demonstrated

here. This will eventually improve the performance of linear codes

again. Although true indel errors cannot be detected or corrected

by linear codes, their contribution to the sequencing noise is at

least 10 times lower compared to substitutions [2]. An advantage

of using linear codes is in its simplicity as well as coding capacity,

which is much better than edit metric codes (codes capable of

correcting single indels). There is always a tradeoff between size of

a tag set, the tag’s length and minimal distance. It is up to the

researcher to decide first how large a multiplexing experiment

would be designed, and then choose a proper coding scheme.

Although it is not always important to correct for errors, a fast

identification of true non-mutated barcodes will be provided by

coding/decoding algorithms. A wider range of options described

here should further stimulate specialized barcode designs, improve

the quality of the data and suit better to the requirements of the

real biological experiment. The serious obstacle in such interdis-

ciplinary field is proper translation of coding theory into biological

application, without this many potentially progressive theories will

be left unused.

When this manuscript was in a process of reviewing I was

suggested to respond on the recent publication by Krishnan et al.,

[21]. Authors used binary BCH codes, which upon linear binary-

quaternary conversion yielded DNA barcodes 8 or 16 bases long

with dmin 4 or 7 bases respectively. These are robust designs that

surely contribute to the field of synthetic barcodes design (e.g. see

comparison of errors recovery in supplementary File S4). Impor-

tantly for this paper, the authors make two remarkable statements.

First, authors referred to the design by Hamady et al. [14] and

stated, ‘‘though Hamming codes possess low decoding complexity,

they have a minimum distance of 3, albeit very low. Indeed, it can

be shown that these barcodes cannot guarantee the recovery from

even one sequencing error’’. It is true for Hamady’s design and not

true for Hamming codes in general. As it was shown here Hamming

codes can be implemented in different ways, therefore it depends on

the conversion scheme and accompanying factors. Secondly, the

authors also stated ‘‘no efficient and systematic decoding algorithms

exist for decoding quaternary codes that are of interest in DNA

barcoding’’. If it is true, this is the first paper where a decoding

algorithm for the quaternary code is provided. Besides, it works with

code of any alphabet size.

Supporting Information

File S1 Hamming binary codes.

(XLS)

File S2 Hamming quaternary codes. This file contains scripts for

barcodes analysis: minimal distance can be measured using script

‘‘align’’. Properties of barcode series can be re-analyzed using

script ‘‘properties’’. Frequencies of the properties are summarized

with script ‘‘counts’’.

(XLS)

File S3 Gnumeric Python files zipped. It contains H4_74.gnu-

meric file with quaternary Hamming (7,4) codes generated with

H4code74_GNU.py script, decoder.gnumeric file contains frag-

ment of H4(7,4) code for generation and correction of errors, using

random_GNU.py and decoder_GNU.py scripts correspondingly.

H4code74.r and H4code74_decoder.r are two R-scripts written by

Erik Zwart.

(DOCX)
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File S4 Poisson calculator. It illustrates performance of different

linear codes.

(XLS)
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