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a b s t r a c t 

Reductions in the blood supply produce considerable injury if the duration of ischemia is prolonged. Para- 

doxically, restoration of perfusion to ischemic organs can exacerbate tissue damage and extend the size of 

an evolving infarct. Being highly metabolic organs, the heart and brain are particularly vulnerable to the 

deleterious effects of ischemia / reperfusion (I / R). While the pathogenetic mechanisms contributing to I / R-

induced tissue injury and infarction are multifactorial, the relative importance of each contributing factor 

remains unclear. However, an emerging body of evidence indicates that the generation of reactive oxygen 

species (ROS) by mitochondria plays a critical role in damaging cellular components and initiating cell death. 

In this review, we summarize our current understanding of the mechanisms whereby mitochondrial ROS 

generation occurs in I / R and contributes to myocardial infarction and stroke. In addition, mitochondrial ROS 

have been shown to participate in preconditioning by several pharmacologic agents that target potassium 

channels (e.g., ATP-sensitive potassium (mKATP) channels or large conductance, calcium-activated potas- 

sium (mBKCa) channels) to activate cell survival programs that render tissues and organs more resistant 

to the deleterious effects of I / R. Finally, we review novel therapeutic approaches that selectively target 

mROS production to reduce postischemic tissue injury, which may prove efficacious in limiting myocardial 

dysfunction and infarction and abrogating neurocognitive deficits and neuronal cell death in stroke. 
c © 2014 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http: // creativecommons.org / licenses / by-nc-nd / 3.0 / ). 
ntroduction 

Acute coronary artery disease and stroke are the number one 

nd third leading causes, respectively, of death and disability among 

mericans and in most westernized cultures. Ischemia caused by vas- 

ular obstruction in the cerebral circulation is the most common cause 

f stroke, although increased microvascular permeability and intrac- 

rebral hemorrhage can also result in decreased perfusion. If diag- 

osed in a timely manner, significant I / R injury can be avoided by 

rompt treatment with thrombolytic agents or by physical removal of 

he obstruction using angioplasty approaches. Neurons or myocytes 

hat are supplied by vessels downstream from the occlusion die from 

rolonged ischemia and comprise the infarcted region of the tissue 

hat is termed the ischemic core. The cells in this region never regain 

unction and are dead prior to therapeutic intervention in the brain or 

rogress irreversibly to death in the case of severe cardiac ischemia. 

f greater clinical interest are cells that die in a delayed manner after 

eperfusion is initiated. This population of neural or myocyte cells 

urrounds the ischemic core and is referred to as the penumbra in 
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stroke and area-at-risk in myocardial I / R. These jeopardized cells are 

not fully reliant on blood flow from the occluded artery, with modest 

perfusion maintained by collateral blood vessels that provides resis- 

tance to ischemic damage. Although penumbral neurons or at-risk 

myocytes do not succumb to the initial ischemia-induced cell death, 

they progress to death during reperfusion in a delayed manner that 

resembles apoptosis. The delayed onset of death provides a window 

of opportunity for therapeutic intervention. Recognition of this initial 

penumbral resistance to cell death led to the concept that treatments 

targeting these cells should be initiated prior to or in the first hours 

after recanalization of the obstructed vessel. 

While significant progress has been made with regard to iden- 

tifying ROS as key mediators of both detrimental and protective 

responses in I / R, therapeutic antioxidant management of I / R syn- 

dromes such as myocardial infarction, stroke, and circulatory arrest 

has proven disappointingly ineffective [ 1 –4 ]. This is most likely due 

to a number of factors including the fact that untargeted application 

of antioxidants may not differentiate between detrimental vs bene- 

ficial ROS generation. However, recent breakthroughs regarding use 

of targeted antioxidant therapies to enhance therapeutic efficacy of 

treatments to ameliorate oxidative stress in I / R injury have rekin- 

dled interest in use of agents that modify oxidative stress in I / R. 
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Fig. 1. Mechanisms contributing to tissue injury in ischemia / reperfusion (I / R). Cel- 

lular hypoxia secondary to ischemia results in decreased ATP production, which in 

turn, disrupts ion pump function, leading to accumulation of Na + , Ca 2 + , and H 

+ , with 

cellular acidification further promoted by a shift to anaerobic glycolysis for energy 

production. Activation and upregulated expression of enzymes capable of producing 

reactive oxygen species (ROS) and electron transport chain (ETC) dysfunction are also 

initiated during ischemia. These events set the stage for a burst of ROS generation 

when molecular oxygen is reintroduced to ischemic tissues when the blood supply is 

re-established. ROS-dependent expression of proinflammatory stimuli and expression 

of adhesion molecules by endothelial cells and leukocytes precipitates the infiltra- 

tion and activation of neutrophils, T cells and monocytes. Phagocytic Nox2 activation 

results the respiratory burst of superoxide production that further magnifies the mas- 

sive oxidative stress that directly damages virtually every biomolecule found in cells 

and induces the programmed cell death responses, apoptosis and necroptosis. Postis- 

chemic ROS generation also activates matrix metalloproteinases (MMPs) and other 

proteases that act to cleave proteins and receptors, thereby impairing their function. 

The net impact of these ROS-dependent events is opening of mitochondrial permeabil- 

ity transition pores (MPTPs), which contributes to swelling and lysis of cells. Increases 

in leukocyte stiffness induced by hypoxia and acidosis during ischemia lead to im- 

paction of these cells in capillaries, an effect that is exacerbated by ROS-dependent 

endothelial cell swelling which in turn reduces their diameter when the blood supply 

is re-established. Thus, a nutritive perfusion impairment becomes prominent during 

reperfusion, despite repair of the precipitating ischemic event. In direct contrast to 

these catastrophic effects of ROS generation secondary to events occurring in ischemia 

and early reperfusion, oxidant production also occurs at later stages of reperfusion as 

tissue repair is initiated. However, ROS production occurs at lower levels that allow 

oxidant species to serve as signaling molecules that participate in transcriptional acti- 

vation of growth factors and promote cell proliferation, differentiation and migration. 

The net effect of these processes is tissue and vascular remodeling, including angio- 

genesis. While some of these repair processes help restore organ function, others such 

as tissue fibrosis contribute over time to eventual organ failure. The mechanisms de- 

picted in this figure emphasize the concept that ROS generation play key roles in all 

three phases of ischemia / reperfusion injury and cell death. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Particularly promising developments have arisen with regard to tar-

geted delivery of therapeutic agents to the mitochondria, as a means

to reduce ROS-dependent I / R injury. The aim of this review is to

summarize evidence supporting a role for mitochondrially-derived

ROS in the pathogenesis of I / R injury and for their participation in

the beneficial protective actions of preconditioning. We begin with a

generalized review of the multifactorial pathogenetic mechanisms of

I / R injury, followed by a brief description of mitochondrial sources

of ROS, before moving on to a review of the evidence supporting

a pivotal role for mitochondrial oxidants in heart and brain injury

induced by I / R. We conclude this review with a brief discussion re-

garding the roles for mitochondrial ROS as redox signaling molecules

that underlie metabolic and flow-dependent vasodilation and finish

with a summary of work implicating mitochondrial oxidant gener-

ation as an essential trigger for activation of cell survival programs

that enhance tolerance to I / R, which again emphasizes the Jekyll and

Hyde nature of mitochondrial ROS production. From this discussion,

it will be apparent that mitochondrial ROS can exert detrimental or

beneficial effects, a double-edged sword that is probably explained

by the type of oxidant, the amount of ROS produced, and the sub-

cellular site of their production in these two vary different situations

(preconditioning vs I / R). 

General Concepts of I / R Injury 

In tissue subjected to ischemia followed by reperfusion (I / R),

pathologic mechanisms are elicited that produce reversible cell in-

jury and dysfunction, which can progress to irreversible damage if

the nature and extent of ischemia is prolonged or if the pathologic

sequelae to reperfusion are of sufficient magnitude (reviewed in [ 5 ]).

This damage is referred to as I / R injury and can be divided into three

phases ( Fig. 1 ). During ischemia (the first phase of injury), interruption

of the blood supply to an organ causes a reduction in oxygen and nu-

trient delivery to the affected tissues. This disrupts ATP generation via

oxidative phosphorylation, causing cells to alter their metabolism and

impairs energy-dependent cellular function. Reduced ATP availability

limits ion pumps in cell membranes, resulting in calcium overload,

structural disorganization, and apoptotic, necroptotic, and necrotic

cell death. In addition, ischemia induces conformational changes in

enzymes such as xanthine oxidase and elicits the formation of proin-

flammatory mediators and expression of adhesion molecules that

promote leukocyte / endothelial cell adhesive interactions. These lat-

ter processes do not directly contribute to injury during the ischemic

phase, but rather set the stage for the second stage of I / R injury

(ie, that due to reperfusion), wherein tissue injury is exacerbated

when the blood supply is re-established ( Fig. 1 ). Paradoxically, the

lack of oxygen during ischemia and the replenishment of oxygen dur-

ing reperfusion both contribute to the total injury sustained by tissues

subjected to I / R. The clinical outcome is also determined by a third

phase of ROS production that occurs during post-reperfusion repair

that is characterized by tissue remodeling and adaptation ( Fig. 1 ). 

Increased generation of reactive oxygen species (ROS) has been

suggested as a major contributor to the pathogenetic mechanisms un-

derlying ischemia, reperfusion, and the later post-reperfusion phase

of I / R injury ( Fig. 1 ). As a second paradox, ROS appear to exert both

detrimental and beneficial effects in I / R, causing damage that leads

to neurocognitive defects in stroke and contribute to the expansion

of infarct size as a result of their production during ischemia and

reperfusion while subserving a signaling function to promote fibro-

sis, angiogenesis, and vascular remodeling during the repair phase

( Fig. 1 ). Moreover, ROS signaling promotes the activation of cell sur-

vival programs when the heart or brain (or other organs) are exposed

to preconditioning stimuli (such as short bouts of ischemia, moderate

ethanol ingestion, or a wide variety of pharmacologic agents) prior to

the onset of prolonged I / R. The double-edged sword effects of I / R-

induced ROS generation may be related to species of ROS produced,
the amount of oxidants generated, and the subcellular location and

cellular source of their production under a given set of conditions, as

well as at what time during the three phases of responses to I / R they

are formed. 

Reperfusion represents the second phase of I / R injury and pre-

cipitates the generation of ROS that is fueled by the reintroduction

of molecular oxygen to the tissues ( Fig. 1 ). Xanthine oxidase- and

phagocyte NADPH oxidase-derived oxidants can damage virtually ev-

ery biomolecule found in cells and tissues. Although essential for cell

survival, re-establishing the blood supply to ischemic tissues also de-

livers blood-borne formed elements (platelets and leukocytes), which

become activated and establish adhesive interactions with the walls

of postcapillary venules ( Fig. 1 ). Upon transmigration into the tissues,

these activated leukocytes release their cytotoxic arsenal of ROS and

hydrolytic enzymes to exacerbate parenchymal cell injury. ROS in-

duce tissue dysfunction by directly damaging cells via a number of

mechanisms including peroxidation of cell membrane and organelle

lipids, oxidizing DNA, activation of matrix metalloproteinases and

calpains, producing osmotic cell lysis, induction of no-reflow, and

causing opening of the mitochondrial permeability transition pore

( Fig. 1 ). ROS may also induce cell dysfunction and death by indirect
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echanisms by interacting with NO, fatty acids or free iron to form 

eroxynitrite, peroxyl radicals, and hydroxyl radicals, respectively, 

ach of which are capable of producing even more cellular damage 

han superoxide or hydrogen peroxide. Oxygen-derived ROS also act 

o enhance the inflammatory response to reperfusion via formation of 

xidant-dependent proinflammatory mediators and upregulation of 

ytokine / chemokine and adhesion molecule expression ( Fig. 1 ). Thus, 

hile there is cellular demand for replenishment of oxygen which is 

et by re-establishing the blood supply, the reintroduction of molec- 

lar oxygen to the tissues results in ROS formation that is detrimental 

o the reperfused tissues. The divergent roles of oxygen in the first 

wo phases of I / R injury are referred to as the oxygen paradox. 

A second ROS paradox arises in later phases of reperfusion, where 

OS generation affects several tightly regulated processes that pro- 

ote organ repair and survival ( Fig. 1 ). This third phase constitutes 

he reparative phase of I / R injury and involves ROS-dependent gen- 

ration of growth factors that promote angiogenesis, induce prolif- 

ration and differentiation of vascular smooth muscle cells to effect 

ascular remodeling, and promote the activation of matrix metallo- 

roteinases and other factors that contribute to fibrosis, tissue re- 

odeling and formation of scar tissue. Interestingly, hypoxia induces 

ransport of mitochondria to perinuclear regions by a microtubule- 

ependent mechanism, where they increase nuclear ROS levels to 

nhance the expression of VEGF, a growth factor important in angio- 

enesis [ 6 ]. 

Cells are equipped with a wide variety of oxidant-producing 

nzymes including xanthine oxidase, NADPH oxidases (Nox), and 

yclooxygenases / lipoxygenases. The mitochondria also produce ROS 

rom respiratory chain components, as well as by activation of mi- 

ochondrially localized monoamine oxidase, the growth factor adap- 

or Shc (p66 Shc ), cytochrome b5 reductase, dihydroorotate dehydro- 

enase, mitochondrial ATP-sensitive potassium (mKATP) and large- 

onductance, calcium activated potassium (BKCa) channels, and the 

ox isoform designated Nox4. Superoxide normally produced in mi- 

ochondria is scavenged by manganese-superoxide dismutase (Mn- 

OD or SOD-2) localized in the matrix. In addition, copper / zinc-SOD 

Cu / ZN-SOD or SOD-1), which is typically considered a cytoplasmic 

soform, is also located in mitochondria between its inner and outer 

embranes. These SODs dismutate superoxide to less reactive hydro- 

en peroxide, which can be further metabolized to water and oxygen 

y the catalytic activity of catalase and glutathione peroxidase. Mi- 

ochondrial uncoupling proteins also serve to reduce the production 

f ROS by causing mitochondrial depolarization, which reduces the 

otential driving electron transfer and by allowing protons to reenter 

he matrix, thereby bypassing ATP synthase. 

Mitochondria play a central role in the development of reperfusion 

njury because the recovery of pH, oxidative stress, and calcium over- 

oad induce abrupt opening of mitochondria permeability transition 

ores (mPTPs), high conductance megachannels that are localized to 

ontact sites between the inner and outer mitochondrial membranes 

 7 ]. When opened, mPTPs permit communication between the cyto- 

lasm and the mitochondrial matrix. While low pH during ischemia 

revents opening of the megachannel, oxidative opening of the mPTP 

s critical to reperfusion injury ( Fig. 1 ). Depending on a complex bal- 

nce among cellular inducers and antagonists, the open probability 

f the mPTP can be transient or long-lived. Short-term opening is in- 

olved in cardioprotection that involves transient ROS formation (see 

elow). In contrast, long-lasting mPTP opening, which is facilitated by 

estoration of pH, calcium overload and the burst of ROS formation at 

he onset of reperfusion, is followed by profound and irreversible al- 

erations in cellular bioenergetics. Sustained pore formation results in 

ncreased mitochondrial permeability to ions and other solutes up to 

olecular weights of 1.5 kD and collapse of the mitochondrial mem- 

rane potential. This is rapidly followed by ATP and NAD 

+ depletion, 

elease of accumulated mitochondrial calcium, matrix swelling and 

uter mitochondrial membrane rupture, which in turn results in loss 
of pyridine nucleotides, release of pro-apoptotic factors, and further 

inhibits electron flow through the electron transport chain. The mas- 

sive release of ROS during reperfusion requires the involvement of 

the mPTP in a ROS-induced ROS release positive feedback loop [ 8 ]. 

It is widely believed that mPTP is thus a major causative event in 

reperfusion injury and cell death. This concept is consistent with the 

observation that cardioprotective interventions all seem to intersect 

at inhibition of the mPTP as an end-effector of enhanced tolerance to 

I / R. 

Mitochondrial sources of ROS 

Mitochondria are the main source of cellular ROS [ 9 ] and contain 

a number of enzymes that convert molecular oxygen to superox- 

ide or its derivative hydrogen peroxide (H 2 O 2 ) ( Fig. 2 ). However, the 

mitochondrial electron transport chain in the inner membrane, also 

known as the respiratory chain, is the most important source of the 

intracellular ROS production. Indeed, it has been estimated that 95% 

of ROS generated in normal (i.e., non-ischemic) cells are derived from 

electron leak from the respiratory chain enzyme complexes [ 10 ]. The 

proton motive force represents the potential energy driving proton 

movement into the mitochondrial matrix for ATP synthesis. It de- 

scribes an electrochemical gradient that consists of a mitochondrial 

membrane potential and a proton gradient, which represent sources 

for mitochondrial ROS generation via electron transfer to oxygen. For 

an extensive and excellent discussion of factors involved in super- 

oxide formation by the complexes comprising the electron transport 

chain, the reader is directed to a recent review of this topic by Chen 

and Zweier [ 11 ]. Importantly, the electron transport chain proteins 

are rich in iron sulfur clusters and heme groups, providing cofactors 

necessary to form highly reactive hydroxyl radicals from hydrogen 

peroxide [ 12 ]. 

Most oxygen consumed by aerobic eukaryotic cells is reduced to 

water through 4 steps of single electron reduction by the terminal cy- 

tochrome c oxidase of mitochondrial respiratory chain. A small pro- 

portion (0.1–2%) of consumed oxygen can also be reduced partially by 

one or two electrons in the mid-pathway of respiratory chain to gen- 

erate superoxide or H 2 O 2 as normal metabolic products of oxygen 

during respiration [ 13 , 14 ]. Superoxide is generated mainly in com- 

plexes I and III [ 15 , 16 ] ( Fig. 2 ). Ubisemiquinone at the Qo site of Q

cycle in complex III appears to be a major site of superoxide produc- 

tion [ 17 , 18 ]. Although electron leak also occurs at complex I of the 

respiratory chain, the precise generating site(s) for superoxide forma- 

tion within this supercomplex has not been established [ 12 , 13 , 19 ]. 

In addition to complexes I and III of the electron transport chain, 

other mitochondrial components are likely to contribute to ROS gen- 

eration, such as growth factor adaptor Shc (p66 Shc ), nicotinamide ade- 

nine dinucleotide phosphate (NADPH) oxidase-4 (Nox4), monoamine 

oxidase (MAO), mitochondrial BKCa and mK ATP channels, cytochrome 

b 5 reductase, and dihydroorotate dehydrogenase ( Fig. 2 ). However, 

the contribution of these enzymes to total mitochondrial ROS pro- 

duction is significantly lower than that of the respiratory chain in the 

inner mitochondrial membrane [ 20 ]. 

Recent studies have suggested a novel pathway of mitochondrial 

ROS production and oxidant-induced apoptosis involving that the 66- 

kDa isoform of the growth factor adaptor protein, Shc (p66 Shc ) [ 21 , 22 ] 

( Fig. 2 ). Several chronic stimuli have been shown to activate protein 

kinase C βII (PKC βII) isoform to induce Ser-36 phosphorylation of 

p66 Shc , allowing transfer of the adaptor protein from the cytosol to 

the mitochondrial intermembrane space [ 23 , 24 ]. Once translocated, 

p66 Shc uses reducing equivalents from the electron transport chain 

through the oxidation of cytochrome c to make H 2 O 2 directly with- 

out formation of superoxide. Redox-defective mutants of p66 Shc are 

unable to induce mitochondrial ROS generation and swelling in vitro 

or to mediate mitochondrial apoptosis in vivo [ 21 , 25 , 26 ]. 

Nox enzymes generate ROS as the product of their natural catalytic 
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Fig. 2. Sources of reactive oxygen species (ROS) in mitochondria. The activity of the 

electron transport chain generates a relatively small flux of ROS under normal condi- 

tions, but its production can be greatly magnified by events occurring during ischemia 

and reperfusion. Complex I (NADH dehydrogenase) and complex III (coenzyme Q (CoQ) 

and cytochrome C oxidoreductase) produce superoxide (O 2 
−), which leads to hydrogen 

peroxide (H 2 O 2 ) formation by spontaneous dismutation or via the enzymatic action 

of manganese superoxide dismutase (MnSOD). In the presence of transition metals, 

H 2 O 2 can form the highly reactive hydroxyl radical (OH 

•) superoxide can also inter- 

act with nitric oxide (NO) to form reactive nitrogen oxide species such as peroxyni- 

trite (ONOO −), which produce cellular dysfunction by S-nitrosylating proteins. ROS 

generated by complex I are released into the mitochondrial matrix, while superoxide 

produced by complex III can occur in both the mitochondrial matrix and the intermem- 

brane space between the outer and inner mitochondrial membranes. Other sources of 

mitochondrial superoxide are enzymes glycerol-3-phosphate dehydrogenase (G3PD), 

the growth factor adaptor p66Shc, and NADPH oxidase-4 (Nox4). β-oxidation of fatty 

acids can also result in mitochondrial superoxide generation secondary to oxidation of 

electron transferring protein (ETF) by the catalytic activity of the electron transferring 

flavoprotein ubiquinone oxidoreductase (ETF-QOR), another enzyme expressed on the 

mitochondrial inner membrane. Monoamine oxidase (MAO), which is localized to the 

outer mitochondrial membrane, catalyzes the formation of H 2 O 2 secondary to cate- 

cholamine metabolism. Not depicted are the mitochondrial enzymes aconitase and 

dihydroorotate, which can produce superoxide, but their role in ischemia / reperfusion 

is uncertain.The mitochondrial anion carrier, uncoupling protein-2 (UCP2), functions 

to separate oxidative phosphorylation from ATP synthesis with energy dissipated as 

heat, a phenomenon referred to as the mitochondrial proton leak. UCP2 acts to facilitate 

the transfer of anions from the inner to the outer mitochondrial membrane and the 

return transfer of protons from the outer to the inner mitochondrial membrane. They 

also reduce the mitochondrial membrane potential in mammalian cells. Although it 

was originally thought to play a role in nonshivering thermogenesis, obesity, diabetes 

and atherosclerosis, it now appears that the main function of UCP2 is the control of 

mitochondria-derived ROS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cycle. When fully assembled, they are the membrane-bound proteins

catalyzing electron transfer from NAD(P)H to oxygen, thus producing

superoxide [ 27 ]. Nox4 is the most ubiquitous of these oxidases outside

of phagocytic leukocytes (which use the Nox2 isoform to generate

ROS in the respiratory burst) and is a major source of ROS in many

cell types, but its role in physiologic signaling and pathologic states is

perhaps the most controversial ( Fig. 2 ). This Nox isoform is localized

to the outer mitochondrial membrane, and like p66Shc, it produces

H 2 O 2 [ 28 , 29 ]. As has been recently reviewed, Nox4 may function to

control the redox set-point and thus influence cellular metabolism.

This Nox isoform has also been shown to play important roles in cell

differentiation, migration, growth, apoptosis, and senescence, as well

as participating in proinflammatory responses and oxygen sensing

[ 30 ]. 

MAO is another prominent source of mitochondrial ROS. This en-

zyme is localized to the outer mitochondrial membrane, where it is

involved in the oxidative breakdown of key neurotransmitters (cat-

echolamines) and generates H 2 O 2 [ 31 ] ( Fig. 2 ). MAO plays the ma-

jor role in the development of oxidative stress of the nervous sys-

tem and heart. When the heart is subjected to chronic neurohumoral

and / or peripheral hemodynamic stress, the attendant abundance of

circulating / tissue monoamines fuels MAO-derived H 2 O 2 production

and has been shown to play in I / R injury [ 26 , 32 , 33 ]. Recent results
demonstrate that MAO is an important determinant of redox balance

in human atrial myocardium as well [ 34 ]. 

Mitochondrial ROS and the pathogenesis of I / R 

Overproduction of ROS by mitochondria plays a role in

the pathogenesis of myocardial I / R and stroke via im-

paired endothelium-dependent vasodilator mechanisms, disrupted

excitation–contraction coupling, generation of arrhythmias, direct

damage to biomolecules that result in necrosis, necroptosis and apop-

tosis, induction of mitochondrial permeability transition, and contri-

butions to cardiac fibrosis, remodeling and hypertrophy ( Figs. 1 and

3 ). Overexuberant liberation of ROS secondary to enhanced electron

leak at complexes I and III are major oxidant sources in I / R [ 9 , 35 –

38 ]. Both ischemia- and reperfusion-induced defects in the electron

transport chain leads to increased ROS production in both subsar-

colemmal and interfibrillary mitochondria of the heart [ 39 , 40 ]. This

appears to be mediated by oxidant-induced disruption of cardiolipin-

respiratory chain superassemblies in complexes I −III, which further

increases electron leakage fueling superoxide generation [ 9 , 36 , 41 –

45 ] ( Figs. 2 and 3 ). This is exacerbated by peroxynitrite-mediated

protein nitration of complexes I and III at specific sites [ 9 , 43 , 44 ]. ROS

leakage from the electron transport chain can also activate a mito-

chondrial anion channel (IMAC) that releases ROS into the cytoplasm

and simultaneously contributes to mitochondrial permeability tran-

sition [ 46 , 47 ]. Aquaporin-8 is expressed on the inner mitochondrial

membrane in hepatic (and perhaps other) cells, where it also acts to

facilitate the diffusional transport of H 2 O 2 [ 48 ]. 

In addition to complexes I and III, insufficient oxygen delivery dur-

ing ischemia results in increased electron leakage that is mediated by

hypoxia- and β1 -adrenergic-mediated, mitochondrial protein kinase

A / cAMP-dependent reduction in the activity of complex IV of the

electron transport chain, which can interact with residual oxygen to

produce superoxide [ 9 , 11 , 49 , 50 ]. Owing to the significant depletion

of ADP during early reperfusion, the reintroduction of molecular oxy-

gen greatly enhances electron leakage thereby markedly increasing

ROS production that overwhelms oxidant scavenging capacity, per-

oxidizes membrane lipid components, damages mitochondrial DNA,

and inactivates electron transport chain proteins, effects that are

markedly reduced by treatment with a free radical spin trap prior

to ischemia [ 51 ]. Overproduction of ROS via the electron transport

chain and other sources establishes a vicious positive feedback loop

that induces mitochondrial permeability transition and ROS-induced

ROS production [ 8 , 52 , 53 ]. 

Global and focal cerebral ischemia induce different modes of cell

death. Brief periods of global cerebral ischemia cause delayed neu-

ronal cell death by apoptosis. In contrast, most cells in the ischemic

core die by necrosis after focal cerebral ischemia, while cell death in

the ischemic penumbral region occurs by mechanisms dependent on

activation of apoptotic signaling. Like cardiac myocytes, neurons are

long-lived cells that are highly dependent upon oxidative metabolism.

As a consequence, neural tissue is predisposed to cumulative injury

by endogenously produced ROS, even under non-pathological condi-

tions, as evidenced by progressive accumulation of lipofuscin gran-

ules, a pigment composed of a mixture of proteins and lipid oxi-

dation products, in neuronal lysosomes as we age [ 54 ]. Moreover,

long term treatment with dinitrophenol, administered at a dose that

produces mild mitochondrial uncoupling, has been shown to reduce

brain markers of accumulated oxidative stress and increase survival

times [ 55 ]. 

Following induction of focal stroke, cell death in the ischemic

penumbral region becomes evident between 24 and 72 h after reper-

fusion is initiated. During reperfusion, mitochondria (and other oxi-

dant producing enzyme systems) use oxygen as a substrate to gen-

erate ROS, resulting in an immediate increase of multiple markers

of oxidative damage, which then remain elevated for several days
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Fig. 3. Generation of reactive oxygen species (ROS) by mitochondria (mitoROS) is a 

nexus for both activation of cell survival programs that mediate the effect of condition- 

ing stimuli to enhance tolerance to ischemia / reperfusion (I / R) and serves as a focal 

point for overexuberant ROS-induced ROS release that contributes to the pathogene- 

sis of cell injury in I / R. On the one hand, ROS triggers the activation of cell survival 

programs in responses to a number of mildly noxious stimuli such as short bouts of 

ischemia or antecedent ethanol exposure or pharmacologic agents (ethanol or activa- 

tors of mitochondrial ATP-sensitive potassium (mK ATP ) or large conductance, calcium- 

activated potassium (BKCa) channels). The enhanced tolerance to ischemia invoked by 

these mitoROS-dependent conditioning stimuli, which can be delivered before (precon- 

ditioning), during (preconditioning) or at the onset of reperfusion (postconditioning), 

activate protective protein kinases such as PKC ε, the expression of prosurvival genes 

(e.g., heme oxygenase-1) and mitochondrial antioxidant defenses (e.g., MnSOD, alde- 

hyde dehydrogenase-1 or ALDH2), as well as targeting the mitochondrial permeability 

transition pore (MPTP) to maintain the channel in a closed state. On the other hand, 

overexuberant ROS generation at the onset of reperfusion, driven by ROS-induced ROS 

release that is fueled by electron transport chain dysfunction, especially at complexes 

I and III, and enhanced activities of p66Shc, monoamine oxidase (MAO), and NADPH 

oxidase-4 (Nox4) in mitochondria, causes the MPTP to open, leading to swelling, cell 

disruption and death. Not depicted is the effect of oxidants to alter the balance of 

mitochondrial fission and fusion in conditioning and I / R, which emerging evidence 

has implicated as contributory to both processes. The dual nature of ROS as protective 

vs damaging species relates to the type of ROS generated in particular circumstances, 

their concentration, and / or compartmental localization of their production. 
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 56 ]. More definitive support for the importance of ROS generation 

n penumbral cell death is derived from studies demonstrating that 

ntioxidant treatment ameliorates cell injury and death in animal 

odels of stroke [ 57 –61 ]. In addition to well-established roles for 

hagocytic NADPH oxidases, NOS, and cyclooxygenase / lipoxygenase 

athways for ROS / RNOS generation in cerebral I / R injury, a growing 

ody of evidence supports formation of mitochondrial oxidants as 

nother contributing factor in neuronal cell death in stroke. For ex- 

mple, ROS generation is enhanced in mitochondria after cerebral I / R 

nd occurs at time points prior to overt neuronal death [ 56 , 62 –64 ]. 

ostischemic impaired function of respiratory chain complexes I −IV 

nd ATP synthase is a likely major cause of enhanced mitochondrial 

OS production in stroke [ 65 , 66 ]. Increased calcium concentrations 

n the mitochondrial matrix induce oxidative stress that contributes 

o the MPT in brain mitochondria exposed to hypoxia / reoxygenation 

nd high calcium [ 67 ]. Moreover, high calcium exposure, as occurs in 

 / R, reversibly inhibits the elimination of hydrogen peroxide in brain 

itochondria [ 68 ]. 

In addition to the respiratory chain complexes, it also appears 

hat NADPH oxidases (Nox) represent important oxidant sources in 

ostischemic tissues ( Figs. 2 and 3 ). Pharmacologic Nox inhibition 

revents glial cell activation, neuronal cell degeneration, and behav- 

oral deficits induced by experimentally-induced cerebral I / R and re- 

uces myocardial infarct size, effects most often attributed to phago- 

ytic Nox2 [ 69 ]. Reductions in ventricular dysfunction, cardiac re- 

odeling, blood–brain-barrier disruption, lipid peroxidation, protein 

itration, and oxidative DNA damage after I / R have been reported 
in mice deficient in Nox2 or p47phox expression after exposure to 

cerebral I / R [ 70 –78 ]. Similar findings have been reported for non- 

selective Nox inhibitors, apocynin and diphenyliodonium, in adult 

brain. On the other hand, inhibition of Nox activity fails to prevent 

perinatal brain injury in newborn animals [ 79 ]. Inhibitor studies us- 

ing apocynin and / or diphenyliodonium should be interpreted with 

caution because the former exhibits antioxidant properties while the 

latter is a general flavoprotein inhibitor [ 80 –84 ]. However, use of a 

more selective general Nox inhibitor, VAS2870, administered at 2 and 

12 hours after restoration of cerebral blood flow, decreased infarct 

size, edema, ROS levels, tissue nitration, and apoptosis in wild-type 

mice subjected to middle cerebral artery occlusion and reperfusion 

[ 85 ]. On the other hand, more recent work has shown that this agent 

produces significant off-target effects as well, such as thiol alkylation, 

thereby modifying thiol redox status [ 86 ]. 

Mitochondrial Nox4 may also participate in stroke, with some ev- 

idence supporting a pre-eminent role for this isoform ( Figs. 2 and 3 ). 

This is in part related to the fact that Nox4 is the most abundantly 

expressed isoform in the brain and is found in endothelial cells and 

vascular smooth muscle cells, with particularly prominent expres- 

sion and activity exhibited by these cells in the cerebral vasculature 

that varies by gender [ 87 –90 ]. This isoform is unique among the Nox 

family in that it only interacts with p22phox, is constitutively active 

but can be further activated by angiotensin II, TNF- α, certain growth 

factors and the binding protein PolDip2, and produces hydrogen per- 

oxide as its major product [ 91 ]. Since angiotensin II and TNF α are 

expressed during I / R, it is likely that these proinflammatory stim- 

uli participate in upregulating Nox4 activity during I / R. In addition, 

siRNA-mediated downregulation of HIF-1 α expression limits the ef- 

fect of hypoxia to increase Nox4 mRNA while HIF1a overexpression 

increases Nox4 mRNA and protein levels, observations which suggest 

that hypoxia should increase Nox4. Indeed, the rapid stabilization and 

activation of HIFs under conditions of low oxygen may be the primary 

initiating event for the upregulation on Nox4 and other isoforms in is- 

chemia, which is augmented by proinflammatory signaling molecules 

described above. Importantly, Nox4 appears to be localized in mito- 

chondria (as well as the plasma membrane, endoplasmic reticulum, 

and nucleus) [ 92 ], and as such could represent an important source 

of mitochondrial ROS in I / R. 

More direct support for a role for the Nox4 isoform in stroke 

is provided by the observation that Nox4 mRNA is upregulated in 

stroke models. Importantly, Nox4 knockout mice demonstrated the 

same reductions in injury as VAS2870-treated wild-type mice, and 

the degree of protection afforded by Nox4 deficiency was not aug- 

mented by VAS2870 treatment. Taken together, these latter observa- 

tions strongly support the notion that Nox4 is a major contributor to 

the reperfusion component of cerebral I / R injury. In addition to this 

evidence, recent work indicates that Nox4 overexpression specifically 

in endothelium exacerbates stroke-induced infarct size by a mecha- 

nism that involves Nox4-dependent suppression of eNOS [ 93 ]. On 

the other hand, infarct size was smaller in endothelial-specific Nox4- 

deficient mice compared to wild-type animals [ 76 ]. As noted above, 

Nox4 is expressed not only in mitochondria, but also in the plasma 

membrane, endoplasmic reticulum, and nucleus) [ 92 ]. Thus, any or 

all of these organelles may be a source of Nox4-derived ROS in I / R, 

not just mitochondria. 

There is evidence suggesting that Nox4-derived oxidants may also 

play a role in the repair processes that arise days after reperfusion is 

established following cerebral ischemia. This notion is based on the 

observation that ROS derived from Nox4 are key signaling molecules 

mediating cell proliferation and differentiation [ 94 –98 ]. For example, 

siRNA knockdown of Nox4 inhibits tube formation and wound healing 

responses in cultured endothelial cells and limits cell migration and 

proliferation induced by VEGF [ 99 , 100 ]. Thus, activation of Nox4 dur- 

ing latter stages of reperfusion may promote angiogenesis to facilitate 

perfusion of previously ischemic tissues. Moreover, Nox4 activity may 
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influence vascular smooth muscle differentiation and proliferation in

response to hypoxia [ 101 , 102 ]. Because Nox4-dependent ROS produc-

tion stimulates proliferation and differentiation of cardiac fibroblasts

into myofibroblasts, which may lead to fibrosis, cardiac remodeling

and heart failure, activation of this Nox isoform may not be entirely

beneficial in the setting of recovery in myocardial I / R [ 97 , 103 , 104 ].

Thus, while Nox4-derived ROS are important for postischemic angio-

genesis, these oxidants may also be detrimental owing to effects to

promote hypertrophy or dilatation of the ventricles. These divergent

effects probably arise as a result of site and / or amount of their produc-

tion. Since the effects of Nox4 deficiency vs overexpression, induced

during the recovery phase of reperfusion, have not been evaluated in

postischemic heart and brain, it is unclear whether this mitochondrial

oxidant source contributes in beneficial or detrimental ways. Clearly,

much additional work will be required to address this important and

intriguing question and will likely require site-specific ablation or

overexpression studies. 

Interplay between different ROS sources also appears to play a role

in I / R [ 95 , 105 , 106 ]. Nox-dependent ROS production can trigger mi-

tochondrial dysfunction which in turn provokes oxidant production.

The converse is also true, mitochondrial ROS production can activate

NADPH oxidases [ 8 , 106 , 107 ]. Thus, mitochondrial ROS-induced ROS

release synergistically increases postischemic oxidative stress. The

generation of ROS by mitochondria also demonstrates spatial hetero-

geneity within the organelle and among mitochondria in a cell [ 108 ].

Following oxidative insult, as occurs in I / R, ROS generation preferen-

tially localizes in mitochondrial regions that progress to swelling and

eventually rupture. In addition, fatal oxidative insults result in mas-

sive augmentation of ROS formation in nearly all mitochondria in the

affected cell. However, mild oxidative stress, as might occur with pre-

conditioning stimuli, induces a more heterogeneous ROS formation

that is limited to small numbers of mitochondria [ 108 ], consistent

with the signaling function of compartmentalized elements of the

cell survival program that is activated by these stimuli. 

Excessive ROS formation during reperfusion facilitates opening of

the mPTP which in turn favors ROS formation by inhibiting the res-

piratory chain secondary to mPTP-induced loss of cytochrome C and

pyridine nucleotides [ 109 ]. Mitochondrial DNA is also particularly

vulnerable to the deleterious effects of ROS-induced ROS release dur-

ing reperfusion owing to the lack of protection of mitochondrial DNA

by histones, limited capacity of DNA repair mechanisms, and proxim-

ity to the production site for ROS-induced ROS. Thus, I / R-induced ROS

production induces mitochondrial DNA rearrangement and fragmen-

tation followed by disruption of mitochondrial structure, function,

and eventual lysis. 

The susceptibility of mitochondrial DNA to oxidative modifica-

tion in circulating leukocytes is of considerable potential interest as

this may provide a reliable marker of mitochondrial dysfunction that

could be exploited as a diagnostic indicator for I / R. Oxidative inacti-

vation of mitochondrial aconitase, which predisposes the enzyme to

produce hydroxyl radicals and thus contribute to I / R injury, suggests

that disrupted activity of this enzyme could also be used as a marker

for myocardial infarction. Oxidants generated by mitochondria (and

other sources) interact with NO to produce peroxynitrite and other

reactive nitrogen species which in turn contribute to the formation

of nitrotyrosine residues on proteins, which not only contribute to

cell dysfunction by disrupting protein function, but also serve as a

surrogate marker for oxidative stress. 

Mitochondrially-directed antioxidants reduce I / R injury 

Discovery of the important roles for mitochondrial ROS generation

in the pathogenesis of I / R injury fueled an intense interest in devel-

opment of pharmacologic agents and other therapeutic approaches

that specifically target the mitochondria and effectively reduce postis-

chemic tissue and organ damage [ 40 , 108 , 110 –121 ]. Treatment with
mitoquinone (MitoQ) or mito-phenyl tert-butylnitrone (Mito-PBN),

which contain the antioxidants coenzyme Q (quinone) or PBN, re-

spectively, attached to a lipophilic triphenylphosphonium cation that

allows these derivatives to accumulate in mitochondria owing to its

negative �Ψ m 

, limits postischemic inflammation and injury. Mimet-

ics of Mn-SOD target mitochondria to inhibit ROS-dependent dam-

age and apoptosis. A series of NO-based and vitamin E molecules,

which are linked to the triphenylphosphonium mitochondrial tar-

geting moiety, have been developed to actively sequester these an-

tioxidants in mitochondria and exert cardioprotection in I / R models.

A more recent focus for protection is aldehyde dehydrogenase-2, a

mitochondrial enzyme that detoxifies aldehydes that have been im-

plicated in myocardial I / R. A small molecule activator of this enzyme,

Alda1, has been shown to reduce postischemic injury. Gene therapy

approaches that target upregulation of mitochondrial antioxidant en-

zymes such as Mn −SOD or matrix peroxiredoxins or overexpressing

pro-survival molecules such as aldehyde dehydrogenase-2 (in addi-

tion to other extramitochondrial targets) hold particular promise as

novel approaches to render cells, tissues and organs resistant to the

deleterious effects of I / R as does use of microRNAs to modulate mi-

tochondrial redox status in postischemic tissues [ 122 , 123 ]. 

Mitochondrial ROS as signaling molecules: preconditioning and 

cell survival in I / R 

While excess mitochondrial oxidant generation is well known to

exert detrimental effects via mitochondrial dysfunction and ener-

getic decline, a growing body of recent evidence has established that

generation of ROS at low levels by this organelle can serve as sig-

nals mediating physiologic responses. For example, acetylcholine and

flow-induced coronary vasodilation is mediated by activation of BKCa

channels that are triggered by H 2 O 2 derived from complexes I and III

in the endothelial electron transport chain [ 124 –130 ]. In addition,

graded production of H 2 O 2 by myocardial mitochondria serves as

a metabolic vasodilator to couple oxygen consumption to coronary

blood flow by activation of redox- and 4-aminopyridine-sensitive

voltage-dependent potassium (Kv) channels and has also been im-

plicated in the regulation of coronary collateral flow [ 131 –133 ]. 

Recent work has established that mitochondrially centered mech-

anisms play an important role in promoting the activation of cell sur-

vival programs mediating preconditioning via mechanisms that in-

volve ROS signaling ( Fig. 3 ). Preconditioning refers to a phenomenon

where transient exposure of cells, tissues, or organs to a sublethal

stress (such as short bouts of ischemia prior to or at the onset of

reperfusion, or ischemic pre- or postconditioning, respectively) or a

variety of pharmacologic agents (e.g., ethanol, KATP and BKCa channel

activators) enhances tolerance to potentially lethal I / R. Mitochondrial

specific targets include respiratory chain enzyme complexes, oxida-

tive phosphorylation, and KATP and BKCa channels localized on the

inner mitochondrial membrane. For example, NOX-derived oxidants

play a role in stroke, which can be prevented by antecedent exposure

to ethanol or grape polyphenol extracts [ 134 –136 ]. Moreover, ROS

production by the respiratory chain has been shown to activate mi-

tochondrial ATP-sensitive potassium channels (mKATP) [ 137 ], which

play a role in protection against stroke-induced damage in the brain

[ 137 –143 ]. When activated by preconditioning stimuli, these mKATP

channels allow potassium to flow into mitochondria to produce de-

polarization and alkalinization of the mitochondrial matrix, which in

turn appears to activate cell survival signaling in both acute (early)

and late preconditioning in MI and stroke by inducing downstream

ROS production [ 138 , 144 , 145 ]. While ROS scavenging and mKATP

channel inhibitors reduce the cardioprotection afforded by ischemic

pre- and postconditioning or that induced by the mitoKATP opener

diazoxide, exogenous generation of ROS at the onset of reperfusion

fails to confer protection [ 146 ]. These latter results suggest that the

type of ROS, their concentration, and / or compartmental localization
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f their production is critical to triggering tolerance to I / R, consis- 

ent with a mitochondrial site as a source for ROS generation that 

recipitates preconditioning. 

Abundant evidence supports a role for PKG- and Akt-dependent 

hosphorylation in the opening of mitoKATP and subsequent ROS 

ormation secondary to matrix alkalinization in pharmacologic pre- 

onditioning. According to this scenario, acetylcholine- or bradykinin- 

nduced PKG activation results in phosphorylation of a protein on the 

uter mitochondrial membrane which is coupled to mKATP activa- 

ion on the inner mitochondrial membrane by a step that involves 

KC- εactivation. ROS generation secondary to mitoKATP channel ac- 

ivation then activates a second pool of PKC which inhibits opening 

f the mitochondrial permeability transition pore (MPTP) to prevent 

ell death [ 145 , 147 –149 ]. 

The demonstration that preconditioning with diazoxide, a mi- 

oKATP activator, invoked protection against subsequent I / R-induced 

euronal injury and death provided some of the first evidence that 

itoKATP channels participate in activation of cell survival programs 

n stroke [ 150 ]. This agent causes generation of ROS at low levels by 

echanism which may be related to its ability to inhibit complexes 

 and III of the electron transport chain to provoke precondition- 

ng [ 151 –157 ]. Others have presented evidence that mitochondrial 

onnexin-43 (Cx43) plays an important role in mKATP-dependent 

xidant signaling invoked by pharmacologic preconditioning with di- 

zoxide, bradykinin or acetylcholine in the heart [ 147 , 155 , 158 –160 ]. 

itochondrial oxidant production is also induced by preconditioning 

ith a δ-opioid agonist or endothelin-1. However, Cx43 knockdown 

id not affect ROS production by mitochondria induced by these pre- 

onditioning stimuli, but did abolish downstream cardioprotective 

ignaling events [ 161 ]. 

ROS production has also been shown to enhance mitoKATP chan- 

el activation and thus enhance mitochondrial membrane depolar- 

zation and confer preconditioning [ 156 , 157 ]. While these observa- 

ions clearly indicate that ROS signaling can activate mitoKATP to 

nhance preconditioning, treatment with BMS-191095, which acti- 

ates mitoKATP but does not increase mitochondrial ROS production, 

lso effectively reduces cerebral I / R injury [ 138 ]. The latter results 

ndicate that mitoKATP channel activation, independent of ROS pro- 

uction, can invoke tolerance to lethal I / R. However, it is important 

o note that when the electron transport chain is inhibited, as occurs 

n I / R, superoxide can interact with NO to produce peroxynitrite. 

he reactive nitrogen species potently activates mKATP and may trig- 

er preconditioning induced by short bouts of ischemia [ 138 ]. More- 

ver, respiratory chain inhibition results in decreased ATP production, 

hereby increasing the ADP / ATP ratio, which favors mKATP channel 

pening and activation of cell survival mechanisms. 

The observation that drugs acting on mitoKATP channels can trig- 

er oxidant-dependent cell survival signaling that limits I / R injury 

uggests the possibility that pharmacologic agents or interventions 

argeting other mitochondrial potassium channels could also elicit 

reconditioning. Indeed, it is well-established that activation of large 

onductance, calcium-activated potassium channels (BKCa), either by 

harmacologic agents or secondary to ischemic preconditioning, elicit 

olerance to prolonged I / R [ 162 –169 ]. Recent work indicates that 

reatment with the BKCa channel activator NS-1619 protected mito- 

hondrial function in cardiac I / R by a mechanism mediated by super- 

xide generation [ 167 ] but is independent of NO production [ 165 ]. 

n one study [ 167 ], it was assumed that BKCa channels localized on 

he inner mitochondrial membrane were responsible for superoxide 

eneration because NS-1619 treatment was dependent on superoxide 

roduction and was associated with reduced mitochondrial calcium 

ccumulation and improved redox state (i.e., normalized NADH) in 

 / R. In a subsequent study, the same group directly demonstrated 

hat NS-1619 increases mitochondrial oxidant production that was 

riven by increased mitochondrial matrix potassium secondary to 

hannel opening [ 170 ]. This in turn elevated matrix H 

+ by enhanced 
but submaximal K 

+ / H 

+ exchange, thereby stabilizing mitochondrial 

membrane potential despite increased respiration. These conditions 

allowed increased direct electron transfer to oxygen thereby gener- 

ating superoxide [ 170 ]. 

Activation of uncoupling proteins, which reduces oxidative stress, 

has been reported to elicit cardioprotection in I / R [ 171 –175 ]. It is 

of interest to note that transient inhibition of complex I at reperfu- 

sion also exerts cardioprotective effects via reduced ROS production 

[ 176 , 177 ]. These observations suggest that postconditioning-induced 

tolerance to prolonged I / R would not be triggered by mild ROS pro- 

duction during staccato reperfusion. However, ROS have been shown 

to be important initiators of this form of conditioning [ 178 ]. Res- 

olution of these discrepant observations may simply relate to the 

concentration and / or site of ROS generation. 

A key event underlying preconditioning or postconditioning may 

be prolongation of cellular acidosis during early reperfusion after in- 

dex ischemia. It is thought that delayed normalization of pH acts to 

inhibit mPTP opening in the initial minutes of reperfusion, thereby 

allowing time for ROS-induced activation of cell survival programs. 

The ROS formed in the early minutes of acidic reperfusion or during 

the short bouts of intermittent reperfusion during postconditioning 

activates PKC- ε isoforms, critical kinases in the signaling cascade that 

act to reduce the probability of mPTP opening after pH normalizes 

as reperfusion progresses [ 179 , 180 ]. In contrast, transient opening of 

the mPTP may also induce modest and short-lived ROS production 

that precipitates preconditioning, a concept supported by the obser- 

vations that antioxidant treatment during bouts of preconditioning 

I / R and pharmacologic inhibition or genetic ablation of cyclophilin 

D attenuates both preconditioning induced oxidant production and 

protection [ 181 –187 ]. 

Summary and perspectives 

From the aforementioned discussion, it appears the mitochondrial 

ROS generation plays a critical role in the pathogenesis of myocardial 

infarction and stroke. Although complexes I and III of the electron 

transport chain are the best studied sources of mitochondrial ROS gen- 

eration in I / R and may be responsible for much of the oxidative stress 

exhibited by postischemic cells, recent evidence indicates that deg- 

lutathionylated complex II and phosphorylated complex IV are also 

important sources for ROS formation in I / R. As discussed by Chen and 

Zweier [ 11 ], identification of specific redox domains in the respiratory 

chain supercomplexes that are involved in overexuberant ROS gener- 

ation in mitochondria during ischemia and reperfusion, how oxidant- 

and nitrosative-dependent post-translational modifications at spe- 

cific sites may exacerbate ROS production (ROS-induced ROS release) 

in animal models of I / R, and how electron transport chain driven 

superoxide production provokes aconitase to produce hydroxyl rad- 

icals are important areas for future investigation. Postischemic ROS 

generation via the electron transport chain may also enhance oxida- 

tive stress via mitochondrial ROS-induced ROS release that may also 

involve induction of hydroxyl radical formation by the Krebs cycle 

enzyme aconitase and activation of Nox4. I / R can also be associated 

with an overabundance of circulating / tissue monoamines, which in 

turn fuels H 2 O 2 production by monoamine oxidase. The growth factor 

adaptor Shc (p66 Shc ) is a novel pathway of ROS production in I / R but 

evaluation of its contribution to postischemic tissue injury has only 

just begun. 

Despite the preponderance of evidence supporting a role for mi- 

tochondria as an intracellular source of ROS in the pathogenesis of I / 
R injury, recent work demonstrating that directed sarcolemmal sta- 

bilization uncouples increased oxidative stress from cellular dam- 

age and stress challenges this paradigm and provides an attractive 

explanation for the failure of anti-oxidant therapies to limit postis- 

chemic tissue injury. In an elegant series of experiments Martindale 
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and Metzer [ 188 ] demonstrated that reperfusion produced intracel-

lular oxidative stress and lipid peroxidation, membrane instability

and swelling, which in turn induced Ca 2 + influx and mitochondrial

membrane depolarization. Directed stabilization of the outer mem-

brane with synthetic copolymers consisting of tandem linear arrays

of polyethylene oxide / polypropylene oxide moieties reduced postis-

chemic necrosis, apoptosis, hypercontracture and mitochondrial dys-

function without disrupting intracellular oxidative stress or lipid per-

oxidation. Moreover, these investigators further demonstrated that

dystrophin deficiency (which increases fragility of cardiac and other

cell membranes and is associated with increased oxidative stress)

[ 189 –193 ], increased susceptibility to myocardial I / R, an effect that

was mitigated by copolymer treatment, while restoration of mem-

brane dystrophin contributeds to the cardioprotective effects of is-

chemic preconditioning [ 190 , 194 ]. Taken together, these observa-

tions suggest that I / R-induced, oxidant-mediated lipid peroxidation

was insufficient by itself to induce cardiac injury and cell death when

sarcolemmal membrane integrity was maintained, suggesting that

ROS production is not the major factor responsible for the Ca 2 + dys-

regulation that ultimately results in cell death in postischemic my-

ocardium. Rather, it appears that sarcolemmal compromise, which

limits its ability to maintain a barrier between the intra- and extra-

cellular compartments, may be the decisive irreversible event that

leads to cell death in I / R. 

Since the copolymers do not exhibit free radical scavenging capac-

ity and are restricted to engaging the sarcolemmal surface by their

amphiphilic structure [ 69 ], these studies challenge the paradigm that

intracellular oxidant generation from sources such as mitochondria

play the decisive role in the pathogenesis of I / R injury. However, it

is possible that oxidants generated from intracellular sources such as

mitochondria may target the extracellular face of sarcolemmal mem-

brane after transmembrane egress via anion channels. Membrane

packing or altered mobility induced by copolymer binding could limit

diffusion of oxidant species into the bilayer, providing an alternate

mechanistic rationale to reconcile a role for intracellular oxidant gen-

eration, membrane fragility, and cell death. Alternatively, stabiliza-

tion of the outer cell membrane may alter cytoskeletal interactions

which in turn may modify or disrupt mitochondrial trafficking such

that these organelles are directed away from intracellular sites such

as the nucleus that are particularly vulnerable to ROS attack, thereby

allowing elevated intracellular ROS production to persist but limiting

its intracellular consequences. The effectiveness of mitochondrially-

targeted antioxidant treatments, which presumably do not act via

membrane stabilization, in reducing I / R injury in preclinical I / R mod-

els appear to support important roles for mitochondrial ROS as a de-

cisive contributor to postischemic injury, suggesting that alternate

explanations for the protective effects afforded by copolymer treat-

ment should be explored. 

While it seems clear that overexuberant ROS production by mi-

tochondria may contribute to I / R, it is also appears that production

of hydrogen peroxide by this organelle serves as an important sig-

naling element that couples cellular metabolism to blood flow and

as a mediator of flow-dependent vasodilation in the coronary circu-

lation. Mitochondrial ROS generation also appears to play a critical

role in evoking the expression of cell survival programs that miti-

gate postischemic tissue injury and cell death by a variety of pre-

and postconditioning stimuli. The cardioprotective mechanisms in-

duced by preconditioning clearly involve activation of mitochondrial

KATP and BKCa channels, which produce membrane alkalinization

and ROS generation by respiratory chain supercomplexes, which in

turn activate downstream signaling elements to induce expression of

cardioprotective proteins that limit I / R injury and cell death. Thus,

production of ROS by mitochondria can exert counterbalancing ef-

fects on tissue cells, with a low flux of mitochondrial oxidants serving

signaling functions to regulate vascular caliber to meet metabolic de-

mands. In addition, mitochondrial ROS production at signaling levels
and perhaps localized at specific subcellular sites within mitochon-

dria or other organelles activate cell survival programs to enhance

tolerance to ischemia. On the other hand, overproduction of mito-

chondrial oxidants leads to ROS-induced ROS release to exacerbate

oxidative stress that promotes mitochondrial permeability transition,

which in turn precipitates swelling that can progress to cell lysis and

death during I / R. 
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