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ABSTRACT
Retinal neurodegeneration associated with the dysfunction or death
of photoreceptors is a major cause of incurable vision loss.
Tremendous progress has been made over the last two decades in
discovering genes and genetic defects that lead to retinal diseases.
The primary focus has now shifted to uncovering disease
mechanisms and designing treatment strategies, especially inspired
by the successful application of gene therapy in some forms of
congenital blindness in humans. Both spontaneous and laboratory-
generated mouse mutants have been valuable for providing
fundamental insights into normal retinal development and for
deciphering disease pathology. Here, we provide a review of mouse
models of human retinal degeneration, with a primary focus on
diseases affecting photoreceptor function. We also describe models
associated with retinal pigment epithelium dysfunction or synaptic
abnormalities. Furthermore, we highlight the crucial role of mouse
models in elucidating retinal and photoreceptor biology in health and
disease, and in the assessment of novel therapeutic modalities,
including gene- and stem-cell-based therapies, for retinal
degenerative diseases.

KEY WORDS: Mouse mutants, Photoreceptor, Retinal
development, Retinal disease

Introduction
Light is a fundamental driver of daily functions and behavior in
most organisms. In vertebrates, light is captured by photoreceptors
in the retina and their output constitutes the major sensory input to
the brain (Noback, 2005; Rodieck, 1998). In humans, vision is
paramount for quality of life and the impairment of sight represents
a highly incapacitating condition. Vision loss or dysfunction can be
caused by obstruction of the light path to the neural retina or
inability of the retina to detect and/or transmit light-triggered signals
to the brain. In retinal degenerative diseases (RDDs), it is the latter
that is largely responsible for incurable blindness due to dysfunction
or death of photoreceptor cells. Genetic components determine the
genesis and health of photoreceptors, and mutations that lead to
structural and/or functional perturbations can eventually lead to
blindness. RDDs can be broadly divided into monogenic
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(Mendelian) or multifactorial (complex) disorders. Several RDDs
can be recognized in monogenic non-syndromic and syndromic
forms (see Box 1 for a glossary of terms) with clinically
distinguishable findings (Berger et al., 2010) (RetNet:
https://sph.uth.edu/retnet/). For the purpose of this Review, we have
focused on commonly observed Mendelian retinal diseases
(Table 1). The most common multifactorial RDD is age-related
macular degeneration (AMD). The readers are directed to excellent
reviews on AMD (Cooke Bailey et al., 2013; Fritsche et al., 2014)
for further information.

During the last decade, genetic studies have provided tremendous
insights into Mendelian forms of retinal diseases (Swaroop and
Sieving, 2013), which afflict one in 2000-3000 individuals (Hartong
et al., 2006). Retinitis pigmentosa (RP) is the most common form of
inherited retinal degeneration, with a frequency of one in 3000-7000
individuals (Ferrari et al., 2011). Our understanding of molecular
and genetic defects in Mendelian retinal blindness has improved
tremendously in recent years (Wright et al., 2010), with the
discovery of genetic defects in over 200 genes (RetNet:
https://sph.uth.edu/retnet/). The advent of next-generation
sequencing and better molecular diagnosis methods has enabled us
to identify the genetic cause of inherited retinal disease in the
majority of patients (Neveling et al., 2012; Ratnapriya and Swaroop,
2013). The major challenge now is to elucidate biological
mechanisms of retinal disease pathogenesis, with the goal being the
design of gene-based treatments.

The majority of genes associated with non-syndromic or
syndromic retinal diseases influence photoreceptor development or
function. In this Review, we focus on mouse models of monogenic
retinal degeneration, where a genetic defect in a single gene is
generally sufficient to cause disease. The ability of such models to
assist in elucidating disease mechanisms was recognized very early
by the identification of a naturally occurring nonsense mutation in
the cGMP phosphodiesterase (PDE) subunit encoded by Pde6b,
which causes rapid retinal degeneration in affected mice (Keeler,
1924; Pittler and Baehr, 1991; Sidman and Green, 1965). As
molecular genetic methods improve, naturally occurring models
have been augmented by genetically engineered mouse models that
have been immensely valuable in advancing our understanding of
retinal development and degeneration. These models provide
fundamental insights into biological pathways and often display
phenotypes that are similar to clinical manifestations of the
corresponding disease in humans, providing an opportunity to
decipher mechanisms of disease pathology as well as develop
therapies. However, the progress in the generation and
characterization of mouse retinal disease models has been relatively
slow despite the rapid pace of disease gene discovery during the last
decade. With the advent of new technologies, such as ‘clustered
regularly interspaced short palindromic repeats’ (CRISPR) (Wang et
al., 2013; Yang et al., 2013), we should be able to quickly produce
mouse mutants with single- or even multi-gene defects.
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In the following sections, we begin by describing the structure and
function of the retina, followed by the genetics of hereditary retinal
degeneration and discussion of the most relevant mouse models for
RDDs. Next, we outline current techniques used for evaluating retinal
degeneration in humans and mice, followed by a description of
specific forms of RDDs caused by perturbations in photoreceptor
development, intracellular trafficking, cilia biogenesis,
phototransduction and synaptic function. RDDs associated with retinal
pigment epithelium (RPE) dysfunction are also addressed. Finally, we
discuss the importance of mouse models of RDDs in discovering
novel therapeutic interventions for blinding retinal diseases.

Retina structure and function
During embryogenesis, the retina arises from neuroectoderm, which
also generates other parts of the central nervous system. The retina
is uniquely structured for perception, integration and transmission
of visual information (Lamb et al., 2007). Six major types of neuron
in the retina are organized in three cellular layers that are separated
by synaptic layers (Fig. 1). Photoreceptors are the light-sensitive
cells in the retina, with two distinct subtypes: rods and cones. Rod
photoreceptors enable dim light vision, whereas cone photoreceptors
mediate color vision and high visual acuity under brighter light
conditions.

In the retina of most mammals, rods greatly outnumber cones,
even in species that are largely diurnal; e.g. the human retina has
~105 million rods and 6 million cones. An additional cell layer, the

RPE, underlies the retina and serves as a barrier between the
photoreceptors and the choroidal blood supply. RPE plays crucial
roles in supporting photoreceptor function, including two-way
transport of nutrients and waste products and retinoid recycling
(Fig. 1). Photoreceptors are highly specialized neurons designed for
capturing light quanta and are organized in four distinct regions: the
cell body, which includes the nucleus; the inner segment (IS); the
outer segment (OS); and the synaptic region (Fig. 1C) (Lamb, 2013).
The OS includes hundreds of stacked membranous discs carrying
the proteins associated with phototransduction, including the visual
pigment (opsin). The type of opsin present is unique to a
photoreceptor subtype and defines its identity. Almost 10% of OS
discs at the distal end are shed and phagocytosed by RPE daily, with
new discs added at the proximal end, thereby renewing the complete
OS in 10-15 days.

Three subtypes of cone photoreceptors can be generally identified
in the human retina, based on the opsin they contain and its maximal
spectral sensitivity; these are L- (long, 564 nm), M- (medium, 533
nm) and S- (short, 437 nm) wavelength cones. The mouse retina has
only M- and S-cones. Only one type of rod photoreceptor, carrying
the rhodopsin visual pigment, is present in the vertebrate retina,
including in mouse and human. When in its ‘ready to be activated’
state, each opsin molecule is covalently bound to a light-sensitive
chromophore, 11-cis retinal. Upon photon capture, the chromophore
isomerizes to all-trans retinal, causing a conformational change in
rhodopsin and activation to meta-rhodopsin II. This initiates the
process of phototransduction, a cascade of biochemical events that
culminate in closure of ionic channels in the cell membrane,
hyperpolarization of the photoreceptor and transmission of the
signal(s) to second-order neurons in the inner retina via modulation
of neurotransmitter release at the synaptic terminals. All-trans
retinal is then transported to the RPE for recycling and is returned
to the photoreceptor in cis form, to allow production of new
chromophore molecules (the visual cycle) (Travis et al., 2007).

The integrity and function of photoreceptors are absolutely crucial
for vision, and mutations that affect photoreceptor function or
survival disrupt the phototransduction process, leading to vision loss
(Wright et al., 2010). In addition, defects in other retinal cell types,
specifically the RPE, can also lead to photoreceptor dysfunction and
retinal degeneration.

Genetics of retinal degenerative diseases
Here, we briefly review RDDs before discussing relevant mouse
models. A quick search of online Mendelian inheritance in man®

(OMIM; www.ncbi.nlm.nih.gov/omim/) shows over 1500 entries of
inherited diseases with retinal dysfunction associated with over 200
different causative genes (RetNet), thus revealing tremendous
clinical and genetic heterogeneity. RDDs exhibiting Mendelian
inheritance can be subdivided into dominant, recessive and X-linked
forms (Table 1) that can either solely impact retinal function or
manifest as syndromic disease involving multiple tissues in addition
to the retina. Interestingly, mutations in the same gene [e.g.
Peripherin (also known as RDS), CEP290, CRX] can cause a range
of clinical phenotypes (Boon et al., 2008; Coppieters et al., 2010;
Sohocki et al., 1998), whereas similar phenotypes can be the end
result of impairment in one of many different genes (RetNet). In
other words, a clear one-to-one genotype-phenotype correlation is
frequently not possible, and hereditary retinal degenerations are
currently considered as probably the most genetically heterogeneous
group of diseases in humans.

RDDs are usually classified into one of the two main clinical
phenotypes – rod degenerative retinitis pigmentosa (RP) and cone
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Box 1. Glossary
Achromatopsia: a clinical condition where the patient cannot see colors.
The color spectrum is seen as shades of white and gray.
Bradyopsia: describes the condition when the visual system adapts
more slowly than normal to low light levels.
Chaperonins: large proteins that promote proper folding of other
proteins, prevent aggregation of mis-folded proteins and assist trafficking
to the intended intracellular target(s). 
Choroid: the vascular layer with connective tissue that lies underneath
the retina and supplies oxygen and nutrients to the outer layers of the
retina. It is also known as the choroidea.
Dark adaptation: the process in the dark of regaining full visual
sensitivity and responsiveness of rod photoreceptors following a bleach
of the visual pigment rhodopsin after exposure to light. In practical terms,
the state of rod dark adaptation is normally tested after a 30- to 45-
minute period in the dark by recording an electroretinogram response to
a light flash stimulus. 
Electroretinogram (ERG) ‘a’ and ‘b’ waves: the initial negative-going
response is termed a-wave, which is generated by closure of the rod (or
cone) light-gated channels, leading to hyperpolarization of the
photoreceptor. The positive-going b-wave trace that follows the ‘a’ wave
is produced by depolarization of the bipolar cells, which lie
postsynaptically to the photoreceptors.
Fundus: the posterior inside of the eye that contains the sheet of retina
neural tissue, which can be viewed by an ophthalmoscope or
photographically. The fundus image can reveal the health or disease of
the retina, including microvasculature and abnormalities in optic disc,
macula and fovea. 
Non-syndromic disease: a disease with clinical findings limited to a
single tissue and/or function.
Primary cilium: the cilium is a microtubule-based organelle projecting
from most eukaryotic cells. Primary cilia are non-motile with a 9+0
configuration of microtubule bundles but lack the central pair of
microtubules present in the motile cilium. 
Syndromic disease: a single disorder that affects multiple tissues or
functions and causes pleiotropic clinical symptoms. For example,
individuals with Bardet-Biedl syndrome have a primary cilia disease
(ciliopathy) and exhibit diverse phenotypes including retinal
degeneration, mental retardation, polycystic kidney and obesity.
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or cone-rod dystrophy (CD or CRD, respectively) – that differ in the
manner they affect rod versus cone photoreceptors. In RP, primary
loss of rod photoreceptors occurs and is usually followed by cone
dysfunction, whereas in ‘pure’ CDs the primary dysfunction or loss
of cone photoreceptors might not necessarily cause secondary
involvement of rods. When rods are involved in a primary CD, the
disease is referred to as CRD. In early stages, the clinical phenotype
usually reflects the primary cell type affected; i.e. in RP, night vision
impairment often precedes subsequent visual field and visual acuity
loss (owing to rod followed by subsequent cone impairment),
whereas, in CD or CRD, the loss of visual acuity, impairment of
color vision and photosensitivity (light aversion) are frequently the
initial symptoms. In advanced RP and CRD, however, once
widespread and severe retinal degeneration has developed,
distinguishing between these two forms of disease can be difficult.
In addition, it must be stressed that clinical phenotypes represent a
wide spectrum, and the classification of these diseases is
continuously being modified as molecular genetic insights are
gained regarding the cause of disease. As mentioned above, in
addition to primary mutations in rod- or cone-specific genes that
might be associated with RDDs, mutations in genes associated with
RPE function can also cause secondary photoreceptor disease
because the RPE is crucial for photoreceptor homeostasis (Saari,
2012; Travis et al., 2007).

Fig. 2 illustrates the intimate relationship between photoreceptors
and the RPE, and lists selected proteins, mutations in which cause
RDDs, according to their specific localization. Among syndromic
RDDs that involve other organs besides the retina, it is important to
mention ciliopathies. Because the photoreceptor OS is a modified
primary cilia (see Box 1), mutations in genes affecting cilia
biogenesis or function often lead to retinal degeneration in addition
to dysfunction of ciliated cells in other organs, such as the inner ear.

Specific examples of syndromic ciliopathies with RDDs include
Usher syndrome (in which varying degrees of hearing and vestibular
function impairment occur in addition to retinal degeneration),
Bardet-Biedl syndrome (BBS), Joubert syndrome and Senior-Loken
syndrome (Table 1).

Macular degeneration (MD) is a specific form of RDD, affecting
both rod and cone photoreceptors but limited to the macula, which
is the central region of the human retina (Fig. 1A, top), responsible
for high-resolution vision. The most common monogenic MD is
Stargardt disease, a condition of early age onset, whereas AMD is a
common and complex multifactorial disease with multiple genetic
risk factors and onset in older age, as the name implies (recently
reviewed in Fritsche et al., 2014).

Animal models
The use of model organisms can facilitate the elucidation of cellular
mechanisms underlying human disease. The fruit fly Drosophila is
a classical model that has been used for defining fundamental
pathways in vision, but its photoreceptor anatomy and physiology
markedly differ from those of vertebrates. Zebrafish have become a
model of choice for ocular developmental studies because of a
closer phylogenetic link to humans and ease of genetic
manipulations and experimentation (Avanesov and Malicki, 2010).
Additionally, zebrafish embryos are transparent and can be obtained
in large numbers. Among mammals, large animal models,
particularly primates (that have a macula), might be better suited for
understanding human disease; however, in addition to the ethical
concerns involved, these animals are difficult to manage and
manipulate genetically, are expensive to maintain, and only a limited
number of spontaneously arising models of RDDs have been
identified. Thus, rodent models, and particularly mice, have become
the most widely used models of human disease. These small
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Table 1. A partial list of human retinal diseases with monogenic inheritance*
Mode of 

Phenotype (disease) Cell type affected inheritance Genes

Non-syndromic monogenic
CSNB Rods more than cones (largely non-progressive) Dominant GNAT1, PDE6B, RHO

Recessive GNAT1, CABP4, GRK1, SAG
X-linked CACNA1F

LCA Rods and cones Dominant CRX
Recessive CRX, AIPL1, TULP1, CABP4, RPE65, CEP290

RP Rods more than cones and/or RPE (progressive) Dominant CRX, NRL, NR2E3, PRPH2, RHO, ROM1, RPE65
Recessive ABCA4, MERTK, NRL, NR2E3, PDE6A, PDE6B, RHO,

RPE65, SAG, TULP1
X-linked RPGR, RP2

CD-CRD Cones more than rods Dominant AIPL1, CRX, PRPH2
Recessive ABCA4, CNGB3, RAB28,
X-linked CACNA1F, RPGR

Macular degeneration Rods and cones Dominant PRPH2, ELOV4
Recessive ABCA4
X-linked RPGR

Synaptic diseases Rods and cones Dominant UNC119, RIMS1
Recessive CACNA2D4
X-linked CACNA1F, XLRS

Syndromic
BBS Rods and cones Recessive BBS2, BBS4, BBS6, CEP290
Joubert syndrome Rods and cones Recessive CEP290
Senior-Loken syndrome Rods and cones Recessive CEP290
Usher syndrome Rods and cones Recessive MYO7A, USH2A

*Only genes that are discussed in detail are listed here. Mutations in some of the genes lead to distinct clinical phenotypes. For a complete list, see
https://sph.uth.edu/retnet/. BBS, Bardet-Biedl syndrome; CD, cone dystrophy; CRD, cone-rod dystrophy; CSNB, congenital stationary night blindness; LCA,
Leber congenital amaurosis; RP, retinitis pigmentosa.
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mammals are easy to manage in a laboratory environment, and
multiple mouse mutants of retinal disease are already recognized or
can be generated relatively easily for investigations. In addition, in
vivo transfection or silencing of specific genes in mouse retina or in
vitro transfection of retinal explants, using electroporation (Matsuda
and Cepko, 2004) allows rapid examination of genes and variants.
A list of naturally occurring and chemically induced mouse mutants
as well as genetically engineered mouse models that manifest retinal
disease is provided in Table 2 and supplementary material Table S1.
This Review will focus on mouse mutants, which to date have been
the primary animal models for exploring retinal disease pathogenesis
and in designing novel treatments.

Evaluation of retinal degeneration phenotype
The eye and the retina, by virtue of their location, transparency,
anatomy and physiology, allow detailed characterization of structure
and function using an array of imaging, electrophysiological and
psychophysical techniques that are largely non-invasive (Fig. 3).
Examination of the ocular fundus (back of the eye visible through
the pupil) by color photographs, fluorescein angiography, fundus

autofluorescence and optical coherence tomography (OCT) imaging
is routinely used to define retinal structure in health and disease in
humans (Fig. 3Ai,ii) as well as in animal models (Fig. 3Bi,ii).
Advanced techniques that correct for optical aberrations (adaptive
optics) now allow imaging at the level of individual photoreceptors.
Electrophysiological examinations, including electroretinography
(ERG; see Box 1 for glossary) (Fig. 3Aiii-Biii) and electro-
oculography (EOG), permit quantification of retinal and RPE
function, respectively. To a large extent, mouse models of retinal
disease recapitulate the human disease, albeit at a different time
course and with limitations that stem from the differences between
the two species, such as life span and absence of a cone-rich macular
region in mice.

In the following sections, we discuss different genes associated
with RDDs that are grouped according to their primary role in
retinal development and function. In each case, we provide reference
to relevant mouse models and how they improved our understanding
of disease pathogenesis, evolution and in some cases treatment.
Similarities as well as differences between human disease and the
mouse model are also addressed.
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Fig. 1. Structure of the human and mouse eye. (A) Schematic cross-sections of the human and mouse eye. Light is focused by optical elements (such as
cornea and lens) on the neural retina at the back of the eye. The central cone-only region of the human retina is called the fovea and is responsible for high
resolution. The region surrounding the fovea is termed macula and contains higher density of cones compared with the peripheral retina. The area of human
retina is ~1094 mm2, with the macula and fovea being ~3 and 1.5 mm2, respectively (http://webvision.med.utah.edu). The total number of rods and cones in the
human retina are 120 million and 6 million, respectively. The highest density of cones is at the center of the fovea (~161,900/mm2), which has no rods. The
mouse retina lacks a distinct fovea and/or macula. The retinal pigment epithelium (RPE) monolayer separates the choroidal blood supply from the
photoreceptors and is crucial for visual function. The lens is much larger in mouse than humans relative to the eye size. (B) Photograph of a mouse retinal
section stained with hematoxylin and eosin, indicating different cellular layers. The outer nuclear layer (ONL) contains photoreceptor cell bodies, from which the
inner segment (IS) and outer segment (OS) extend towards the RPE. The inner nuclear layer (INL) includes amacrine, bipolar and horizontal neurons, whereas
ganglion cells, axons of which form the optic nerve, reside in the ganglion cell layer (GCL). Outer and inner plexiform layers (OPL and IPL, respectively) contain
synaptic regions. (C) Schematic representation of the rod and cone photoreceptors, which have distinct compartmentalized morphology. The outer segment
includes hundreds of membranous discs that contain visual pigment and other phototransduction components. The metabolic machinery is present in the inner
segment. The visual proteins are transported to the outer segment via a connecting cilium. The nucleus is contained in the cell body, and the presynaptic
region includes one or more ribbon-like structures for docking of synaptic vesicles.

D
is

ea
se

 M
od

el
s 

&
 M

ec
ha

ni
sm

s



RDDs affecting photoreceptor development
In photoreceptors, gene expression is under the stringent control of
specific transcription factors, which include CRX (cone-rod
homeobox), NRL (neural retina leucine zipper) and NR2E3 (nuclear
receptor subfamily 2, group E, member 3) (Swaroop et al., 2010).
Mutations of the genes encoding these transcription factors can
globally affect photoreceptor development and homeostasis, leading
to photoreceptor dysfunction and/or death. Some affected
individuals are born blind and others develop blindness with age,
depending on the gene and mutations involved. For example,
mutations in CRX cause both early-onset Leber congenital
amaurosis (LCA) and progressive CRD or RP, where disease
progresses over time (Freund et al., 1997; Rivolta et al., 2001;
Sohocki et al., 1998; Swaroop et al., 1999). Mutations in NRL and
NR2E3 cause RP with varying disease onset (Bessant et al., 1999;
Haider et al., 2000; DeAngelis et al., 2002; Nakamura et al., 2004;
Nishiguchi et al., 2004a; Wright et al., 2004). Mouse models have
greatly augmented our understanding of photoreceptor cell fate
determination and pathogenesis of retinopathies caused by mutations
in transcription factors. Here we discuss CRX, NRL and NR2E3 in
detail; however, mouse mutants have also established the role of
OTX2, RORβ, TRβ2 and BLIMP1, among others, in photoreceptor
development and disease (Brzezinski et al., 2010; Housset et al.,

2013; Jia et al., 2009; Ng et al., 2001; Nishida et al., 2003; Roger et
al., 2014).

CRX expression is largely restricted to photoreceptors in human
and mouse retina (Chen et al., 1997; Freund et al., 1997; Furukawa
et al., 1997), and it regulates the expression of numerous rod- and
cone-specific genes (Corbo et al., 2010; Furukawa et al., 1999; Hao
et al., 2012; Mitton et al., 2000). Mutations in CRX cause a spectrum
of retinal disease phenotypes (Sohocki et al., 1998), including
dominant CRD (Freund et al., 1997; Swain et al., 1997), RP and
dominant as well as recessive LCA, in which marked retinal
degeneration is already evident at birth (Rivolta et al., 2001;
Swaroop et al., 1999). The key insight into CRX’s function in
photoreceptors and its crucial role in photoreceptor development
came from a mouse Crx-knockout (KO) model (Furukawa et al.,
1999). Crx-KO mice are born blind, with non-functional
photoreceptors that do not exhibit sufficient expression of many
phototransduction genes, such as rhodopsin (Rho), compromising
elaboration of rod outer segments (ROS) and ultimately resulting in
photoreceptor degeneration. Surprisingly, whereas heterozygosity of
specific CRX mutations in humans can cause severe retinal disease,
Crx+/− mice develop normal photoreceptors that do not degenerate
(Furukawa et al., 1999). However, recently reported Crx mutants in
mice can largely recapitulate the dominant LCA phenotype (Roger
et al., 2014; Tran et al., 2014).

NRL is a retina-specific basic motif-leucine zipper (bZIP)
transcription factor (Swaroop et al., 1992), which regulates the
expression of hundreds of rod genes (Hao et al., 2012; Yoshida et
al., 2004). In humans, mutations that affect NRL function by
affecting its phosphorylation (Kanda et al., 2007) result in
retinopathies (Bessant et al., 1999; Kanda et al., 2007; Nishiguchi et
al., 2004a). Although NRL is only expressed in rods, heterozygous
NRL mutations severely affect both rods and cones in affected
individuals (DeAngelis et al., 2002). This is a common theme in RP;
even when the genetic defect is in a rod-specific gene, cones
eventually die for a variety of reasons, including the lack of trophic
support. The Nrl-KO mouse was seminal in demonstrating that NRL
is required for determination of rod fate (Mears et al., 2001) because
the Nrl-KO retina has no rods and no expression of rod-specific
genes. However, short-wavelength cones (S-cones) as well as S-
opsin levels are markedly increased, and M-opsin levels are
moderately enhanced. Notably, replacement of Nrl with thyroid
hormone receptor (TR)-β2 in mice resulted in retina with M-cones
instead of rods (Ng et al., 2011). This led to the hypothesis that S-
cones are the ‘default’ fate, and expression of Nrl is required to
switch on the molecular pathways that determine differentiation into
the rod lineage (Swaroop et al., 2010), and that NRL and TR-β2
together determine different photoreceptor fates (Ng et al., 2011).
Furthermore, global gene expression analysis of photoreceptors in
the Nrl-KO mouse was instrumental in obtaining critical insights
regarding genes and signaling pathways that are integral to rod
homeostasis (Akimoto et al., 2006; Brooks et al., 2011; Yoshida et
al., 2004; Yu et al., 2004). Ectopic expression of NRL in
photoreceptor precursors produces only rods in mouse retina,
implying its role as a master regulator in determining cone versus
rod cell fate (Oh et al., 2007).

The significance of the NR2E3 gene was recognized following the
discovery that mutations in this gene cause enhanced S-cone
syndrome (ESCS), with ‘gain-of-S-cone function’. The disease is
progressive, often leading to marked visual impairment in later
stages (Haider et al., 2000; Jacobson et al., 2004; Wright et al.,
2004). In a post-mortem ESCS retina, the absence of rods and an
excess of S-cones was confirmed (Milam et al., 2002). Elucidation
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Fig. 2. A broad classification of proteins associated with retinal
diseases according to their localization or function in photoreceptors
and retinal pigment epithelium (RPE). As illustrated, RPE65, LRAT and
MERTK, which are associated with LCA and arRP, are RPE proteins,
whereas CRX, NRL and NR2E3 are photoreceptor-specific transcription
factors. The remaining disease-associated proteins that are listed localize to
the outer segment (OS), connecting cilium (CC) and/or basal body (BB) of
the photoreceptor (here a rod is represented). Abbreviations: adRP,
autosomal dominant retinitis pigmentosa; arRP, autosomal recessive retinitis
pigmentosa; CSNB, congenital stationary night blindness; ESCS, enhanced
S-cone syndrome; LCA, Leber congenital amaurosis; RP, retinitis
pigmentosa.
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of the function of NR2E3 and understanding of how mutations in
this gene lead to ESCS came from analysis of a spontaneously
arising mouse model, rd7, in which NR2E3 is mutated and the
human phenotype is recapitulated (Akhmedov et al., 2000; Cheng
et al., 2011; Peng et al., 2005). NR2E3 is downstream of NRL (Oh
et al., 2008) and Nr2e3 expression is limited to post-mitotic rods
(Bumsted O’Brien et al., 2004). In conclusion, NR2E3 has a dual
role in reinforcing the rod cell fate while at the same time halting
cone gene expression within the cell (Cheng et al., 2006).

In summary, the mouse models of Crx, Nrl and Nr2e3 dysfunction
were crucial in defining the mechanistic details of gene regulation
in photoreceptors and establishing the basis for determination of
photoreceptor fate during retinal development.

RDDs caused by defects in intracellular trafficking and cilia
function
The photoreceptor OS is a modified cilium, and the photoreceptor
cell is elongated with the OS extending towards the underlying RPE.
Therefore, proteins that are involved in ciliary development,
function and intracellular trafficking are required for photoreceptor
function. For example, trafficking of rhodopsin-carrying vesicles
(possibly via microtubules) from the IS to the ROS is essential for
OS morphogenesis and for phototransduction. Not surprisingly,
mutations in genes required for development (e.g. the centrosomal
CEP290 gene) and maintenance of cilia or trafficking in cilia (e.g.
Bardet-Biedl syndrome 4 homolog BBS4 or the GTPase regulator-
interacting protein RPGR) can lead to retinal dysfunction and
degeneration (Rachel et al., 2012a).

LCA is a set of early-onset blinding diseases that are characterized
by early and severe retinal dystrophy and low visual acuity
practically from birth. LCA is associated with mutations in at least
19 genes (RetNet: https://sph.uth.edu/retnet/), with CEP290
mutations accounting for almost 25% of the cases in North America.
CEP290 is a centrosomal-cilia protein (Chang et al., 2006b) that is
highly expressed in neural retina and nasal epithelium of humans
(Papon et al., 2010). Mutations in CEP290 are also associated with
Joubert syndrome (Sayer et al., 2006; Valente et al., 2006), Senior-
Loken syndrome (Sayer et al., 2006), BBS (Leitch et al., 2008) and
Meckel syndrome (Baala et al., 2007), in addition to LCA
(Cideciyan et al., 2007; den Hollander et al., 2006). Insights into
disease pathology associated with CEP290 mutations came from a
spontaneous mouse mutant, Cep290rd16 (Chang et al., 2006b;
Cideciyan et al., 2011). The Cep290rd16 mouse displays early-onset

retinal degeneration with mis-localization of RPGR and rhodopsin
in the photoreceptors (Chang et al., 2006b). The retinal phenotype
in Cep290rd16 was intriguingly rescued in the McKusick-Kaufman
syndrome 6 (Mkks6) mutant background; however, the mechanism
of rescue is not understood (Rachel et al., 2012b).

Almost 70% of X-linked retinitis pigmentosa (XLRP; RP3) can
be accounted for by mutations in the RPGR gene (Breuer et al.,
2002; Vervoort et al., 2000; Zito et al., 2000). RPGR mutations are
also detected in RP patients (specifically males) where no family
history is available, in apparently autosomal dominant RP families,
and in patients with CRD and MD (Ayyagari et al., 2002; Branham
et al., 2012; Churchill et al., 2013; Demirci et al., 2002; Sharon et
al., 2003). Studies with the Rpgr-KO mouse permitted the
investigators to suggest its possible role in connecting cilia and
directional transport needed for photoreceptor survival (Hong et al.,
2003; Hong et al., 2000). The Rd9 mouse was identified as a
naturally occurring mutant mouse that lacks the functional RPGR
protein due to a frameshift mutation within the region of open
reading frame 15 (ORF15) (Thompson et al., 2012). These two and
another conditional knockout mouse model have been valuable for
designing gene therapy vectors for treatment of human disease
caused by RPGR mutations (Hong et al., 2005; Huang et al., 2012).

BBS is another genetically heterogeneous syndromic ciliopathy,
with high incidence of retinal dystrophy together with polydactyly,
urinary system abnormalities, obesity, renal failure, varying degrees
of mental retardation and cardiovascular complications. BBS is
associated with mutations in at least 19 genes. We provide three
examples here. BBS2 and BBS4 mutations cause BBS (Mykytyn et
al., 2001; Nishimura et al., 2001), whereas BBS6 (or MKKS) gene
defects are associated with McKusick-Kaufman syndrome
(abnormalities in finger, heart and genitals) in addition to BBS
(Katsanis et al., 2000; Slavotinek et al., 2000). BBS2 and BBS4
proteins are constituents of the BBSome, a component of the basal
body that is involved in formation of the nonmotile primary cilium
(see Box 1) (Kim et al., 2004; Nachury et al., 2007; Shah et al.,
2008), and BBS6 is a component of the chaperonin complex (see
Box 1) that is required for assembling the BBSome (Seo et al.,
2010). The analysis of KO mice has revealed that BBS2 and BBS4
are required for photoreceptor maintenance. In Bbs4-KO mice, the
photoreceptors degenerated much earlier than in Bbs2-KO mice
(Mykytyn et al., 2004). BBS4 is also required for formation of
spermatozoa flagella, but is not required for nonmotile primary cilia
in other tissues (Nishimura et al., 2004). These mice recapitulated
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Table 2. Widely used mouse mutants with retinal phenotype, maintained at The Jackson Laboratory (http://jaxmice.jax.org/index.html)*
Mode of 

Model inheritance Gene Chr. Phenotype Strain/stock

Spontaneous mouse mutants
rd1 AR Pde6b 5 Early onset, severe retinal degeneration B6.C3-Pde6brd1 Hps4le/J
Rd2 (rds) AD Prph2 17 Slow progressive retinal degeneration C3A.Cg-Pde6b+ Prph2Rd2/J
rd7 AR Nr2e3 9 Retinal spots and progressive photoreceptor degeneration B6.Cg-Nr2e3rd7/J
rd8 AR Crb1 1 Focal photoreceptor degeneration STOCK Crb1rd8/J
rd9 XR Rpgr X Progressive retinal white spotting and degeneration C57BL/6J-Rd9/Boc
rd10 AR Pde6b 5 Early onset, mild retinal degeneration B6.CXB1-Pde6brd10/J
rd16 AR Cep290 10 Early onset retinal degeneration B6.Cg-Cep290rd16/Boc

Targeted mouse mutants
Abca4tm1Ght AR Abca4 3 Photoreceptor degeneration 129S-Abca4tm1Ght/J
Crxtm1Clc AD Crx 7 Cone-rod dystrophy 2 B6.129-Crxtm1Clc/J
Nrltm1Asw AR Nrl 14 Retinal degeneration B6.129-Nrltm1Asw/J
Rhotm1.1Kpal AD Rho 6 Retinal degeneration B6.129S6(Cg)-Rhotm1.1Kpal/J

*A detailed list of mouse mutants available from JAX is provided as supplementary material Table S1. AD, autosomal dominant; AR, autosomal recessive; Chr.,
chromosome; XR, X-linked recessive. rds, retinal degeneration slow.
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Fig. 3. Characterization of retinal degeneration in human patients and mouse mutants. (A) Human ocular fundus photographs, optical coherence
tomograms (OCT) and electroretinograms (ERG; see Box 1). (i) Wide-field color fundus image in an adult normal subject shows preserved macula and
peripheral retina, with normal coloration of the underlying retinal pigment epithelium (RPE) and choroid. (ii) In an adult patient with retinitis pigmentosa
[Affected (RP)], areas of atrophy accompanied by pigmentary changes indicate underlying photoreceptor degeneration. OCT imaging allows ‘histological-
like’ assessment of retinal structure in vivo, including identification of different retinal layers. Whereas, in a normal subject, the photoreceptor layer (outer
nuclear layer; see rectangular areas marked by the broken red line) is well preserved, marked thinning is evident in a patient with RP, with some sparing
only in the area of the fovea, which contains only cone photoreceptors. This thinning reflects loss of photoreceptors as part of the progressive
degeneration. The black arrow in the fundus images shows the location of the OCT scan across the macula, and the area in the red rectangle is magnified
in the image to the right. (iii) ERG testing allows measurement of retinal function in response to light stimulation. Under dark-adapted conditions (scotopic),
stimulation of the normal eye with a dim or bright white flash elicits a well-formed rod response (black traces, upper left panel) or mixed rod/cone response
(upper right panel), respectively. In light-adapted conditions (photopic), single flash stimulation of the eye results in a normal cone response (lower left
panel) whereas rapid stimulation (30 Hz) results in flicker waveform (lower right panel). By contrast, in RP patients, severe attenuation of these
electrophysiological responses of the retina is evident (red traces). (B) Mouse ocular fundus photographs, OCT and ERG. (i) The normal [wild type (WT),
C57BL/6J] mouse retina fundus has a uniform color and the blood vessels are visible. (ii) The rd1 mutant mouse retina shows large areas of atrophy and
discoloration, where the photoreceptors and possibly also the RPE have degenerated. The blood vessels are not visible in the degenerating retina. OCT
imaging in a 3-month-old rd1 mouse shows a striking difference in retinal thickness compared with the normal control (rectangular areas marked by broken
red line). The OCT scan position is indicated by a green line in each fundus image. (iii) The dark-adapted (scotopic; indicating rod function) and light-
adapted (photopic; indicating cone function) ERG responses are robust in the normal mouse (WT, black traces, at 3 weeks of age) and are practically non-
detectable in the rd1 mutant mouse (red traces). Anatomical and functional studies in mouse rd mutants are thus similar to what is generally observed in
RP patients. D
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some but not all aspects of the human syndrome (Mykytyn et al.,
2004). The photoreceptor degeneration is comparable in Bbs2-KO,
Bbs4-KO and Bbs6-KO mice (Fath et al., 2005; Ross et al., 2005).
In summary, the studies in rodent models have suggested that BBS
genes are required for the maintenance of cilia function in
photoreceptors, and mutations in BBS genes likely compromise
trafficking of proteins to the cilium. Rodent models are not available
for many BBS genes, and creation of additional models would
facilitate the functional analysis of their role in cilia.

Usher syndrome is another genetically heterogeneous group of
disorders that are characterized by RP along with congenital or
progressive sensory deafness and varying degrees of vestibular
dysfunction. Type I Usher syndrome, the most severe form, is
mostly caused by mutations in MYO7A (myosin VIIA; also known
as USH1B) (Le Quesne Stabej et al., 2012; Weil et al., 1995).
MYO7A encodes an unconventional myosin motor protein and is
expressed in human embryonic RPE, photoreceptors, cochlear and
vestibular neural epithelia (Weil et al., 1996). The shaker mouse
(sh1) is a naturally occurring model with a spontaneous mutation in
Myo7a, and manifests deafness and vestibular dysfunction. The
photoreceptors in sh1 mice have accumulation of opsin at the base
of the cilium, suggesting a role for MYO7A in opsin transport (Liu
et al., 1999). A second Usher gene, USH2A (Usher syndrome 2A)
encodes an enormously large matrix protein and is expressed in the
photoreceptors and cochlear hair cells. Mutations in USH2A are
associated with type II Usher syndrome (Eudy et al., 1998), in which
RP is invariably present but the hearing deficit is of later onset,
progressive and variable. Indeed, some mutations in USH2A result
only in RP (RP39) without involvement of the inner ear (Rivolta et
al., 2002). Mutations in USH2A are a common cause of autosomal
recessive RP (arRP), accounting for 10-15% of cases. The analysis
of Ush2a-KO mice revealed that Usherin, the protein encoded by
this gene, wraps around the connecting cilia at the boundary of inner
and outer segments and is required for the maintenance of
photoreceptors (Liu et al., 2007). After the development of the
structural components, additional proteins such as Usherin seem to
be required for functional integrity of the photoreceptors. In contrast,
Usherin is required for the development of cochlear hair cells (Liu
et al., 2007). We note that mouse models of Usher syndrome
generally do not exhibit significant photoreceptor disease (Gibson
et al., 1995).

The molecular carriers required for trafficking of rhodopsin to the
ROS are not yet fully understood. RAB proteins are small GTPases
involved in subcellular trafficking of membranes and have been
suggested to mediate rhodopsin trafficking (Deretic, 1997). Rab3A,
Rab6, Rab8 and Rab11 have been implicated in trafficking of
rhodopsin from the sorting organelle known as the Golgi apparatus
to the connecting cilium (Deretic et al., 1996; Mazelova et al.,
2009). However, the analysis of rab8a and rab8b double-KO mice
ruled out their requirement for ciliogenesis and/or photoreceptor
development (Sato et al., 2014). No retinal diseases associated with
RABs have been identified, except for CRD, which likely arises
from a mutation in RAB28 (Roosing et al., 2013). The localization
of RAB28 to the basal body and ciliary rootlet suggests a role in
ciliary transport. Mouse mutants of Rab28 would facilitate
functional analysis of Rab28 in intracellular transport and provide
insights into disease mechanism.

Tulp1 (tubby like protein 1) is expressed in the retina and is
implicated in trafficking of rhodopsin (Hagstrom et al., 1999; Ikeda
et al., 2000). Mutations in TULP1 are associated with arRP
(Banerjee et al., 1998; Hagstrom et al., 1998) and LCA (Hanein et
al., 2004). The Tulp1-KO mouse indeed manifests early-onset retinal

degeneration with rapidly progressive loss of photoreceptors.
The structural scaffold for membranous discs in the ROS is

dependent on peripherin (RDS) and its interactor protein ROM1
(retinal outer segment membrane protein 1). Peripherin is localized
to the rim of the OS in rods and cones, and is essential for their
formation and renewal (Connell et al., 1991; Travis et al., 1991). Not
surprisingly, mutations in peripherin2 (PRPH2) are associated with
a variety of retinal degeneration phenotypes in humans, such as
CRD and autosomal dominant RP (adRP) (Keen and Inglehearn,
1996; Nakazawa et al., 1996). The ‘retinal degeneration slow’ (rds)
mouse (Rd2) is the classical model for retinal degeneration (Sanyal
and Bal, 1973) and carries a Prph2 mutation (Travis et al., 1991).
Homozygous rds mice are unable to elaborate the OS, and
photoreceptors degeneration begins as early as postnatal day 14, but
this loss progresses relatively slowly over the span of 1 year
(Sharma et al., 2012). Following identification of human RP patients
who were doubly heterozygous for a mutation in PRPH2 (RDS) and
a null mutation in ROM1 (Dryja et al., 1997; Kajiwara et al., 1994),
a similar digenic mutant mouse model showed faster photoreceptor
degeneration compared with rds mutation alone, and a positive
correlation was observed between the rate of photoreceptor loss and
the extent of OS disorganization (Kedzierski et al., 2001).

RDDs caused by phototransduction defects
Visual transduction is initiated by a cascade of biochemical reactions
(Fig. 4), and mutations in genes encoding phototransduction proteins
are associated with blindness. Mutations in rhodopsin and cone
opsins, which initiate phototransduction in rod and cone
photoreceptors, respectively, can cause photoreceptor dysfunction
with or without degeneration. In the rods, for example, G90D, T94I,
A292E and A295V rhodopsin mutations result in a form of
congenital night blindness (nyctalopia) despite rod photoreceptors
being maintained nearly intact across the human life span (Dryja et
al., 1993; Sieving et al., 1995; Zeitz et al., 2008). By comparison,
many rhodopsin mutations (such as T17M, P23H) are associated
with night-blindness from a degenerative progressive RP phenotype.
K296E and K296M rhodopsin mutations cause adRP with early
severe photoreceptor degeneration and vision loss (Keen et al.,
1991; Vaithinathan et al., 1994). Interestingly, some of these
mutations result in constitutive activity of opsin (Rao et al., 1994;
Robinson et al., 1994; Zeitz et al., 2008); however, the disease
phenotypes are profoundly different, suggesting that the mechanism
of disease is distinct in many cases. For example, analysis of the
G90D mutation using a transgenic mouse revealed sufficient activity
of the chromophore-free opsin that interferes with the ability to
perceive dim, real environmental light against the background of
intrinsic spurious light, thereby causing vision loss at night (Sieving
et al., 2001).

Rhodopsin is a major structural protein of the ROS. In patients
with T17M and P23H rhodopsin mutations, which are a common
cause of adRP (Hartong et al., 2006), rhodopsin is not targeted to the
outer segments, resulting in short ROS (Li et al., 1994). A transgenic
mouse model with humanized rhodopsin carrying the P23H
mutation confirmed defective rhodopsin transport (Olsson et al.,
1992). P23H is inherently unstable and its regeneration is slower
compared with wild-type rhodopsin (Chen et al., 2014). Recently,
the analysis of P23H knock-in mice revealed a new step in OS disc
biogenesis (Sakami et al., 2014), explaining the cause of structural
defects in discs and consequently photoreceptor degeneration. The
Rho-KO mouse model demonstrated that a single copy of Rho is
sufficient to drive both development and function of the ROS in
mice, yet both alleles are required to maintain long-term functional
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integrity of the photoreceptors (Humphries et al., 1997; Lem et al.,
1999).

Termination of phototransduction requires deactivation of activated
rhodopsin (R*) and of transducin-PDE (G*-PDE*), and mutations in
genes associated with this process cause retinal dysfunction and
degeneration. Light-dependent deactivation of rhodopsin is
accomplished in a two-step process. First, rhodopsin is phosphorylated
by rhodopsin kinase (GRK1) followed by arrestin binding to
rhodopsin. Mutations in GRK1 are associated with Oguchi disease-2
(CSNBO2), which results in delayed dark adaptation (see Box 1)
(Cideciyan et al., 1998; Yamamoto et al., 1997). Analysis of Grk1-KO
mice demonstrated that GRK1-mediated light-dependent
phosphorylation is required for deactivation of activated rhodopsin,
and absence of GRK1 leads to photosensitization of the rods and
induces apoptotic death (Chen et al., 1999). Mutations in SAG, which
is required for terminating rhodopsin activation, are primarily
associated with Oguchi disease-1 (Maw et al., 1998; Nakamura et al.,
2004; Waheed et al., 2012), but some mutations can cause an RP
phenotype (Nakazawa et al., 1998). Studies with knockout mice
revealed that arrestin does not initiate but completes the quenching of
rhodopsin’s catalytic activity (Xu et al., 1997). Mouse models have
also permitted the identification of fundamental differences in the
presence and function of arrestin proteins in rod and cone
photoreceptors as well as in different species; e.g. cone arrestin that is
ectopically expressed in rods binds less efficiently to phosphorylated
rhodopsin, compared with rod arrestin (Chan et al., 2007; Nikonov et
al., 2008; Weiss et al., 2001).

In rods, the α-subunit of the heterotrimeric G protein transducin
is encoded by GNAT1 (Lerman and Minna, 2000), and patients with
missense mutations in GNAT1 exhibit congenital stationary night
blindness (CSNB) (Dryja et al., 1996; Naeem et al., 2012). A
missense mutation in GNAT1 leading to a G38D change in the
protein causes Nougaret CSNB, with ~100-fold reduction in rod
sensitivity (Dryja et al., 1996). Mimicking this mutation in a
transgenic mouse revealed reduced GTPase activity of GNAT1 and
its ability to activate PDE6 (Moussaif et al., 2006). However, in
contrast to affected humans, mice with the G38D mutation in the
heterozygous state do not display reduced rod sensitivity. The
Gnat1-KO mouse demonstrated that rod-driven signals require
functional GNAT1, and its absence leads to slow degeneration of the
photoreceptors (Calvert et al., 2000). GNAT2 encodes the cone
version of α-transducin (Morris and Fong, 1993), and mutations in
GNAT2 result in complete achromatopsia – i.e. no cone function at
all (Kohl et al., 2002) – incomplete achromatopsia or extreme red-
green color blindness (protanopia) (Rosenberg et al., 2004). The
Gnat2-KO mouse phenotype largely resembled the human disease
and revealed that misfolding of the transducin protein results in loss
of cone function, opsin mis-localization, retinal remodeling and slow
degeneration of photoreceptors (Jobling et al., 2013). Largely similar
findings were obtained in another spontaneously occurring model,
Gnat2cpfl3 (Chang et al., 2006a), which demonstrated the efficacy of
gene augmentation therapy using an AAV5 vector carrying a normal
mouse Gnat2 gene under control of the red-green opsin promoter
(Alexander et al., 2007).
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Fig. 4. Schematic view of major proteins involved in phototransduction. The phototransduction events are broadly similar in rod and cone photoreceptors,
and, given their complexity, we show here only the key proteins associated with rod phototransduction. During phototransduction (black arrows), the capture of
photon(s) results in activation of rhodopsin, leading to dissociation of transducin (G protein) subunits βγ from Gα, which in turn activates cGMP-
phosphodiesterase (PDE). PDE catalyzes the hydrolysis of cGMP to GMP, thereby causing closure of cyclic-nucleotide-gated (CNG) channels in the
photoreceptor outer segment membrane. The closure of CNG channels results in photoreceptor hyperpolarization and transmission of the electrochemical
signal(s) to second-order neurons in the inner retina via modulation of neurotransmitter release (not shown here). Channel closure also blocks Ca2+ entry,
resulting in reduced intracellular Ca2+ (not shown here) and transmission of a feedback signal for recovery by engaging guanylyl cyclase activating proteins
(GCAP). At low Ca2+ levels, GCAP activates guanylate cyclase (GC) and stimulates cGMP synthesis, thereby restoring cGMP levels and leading to re-opening
of CNG channels. Termination of phototransduction (red arrows and T bars) also requires the inactivation of rhodopsin, which is initiated by its phosphorylation
by rhodopsin kinase [G-protein receptor kinase (GRK)], facilitating the binding of arrestin to rhodopsin. In the dark and at high intracellular Ca2+ levels,
recoverin inhibits GRK and controls the life time of activated rhodopsin. The transducin-PDE complex is inactivated by the hydrolysis of bound GTP that is
greatly accelerated by the RGS9 complex (not shown here). The latter consists of regulators of G protein signaling member 9 (RGS9), G protein β5 and RGS9
associated protein (R9AP) (not illustrated in the figure). The negative feedback loop associated with Ca2+ concentration is critical for maintaining
phototransduction.
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The heterotetrameric PDE6 complex regulates intracellular cGMP
levels by hydrolyzing cGMP in response to light activation and is
thus a key component in the phototransduction cascade (see Fig. 4).
Null or missense mutations in PDE6A, which encodes the α-subunit
of this protein, are associated with arRP (Dryja et al., 1999;
Petersen-Jones et al., 1999). Rapid photoreceptor degeneration is
detected in a mouse model carrying a Pde6a missense mutation,
without the induction of apoptosis (Sakamoto et al., 2009). This
mutation affects the catalytic domain of PDE6A, required for
maintaining PDE6B levels in the retina. Missense or truncating
mutations toward the C-terminus of PDE6B (encoding the β-
subunit) also result in arRP (McLaughlin et al., 1993). The naturally
occurring Pde6brd1/rd1 (rd1) mouse (Sidman and Green, 1965)
develops rapid photoreceptor degeneration (Caley et al., 1972;
Sanyal and Bal, 1973), whereas another mutation in this gene in the
Pde6brd10 mouse displays a somewhat milder phenotype (Gargini et
al., 2007). The rd10 mouse model is often used for testing
therapeutic interventions of RP (Chang et al., 2002). In humans, the
H258N mutation in PDE6B results in an autosomal dominant CSNB
phenotype (Gal et al., 1994). An attempt to recapitulate the human
phenotype by expressing the H258N transgene in mice did not
succeed (Tsang et al., 2007), but a single allele of H258N Pde6b
rescued the photoreceptor degeneration in Pde6brd1/rd1 mice (Farber
and Lolley, 1976).

The PDE heterotetramer also contains two γ-subunits, encoded by
the PDE6G gene. Only one large consanguineous family
manifesting an early-onset RP phenotype has been reported to have
a PDE6G mutation (Dvir et al., 2010). Analysis of transgenic
Pde6gtm1 mice revealed that cGMP levels were initially increased in
photoreceptors (Tsang et al., 1996). Analysis of Pde6g mutant mice
(Del7C transgenic) showed that the PDE6G C-terminus has no
independent catalytic function because it could not rescue Pde6gtm1

mice (Farber and Tsang, 2003). On the other hand, Pde6g transgenic
mice with a Y84G mutation rescues Pde6gtm1 mice (Tsang et al.,
2001). Similarly, a W70A mutant Pde6g transgene, thought to affect
the affinity of PDE6G for transducin, rescues Pde6gtm1 mutant mice,
but α-transducin GTPase hydrolysis was slower. In W70A Pde6g
transgenic mice, a model of stationary nyctalopia, the rods are
highly insensitive to light (Salchow et al., 1999).

The PDE complex also contains PDE-delta protein, and mutations
in the PDE-delta gene are associated with Joubert syndrome (Barker
et al., 2014). The PDE-delta-KO mouse displays recessive CRD
(Zhang et al., 2007), and this model allowed researchers to identify
the role of PDE-delta in trafficking of lapidated proteins such as
GRK12 and PDE6 in the photoreceptor.

Several proteins in the phototransduction cascade have a farnesyl
group added for membrane attachment. AIPL1 (aryl-hydrocarbon-
interacting protein-like 1) mutations are associated with LCA4, a
severe early-onset retinal degeneration (Sohocki et al., 2000). In
Aipl1-KO mice, PDE farnesylation is undetectable and rod cGMP
levels are elevated, leading to apoptotic death of rods and
subsequently cones (Ramamurthy et al., 2004). The rod but not cone
degeneration is rescued by the human ortholog of AIPL1
(Kirschman et al., 2010), suggesting that AIPL1 function is
restricted to rods (van der Spuy et al., 2002). AIPL1 interacts with
the α-subunit of PDE6 and is essential for assembly of PDE6
subunits (Kolandaivelu et al., 2009).

In rods, the inward negative current flowing in the dark-adapted
state (the so-called ‘dark current’) is a result of sodium and calcium
influx through open cyclic-nucleotide-gated (CNG) channels. Light
initiates the phototransduction cascade, resulting in the closure of
CNG channels, which generates a hyperpolarization wave in the

photoreceptors. CNG channels comprise α- (CNGA) and β- (CNGB)
subunits (Kaupp and Seifert, 2002). Mutations in CNGA1 and CNGB1
cause arRP (Bareil et al., 2001; Dryja et al., 1995). A Cngb1-KO
mouse displayed rod degeneration (Hüttl et al., 2005). Although,
initially, cone function was preserved, by 1 year of age both cones and
rods were lost. In the absence of CNGB1, the level of CNGA1 was
also reduced in the OS, suggesting that the CNGB1 subunit is required
for proper targeting of the CNGA1 subunit. The Cngb1 locus also
encodes two related glutamic-acid-rich proteins (GARPs) (Körschen
et al., 1995), and deletion of CNGB1 along with the GARPs in the
null Cngb1-X1 mouse markedly affected photoreceptor disk
morphogenesis (Zhang et al., 2009). Mutations in CNGA3 and
CNGB3, which encode similar subunits in cone photoreceptor
channels, are a major cause of achromatopsia (Kaupp and Seifert,
2002; Kohl et al., 1998). Mouse models of CNGA3 and CNGB3
achromatopsia showed cone dysfunction and have been used to
evaluate the efficacy of gene augmentation therapy (Biel et al., 1999;
Carvalho et al., 2011; Pang et al., 2012). A Cngb3-KO mouse (as well
as additional mouse models of cone disease) was also recently used
to examine the effects of thyroid hormone on cone survival, as a
potential novel therapeutic approach (Ma et al., 2014).

The rate-limiting step in the termination of phototransduction is
the deactivation of activated transducin-PDE (G*-PDE*) (Krispel et
al., 2006). This is accomplished by two important steps: GTPase
activating protein [GAP; consisting of ‘regulators of G protein
family member 9’ (RGS9), RGS9 associated protein (R9AP) and G
protein β5] deactivates the G*-PDE* complex, and guanylate
cyclases (GCs) with their activators (GCAPs) replenish cGMP.
Whereas R9AP and RGS9 mutations cause bradyopsia (see Box 1)
(Nishiguchi et al., 2004b), GC1 mutations result in CD and LCA
(Hanein et al., 2004). On the other hand, GCAP1 mutations have
been associated with CRD (Baehr et al., 2007). In mice, GC1 is
expressed both in rods and cones, whereas GC2 is expressed only in
rods; these two GCs maintain the dark current in rods and their
function seems redundant or overlapping, as revealed by GC1-KO
or GC2-KO mice. Notably, the double KO has nonfunctional rods
and cones (Baehr et al., 2007). The analysis of a GCAP1 and
GCAP2 double-knockout mouse reveals a photoresponse with larger
amplitude and delayed decline compared with the wild type
(Mendez et al., 2001).

Given the importance and complexity of the visual process in
mammals, it is not surprising that mutations in almost all proteins
that are associated with photoreceptor function, specifically
phototransduction, can cause vision impairment. Here, model
organisms (particularly mouse mutants) have been invaluable in
elucidating disease mechanisms and designing of treatments
(discussed later).

RDDs and synaptic transmission defects in mouse models
Photons captured by photoreceptors are transduced into an
electrochemical signal at the ribbon synapses with bipolar cells. The
vesicles carrying glutamate neurotransmitter mediate this step by
releasing their content in response to changes in the membrane
potential. In the dark, photoreceptor L-type calcium channels are
open and Ca2+ influx to the cytoplasm occurs, causing glutamate
release. Following activation by light, a graded decrease in
glutamate release at the ribbon synapses mediates the signal
onwards from the photoreceptor to the bipolar cell. The main Ca2+

channel in rod and cone synapses is the calcium-binding protein
CaBP4 (Haeseleer et al., 2004). CACNA1F encodes a subunit of the
voltage-gated L-type calcium channels expressed in the retina, and
mutations in this gene cause X-linked CSNB (Strom et al., 1998)
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and, less frequently, X-linked CRD (Huang et al., 2013; Jalkanen et
al., 2006). This might be due to an abnormal Ca2+ influx and
neurotransmitter release that compromises membrane potential at
the outer plexiform layer (OPL; Fig. 1B) (Ball et al., 2002;
Haeseleer et al., 2004). Cacna1f-KO mice show reduced rod and
cone ERG and loss of photoreceptor synapses (Mansergh et al.,
2005). Mutations in CACNA2D4, another subunit of the voltage-
gated L-type calcium channel, are associated with autosomal
recessive CRD (arCRD) (Wycisk et al., 2006). Furthermore, a
naturally occurring Cacna2d4 mutant mouse displayed retinal
degeneration with marked defects in the synaptic layer.

Unlike conventional glutamate synapses, the photoreceptor ribbon
synapses are not dependent on proteins of the Munc13 family for
exocytosis (Cooper et al., 2012). This fundamental difference of the
ribbon synapse was identified through analysis of mice lacking the
ubiquitously expressed Munc13-2 splice variant (ubMunc13-2-KO
mice), indicating specialized machinery to mediate exocytosis in
ribbon synapses. Although the molecular components in this process
are still largely unknown, the significance of one key component,
CSP-α (DNAJC5), in vision has been demonstrated using null mice
(Schmitz et al., 2006). Lack of CSP-α in photoreceptor terminals
impaired assembly of the SNARE complex, which is required for
membrane fusion and the development of ribbon synapses, leading
to progressive neurodegeneration (Sharma et al., 2011).

UNC119 (uncoordinated 119) is expressed in ribbon synapses of
rods and cones, and a mutation in UNC119 was linked to late-onset
CRD in one patient. However, its involvement in CRD is debatable,
because the mutation did not co-segregate with the disease in the
family (Kobayashi et al., 2000). Transgenic mice carrying a mutated
human UNC119 transgene develop fundus lesions, display
abnormalities in ribbon synapses and abnormal ERG responses,
suggesting that retinal degeneration might be caused by defects in
trans-synaptic transmission (Kobayashi et al., 2000). Further
investigations are however required.

RIMS1 (regulating synaptic membrane exocytosis 1) is a
RAB3A-interacting protein (Wang et al., 2000), and RAB3A is a
synaptic-vesicle-associated protein involved in exocytosis.
Mutations in RIMS1 cause autosomal dominant CRD (adCRD)
(Johnson et al., 2003), and the Rims1-KO mouse indeed shows
defects in neurotransmitter release (Schoch et al., 2002).

Currently, we have limited knowledge of the molecular
determinants at retinal synapses. In the future, forward- and reverse-
genetic approaches using mouse models could be adopted to identify
new genes and pathways affecting the structure and function of
photoreceptor and other synapses in the retina.

RDDs caused by defects in RPE integrity or function
We now discuss defects in the RPE, which plays a crucial role in
photoreceptor survival. Mutations in several RPE-specific genes,
including RPE65, LRAT (lecithin retinol acyltransferase) and
MERTK (tyrosine-protein kinase Mer), have been identified in
patients with early-onset retinal degeneration and LCA (Gal et al.,
2000; Gu et al., 1997; Thompson et al., 2001). Currently, three
mouse models are available for investigating RPE65, which encodes
an isomerohydrolase that is crucial for the derivation of cis-retinal:
first, a naturally occurring mouse mutant, rd12; second, an Rpe65-
KO model; and, finally, a transgenic mouse carrying the R91W
mutation that is often seen in humans (Pang et al., 2006; Redmond
et al., 1998; Samardzija et al., 2008). The null and rd12 models
display degeneration of photoreceptors, but the Rpe65-KO model
has a preponderance of loss of S-cones. RPE65-R91W transgenic
mice are able to generate some 11-cis-retinal (~10% of normal),

which leads to partially functional rhodopsin, and the rate of
degeneration in this mutant is somewhat slower than in the Rpe65-
KO mouse. Differences in mouse mutants might reflect observed
phenotypes among patients with distinct RPE65 mutations
(Cideciyan, 2010) (R. Ratnapriya, E.B., S. G. Jacobson and A.S.,
unpublished data). Analysis of Lrat-KO mice has demonstrated a
requirement of LRAT in RPE for ROS maintenance (Batten et al.,
2004): ERG recordings were severely reduced in Lrat-KO mice at
a young age. Thus, this mutant serves as a good model for early-
onset severe retinal dystrophy such as that occurring in LCA. The
functional role of MERTK was initially analyzed in the Royal
College of Surgeon (RCS) rat and then in Mertk-KO mice, which
demonstrate retention of discarded disc material between the
photoreceptors and the RPE, resulting in gradual loss of
photoreceptors (Duncan et al., 2003).

Other degenerative diseases
Stargardt disease
Stargardt disease is the most common form of genetically driven
progressive juvenile macular degeneration that affects central vision.
In the original use of the term, Stargardt is inherited in an autosomal
recessive mode from mutations in the gene ABCA4 [ATP-binding
cassette, sub-family A (ABC1), member 4], which encodes an ATP-
binding transporter protein (Allikmets, 1997) that is specifically
expressed in photoreceptors. ABCA4 functions as a flippase, which
moves N-retinylidene-phosphatidylethanolamine (NR-PE) from
inside the ROS to the outside. The Abca4-KO mouse model has
been utilized to understand the etiology of Stargardt disease (Weng
et al., 1999). In Abca4-KO mice, phagocytosis of the ROS by the
RPE results in the accumulation of A2-E (N-retinylidene-N-
retinylethanolamine) to toxic levels in the RPE.

Some cases of Stargardt disease follow autosomal dominant
inheritance owing to mutations in ELOVL4 (elongation of very long
chain fatty acids-like 4) (Allikmets, 1997; Zhang et al., 2001), which
is required for the synthesis of very-long-chain fatty acids (Agbaga
et al., 2008). Analysis of humanized transgenic mice expressing
mutant ELOVL4 reveals that RPE atrophy and photoreceptor
degeneration result from accumulation of phagosomes and
lipofuscin (Karan et al., 2005; Vasireddy et al., 2006).

Retinoschisis
X-linked retinoschisis (XLRS) is a prevalent retinal dystrophy
affecting only males and marked by the schisis (splitting) of the
neural retina. XLRS is caused by mutations in the retinoschisin gene
(RS1) (Hiriyanna et al., 1999; Sauer et al., 1997). Retinoschisin is a
cell-surface adhesion molecule expressed by photoreceptor and
bipolar cells, and is required for the development and maintenance
of retinal architecture (Vijayasarathy et al., 2007). Analysis of Rs1-
KO mice showed pan-retinal pathological splitting of the retina
(Weber et al., 2002), which mimics human XLRS1 disease (Prenner
et al., 2006). One difference in humans is the distinctive radiating
pattern of macular schisis cysts, which are not replicated in mouse
owing to the lack of a macular structure. The findings in Rs1-KO
mice support the notion that this protein is required for the
organization of retinal layers and for organization and function of
the photoreceptor-bipolar cell synapse, thereby explaining the
characteristic reduction of the ERG b-wave, which is generated by
the bipolar cells following trans-synaptic activation by the
photoreceptors. Furthermore, in Rs1-KO mice the a-wave (produced
by the hyperpolarization of photoreceptors) is preserved, supporting
normal initiation of the visual signal (Takada et al., 2008).
Importantly, Rs1-KO mouse models have served to show the
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possibility of gene therapy via intravitreal delivery of viral vectors
carrying the normal gene, in preparation for application of this
treatment in patients with retinoschisis (Byrne et al., 2014; Park et
al., 2009; Zeng et al., 2004).

Leber hereditary optic atrophy
Leber hereditary optic atrophy (LHOA) often manifests in the second
decade of life and is the cause of acute or subacute central vision loss.
LHOA results from mutations in mitochondrial genes; some of the
mutations can also induce neurological and muscular phenotypes
(Larsson et al., 1991). Many alleles are associated with LHOA, but
three primary mutations (at nucleotide positions –3460, −11778 and
−14484 of LHOA, affecting Complex I) underlie the majority of cases
(Riordan-Eva and Harding, 1995). Given its multigenic and complex
inheritance pattern, designing an animal model has been quite
challenging. The animal models for LHOA have been generated by
reducing SOD2 mRNA levels in the eye (Qi et al., 2003) or by
delivering mutant versions of the human ND4 (NADH dehydrogenase
subunit 4) gene into the eye (Ellouze et al., 2008; Qi et al., 2007).
Such localized alteration of gene expression in the eye replicated
clinical features of LHOA, with disrupted mitochondrial
cytoarchitecture and death of the ganglion cells (Qi et al., 2007). The
use of wild-type human ND4 has been promoted as a safe option for
treating LHOA because delivery of ND4 to the mouse eye did not
elicit side effects (Ellouze et al., 2008). An induced mouse model has
also been used in preclinical studies of ND4 gene therapy for LHOA
(Koilkonda et al., 2014). A human clinical trial was started in 2014
using adeno-associated virus 2 (AAV2) delivery to target the
mitochondrial ND4 gene mutation, G11778A (www.clinicaltrials.gov
NCT02161380) (Lam et al., 2014).

Preclinical models for developing therapies
The eye and especially the retina have become the ‘testing ground’
for novel therapeutic modalities for neurodegenerative diseases by
virtue of their accessibility, small size, and the ability to apply
multiple techniques to assess structural and functional integrity.
After huge success in gene discovery and in the generation of
excellent model systems, first-of-their-kind gene- and cell-based
therapies are often launched in the eye, targeting retinal disease
(Fig. 5). Currently, application of such novel therapies in humans
necessitates preclinical testing in animal models in order to prove
safety and efficacy, and the most widely used are mouse models of
disease.

Gene therapy
Gene replacement/augmentation therapy relies on the delivery of a
normal copy of the defective gene to restore function. Currently, in
clinical application, viral vectors are used to transduce the target
cells. Pioneering gene therapy trials have become possible because
of the use of animal models, and AAV vectors have now been
successfully used to deliver target gene(s) to the RPE or
photoreceptors (Fig. 5C). The first successful clinical example of
such gene therapy came from LCA patients with congenital
blindness caused by mutations in the RPE65 gene (Bainbridge et al.,
2008; Cideciyan, 2010; Cideciyan et al., 2008; Maguire et al., 2008).
The Rpe65-KO mouse (Redmond et al., 1998) and a naturally
occurring Briard dog model of RPE65 disease were instrumental in
developing this treatment, providing the opportunity to examine and
prove safety and efficacy of the vectors prior to application in
human patients (Acland et al., 2001; Pang et al., 2006).

A better understanding of RPE65 as well as LRAT function in the
visual cycle, based on data from mouse models (Van Hooser et al.,

2000), has allowed development of a treatment for respective LCA
patients based on supplementation of synthetic 9-cis retinoid
(Koenekoop et al., 2014). Along these lines, a Mertk-KO mouse has
been used for testing efficacy of gene therapy for another RPE-
specific gene that causes severe arRP, and a clinical trial in patients
is ongoing (Conlon et al., 2013) (www.clinicaltrials.gov
NCT01482195).

The majority of inherited retinal degenerations are caused by
mutations in genes that affect photoreceptor function. Indeed, many
mouse models have been used to demonstrate efficacy of gene
augmentation therapy to correct defects in genes involved in
phototransduction (Bennett et al., 1996; Boye et al., 2010;
Michalakis et al., 2012; Tan et al., 2009; Wert et al., 2013) or
ciliopathy (Chamling et al., 2013; Lopes et al., 2013; Simons et al.,
2011). In the Bbs4-KO mouse, AAV-mediated BBS4 delivery was
shown to prevent photoreceptor death and maintain nearly normal-
appearing ROS by rescuing rhodopsin mislocalization (Simons et
al., 2011). Gene therapy can also rescue defects in Peripherin2-KO
(Schlichtenbrede et al., 2003) and Aipl1-KO (Ku et al., 2011; Sun et
al., 2010) mice. Treatment for achromatopsia was successful in
CNGA3-KO and CNGB3-KO mice (Carvalho et al., 2011; Pang et
al., 2012). The accumulation of lipofuscin pigment A2E in the retina
of Abca4-KO mice could be corrected by delivering the intact
human ABCA4 gene (Kong et al., 2008). Clinical gene therapy trials
have already begun for patients with several photoreceptor diseases,
including Stargardt disease and Usher syndrome
(www.clinicaltrials.gov NCT01367444 and NCT01505062).

Retinoschisis, which affects retinal architecture, is another disease
nearing clinical application, following successful gene therapy in the
Rs1-KO mouse model (Min et al., 2005; Zeng et al., 2004). Targeted
expression of RS1 in the IS of photoreceptors via AAV vectors was
capable of improving structure and function of the retina in this
model (Byrne et al., 2014; Park et al., 2009). The potential of gene
therapy in the context of hereditary retinal disease is further
highlighted by the recent report of treatment in patients with
choroideremia, which is characterized by slow degeneration of the
photoreceptors, RPE and choroid (see Box 1) (MacLaren et al.,
2014). Mutations in REP1 (Rab escort protein 1) are the cause of
choroideremia, and the treatment of patients was made possible after
safety and efficacy were shown in a mouse model (Tolmachova et
al., 2013).

Studies in mice also suggest that it would be crucial to deliver the
normal gene before maturation of the photoreceptors for maximum
efficacy of treatment rather than delivering the gene after maturation
(Byrne et al., 2014). Early diagnosis and intervention would thus be
desirable for the treatment of RDD patients.

Gene replacement therapy in the eye has benefited greatly from
the use of AAV-derived vectors that have retinal tropism, allowing
significant advances in gene transfer for both preclinical and
clinical research (Koerber et al., 2009; Trapani et al., 2014;
Vandenberghe et al., 2011). AAV is safe and delivers genes to both
photoreceptors and RPE; however, AAV cannot accommodate
genes over 5 kb. Therefore, other methods are being explored. For
example, a non-viral nanoparticle has been used to deliver RS1 or
RPE65 plasmid to the retina (Delgado et al., 2012; Koirala et al.,
2013). Lenti- and adenovirus-based vectors are also being
investigated for gene delivery to the retina (Yáñez-Muñoz et al.,
2006), but these do not seem to be very efficient in transducing
photoreceptors (Puppo et al., 2014). The vast majority of these
studies have been conducted in mouse models of disease, which
have greatly assisted in the development and optimization of
treatment strategies.
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Cell-based therapy
Cell-based therapy is being explored in the context of retinal disease,
and first-in-human clinical trials have been recently launched by
targeting the RPE. These trials were preceded by studies in animal
models, particularly in rodents. Human embryonic (Lu et al., 2009),

induced pluripotent stem cell (iPSC)-derived (Buchholz et al.,
2009), fetal, umbilical-tissue-derived and bone-marrow-derived (Lu
et al., 2010) neuronal and retinal progenitors (Tucker et al., 2011)
were examined in models of retinal degeneration, delivered in
suspension or on a scaffold. The RPE was chosen as the ‘first target’
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Fig. 5. From gene discovery to therapy of retinal degenerative diseases. (A) Schematic representation of the discovery of a gene associated with retinal
disease. To identify the genetic defect associated with a diseases phenotype, DNA sequences of affected individuals (black squares) are compared with those
of healthy individuals (white squares and circles) in the family. A hypothetical genetic difference in an individual with dominant disease is shown in the
sequence (T/A). (B) Paradigms for retinal disease modeling and drug discovery. Drosophila (fly) and zebrafish embryos are useful for high-throughput large-
scale drug screening; mouse models are excellent for elucidating disease mechanisms and for testing therapies; small-molecule (drug) screenings are often
performed using cell culture systems derived from either mouse embryonic fibroblasts (MEFs) or human induced pluripotent stem cells (iPSCs).
(C) Development of therapies using mouse models. (i) The accessibility of the eye and retina allows for delivery of appropriate drugs (e.g. neurotropic factors),
gene therapy vectors (viral vectors used for specific gene replacement in recessive disease) and even cells (i′,i″) using intravitreal or sub-retinal injections/
transplantation in mice as well as in larger animal models. Surgical manipulation of the mouse retina is complicated by the small size of the eye and large lens.
(i′) In vivo images of cell transplantation into an albino mouse eye. Human embryonic-stem-cell-derived retinal pigment epithelium (hESC-RPE) cells can be
transplanted into the mouse eye via transvitreal (left panel; green arrow) or subretinal (right panel; green arrow indicates the location of cell grafts)
transplantation. (i″) Histological (left panel) and immunofluorescence (right panel) images of an albino mouse eye after cell transplantation, demonstrating
survival and integration of the hESC-RPE cells in the mouse retina. (Left panel) Transplanted pigmented hESC-RPE cells integrate as a monolayer (black
staining) in the mouse retina. Inset and arrow indicate transition from host albino cells to grafted cells in the subretinal space. (Right panel) hESC-RPE cells are
positive for both the human nuclear antigen (HuNu; green) and premelanosome 17 (PMEL17; red; a typical marker for RPE). (ii) Delivery of gene therapy
vectors into photoreceptors or RPE cells will lead to the expression of the appropriate protein and facilitates rescue of function and phenotype.
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because cell replacement in this case would not require formation of
neuronal connectivity, and because of the involvement of the RPE
in AMD and certain retinal diseases (Ramsden et al., 2013)
(Fig. 5B,C). The attempts to differentiate cells that display
morphological similarities and characteristics of RPE cells have
gained momentum (Idelson et al., 2009; Klimanskaya et al., 2004;
Vugler et al., 2008), and stem-cell-derived RPE has been
transplanted into the subretinal space to slow the degeneration of
photoreceptors in rodent models (Lu et al., 2009; Lund et al., 2006).
These experiments led the way to the launching of a first-in-human
clinical trial in which RPE cells derived from human embryonic
stem cells were transplanted into the subretinal space of patients
with AMD or Stargardt disease, and initial results appear promising
(Schwartz et al., 2012; Schwartz et al., 2014). Alternatively, direct
transplantation of stem or progenitor cells has also shown some
promise in animal models, presumably through the secretion of
trophic factors that rescue dying cells and attenuate degeneration
(Otani et al., 2004). The secretory nature of growth factors such as
ciliary neurotrophic factor (CNTF) have been exploited for a novel
mode of therapy by intraocular implanting of CNTF-releasing
encapsulated cells (Sieving et al., 2006).

An ambitious goal for true regenerative cell therapy for RDDs is
the transplantation of photoreceptors because the loss of
photoreceptors underlies vision loss in RDDs. Once achieved, this
would not only attenuate disease progression (as current forms of gene
therapy and RPE transplantation allow) but also lead to tissue
replacement and/or repair. Photoreceptor replacement would
circumvent difficulties associated with gene-based therapy and could
potentially be applied to RDDs with genetic causes and even at an
advanced stage of disease. Unlike transplantation of RPE or cells that
act via trophic effects, photoreceptor replacement would require not
only correct localization and integration of the cells but also the
formation of functional synaptic connections with the inner retina.
This challenge is currently being addressed and tested in mouse
models of RDDs. Post-mitotic photoreceptor precursor cells that
express GFP driven by the transcription factor NRL and thus are
destined to differentiate into rod photoreceptors (Akimoto et al., 2006;
Swaroop et al., 2010) have been shown to integrate into the host retina
of different RDD rodent models, and, although the efficacy of
integration was initially very low, more recent studies were able to
improve transplantation efficacy and demonstrate improvement in
retinal and/or visual function (MacLaren et al., 2006; Pearson et al.,
2012; Yao et al., 2011). Such integration was also achieved when
photoreceptor precursors were derived from mouse embryonic stem
cells in culture, rather than collected from early postnatal donor mice
(Gonzalez-Cordero et al., 2013). In addition, fully mature
photoreceptors taken from adult retina could also integrate in wild-
type retina, but with limited survival (Gust and Reh, 2011). Human
embryonic-stem-cell-derived and patient-specific iPSC-derived
photoreceptor precursors have also been transplanted in the mouse
retina, although with limited success (Hambright et al., 2012; Tucker
et al., 2013). It is important to note that, although transplantation of
rod photoreceptors is showing improved efficacy in mouse models,
obtaining cone photoreceptor integration and survival remains elusive.
It is clear that we still have a long way before photoreceptor
transplantation in humans becomes a reality, but mouse models of
RDDs will continue to serve as the primary experimental system in
which cell therapy of neuronal tissue will be developed.

Drug discovery
Potential molecular targets for drug therapy are being identified for
different retinal disorders (Fig. 5B,C). Vascular endothelial growth

factor (VEGF) plays a key role in neovascularization and vascular
leakage in diabetic retinopathy (DR) and AMD (Adamis et al., 1994;
Kvanta et al., 1996). Anti-VEGF therapy is valuable for the
treatment of neovascular AMD and other retinal diseases
(Campochiaro et al., 2011; Jo et al., 2014). The Ras GTPase
pathway, which functions downstream of VEGF, is active during
development of normal or pathological vascular networks. Negative
regulation of this pathway by delivery of α-miR-132, a chemically
engineered oligonucleotide with a sequence that is complementary
to the endogenous microRNA-132, was shown to prevent
angiogenic sprouting in the developing mouse eye (Westenskow et
al., 2013). Another success for pharmacological intervention has
been achieved in the double-KO Abca4−/−; Rdh8−/− mouse, a model
for rod and cone degeneration, resembling features of Stargardt
disease. Targeted activation or blocking of the G-protein-coupled
receptor (GPCR) signaling pathway and direct inhibition of
adenylate cyclase by pharmacological compounds seems to improve
photoreceptor cell survival, preserve photoreceptor function and
attenuate the accumulation of pathological autofluorescent protein
deposits produced by degenerating photoreceptors in the retina
(Chen et al., 2013).

In summary, the animal models of RDDs have set the initial stage
for developing and testing effective treatment paradigms such as
gene therapy, and cell-, drug- and small-molecule-based therapies.
Additional animal models of RDDs will expand the scope for
developing new treatment for RDDs.

Conclusions and perspectives
Advances in molecular genetics and particularly next-generation
sequencing methods have greatly accelerated the pace of gene
discovery for RDDs, and mouse models have been instrumental in
deciphering the biology of these debilitating blinding disorders as
well as for the development of novel therapeutic modalities.
However, although many mouse models have provided novel
insights into biochemical and cellular pathways underlying retinal
disease, the rodent eye and retina differ from those of the human,
and in many instances mouse models do not faithfully replicate the
human condition. Basic differences include the fact that rodents are
nocturnal and have a rod-dominated retina with only two types of
cone photoreceptors (versus three in humans). More importantly, the
mouse retina does not have a cone-enriched macula, which is at the
center of vision in humans. In addition, dissimilarities in life span
and rate of disease progression in mice versus humans can
complicate some of the interpretations. Nonetheless, mouse models
are currently the leading in vivo tool for exploration of disease in
general and retinal diseases in particular by virtue of their cost and
availability, the ability for genetic manipulation, and the relative ease
of their use. An alternative sought-out model for studying RDDs is
the zebrafish, because of its phylogenetic proximity to humans. The
zebrafish produces large number of embryos, which develop ex vivo
and are thus amenable to genetic manipulations and
experimentation. This makes them an ideal model for high-
throughput drug screening. The ex vivo development and
transparency of zebrafish embryos further enable their use for
studying early developmental genes associated with embryonic
lethality, which is a bottleneck in mouse models.

With advances in stem-cell and iPSC technology, the first steps to
emulate human disease in vitro are currently being taken using
sophisticated culturing techniques (Eiraku et al., 2011; Nakano et al.,
2012). Ultimately, such experimental systems might allow the study
of pathogenic mechanisms as well as initial attempts at therapy.
However, the need to study interactions within a living mammal will
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remain, and mouse models of disease will continue to be the mainstay
of such efforts. New technologies of genetic manipulation, such as
CRISPR-Cas, that allow precision genome editing can be employed
to quickly engineer mouse genomes, and it would even be possible to
simultaneously alter multiple genes. Such technologies are promising
for creating animal models for multigenic complex RDDs and for
elucidating pathogenic mechanisms involving gene-gene and gene-
environment interactions.

Currently, identification of a gene and mutations associated with
RDDs is a relatively easy task because of the availability of tools for
genetic analysis. However, to develop treatment for genetic diseases
it is necessary to first decode the function of the gene. To increase
our knowledge of gene function there is a need to develop better and
more efficient tools to target gene manipulation. The subcellular
functional analysis of proteins requires more sophisticated technical
advancements, such as single-molecule tracking in vivo with high-
resolution imaging.

The molecular players are relatively better known in rods than in
cones. Therefore, future research should focus more in this direction
given the crucial role of cones in human vision. The photoreceptors
heavily rely upon trafficking modules, but their identity and function
is not well understood. Further research in this area can lead to new
modes of drug delivery for RDDs. The photoreceptor transplantation
treatment for RDDs is limited by the inability of photoreceptors to
properly form synaptic connections, because the development,
maintenance and function of photoreceptor synapses are poorly
understood. Additional investigations are also required to elucidate
complex interactions among retinal neurons and supportive retinal
Müller glia. We are confident that model organisms, especially mice,
will continue to provide original and valuable insights into the
biology, disease and therapy of the retina.
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