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ABSTRACT

We present a new approach to automatic training
of a eukaryotic ab initio gene finding algorithm.
With the advent of Next-Generation Sequencing, au-
tomatic training has become paramount, allowing
genome annotation pipelines to keep pace with the
speed of genome sequencing. Earlier we developed
GeneMark-ES, currently the only gene finding algo-
rithm for eukaryotic genomes that performs auto-
matic training in unsupervised ab initio mode. The
new algorithm, GeneMark-ET augments GeneMark-
ES with a novel method that integrates RNA-Seq
read alignments into the self-training procedure. Use
of ‘assembled’ RNA-Seq transcripts is far from triv-
ial; significant error rate of assembly was revealed
in recent assessments. We demonstrated in compu-
tational experiments that the proposed method of
incorporation of ‘unassembled’ RNA-Seq reads im-
proves the accuracy of gene prediction; particularly,
for the 1.3 GB genome of Aedes aegypti the mean
value of prediction Sensitivity and Specificity at the
gene level increased over GeneMark-ES by 24.5%. In
the current surge of genomic data when the need for
accurate sequence annotation is higher than ever,
GeneMark-ET will be a valuable addition to the nar-
row arsenal of automatic gene prediction tools.

INTRODUCTION

Accurate ab initio algorithms are indispensable tools for
annotation of eukaryotic genomes since they can iden-
tify genes not supported by reliable external evidence (e.g.
(1–7)). The predictive power of ab initio algorithms is a
function of rational algorithm design as well as optimal
assignment of species specific parameters. Current Next-
Generation Sequencing (NGS) technologies require gene
prediction methods that keep pace with the speed of se-
quencing; ab initio algorithms with automatic training offer

this advantage. In this paper, we introduce a new approach
to automatic training of a eukaryotic ab initio gene finding
algorithm.

Conventional supervised training techniques are centered
on preparation of expert validated training sets; this te-
dious step now takes more time than genome sequencing
itself. Earlier on, the genes compiled into training sets were
validated by alignments of the Expressed Sequence Tags
(EST) and full length cDNAs sequences. The advent of
NGS raised expectations that full length transcripts could
be rapidly and confidently produced by assembling RNA-
Seq reads. However, assembly of RNA-Seq reads turned
out to be non-trivial. The RNA-seq Genome Annotation
Assessment Project (RGASP) Consortium (8) comprehen-
sively assessed the accuracy of transcript reconstruction
from RNA-Seq data by several algorithms. The results con-
firmed an informal consensus among developers, that as-
sembly of transcripts from RNA-Seq reads is prone to fre-
quent errors. Thus, mapping assembled transcripts as a fast
and accurate approach to gene finding or even to building
training sets for ab initio gene finders has serious feasibil-
ity issues. Consequently, expert control is still necessary in
the creation of training sets for the algorithms that employ
supervised training.

A supervised gene collection naturally starts from more
readily validated genes and is thus likely to be biased to-
wards highly expressed genes, genes with rather long exons,
evolutionary conserved ‘core’ genes (9), etc. Unsupervised
training (self-training) eliminates expert controlled super-
vised training.

The major target of unsupervised training procedure is
the accumulation (over iterations) of a larger and larger
set of correctly predicted genes. Finally, the resulting set of
genes serves as the training set for the final estimation of the
algorithm parameters. Ideally, this method provides greater
‘ease’ in generating large training sets in comparison with
expert controlled accumulation of validated genes. Devia-
tion to an incorrect convergence point is a major risk factor
in unsupervised training. It could result in a training set that
includes erroneously defined genes or overrepresented sub-
sets of genes of certain type; this kind of issue, however, ex-
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Figure 1. The dot plot graph depicting average lengths of exons, introns
and intergenic regions against the value of percentage of non-coding DNA
in a given genome was made for the five insect genomes used in the
GeneMark-ET tests as well as for several other eukaryotic species. The
average lengths of intron and intergenic regions correlate with the genome
length while the average length of protein-coding exons (CDS) does not
show dependence on the genome size.

ists for supervised training as well. A chosen strategy of un-
supervised training can be assessed on test sets; notably, the
test sets are needed for algorithms using supervised train-
ing. Compilation of the test set (relatively small in compar-
ison with the training set) does not present an extra effort
specific for unsupervised training.

Identifying the best strategy for unsupervised training is
an interesting subject. Earlier we demonstrated feasibility of
effective unsupervised training for fungal genomes as well
as for compact (<300 Mb) genomes of plants and animals
(5,6). Still, we observed that the performance of unsuper-
vised training may degrade for large eukaryotic genomes
(>300 Mb in size) that have greater average length of intron
and intergenic regions as well as large repeat populations.
High genome assembly fragmentation may also present dif-
ficulty for unsupervised training.

In what follows we show how an unsupervised train-
ing procedure can use spliced alignments of ‘unassembled’
RNA-Seq reads (rather than assembled transcripts) to im-
prove accuracy of parameter estimation and gene predic-
tion. The key point in combining two independent methods,
ab initio gene prediction and RNA-Seq read mapping, is in-
troduction of the notion of ‘anchor splice sites’: sites sup-
ported by both ab initio gene prediction and by RNA-Seq
read alignment. Contrary to existing training methods that
rely on training sets consisting of complete or almost com-
plete gene structures, the new algorithm uses sets of gene
elements, exons and introns, supported by anchor splice
sites, to form reliable training sets in the iterative cycles of
the model re-training. The new algorithm was tested on
genomic and transcriptomic data of several insect species,
Aedes aegypti, Anopheles gambiae, Anopheles stephensi,
Culex quinquefasciatus and Drosophila melanogaster, which
vary significantly by average size of introns and inter-
genic regions (Figure 1). We have demonstrated that RNA-
Seq support in training boosts GeneMark-ET performance

in gene prediction to a higher level in comparison with
GeneMark-ES that uses purely unsupervised training. The
parameter estimation procedure did show robust perfor-
mance with respect to variations in the size of the set
of mapped introns, repeat content and fragmentation of
genome assembly. The new method, used stand-alone or as
part of a pipeline, should streamline and accelerate the an-
notation process in large genomes while improving the ac-
curacy of gene identification.

MATERIALS AND METHODS

Data sets

We downloaded from VectorBase (10) sequences and an-
notations of the genomes of four mosquito species A. ae-
gypti (11), A. gambiae (12), A. stephensi (GenBank: PR-
JNA167914, submitted by Virginia Tech) and C. quinque-
fasciatus (13). The annotated euchromatin portion of the D.
melanogaster genome (14) was downloaded from FlyBase
(15). Chromosomes 4 and X of D. melanogaster and A. gam-
biae were excluded. RNA-Seq datasets for the five species
were obtained from the GenBank repository of short reads
(16). Characteristics of genome sequences and RNA-seq
data sets used in the computational experiments are shown
in Table 1.

To mask repetitive sequence in the mosquito genomes, we
used repeat annotations provided by VectorBase (10). To
mask repeats in D. melanogaster we used RepeatMasker (17)
and the D. melanogaster genome specific library of repeats
from RepBase (18).

The test sets (Table 2) were prepared as follows. In the five
insect genomes we selected genes with annotated CDS and
3′ and 5′ UTRs. We excluded particular genes if (i) anno-
tated exons overlapped with masked repeats; (ii) annotated
exons (including exons in 3′ and 5′ UTRs) overlapped with
other annotated genes; (iii) annotated exons or introns were
very short (<6 nt or <20 nt, respectively); (iv) annotated in-
trons were very long (>10 000 nt); (v) annotated exons had
read through stop codons, or splice sites had non-canonical
(non GT-AG) dinucleotides; (vi) annotated genes had alter-
native isoforms; (vii) protein products had BLAST hits to
the transposable element (TE) protein database; (viii) the
best BLAST hit of the protein product to NR database did
not have E-value better than 0.001. In the tests, the gene
prediction programs were run on full genomes, and predic-
tions were compared with annotations of the selected set of
genes.

GeneMark-ET algorithm outline

The input data include assembled genomic sequences and
RNA-Seq reads as shown in the diagram of GeneMark-ET
algorithm (Figure 2). Effectively, the use of mapped RNA-
Seq reads, the external (extrinsic) evidence, changes the un-
supervised training algorithm GeneMark-ES into an algo-
rithm with semi-supervised training, GeneMark-ET.

At the first step, RNA-Seq reads are aligned to the ge-
nomic sequence using a short read alignment algorithm; in
our experiments we used several tools, TopHat (19), True-
Sight (20) and UnSplicer (21). Only spliced alignments,
those that identify splice junctions in RNA-Seq reads, the
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Table 1. Characteristics of the five insect genomes and RNA-seq datasets

Species Genome sequence RNA-seq

Version

Assembly
length
(Mb)

Unknown
letters
(Mb)

Masked seq
(Mb)

‘atcg’ seq
(Mb)

Number of
gaps Source Read type

Read
count,
(mil-
lions)

Aedes aegypti AaegL1 1384 74 871 439 36 200 SRR388682 83 nt, single 27.9
Anopheles gambiae AgamP3 273 21 45 207 16 818 SRR520428 85 nt, paired 36.9
Anopheles stephensi AsteV1 208 49 11 148 33 018 SRR643416 84 nt, paired 18.0
Culex
quinquefasciatus

CpipJ1 528 36 288 204 44 351 SRR364516 50 nt, paired 37.2

Drosophila
melanogaster

R5 120 0.1 9 111 8 SRR042297 75 nt, paired 13.6

Assembly length includes ‘N’ letters. The ‘atcg’ sequence is the genomic sequence left after masking of repeats. The number of gaps includes gaps with
known and unknown length.

Table 2. Numbers of protein coding genes in the genome annotation and in the test set

Species Annotation version Number of genes in Introns in test set

Annotation Test set

Aedes aegypti AaegL1.3 15 998 216 374
Anopheles gambiae AgamP3.6 12 810 420 1061
Anopheles stephensi AsteV1.0 21 785 317 939
Culex quinquefasciatus CpipJ1.3 18 955 360 460
Drosophila melanogaster r5.48 13 842 494 790
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Figure 2. Diagram of the iterative semi-supervised training of
GeneMark-ET.

two nucleotides that appear together in mRNA after intron
splicing, are of importance for the training algorithm.

The general training logic of GeneMark-ET is similar
to that of GeneMark-ES (5). First, using an initially de-
fined set of parameters of the hidden semi-Markov model
(HSMM) the algorithm predicts protein-coding regions in
the chosen genomic sequence. Second, a subset of the newly
predicted genes and non-coding regions is selected and
used for the HSMM parameter re-estimation. Next, the
prediction and re-estimation steps are repeated to conver-
gence. GeneMark-ET differs from GeneMark-ES in the
method of selection of the more reliably predicted coding
and non-coding regions used for parameter re-estimation.
In GeneMark-ET, inclusion of a likely protein-coding exon
in the training set requires the predicted exon to have at least
one ‘anchor splice site’ (Figure 3). ‘Anchor splice sites’ are
those predicted independently by both methods, by the ab
initio one and by RNA-Seq read alignment.

As an exception to the rule, predicted exons >800 nt (even
un-anchored) are selected for estimation of emission prob-
abilities of the HSMM protein-coding states. To account
for possible misplacement of a predicted exon boundary, se-
quences of the ‘long’ exons are trimmed (by 60 nt) on both
ends.

Parameters of models of translation initiation and termi-
nation site are estimated by using ‘anchored’ initial and ter-
minal exons, respectively.

Parameters of the non-coding region model are derived
from sequences of introns having both splice sites anchored
as well as from predicted intergenic sequences situated be-
tween two anchored border (initial or terminal) exons of
adjacent genes.

All the HSMM parameters mentioned above are emis-
sion probability parameters. Probabilities of transition be-
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Figure 3. Selection of elements of training set in GeneMark-ET for the next iteration. The new training set of protein-coding regions is comprised from
exons with at least one ‘anchored splice site’ as well as long exons predicted ab initio (>800 nt).

tween hidden states depend less on the anchored sites. Par-
ticularly, probability of transition from state of intergenic
region to state of the border exon of multiple exon gene is
estimated from distribution of the predicted structures of
complete genes; this data include structures with both an-
chored and un-anchored exons.

The first step of training process, assignment of initial al-
gorithm parameters, required special attention. Some pa-
rameters could be determined better from the start due to
availability of RNA-Seq reads. Among introns mapped by
RNA-Seq reads by TrueSight, UnSplicer or TopHat we at-
tempted to identify a subset with likely higher confidence.
This subset is used to estimate parameters of the initial
models of donor and acceptor sites as well as the intron
length distribution.

TrueSight or UnSplicer algorithms assign to a mapped
intron a numerical score, S, 0 < S < 1, with the meaning
similar to posterior probability of the predicted splice junc-
tion. Introns with scores S > 0.5 were selected into the high
confidence set. In case of UnSplicer score S > 0.5 corre-
sponds to likelihood P < 0.05 that intron mapping is er-
roneous. In TopHat, the higher is the coverage number (a
count of mapped RNA-Seq reads overlapping a predicted
splice junction) the higher, in general, is confidence in the
predicted splice junction and corresponding intron. When
TopHat is the read aligner, the high confidence set includes
introns supported by more than three aligned reads.

In the first run of the Viterbi algorithm (Figure 2), we use
splice site models and intron length distributions defined
from the high confidence set of introns, as well as heuristi-
cally derived models of protein-coding and non-coding re-
gions (22); other HSMM parameters are initialized as un-
informed priors (5). After the first iteration, the algorithm
uses for training the full set of mapped introns, regardless
of the probabilistic score (or coverage value).

Similar to the training procedure introduced for
GeneMark-ES (5) structures of some sub-models are
expanded through iterations, thus, the set of parameters
becomes larger. Particularly, each splice site model changes
from single frameless models into the set of three phased
sub-models related to the three phases of introns used
in training. Note that if the predicted phase of an intron

changes between iterations, a splice site associated with this
intron will move from the set of sites with the old phase to
the set of sites with the new phase. Also, parameters of the
branch point site model, especially important for fungal
genomes, are not defined until one of the later iterations
(6).

The GeneMark-ET training algorithm stops upon con-
vergence to the set of predicted genes that does not change
in further iterations, or upon completing a pre-defined num-
ber of iterations.

Accuracy assessment of GeneMark-ET predictions was
done on the test sets described above. Sensitivity and Speci-
ficity were defined at the levels of splice sites, translation ini-
tiation and termination sites, exons and introns, nucleotide
and whole gene level. We also added the level of ‘partial
genes’, with the meaning of the ‘5′ end incomplete genes’.
This level was introduced because a reliable annotation for
translation starts is especially difficult to obtain; even in the
prokaryotic domain, sets of genes with translation initia-
tion sites validated by N-terminal protein sequencing are
scarce. Therefore, computation of ’whole gene’ level accu-
racy that requires exact match of predicted and annotated
translation starts may suffer from uncertainty in the trans-
lation start position. To calculate Specificity measures, we
compared annotation of each gene from the training set
to predictions in genomic intervals that include the anno-
tated genes extended by 300 nt to both sides (see ‘Data sets’
section).

RESULTS

GeneMark-ET was trained on genome sequences and sets
of RNA-Seq reads available for the fruit fly D. melanogaster
and the four mosquito species A. aegypti, A. gambiae, A.
stephensi and C. quinquefasciatus (see ‘Data sets’ section,
Tables 1 and 3).

The 208 Mb A. stephensi genomic sequence with 33 018
gaps (four orders of magnitude larger than number of gaps
in D. melanogaster genome) after masking and filtering
short contigs was reduced to 97 Mb (Table 3). The large
reduction of A. stephensi sequence data was due to the fact
that the fragmented assembly contained many short contigs.
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Table 3. Lengths of initial genomic sequence and sequence selected into training process after data pre-processing steps (repeat masking and subsequent
filtering of short contigs); sizes of the initial set of introns mapped by RNA-Seq read aligner (UnSplicer) to the full genome and the set of introns mapped
to the reduced genome

Species
Genome size

(Mb)
Sequence in

training (Mb)
Introns mapped

to genome
Introns in
training % of introns

Aedes aegypti 1384 415 57 684 55 702 96.6
Anopheles gambiae 273 201 68 827 59 698 86.7
Anopheles stephensi 208 97 28 869 20 418 70.7
Culex quinquefasciatus 528 195 57 579 56 621 98.3
Drosophila melanogaster 120 97 70 077 56 678 80.9

The A. aegypti and Culex q. genomic sequences with high
repeat content were reduced to 415 and 195 Mb, respectively
(Table 3). The A. gambiae and D. melanogaster genomic se-
quences after reduction were 201 and 97 Mb respectively.

The predictions made by GeneMark-ET on the whole set
of genomic sequences were compared with annotation in
the locations of the genes included in the test sets (see ‘Data
sets’ section). The accuracy of predictions was compared
with the accuracy of predictions made by GeneMark-ES.
Note that mapping of RNA-Seq reads was not used directly
to modify the gene predictions. Thus, improvements in ac-
curacy of GeneMark-ET over GeneMark-ES should be at-
tributed to a more accurate training method delivering bet-
ter estimates of algorithm parameters.

In our experiments we observed that for all five species,
GeneMark-ET outperformed GeneMark-ES. In particular,
GeneMark-ET prediction accuracy measured by Sensitivity
(Sn or Recall) and Specificity (Sp or Precision) was higher
for nearly all elements of gene structure, for whole genes,
and for ‘partial genes’.

At the internal exon level GeneMark-ET performed uni-
formly better than GeneMark-ES. However, the increase in
accuracy varied from rather small 0.5% in Sp and 6.0% in
Sp for D. melanogaster to 22.4% in Sn and 15.4% in Sp for
A. aegypti (Table 4).

A similar trend was observed for both whole gene level
and ‘partial gene’ levels (Table 4). For D. melanogaster, the
GeneMark-ET accuracy increased 7.3% in Sn and 5.2% in
Sp over GeneMark-ES. For the largest mosquito genome
A. aegypti the GeneMark-ET predictions improved at the
‘partial gene’ level by 27.8% in Sn and by 22.9% in Sp. For
the next largest genome, C. quinquefasciatus, the increase
numbers were 18.0 and 16.7% respectively, while for the
two smaller Anopheles genomes the increases at the ‘par-
tial gene’ level were below 10%. The absolute Sn and Sp fig-
ures at gene and ‘partial gene’ levels are the lowest for each
species (Table 4). These two measures are the most stringent
accuracy definitions that require exact prediction of all or
almost all the elements of exon–intron structure.

In all the five insect genomes considered here, trans-
lation termination sites were predicted more accurately
than translation initiation sites by both GeneMark-ES and
GeneMark-ET. Difficulty in translation initiation start pre-
diction is related to the presence of alternative in-frame and
out-of-frame ATG codons. Also, initial exons are on aver-
age shorter than terminal exons and are more difficult to
identify. Finally, the annotation of translation starts is likely
to be the least reliable element in the annotated exon–intron
structure. For instance, most of the translation starts in D.

melanogaster genome were annotated by ‘the longest ORF
in transcript’ rule (http://flybase.org); only a few gene starts
were verified by protein N-terminal sequencing.

The accuracy figures for GeneMark-ET shown in Table
4 are the results of algorithm runs utilizing alignments of
RNA-Seq reads made by UnSplicer (21). UnSplicer is one
of the few methods of choice for RNA-Seq read alignment
and splice junction detection. We previously showed (21)
that for several species UnSplicer produced a higher accu-
racy of prediction of splice junctions with respect to genome
annotation compared to other methods. This higher accu-
racy of mapping introns is likely related to reduction in the
number of false positives caused by splicing noise and other
factors (23,24). However, the results of the GeneMark-ET
runs on D. melanogaster and A. gambiae genomic data
with RNA-Seq read mapping done by TopHat or True-
Sight (Supplementary Table S1) show that performance of
GeneMark-ET is robust with respect to replacing UnSplicer
by TopHat or TrueSight. This observation indicates that use
of ‘anchored splice sites’ by GeneMark-ET helps filter out
instances of false positive splice junction predictions.

To assess dependence of the GeneMark-ET performance
on the size of the set of mapped introns we made runs of the
new tool on D. melanogaster sequence data with mapped
intron sets comprising 75, 50 and 25% of the initial set of
70,077 mapped introns (Table 3). Interestingly, the accu-
racy of gene prediction did not change noticeably in these
experiments (data not shown), thus, the algorithm is ro-
bust with respect to the changing the number of mapped
introns within a wide range. Obviously, if the initial num-
ber of mapped introns is too low, GeneMark-ET should be
automatically switched to GeneMark-ES mode (current de-
fault threshold for the switch is 1000 introns).

We analyzed the dependence of mean values of inter-
nal exon Sn and Sp on iteration index for D. melanogaster
and A. aegypti genomes for both GeneMark-ES and
GeneMark-ET (Figure 4). The GeneMark-ET initial
parameterization integrating information from mapped
RNA-Seq reads improved accuracy of predictions in the
first iteration by 55–60% in comparison with GeneMark-
ES. For D. melanogaster, further iterations reduced the large
initial gap in accuracy down to 4%. In contrast, for the
large A. aegypti genome, although the gap was reduced
with iterations, the accuracy of GeneMark-ET at conver-
gence remained almost 20% higher than one of GeneMark-
ES. Also, GeneMark-ET reached convergence 2–3 itera-
tions earlier (Figure 4). The reduction in number of itera-
tions was observed for the other three genomes as well (data
not shown).

http://flybase.org
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Table 4. Assessment of gene prediction accuracy of GeneMark-ES (ES) and GeneMark-ET (ET) gene finders using unsupervised (genomic based) and
semi-supervised (genomic and transcriptomic based) training, respectively

D. melanogaster A. aegypti A. gambiae A. stephensi Culex q.

ES ET ES ET ES ET ES ET ES ET

Internal exon Sn 86.7 87.2 69.3 91.7 77.6 80.4 82.7 85.1 77.4 81.8
Sp 76.9 82.9 60.7 75.9 70.3 78.6 76.5 77.0 54.7 65.7

Intron Sn 82.6 84.8 67.9 89.6 77.6 81.0 85.2 88.1 70.2 81.1
Sp 75.3 79.2 64.6 80.3 73.4 80.5 79.4 81.7 59.8 72.7

Donor site Sn 85.3 87.0 74.6 92.8 81.9 84.1 88.2 90.4 74.3 83.5
Sp 84.5 86.5 76.2 86.8 82.9 88.1 87.3 88.1 74.3 80.7

Acceptor site Sn 86.2 88.2 74.3 94.1 83.0 86.0 90.7 92.8 83.9 88.7
Sp 85.5 87.0 79.0 89.6 83.6 88.9 87.7 89.2 78.0 84.6

Initiation site Sn 71.0 75.1 62.5 79.6 63.8 68.1 65.0 66.9 60.8 76.7
Sp 83.1 81.5 77.1 83.9 80.0 79.9 73.6 76.3 77.4 85.7

Termination site Sn 77.3 84.2 68.1 88.0 72.9 81.0 83.0 84.9 78.9 82.8
Sp 90.7 90.0 91.3 96.0 89.7 91.6 86.5 92.4 89.3 90.9

Nucleotide Sn 91.5 92.1 87.0 98.1 91.4 92.9 97.0 97.3 93.9 94.4
Sp 98.3 97.4 95.2 96.2 98.6 98.8 98.5 98.7 92.0 93.0

Gene Sn 57.9 63.6 40.3 66.7 43.8 53.1 43.2 48.6 46.1 65.0
Sp 57.3 61.0 42.6 64.3 44.0 53.0 39.9 47.0 44.3 62.6

Partial gene Sn 59.9 67.2 41.2 69.0 46.2 56.0 48.6 54.3 48.1 66.1
Sp 59.3 64.5 43.6 66.5 46.4 55.8 44.9 52.4 46.1 63.6

Bold font highlights the higher accuracy value in a given category and given species. Partial gene level accuracy is computed without taking into account
a difference in annotation and prediction of translation starts.
Spliced alignments for GeneMark-ET were produced by UnSplicer.

Figure 4. Observed dynamics of change in iterations of the mean of Sn and Sp internal exon prediction values for the GeneMark-ET and GeneMark-ES
algorithms in cases of Drosophila melanogaster (A) and Anopheles aegypti (B) genomes.

The precision of GeneMark-ET in selecting ‘anchored in-
trons’ is illustrated by the following statistics. Only 34 of an-
chored introns out of 12,554 identified by GeneMark-ET in
the first iteration of training do not match D. melanogaster
annotation version 48 (Supplementary Figure S1).

Information on mapped RNA-Seq reads, besides use in
training, could be used directly in prediction steps to make
the parse Viterbi algorithm fitting the mapped introns in
each iteration. We made an extended version of GeneMark-
ET where this approach was implemented in all iterations
but the last one. Interestingly, in computational experiments
on the D. melanogaster genome and the RNA-Seq set this
modification did not produce noticeable change in accuracy
of predictions on the test set (data not shown).

DISCUSSION

Annotators of novel eukaryotic genomes frequently use a
pipeline, MAKER2 (25) that includes the three gene pre-
diction tools, Augustus, GeneMark-ES and SNAP that in-
dependenly generate gene predictions. Training sets compi-
lation for SNAP is aided by mapping of assembled tran-
scripts as well as proteins from protein databases. Alterna-
tively, GeneMark-ES could provide the initial gene models,
the lynchpins for the training of SNAP and Augustus. While
‘unsupervised’ training is critically important in this kind of
pipeline, many large genomes present difficulties for unsu-
pervised training (e.g. genomes with inhomogeneous com-
position, or genomes populated with repeats and transpos-
able elements). Assembly of short NGS reads into contigs is
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a difficult task for genomes with high repeat content. Many
published genomes have thousands or even tens of thou-
sands of individual contigs assembled into scaffolds (e.g.
mosquito genomes in Table 1). Genome fragmentation cre-
ates additional difficulty for algorithm training if the train-
ing requires a large set of complete or nearly complete gene
structures.

GeneMark-ET presents a new opportunity to deal with
the larger genomes. Utilization of filtered RNA-Seq read
mapping information improves gene prediction through
better algorithm parameter estimation. Effectively, use of
RNA-Seq reads along with gene prediction algorithm nar-
rows the training to the genomic regions covered by the
transcriptome. GeneMark-ET is designed to use collections
of gene structure elements e.g. anchored exons. Training on
separate sets of gene elements of similar type increases the
volume of sequence in training in comparison with use of
whole gene structures. GeneMark-ET is able to complete
training even if genome assembly includes a large number of
gaps, thus, a large fraction of protein coding genes is likely
to be disrupted (as we see for A. stephensi genome).

GeneMark-ET was tested on the five insect genomes with
sizes ranging from 120 Mb to 1.3 Gb. Insect genomes have
relatively few genes in comparison with plant or mam-
malian genomes of similar sizes, thus the gene density is rel-
atively low. While the accuracy of purely unsupervised train-
ing (GeneMark-ES) drops in longer genomes (e.g. internal
exons Sn and Sp in Table 4), the accuracy of semi-supervised
training (GeneMark-ET) reaches sufficiently high level,
comparable to the level reached for compact genomes, such
as one of D. melanogaster. More specifically, improvement
of Sn and Sp at gene and partial gene level is in the range of
18–25% for the largest genomes of A. aegypti and Culex q.

We should add a general note of caution. Since the test
sets were selected to avoid ambiguities (no alternatively
spliced genes) as well as to avoid genes with rare features
(overlaps, very long introns, non-canonical sites, etc.) the
evaluation of performance on such test sets is likely to pro-
vide more optimistic figures than would appear in real ap-
plications.

Repeat masking is conventionally recognized as a manda-
tory practical step for improving the accuracy of prediction
of ‘host’ genes. However, in a rather rare event, a whole
gene of transposable element (TE) or a part of it can be in-
tegrated into host genes (26); therefore, rather than brute
force masking of all genomic fragment matches to TE li-
brary entries, repeat masking prior to gene finding needs a
more fine-tuned approach.

The extent to which repetitive sequences may influence
the estimation of parameters of gene finding algorithms
is an interesting question. The inclusion of protein coding
genes encoded in TEs in training sets may lead to biased
parameters and to errors in finding true ‘host’ genes (27).
For genomes, such as A. gambiae, masking repeats before
GeneMark-ES training improves accuracy of internal exon
recognition by 5%; for larger genomes, like A. aegypti, im-
provement is as large as 15% (data not shown).

Estimation of some GeneMark-ET parameters, for ex-
ample emission probabilities of intron related states, does
not depend on repeat masking. On the other hand, some
groups of parameters (e.g. models of non-coding regions)

derived from initially unlabeled data in unsupervised fash-
ion show dependence from masking. Still, the effect of re-
peat masking prior to training on the gene prediction accu-
racy of GeneMark-ET is not very significant.

Finally, we want to emphasize that the new method,
GeneMark-ET, is about the integration of RNA-Seq read
mapping into the training to improve estimation of param-
eters of the gene prediction algorithm. How useful is in-
corporating RNA-Seq mapping into the prediction step is
yet another question. A full RNA transcript, if mapped to
genome without errors, would identify a gene with high ac-
curacy. NGS technology produces short RNA-Seq reads
that must be assembled into transcripts. Recent assessment
of the quality of transcript assembly from RNA-Seq reads
(8) has shown that there is still significant room for im-
provement. For a given genome, a significant fraction of
transcript assemblies carries errors (e.g. Figure 5 in Steijgler
et al., 2013 even for one of the best tools, Cufflinks (28), re-
ports errors in about 60% of transcripts assemblies for H.
sapiens, about 50% for D. melanogaster and about 40% for
C. elegans). This assessment makes it also clear that creation
of a reliable training set for an ab initio algorithm by us-
ing genes mapped from assembled RNA-Seq transcripts is
a non-trivial task. The errors in transcript assemblies will
make the set corrupted to a significant degree.

The semi-supervised approach proposed here bypasses
the task of RNA-Seq reads ‘assembly’. Also, for the pur-
pose of selecting ‘anchored splice sites’ the algorithm treats
RNA-Seq reads equally regardless of their source. This ap-
proach is likely to produce unbiased parameters; also it
shows robustness to variations in volumes of RNA-Seq.
Notably, use of anchored splice sites eliminates false posi-
tive outcomes in RNA-Seq read mapping and discriminates
mapped introns situated in untranslated regions (UTRs)
and RNA genes.

Since GeneMark-ET runs less iteration to conver-
gence than GeneMark-ES (Figure 4) the running time
of GeneMark-ET is shorter. In absolute terms, for D.
melanogaster 100 Mb genomic sequence the GeneMark-ET
run to convergence (five runs of the Viterbi algorithm) takes
three hours on a single 3GHz CPU. A node with several
CPUs, not to say about a cluster with several nodes, re-
duces the running time to dozen minutes (same is true for
GeneMark-ES). However, to run GeneMark-ET an addi-
tional time has to be taken by the algorithm aligning RNA-
Seq reads.

In general, unsupervised training algorithms that we pi-
oneered for compact eukaryotic genomes (up to 300 Mb in
length) are fast and sufficiently accurate (5,6). They pro-
vide the advantage of accelerating the annotation project
and getting information on new genes and proteins in a
short time. Unsupervised training algorithms are likely to
be more accurate than algorithm with supervised training if
the sets of validated genes available for supervised training
are small; with accumulation of validated genes (the process
that may take months, even years) algorithms with super-
vised training have no reason to produce less accurate gene
predictions than algorithms with unsupervised training.
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CONCLUSION

We describe the new algorithm, GeneMark-ET that em-
ploys semi-supervised training to estimate parameters of
the hidden semi-Markov model. We introduce a novel train-
ing approach that augments developed earlier unsupervised
training technique by use of readily available unassembled
RNA-Seq reads. We show that RNA-Seq read alignments
incorporated into the GeneMark -ET procedure of param-
eter estimation improves the accuracy of gene prediction.

AVAILABILITY

The GeneMark-ET software can be downloaded from
topaz.gatech.edu/license download.cgi. An RNA-Seq read
aligner is supposed to be installed according to its own in-
structions as a separate tool.
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