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ABSTRACT

Motivation: In silico prediction of drug–target interactions from
heterogeneous biological data is critical in the search for drugs and
therapeutic targets for known diseases such as cancers. There is
therefore a strong incentive to develop new methods capable of
detecting these potential drug–target interactions efficiently.
Results: In this article, we investigate the relationship between
the chemical space, the pharmacological space and the topology
of drug–target interaction networks, and show that drug–target
interactions are more correlated with pharmacological effect
similarity than with chemical structure similarity. We then develop
a new method to predict unknown drug–target interactions from
chemical, genomic and pharmacological data on a large scale.
The proposed method consists of two steps: (i) prediction
of pharmacological effects from chemical structures of given
compounds and (ii) inference of unknown drug–target interactions
based on the pharmacological effect similarity in the framework of
supervised bipartite graph inference. The originality of the proposed
method lies in the prediction of potential pharmacological similarity
for any drug candidate compounds and in the integration of
chemical, genomic and pharmacological data in a unified framework.
In the results, we make predictions for four classes of important
drug–target interactions involving enzymes, ion channels, GPCRs
and nuclear receptors. Our comprehensively predicted drug–target
interaction networks enable us to suggest many potential drug–target
interactions and to increase research productivity toward genomic
drug discovery.
Supplementary information: Datasets and all prediction results are
available at http://cbio.ensmp.fr/˜yyamanishi/pharmaco/.
Availability: Softwares are available upon request.
Contact: yoshihiro.yamanishi@ensmp.fr

1 INTRODUCTION
The identification of drug–target interactions (interactions between
drugs and target proteins) is a key area in genomic drug
discovery. Interactions with ligands can modulate the function of
many classes of pharmaceutically useful protein targets including
enzymes, ion channels, G protein-coupled receptors (GPCRs) and
nuclear receptors. Owing to the completion of the human genome
sequencing and the development of various biotechnologies, we are
beginning to analyze the ‘genomic space’ populated by these protein
classes. At the same time, the high-throughput screening (HTS) of
large-scale chemical libraries is enabling us to explore the entire
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‘chemical space’ of possible compounds. However, our knowledge
about the relationship between the chemical space and the genomic
space is very limited.

In recent years, the importance of chemical genomics is
growing fast to relate the chemical space with the genomic space
(Dobson et al., 2004; Kanehisa et al., 2006; Stockwell, 2000).
The genome-wide detection of compound–protein interactions is
a key issue in chemical genomics research, which can lead to
identification of new drug leads and therapeutic targets for known
diseases such as cancers. Although various biological assays are
becoming available, experimental determination of compound–
protein interactions remains challenging and very expensive even
nowadays. There is therefore a strong incentive to develop new
in silico methods capable of detecting these potential compound–
protein interactions efficiently.

Traditional computational approaches are categorized into ligand-
based approach and docking approach. Ligand-based approach like
QSAR (Quantitative Structure Activity Relationship) compares a
candidate ligand with the known ligands of a target protein to predict
its binding using machine learning methods (Butina et al., 2002;
Byvatov et al., 2003). However, the performance of the ligand-
based approach is poor when the number of known ligands for
a target protein of interest decreases. The docking is a powerful
approach, but the docking cannot be applied to proteins whose 3D
structures are unknown (Rarey et al., 1996). This limitation is serious
for membrane proteins. For example, there are only two GPCRs with
3D structure information as of writing. Therefore it is difficult to use
the docking on a genome-wide scale.

Recently, a variety of statistical methods have been developed
to predict compound–protein interactions on a genome-wide scale,
following the spirit of chemical genomics. The underlying idea is
that similar ligands are likely to interact with similar proteins, and
the prediction is performed based on compound chemical structures,
protein sequences and the currently known compound–protein
interactions. A straightforward statistical approach is to use binary
classification methods where they take compound–protein pairs as
an input for machine learning classifiers such as neural network
and support vector machine (SVM) (Bleakley and Yamanishi, 2009;
Bock and Gough, 2005; Erhan et al., 2006; Faulon et al., 2008;
Jacob and Vert, 2008; Nagamine and Sakakibara, 2007). The other
statistical approach is the distance learning in the framework of
supervised bipartite graph inference (Yamanishi, 2009; Yamanishi
et al., 2008).

Another promising approach is to use pharmacological
information. The use of side-effect similarity has been recently
proposed, which is based on the assumption that drugs with
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similar side-effects are likely to interact with similar target proteins
(Campillos et al., 2008). However, the method requires drug package
inserts that describe the detailed side-effect information, so it is
applicable only to marketed drugs for which side-effect information
is available. Therefore, it is not possible to infer potential interactions
between new drug candidate compounds and target proteins.

In this article, we investigate the relationship between the
chemical space, the pharmacological space and the topology of
drug–target interactions networks. We then develop a new method
to predict unknown drug–target interactions from chemical structure
information, genomic sequence information and pharmacological
effect information on a large scale. The proposed method consists
of two steps: (i) prediction of pharmacological effects from
chemical structures of given compounds and (ii) inference of
unknown drug–target interactions based on the pharmacological
effect similarity in the framework of supervised bipartite graph
inference. The algorithm proposed in the first step enables us
to obtain pharmacological information about not only marketed
drugs but also any compounds, based on the correlation between
chemical structures and pharmacological/adverse effects (Scheiber
et al., 2009), which makes it possible to perform screening of any
drug candidate compounds against many target candidate proteins.
To our knowledge, there are no methods which predict drug–
target interactions based on chemical, genomic and pharmacological
data simultaneously. In the results, we make predictions for four
classes of important drug–target interactions involving enzymes, ion
channels, GPCRs and nuclear receptors.Acomprehensive prediction
of drug–target interaction networks enables us to suggest new
potential drug–target interactions.

2 MATERIALS
In this study, we focus on drugs targeting four pharmaceutically useful target
classes: enzymes, ion channels, GPCRs and nuclear receptors.

2.1 Chemical data
Chemical structures of drugs and other compounds were obtained from
the KEGG DRUG and KEGG LIGAND databases (Kanehisa et al., 2008).
We computed the chemical structure similarities between compounds using
SIMCOMP (Hattori et al., 2003), a program that finds the common
substructures between two compounds and outputs the global similarity
score based on a graph alignment algorithm. The similarity between two
compound structures x and x′ is evaluated by Tanimoto coefficient defined as
schem(x,x′)=|x∩x′|/|x∪x′|. The similarity score is referred to as ‘chemical
structure similarity’ in this study. Applying this operation to all compound
pairs, we construct a similarity matrix denoted as C. The similarity matrix
C is considered to represent ‘chemical space’.

2.2 Pharmacological data
Pharmacological effect keywords for drugs (pharmaceutical molecules)
were obtained from the JAPIC (Japan Pharmaceutical Information Center)
database (http://www.japic.or.jp/). JAPIC manages all package insert
information of pharmaceutical products in Japan, under the approval of
Health and Welfare Minister of Japan. We used the JAPIC entries (package
inserts) of ethical drugs described in natural Japanese language, which were
morphologically analyzed to obtain the nouns or phrases using the MeCab
program (http://mecab.sourceforge.net/). The resulted set of keywords were
translated into English followed by the unification of synonymous words,
using life science dictionary (http://lsd.pharm.kyoto-u.ac.jp/en/index.html).
Since a pharmaceutical molecule is usually involved in various commercial

products, each KEGG DRUG entry of a drug molecule is represented as
a logical sum of the presence/absence (1 or 0, respectively) of the unified
keywords found in the corresponding JAPIC entries. We obtained 18 653
keywords in total, representing the pharmaceutical effects, adverse effects,
caution, usage, properties, etc.

We also performed a simple investigation of the context of the keywords.
JAPIC entries are described in an XML format, where the sentences are
tagged by the category words such as ‘effect’, ‘side-effect’, ‘caution’ and
‘warning’. Unnecessary information in terms of analyzing pharmacological
effects, such as manufacturers, are removed using the corresponding
XML tag. Various types of profiles can be generated for a drug using
different set of the XML tags. We tested using every tag independently
to generate a profile, although we found it ineffective. Then we tested
grouping the similar XML tags to form five tag groups: ‘caution’ (unwanted
characteristics of the drug, such as adverse event, caution for application or
handling, overdose and warning), ‘interaction’ (the combined use of drugs),
‘patient’ (the types of patients, such as children, pregnant, elder people,
or the people having chronic diseases), ‘pharmaceutical effect’ (efficacy,
usage and pharmacology) and ‘property’ (such as partition coefficient,
pharmacokinetics, melting point and solubility). The number of keywords
with the ‘caution’, ‘interaction’, ‘patient’, ‘pharmaceutical effect’ and
‘property’ tags are 16 849, 14 223, 16 362, 17 109, and 17 142, respectively.
All the keywords for each tag are put on the supplementary website.
In this study, we used keywords with the ’pharmaceutical effect’ tag as
pharmacological keywords.

Each drug is represented by a profile (binary vector) y= (y1,y2,...,yK )�
in which a pharmacological keyword is coded 1 or 0, respectively, across
the 17 109 keywords. The similarity between two drugs y and y′ is evaluated
by the weighted cosine correlation coefficient between the above profiles as
follows:

sphar(y,y′)=
∑K

k=1 wkyky′
k√∑K

k=1 wky2
k

√∑K
k=1 wky′2

k

(1)

where wk is the weight function for the k-th keyword defined as

wk =exp(−d2
k /σ2h2), k =1,2,...,K,

where dk is the frequency of the k-th keyword in the data, and K is the
total number of keywords in the data, σ is the SD of {dk}K

k=1, and h is a
parameter (set to 0.1 in this study). The weight function is introduced to put
more emphasis on infrequent keywords rather than frequent keywords across
different drug package inserts, because rare keywords (e.g. ‘cytopenia’,
‘pancytopenia’, ‘photosensitivity’, ‘teratogenic’) are more informative than
common keywords (e.g. ‘disease’, ‘receptor’, ‘stability’, ‘biological’) in
terms of characteristics of drugs.

The similarity score is referred to as ‘pharmacological effect similarity’ or
‘pharmacological similarity’ in this study. Applying this operation to all drug
pairs, we construct a similarity matrix denoted as P. The similarity matrix P
is considered to represent ‘pharmacological space’.

2.3 Genomic data
Amino acid sequences of proteins coded in the human genome were
obtained from the KEGG GENES database (Kanehisa et al., 2008). We
computed the sequence similarities between two proteins z and z′ using a
normalized version of Smith–Waterman scores (Smith and Waterman, 1981).
The similarity score is denoted as sgeno(z,z′) and referred to as ‘genomic
sequence similarity’ in this study. Applying this operation to all protein pairs,
we construct a similarity matrix denoted as G. In this study the similarity
matrix G is considered to represent ‘genomic space’.

2.4 Drug–target interaction data
The information about the interactions between drugs and target proteins
was obtained from the KEGG BRITE (Kanehisa et al., 2008), BRENDA
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(Schomburg et al., 2004), SuperTarget (Gunther et al., 2008) and DrugBank
(Wishart et al., 2008) databases. According to our survey, the numbers
of known drugs with pharmacological information in JAPIC are 212, 99,
105 and 27, for their targets enzymes, ion channels, GPCRs and nuclear
receptors, respectively. The numbers of the corresponding target proteins
in these classes are 664, 204, 95 and 26, respectively. The numbers of the
corresponding interactions are 1515, 776, 314 and 44, respectively.

The set of known drug–target interactions is regarded as the ‘gold
standard’ data in this study, and is used for evaluating the performance of
the proposed method in the cross-validation experiments as well as training
data in the comprehensive prediction.

3 METHODS
Suppose that we are given drug candidate compounds and we want to
predict unknown interactions between the compounds and target proteins on a
genome-wide scale. The proposed method consists of two steps: (i) prediction
of potential pharmacological effects from chemical structures of given
compounds and (ii) inference of unknown drug–target interactions based
on the pharmacological effect similarity in the framework of supervised
bipartite graph inference. The details of each step of the proposed method
are described below.

3.1 Prediction of pharmacological effects from
compound chemical structures

If pharmacological information is available for given compounds, this
process can be skipped. In this subsection, we assume that given compounds
do not have any pharmacological information.

3.1.1 Formulation of the problem Let us now consider the situation where
chemical structure data is available for all the N compounds {xi}N

i=1, while
the pharmacological data is available for the first n compounds {yi}n

i=1 and
unavailable for the remaining (N −n) compounds {yi}N

i=n+1. We refer to
the first n compounds as training set, and we refer to the remaining N −n
compounds as prediction set below.

For the prediction set, we want to predict a pharmacological profile y
(K-dimensional binary vector) from a chemical structure x (chemical graph).
A straightforward approach would be to apply a binary classification method
such as SVM in order to individually predict whether each element yk in y is
1 or 0. However, this strategy needs to construct K individual classifiers for
K pharmacological keywords, which will require prohibitive computational
burden, because K is quite huge in practical applications (K is 17 109 in this
study).

Note that the inputs of the supervised bipartite graph inference method in
the next step are similarity scores for compounds and proteins. Therefore,
we propose to consider predicting the pharmacological similarity scores
involving compounds rather than predicting the pharmacological profile
itself directly. The key idea here is to reformulate the problem of predicting
unknown high-dimensional binary vectors for the prediction set by the
problem of predicting unknown similarity scores sphar(yi,yj) involving the
prediction set.

Let schem(·,·) and sphar(·,·) be chemical structure and pharmacological
effect similarity functions, respectively. When we compute the chemical
structure similarity scores for {xi}N

i=1, we obtain an N ×N similarity matrix C,
where (C)ij =schem(xi,xj) (1≤ i,j≤N). On the other hand, when we compute
the pharmacological similarity scores for {yi}n

i=1, we obtain an N ×N
similarity matrix P, where (P)ij =sphar(yi,yj) (1≤ i,j≤n) (n<N). Note that
P contains in fact missing values for all entries (P)ij with max(i,j)>n. We
want to estimate the missing part of P using full similarity matrix C, taking
into account a form of correlation between the two similarity functions.

In this study, we express each similarity matrix by splitting the matrix
into four parts. We denote by Ctt (resp. Ptt) the n×n similarity matrix
for the training set versus itself, Cpt (resp. Ppt) the (N −n)×n similarity

matrix for the prediction set versus the training set and Cpp (resp. Ppp) the
(N −n)×(N −n) similarity matrix for the prediction set versus itself:

C=
(

Ctt C�
pt

Cpt Cpp

)
, P=

(
Ptt P�

pt
Ppt Ppp

)
(2)

Note that Cpt and Cpp are known, while Ppt and Ppp are unknown. The goal
is to predict Ppt and Ppp from C and Ptt .

3.1.2 Algorithm The ordinary regression model between an explanatory
variable x and a response variable y can be formulated as y= f (x)+ε, where
f is a regression function and ε is a noise term. By analogy we propose to
regard (x,x′) as an explanatory variable and sphar(y,y′) as a response variable
in our context.

Assuming the underlying feature space in which each x can be represented
by m features u(1)(x),u(2)(x),...,u(m)(x), we formulate a variant of the
regression model as follows:

sphar(y,y′)= f (x,x′)+ε=u(x)�u(x′)+ε, (3)

where u(x)= (u(1)(x),u(2)(x),...,u(m)(x))�. We refer to this model as
similarity matrix regression model.

We consider features that possess an expansion of the form

u(x)=
n∑

j=1

schem(x,xj)βj, (4)

where β = (β1,β2,...,βn)� is a weight vector and n is the number of
compounds in the training set.

In order to represent the set of features for all the compounds, we define
feature score matrices Ut(x)=[u(x1),u(x2),...,u(xn)]� for the training
set and Up(x)=[u(xn+1),u(xn+2),...,u(xN )]� for the prediction set. In
the matrix form, we can actually compute the feature score matrices as
Ut =CttB for the training set and Up =CptB for the prediction set, where
B=[β(1),β(2),...,β(m)].

We consider predicting sphar(y,y′) by the inner products of the feature
vectors of x and x′ based on the regression model (3). Since all the
compound–compound similarities in the feature space can be represented
as ŝphar(yi,yj)=u(xi)�u(xj) for 1≤ i,j≤N , the missing entries in P are to
be estimated as

Trainingset versus Trainingset :P̂tt =UtU�
t =CttBB�C�

tt ,

Predictionset versus Trainingset :P̂pt =UpU�
t =CptBB�C�

tt ,

Predictionset versus Predictionset :P̂pp =UpU�
p =CptBB�C�

pt .

Here, we want to find the n×m weight matrix B such that P̂tt fits Ptt as
much as possible. If we set A=BB�, this problem can be replaced by finding
A which minimizes the difference between Ptt and P̂tt . It means that, this
enables us to avoid considerable computational burden for computing B
itself, even if m is infinite. Therefore, we attempt to find A(=BB�) which
minimizes

L=‖Ptt −CttAC�
tt ‖2

F , (5)

where ‖·‖F indicates the Frobenius norm. We can rewrite the above equation
in the trace form as

L= tr
{
(Ptt −CttAC�

tt )(Ptt −CttAC�
tt )�

}
. (6)

From setting ∂L
∂A =0, the solution is analytically obtained by

A=BB� =C−1
tt PttC−1

tt . (7)

Therefore, we can compute the feature-based similarity matrix P̂ involving
the prediction set as follows:

P̂pt =UpU�
t =CptC−1

tt Ptt, P̂pp =UpU�
p =CptC−1

tt PttC−1
tt C�

pt . (8)
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3.2 Inference of drug–target interactions
We perform the inference of potential drug–target interactions based on
pharmacological information about compounds and genomic information
about proteins in the framework of supervised bipartite graph inference.
Among several algorithms for the supervised bipartite graph inference
mentioned in the introduction section, we use an algorithm based on distance
learning (Yamanishi et al., 2008), because this method is known to work the
best in terms of prediction accuracy and computational efficiency (Lodhi and
Yamanishi, 2010).

The procedure of the method for drug–target interaction prediction in this
context is briefly explained as follows:

(1) Embed compounds and proteins on the known interaction network
into a unified feature space, where interacting compounds and proteins
are close to each other.

(2) Learn a correlation model between the pharmacological space and
the unified feature space with respect to compounds, and learn a
correlation model between the genomic space and the unified feature
space with respect to proteins.

(3) Map any compounds onto the unified feature space based on the
pharmacological similarities, and map any proteins onto the unified
feature space based on the genomic sequence similarities.

(4) Predict potential compound–protein interactions by connecting
compounds and proteins which are closer than a threshold in the
unified feature space, following the spirit of the nearest neighbor.

The details of each step can be found in the original article.
The resulting prediction score for any new compound y and protein z in

the fourth process is formulated as

g(y,z)=
ny∑

i=1

nz∑
j=1

αijsphar(yi,y)sgeno(zj,z) (9)

where ny (resp. nz) is the number of compounds (resp. proteins) in the training
set, sphar(·,·) is pharmacological similarity function for compounds, sgeno(·,·)
is genomic sequence similarity function for proteins and αij(i=1,...,ny,j=
1,...,nz) are the parameters learned. If g(y,z) is higher than a threshold,
compound y and protein z are predicted to interact to each other.

The pharmacological similarity for compounds and the genomic sequence
similarity for proteins are used as inputs of the bipartite graph inference
method. The use of sphar(·,·) is a unique feature of this study, while the use
of schem(·,·) corresponds to the previous study (Yamanishi et al., 2008). Note
that the method is also able to infer potential interactions involving new target
candidate proteins as well as new drug candidate compounds, but we focus on
predicting potential interactions involving new drug candidate compounds,
because the objective of this article is to investigate the effect of introducing
pharmacological information about new drug candidate compounds.

4 RESULTS

4.1 Relationship between chemical and
pharmacological spaces with respect to drug targets

We investigated the relationship between the chemical space and the
pharmacological space about the same drugs. Each panel in Figure 1
shows the scatter-plot of pharmacological effect similarity scores
against chemical structure similarity scores for drugs targeting
enzymes, ion channels, GPCRs and nuclear receptors, respectively.
The Pearson’s correlation coefficients are 0. 321, 0.420, 0.344 and
0.391, respectively (the corresponding P-value is almost zero in
each case).

It seems that chemical structure similarities are correlated
with pharmacological effect similarities to some extent. However,
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Fig. 1. Scatter-plots of pharmacological effect similarity scores and chemical
structure similarity scores for drugs targeting enzyme, ion channel, GPCR
and nuclear receptor, respectively.

there are many exceptions. For example, there exist many drug
pairs which share high structure similarity but do not have
similar pharmacological effects. These results suggest that chemical
structures similarity does not always correspond to pharmacological
effect similarity.

We investigated the relationship between the chemical space, the
pharmacological space and the topology of drug–target interactions
networks. We constructed the drug–target interaction network for
each protein class using a bipartite graph representation (Yildirim
et al., 2007). In the bipartite graph, the heterogeneous nodes
correspond to either drugs or target proteins, and edges correspond
to interactions between them. The edge is placed between a drug
node and a target node if the protein is a known target of the drug.

Figure 2 shows the distributions of chemical structure similarity
scores and pharmacological effect similarity scores against the
network distance for drugs targeting enzymes, ion channels, GPCRs
and nuclear receptors. The top four panels in Figure 2 show
the box-plots of drug–drug chemical structure similarities, and
the bottom four panels in Figure 2 show the box-plots of drug–
drug pharmacological similarities. The network distance means the
shortest path between drugs on the bipartite graph representation of
each drug–target interaction network. From the figure, we observe
several tendencies.

Firstly, the larger the network distance between drugs, the smaller
the variability of chemical structure similarities and pharmacological
similarities, respectively. Also, the larger the network distance
between drugs, the lower the scores of the chemical structure
similarities and the drug pharmacological similarities, respectively.
These observations suggest that two drugs sharing high chemical
structure similarity or high pharmacological similarity tend to
interact with similar target proteins.

Secondly, the above tendency is much clearer in the
pharmacological similarity than in the chemical structural similarity.
It seems that most pharmacological similarity scores are almost
zero at larger distances, while many chemical similarity scores
are relatively high even at larger distances. The difference of the
distributions between ‘distance 2’ and ‘distance 4’ is important,
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Fig. 2. Distributions of chemical structure similarity scores (top four panels) and pharmacological effect similarity scores (bottom four panels) against the
network distance of drugs targeting enzymes, ion channels, GPCRs and nuclear receptors.

because ‘distance 2’ corresponds to drug-drug pairs which share the
same target proteins, while ‘distance 4’ corresponds to drug–drug
pairs which do not share the same target proteins. These observations
suggest that pharmacological similarity is more correlated with
drug targets than with chemical structure similarity, and the
pharmacological similarity information is a more useful source for
drug–target identification.

4.2 Performance evaluation of the proposed method
We tested the three different inputs: (i) chemical structure
similarity, (ii) true pharmacological similarity, and (iii) predicted
pharmacological similarity on their abilities to reconstruct four
classes of drug–target interactions involving enzymes, ion channels,
GPCRs and nuclear receptors. Note that input (i) corresponds to
the previous method (Yamanishi et al., 2008), and input (ii) and
input (iii) correspond to the proposed method in this study. Input
(ii) reflects the situation where all compounds in the prediction set
have pharmacological information, so we can skip the process of
pharmacological effect prediction. Input (iii) reflects the situation
where all compounds in the prediction set do not have any
pharmacological information.

We performed the following 5-fold cross-validation procedure:
drugs in the gold standard set were split into five subsets of
roughly equal size, each subset was then taken in turn as a test
set, and we performed the training on the remaining four sets.

To obtain robust results and accurate comparison, we kept the
same experimental conditions, where the same training drugs and
test drugs are used across the three different inputs in each cross-
validation. We repeated the above cross-validation experiment five
times.

Table 1 shows the averages of the AUC [area under the receiver
operating curve (ROC)], sensitivity, specificity and PPV (positive
predictive value). The ROC (Gribskov and Robinson, 1996) is the
plot of true positives as a function of false positives based on various
thresholds, where true positives are correctly predicted interactions
and false positives are predicted interactions that are not present
in the gold standard interactions. The upper one percentile in the
prediction score is chosen as a threshold for computing sensitivity,
specificity and PPV, because high-confidence prediction results are
interesting in practical applications.

It seems that the true pharmacological similarity-based method
outperforms the chemical structure similarity-based method in all
the four protein classes. Especially, the use of pharmacological
information is effective in the case of enzyme and ion channel
data. It seems that the predicted pharmacological similarity-based
method also outperforms the chemical similarity-based method, but
the performance is a little worse than that of the true pharmacological
similarity-based method. In practical applications, it is rare to obtain
the detailed pharmacological information about all compounds to
be tested, so the result suggests that the predicted pharmacological
information is useful for identification of unknown drug–target
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Table 1. Statistics of the prediction performance

Class Statistics Input

Chemical True Predicted
structure pharmacological pharmacological
similarity similarity similarity

Enzyme AUC 0.821 0.892 0.845
Sensitivity 0.239 0.356 0.245
Specificity 0.993 0.995 0.993
PPV 0.358 0.527 0.369

Ion AUC 0.692 0.812 0.731
channel Sensitivity 0.134 0.137 0.142

Specificity 0.996 0.996 0.997
PPV 0.704 0.714 0.742

GPCR AUC 0.811 0.827 0.812
Sensitivity 0.147 0.172 0.164
Specificity 0.994 0.996 0.995
PPV 0.519 0.614 0.581

Nuclear AUC 0.814 0.835 0.830
receptor Sensitivity 0.067 0.057 0.077

Specificity 0.995 0.994 0.996
PPV 0.560 0.480 0.640

The AUC (ROC score) is the area under the ROC, normalized to 1 for a perfect
inference and 0.5 for a random inference. The sensitivity is defined as TP/(TP+FN), the
specificity is defined as TN/(TN+FP) and the PPV (positive predictive value) is defined
as TP/(TP+FP), where TP, FP, TN, FN are the number of true positives, false positives,
true negatives and false negatives, respectively.

interactions even when pharmacological information is not available
for compounds of interest. These results serve to highlight the
significant performance of the proposed method.

We also made a simple check of the effectiveness of grouping the
keywords into the five tag groups. Figure 3 shows the AUC scores
of the predicted pharmacological similarity-based method for the
five tag groups (caution, interaction, patient, pharmaceutical effect
and property) and the combination of the five groups, respectively,
where ‘caut’, ‘inte’, ‘pati’, ‘phar’, ‘prop’ and ‘comb’ indicate
the five tag groups and the combination, respectively. The low
predictive performances of the inte profile is that the number of
drugs having the inte keywords is much fewer than those of other
types of keywords. It is notable that the remaining four types
of keywords (caut, pati, phar and prop) outperformed the comb
profiles, indicating the usefulness of discriminating the context of
the keywords. It is natural, for example, that the drugs for high
blood pressure and the drugs that cause high blood pressure have to
be distinguished. These results suggest that appropriate selection of
informative keywords and discriminating context will improve the
predictive performance.

4.3 Comprehensive prediction for unknown
drug–target interactions

After confirming the usefulness of our method, we conducted
a comprehensive prediction of interactions between all possible
compounds and proteins for the four classes of target proteins
studied: enzymes, ion channels, GPCRs and nuclear receptors.

caut inte pati phar prop comb

caut inte pati phar prop comb

caut inte pati phar prop comb
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Fig. 3. Barplot of AUC score for the five tag groups (caution, interaction,
patient, pharmaceutical effect and property) and their combination.

In the inference process for these predictions, we used all the known
drugs and target proteins in the gold standard data as training data,
and predicted potential interactions for all compounds in KEGG
LIGAND and all the other drugs in KEGG DRUG (the drugs are
absent from the gold standard data). Note that there remain many
marketed drugs whose target proteins have not been identified yet.
The total number of compounds including drugs in the prediction
set is 15 383 in each case. Note that most of the compounds and
drugs in the prediction set are not assigned any pharmacological
information, so the pharmacological effect prediction is required. All
the prediction results for each target protein class can be obtained
from the web-supplement. Because of space limitations, we focused
on the results for enzyme data below.

We focused on the top 1000 scoring predictions for the enzyme
data. We investigated the validity of the predicted pairs based on the
databases (e.g. KEGG BRITE, SuperTarget, DrugBank), because
they contain information about interactions involving compounds
which do not have any pharmacological information. Recall that
in the Section 2 we constructed the gold standard set for drug–
target interactions involving drugs for which the pharmacological
information (by JAPIC package inserts) is available. As a result,
we confirmed that 223 out of the top 1000 predictions are now
annotated in at least one database. On the other hand, in the case of
comprehensive prediction based on chemical structure information
only, we confirmed that 140 out of the top 1000 predictions are
now annotated in at least one database. We take this result as strong
evidence supporting the practical relevance of our approach. Table 2
shows 10 examples of high scoring compound–protein pairs which
were not predicted by chemical structure similarity but predicted by
pharmacological similarity.

Next, we manually investigated the validity of the predicted
pairs which were not confirmed in the databases, based on the
literatures. We take some analgesic and antipyretic agents as
examples, as shown in Figure 4. Salicylamide (D01811) and
acetaminophen (D00217) are both known to act on prostaglandin-
endoperoxide synthase 1/2 (PTGS1/2) (Aronoff et al., 2003). Based
on these known interactions, some compounds are suggested to
interact with PTGS1/2: ethenzamide (D01466), actarit (D01395),
N-acetylphenylethylamine (C06746) and N-ethylphenylacetamide
(C11487). Among these, D01466 is also an analgesic and antipyretic
agent (Darias et al., 2006), although we could not find the target
in the databases we used. On the other hand, D01395 is an anti-
rheumatic agent (Ye et al., 2008). The JAPIC entry including
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Table 2. Examples of compound–protein pairs predicted by the proposed
method for enzyme data

Pair Annotation

1 C04000 Benzyl 2-methyl-3-oxobutanoate
5743 prostaglandin-endoperoxide synthase 2

2 C04000 Benzyl 2-methyl-3-oxobutanoate
5742 prostaglandin-endoperoxide synthase 1

3 D05868 Sodium phenylbutyrate (USAN)
5742 prostaglandin-endoperoxide synthase 1

4 C07773 Ambenonium
43 acetylcholinesterase (Yt blood group)

5 D05619 Prodolic acid (USAN)
5742 prostaglandin-endoperoxide synthase 1

6 D05868 Sodium phenylbutyrate (USAN)
5743 prostaglandin-endoperoxide synthase 2

7 D02587 Metildigoxin (JP15)
476 ATPase, Na+/K+ transporting, alpha 1 polypeptide

8 C02505 2-Phenylacetamide
5743 prostaglandin-endoperoxide synthase 2

9 C15513 Benzyl acetate
5743 prostaglandin-endoperoxide synthase 2

10 C02505 2-Phenylacetamide
5742 prostaglandin-endoperoxide synthase 1

Because of space limitation, all the prediction pairs are put on the supplemental website.

D01811 describes that this drug also has an effect on rheumatism
(Frankl , 1953). We could not find any information about the
pharmaceutical effects for other two compounds (C06746 and
C11487), but they are structurally similar with the other drugs
(D01811, D00217, D01466 and D01395). Therefore, it seems
possible that these compounds act on PTGS1/2.

On the other hand, PTGS1 has some other interacting analgesic
and antipyretic drugs, such as mofezolac (D01718) (Goto et al.,
1998), from which tangeretin (C10190) (Hirano et al., 1995) is
suggested as another potential drug. The structural commonality
between these two compounds seems only that they both contain
some O-methyl groups on aromatic rings, therefore this result might
not be convincing. As the other questionable example, sodium
lactate (D02183) is suggested to act on PTGS2 based on the known
interacting drug sodium salicylate (D00566), an analgesic agent
(Preston et al., 1989). However, this result seems not convincing
at all, because their common substructures are only sodium ion and
carboxylate group, and D02183 is an electrolyte replenisher.

The other group of analgesic and antipyretic drugs may possibly
share a different target protein. Fluocinolone acetonide (D01825)
(Emerit et al., 1983) and fluocinonide (D00325) (Schlessinger
et al., 2006) are known to act on human cytosolic calcium-
dependent phospholipase A2 (PLA2G4A), which is involved
in lipid metabolism and related to various signal transductions

(Balsinde et al., 1999). From resemblance to these two drugs,
triamcinolone acetonide (D00983) (Keele, 1969) and diflorasone
diacetate (D01327) (Bluefarb et al., 1976) are suggested to act
on PLA2G4A. These four drugs are all corticosteroids, and are
all known to act as analgesic and antipyretic drugs. Therefore we
assume these results are convincing.

There are other possible drug–target interactions that belong
to different therapeutic categories. For example, Metildigoxin
(D02587) is predicted to have an interaction with a human Na+/K+
transporting ATPase (ATP1A1), based on the reported interaction of
digoxin (D00298). D00298 is a digitalis-like cardiotonic substance
that acts directly on heart muscle (Cumberbatch et al., 1981).
D02587 is the methylated derivative of D00298, and many reports
suggest that D02587 has no significant difference from D00298 in
terms of their effects on heart functions (Kaufmann et al., 1981).
Therefore, there is no wonder the two compounds share the same
target protein.

5 DISCUSSION AND CONCLUSION
In this article, we investigated the relationship between the chemical
space, the pharmacological space and the topology of drug–target
interaction networks, and showed that drug–target interactions
are more correlated with pharmacological effect similarity than
with chemical structure similarity. We then developed a new
statistical method to predict unknown drug–target interactions
from chemical structure information, genomic sequence information
and pharmacological effect information simultaneously on a large
scale. The originality of the proposed method lies in prediction
of pharmacological effects from chemical structures of given
compounds, and its use for identification of unknown drug–
target interactions in the framework of supervised bipartite graph
inference. To our knowledge, this is the first report to predict drug–
target interactions from the integration of chemical, genomic and
pharmacological spaces in a unified framework.

One previous research related with this study is the use of side-
effect similarity for drug–target identification (Campillos et al.,
2008). However, the method is applicable only to marketed drugs
for which detailed side-effect information is available. Therefore,
newly detectable interactions were limited to the linkage between
known marketed drugs assigned with side-effect information and
known target proteins. To overcome these problems, we established
a procedure to obtain pharmacological information about not only
marketed drugs but also any drugs or any drug candidate compounds
based on their chemical structures. The proposed procedure makes
it possible to perform screening of any chemical compounds against
many target candidate proteins.

In practice, there are four possible classes for predictable
compound–protein pairs: (i) new drug candidate compounds versus
known target proteins, (ii) known drugs versus new target candidate
proteins, (iii) new drug candidate compounds versus new target
candidate proteins, and (iv) known drugs versus known target
proteins, where compounds and proteins with interaction partner
information are called ‘known’, otherwise called ‘new’. Note that
in this study we focus on class (i), because the objective of this
article is to investigate the effect of introducing pharmacological
information about new drug candidate compounds. Recently, the
bipartite local model approach has been proposed to detect missing
interactions between known drugs and known target proteins based
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Fig. 4. Examples of the proposed drug–target interactions. Four boxes in the center of the figure are the target proteins, and bold lines indicate the known
drug–target interactions. Solid lines represent the proposed interactions based on the resemblance to the known interacting drugs indicated by the dashed lines.
Black stars indicate the interactions predicted by the previous method. White stars indicate the interactions additionally predicted by the proposed method.

on chemical and genomic data (Bleakley and Yamanishi, 2009).
The approach works similarly with other bipartite graph inference
methods for classes (i) and (ii) in terms of accuracy, but the approach
with an aggregation scheme is quite powerful for class (iv) (Bleakley
and Yamanishi, 2009), so the approach with pharmacological
information could detect missing interactions in class (iv) with high
accuracy.

From a technical viewpoint, the performance of our method could
be improved by using more sophisticated similarity functions for
compounds and proteins, such as kernel functions designed for
genomic sequences and chemical structures (Schölkopf et al., 2004).
In this study, we evaluated the drug pharmacological similarity
based on all available pharmacological keywords categorized into
each tag in the package insert of each drug. There remain many
unimportant keywords to be filtered and there might exist some
correlation between related keywords or hierarchy among medical
vocabulary. To deal with these problems, the use of sophisticated
text mining approaches is an important research direction.

The proposed method is expected to be useful for virtual
screening of chemical libraries. To detect new biological findings
and find potentially useful drug leads, we are currently working
with collaborators on biological assays. We believe that our method
is able to increase research productivity toward genomic drug
discovery.
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