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Abstract

Single-cell RNA sequencing is an increasingly used method to measure gene expression

at the single cell level and build cell-type atlases of tissues. Hundreds of single-cell

sequencing datasets have already been published. However, studies are frequently

deposited as raw data, a format difficult to access for biological researchers due to the

need for data processing using complex computational pipelines. We have implemented

an online database, PanglaoDB, accessible through a user-friendly interface that can

be used to explore published mouse and human single cell RNA sequencing studies.

PanglaoDB contains pre-processed and pre-computed analyses from more than 1054

single-cell experiments covering most major single cell platforms and protocols, based

on more than 4 million cells from a wide range of tissues and organs. The online interface

allows users to query and explore cell types, genetic pathways and regulatory networks.

In addition, we have established a community-curated cell-type marker compendium,

containing more than 6000 gene-cell-type associations, as a resource for automatic

annotation of cell types.

Database URL: https://panglaodb.se/

Introduction

Single-cell RNA sequencing (scRNA-seq) is a technology
that measures gene expression at the single-cell level (1).
scRNA-seq achieves an unprecedented level of resolution

and it is increasingly used to examine the cellular architec-
ture of tissues, organs and whole organisms. In contrast to
bulk RNA-seq, where gene expression is measured and aver-
aged across thousands of cells, scRNA-seq provides much
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more detailed information and has generated new insights
into cellular states, trajectories and heterogeneities. In a
typical scRNA-seq experiment, cells from tissue biopsies
are dissociated, RNA is converted to cDNA and libraries
are generated containing thousands of transcriptomes. Each
transcriptome is tagged using a unique oligonucleotide
barcode. Certain sequencing protocols incorporate Unique
Molecular Identifiers (UMIs) (2) in their workflows so that
PCR duplicates can be removed at the data analysis stage.
Compared with bulk RNA-seq, scRNA-seq data contain
many zero measurements, caused by dropout events and
a cleaner biological signal (3). Several protocols and plat-
forms have been developed for scRNA-seq, for example
Drop-seq (4), 10X Chromium and SMART-seq2 (5).

The rapid rise of scRNA-seq has led to the accumulation
of massive amounts of sequencing data in public archives
[such as the National Center for Biotechnology Information
(NCBI) Sequence Read Archive (SRA)], since most journals
and funders require that upon publication, sequencing data
are released to the public domain. However, deposited data
often remain difficult to access as it requires significant pre-
processing to become useful for regular analysis. Moreover,
while the NCBI SRA is an excellent resource for data stor-
age, there is little to no mechanism for quality control, data
curation and annotation. Quick access to published datasets
allows researchers to answer new questions using old data,
prevents duplication of previous efforts and perhaps most
importantly, enables comparisons with in-house data to
validate or generate new biological hypotheses. Altogether,
there is a strong need from the scientific community for
efforts involving collection, curation and integration of
scRNA-seq data with bioinformatic workflows into plat-
forms that are easily accessible.

Previous efforts to develop integrative databases
for scRNA-seq analysis include scRNASeqDB (6) and
SCPortalen (7), the former being limited to 36 pre-processed
datasets collected from the Gene Expression Omnibus
(GEO) (8). SCPortalen appears relatively limited in scope
and does not provide advanced visualization tools since
it is more focused on the technical properties of scRNA-
seq data. None of the databases provide pre-computed
bioinformatic analyses and advanced visualization from a
user perspective.

Here, we have developed PanglaoDB—a protocol-
agnostic platform for the exploration of scRNA-seq data
through a web-based interface. We have collected data
and metadata from hundreds of human and mouse studies
and processed these data through a unified computational
pipeline. In addition to enabling exploration of scRNA-seq
experiments, our database provides a manually curated list
of cell-type markers that can be incorporated into novel
algorithms for inference of cell types. The aim of our work

is to provide a frequently updated online single-cell resource
to facilitate investigation and hypothesis-free exploration
of scRNA-seq data generated by independent academic labs
around the world. PanglaoDB unlocks access to more than
1000 single cell experiments, and as such represents the
most up to date public resource of curated scRNA-seq data
ready for open use by the scientific community.

Materials and methods

Web server and interface

The database is hosted on a Virtual Private Server running
Ubuntu Linux with four virtual CPUs, 16 GB RAM and
500 GB hard drive space. We decided to use Nginx as web
server because it is relatively lightweight and memory-lean.
Nginx was configured to use an SSL certificate from Let’s
Encrypt. MySQL was used to keep track of data processing
steps and leverage the database through the web interface.
The interactive view was built using the D3.js JavaScript
library and Python scripts for pulling data.

Data collection and bioinformatics pipeline

Experimental metadata from high-throughput sequencing
studies were downloaded from the NCBI SRA (9) (ftp–
trace.ncbi.nlm.nih.gov/sra/reports/Metadata/). We used
only submissions fulfilling the following criteria: (i) listed
without controlled access; (ii) classified as transcriptomic;
and (iii) species is human (TaxID = 9606) or mouse
(TaxID = 10090). We then searched abstracts, titles and
sample identifiers using the following, case insensitive,
regular expression: /(single cell seq|drop\-∗seq|scrna|single
cell rna-seq|10x\s∗(genomics|chromium)|smart-seq2)/. The
sequence data were then examined to determine if barcodes
and/or UMIs were encoded in the submission; submissions
without proper barcode information were discarded from
further processing. Submissions that passed the filtering
criteria were manually inspected to make sure that these
were true scRNA-seq studies. In SRA terminology, each
submission receives a unique identifier (/SRA[0-9]+/).
A submission may consist of more than one sample
(/SRS[0-9]+/), which may consist of more than one
sequencing run (/SRR[0-9]+/). In PanglaoDB, a sample
is a dataset consisting of gene expression measurements
from cells originating from a common biological source or
experiment. Multiple runs for each sample were merged
into one file. Some studies prefer to deposit each cell
with their own SRS accession, in those cases the sample
is referred to by their SRA accession. We used the prefetch
program in the sratoolkit v.2.9.0 to streamline downloading
of the sequencing data. Submissions to the ERA and DRA

http://ftp-trace.ncbi.nlm.nih.gov/sra/reports/Metadata/
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databanks were not included due to incompatibility with
prefetch.

Sequencing reads were extracted from SRA files using
either fastq-dump or vdb-dump. For data generated using
10X Chromium, barcodes and UMIs were assumed to be 16
and 10 bp in length, respectively. For data generated using
Drop-seq, barcodes and UMIs were assumed to be 12 and
8 bp in length, respectively. Barcode and UMI sequences
were appended to the read identifier, which is the first
line in a FASTQ record: @[readid] [barcode] [UMI]. SAM
to BAM conversion, sorting and indexing were performed
with samtools (10) v.1.8 or sambamba (11) v.0.6.7. The
featureCounts program of subread (12) v.1.6.2 was used
to add gene information to the BAM file. If the single-
cell protocol used UMIs, we performed UMI deduplication
using UMI-tools (13) v.0.5.3 (parameters: “–no-sort-output
–method unique –gene-tag=XT –per-gene –per-cell”).

All sequencing reads were mapped with hisat (14)
v.2.1.0, which was selected because of its low memory
footprint; only reads with mapping quality ≥60 were
retained. Mouse and human reads were mapped to
GRCm38 and GRCh38, respectively. GENCODE (15) v.27
was used as genome annotation (exons of the same gene
were collapsed into ‘meta genes’; gene identifiers were set
to [gene symbol] [ENSEMBL ID]).

Counting of reads was performed with the UMI-tools
count command or a custom Python script. Raw read
counts were converted into a sparse R matrix where
columns represented cells and rows represented genes.

The data processing pipeline performs basic quality con-
trol; for the most part we assume the data are of good
quality since it has been released to a public archive. We
only included cells with at least 1000 uniquely mapped
reads after UMI deduplication. Only clusters with at least
10 cells are used in analyses.

Clustering and cell-type inference

Read counts per cell were adjusted for total number of
reads and then log2(x + 1) transformed (x is the expression
value for one gene in one cell, either as scaled counts or
RPKM). A pseudo-count of 1 was added to all RPKM
values prior to log2 transformation to avoid log2(0) = −Inf
for genes with zero expression [studies using RNA-seq often
do this, for example (16)]. Cell doublets were predicted with
the Scrublet software (https://github.com/AllonKleinLab/
scrublet) and the top 5% cells with the highest scores were
removed. Cell clustering was performed with the FindClus-
ters function in Seurat (17) v.2.3.2 using the PCA method
(parameters: dims.use = 1:75, resolution = 0.8, k.param =
10). The resolution parameter was manually evaluated,
and we decided to proceed with 0.8 to generate a smaller

number of large clusters. Samples were clustered separately.
Dimensionality reduction for visualization was performed
using t-distributed stochastic neighbor embedding (t-SNE)
(18) and uniform manifold approximation and projection
(UMAP) (19).

The database of cell type markers was compiled by
manual curation of thousands of published articles and
abstracts, and by querying internet search engines with
strings such as ‘GENE1 is expressed in ∗ cells’. We did not
require that gene markers had to be specific for a cell type,
since our approach borrows information from multiple
markers rather than relying on a single marker. For some
cell types, when canonical markers were unambigious, we
extended the list of putative cell-type markers by examining
expressed genes in the particular single-cell cluster. Hence,
our marker compendium is a mix of canonical and novel
markers.

To determine the cell type of a cell cluster, we perform
the following steps: for every cell cluster k in a sample
s, we iterate over all genes i = 1 . . . N and calculate the
median expression per gene over normalized gene expres-
sion measurements so that gene expression for a cell cluster
is represented by a vector vs,k,i. The cell-type identity is
then determined using the collection of cell-type marker
genes. Some marker genes are found in multiple cell types
and are less informative for cell-type inference. A simple
workaround for such ‘multi cell type’ markers would be to
remove them. However, removing markers would decrease
sensitivity and inflate type II errors. We decided to use
down-weighing of genes based on their frequency, an idea
borrowed from gene set analysis (20), which relates the
weight w(g) for a gene to its frequency across gene sets (cell
types in our case), f (g), using a monotonically decreasing
function:

w(g) = 1 +
√

max(f ) − f (g)

max(f ) − min(f )
.

Thus, weights are bounded between 1 and 2, where genes
occurring in many cell types receive weights closer to 1 and
more specific genes will get doubled weights (w = 2). Next,
to define the putative cell type, we calculated a cell-type
activity (CTA) score, similar to (21), for all of the >150
possible cell types. The CTA score estimates the ‘activity’
of marker genes, down-weighing the contribution of broad
markers and adjusting the score for the total number of
markers for the cell type:

Sj,k =
(∑N

i=1
Zk,j,i • wi

) / 3√N.
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Sj,k is the CTA score for cell-type j in cell cluster k and
N is the total number of marker genes. Z is normalized
gene expression counts. For a given cell cluster, CTA scores
are then ranked from highest to lowest and the top-ranking
cell type is selected as the ‘winner’. A P value is computed
using a one-sided Fisher’s exact test (hypergeometric test)
on genes being expressed and not. Genes were defined as
expressed if expression was >0. A false discovery rate was
calculated with the Benjamini–Hochberg procedure (22); if
the adjusted P value is >0.05 for the top-ranking cell type,
it is set to ‘Unknown’.

We validated our method using a subset of included sam-
ples where the reported cell type was known. The majority
of included samples represented whole tissues, in which case
there is more than one cell type. However, some single cell
studies have targeted one specific cell type by flow cytomet-
ric sorting of cells using their surface markers. In such cases
it is possible to compare if the predicted cell type matches
the ‘biological’ cell type. We identified 17 independent
datasets with homogeneous cell-type populations, where
the biological cell type has been reported (this information
is available as metadata in the NCBI SRA; Supplementary
Table 1). In all 17 cases the biological cell type was identical
to the cell type predicted by our method. As a side note, in
one sample (SRS2781556), the biological annotation was
microglia, whereas our prediction found that the bulk of
cells was microglia and a small cell cluster was neutrophils.
The most likely explanation to this relates to that microglia
and neutrophils share the same myeloid origin, thus the
isolation protocol have captured a few neutrophils. We
embarked on an orthogonal validation approach, based on
tissue samples and the expectation to find a certain cell
type. For example, a tissue sample from liver is expected to
contain hepatocytes (the most abundant cell type in liver)
and a tissue sample from the central nervous system can
be expected to contain glia cells. We randomly selected 13
tissue samples from a wide range of tissues and examined
if the ‘prominent’ or ‘expected’ cell type of the particular
tissue matched one of the types predicted by our method
(Supplementary Table 1). In all 13 examined datasets, there
is an overwhelming consistency between the expected cell
type and the predicted.

Gene search

We experimented with several metrics to represent the
expression of a gene within one cell cluster (median, geo-
metric mean, arithmetic mean and harmonic mean), and we
eventually settled with the median being the most useful in
most situations. To allow comparison of expression levels
between different datasets, we computed gene expression

ranks; i.e. the most highly expressed gene of a cell cluster
always has rank 1.

Regulons

Regulons were identified by largely following what was
described in (23) and (24). First, we derived a co-expression
network for each cell cluster using stochastic gradient
boosting (GRNBoost2: https://arboreto.readthedocs.io/
en/latest/) (25). We also explored creating co-expression
networks using GENIE3 (26) and WGCNA (27), the
former was deemed too computationally expensive and
the latter did not work well due to the sparse properties
of the single cell sequencing data. Co-expression networks
were centered on transcription factors; i.e. the central node
in each subnetwork was a transcription factor. We used
a list of curated transcription factors from TFCat (28).
We collected an extensive set of 4104 positional weight
matrices (PWMs) from various online sources [JASPAR
(29), HOCOMOCO (30), SwissRegulon (31), UniPROBE
(32) and CIS-BP (33)], representing experimentally derived
transcription factor binding site motifs of 560 transcription
factors (the collection has multiple and overlapping motifs
for several transcription factors).

We used FANTOM5 CAGE peaks to compile a list of
transcriptional start sites (34). For genes without a CAGE
peak we simply used the most 5′ UTR of the longest
isoform. A window of +/− 10 kb around each transcrip-
tional start site of all protein-coding and long non-coding
RNA genes were extracted and searched using the PWMs.
The program fimo (part of the meme v.4.12.0 package)
(35) was used for searching both DNA strands (–max-
strand parameter). The choice of fimo was based on the
conclusions from (36). Previous studies have found that
transcription factor binding motifs are often clustered into
cis-regulatory modules (37). Fimo gives multiple hits for
each gene (20 kb sequence), likely representing redundant
motifs. We rescored the fimo output by summing over the
score for each motif-gene pair, and then ranking the genes
according to this new score.

An enrichment test was performed to examine if co-
expressed genes were enriched in the top-ranking genes for
a motif (we limited the test to include only the top 200
ranking genes for any motif). For a set of co-expressed
genes under the putative control of a certain transcrip-
tion factor, we calculated the area under the curve for
all motifs as a measurement of the genomic background.
In the original paper (24), the authors used a Z-score
to determine the significance of a motif compared to the
genomic background. However, we found that in many
cases the resulting distribution was not Gaussian. Instead
we used a kernel density estimate and integrated over the

https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz046#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz046#supplementary-data
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curve to yield an estimate of the significance (AUC<0.05
was used as significance threshold). The enrichment test was
implemented in R using sfsmisc and DescTools as external
packages.

Gene set activity

We used MSigDB (38) v.6.1 as input signatures for gene
set activity (GSA) calculations. GSA was calculated as
described in (21). To test for enrichment in gene sets we
used a one-sided Fisher’s exact test. Bonferroni correction
was used to correct for multiple testing (the α parameter
was set to 0.01). We only tested gene sets with at least 10
genes and not more than 500 genes. For mouse samples,
we restricted the analysis to one-to-one human–mouse
orthologs as defined by Ensembl BioMart.

Cell cycle analysis, differential expression and

disease associations

Cell cycle analysis was conducted using the cyclone function
in the scran R package (39). For every cell cluster, each
cell was assigned into G1, G2M and S phases. Differ-
ential expression analysis was implemented based on the

FindMarkers function of the Seurat package (17). Disease
associations for genes were extracted from the eDGAR
database (40).

Results and discussion

Design and general description of the database

The aim of PanglaoDB is to unlock access to scRNA-
seq data through a simple and user-friendly interface that
allows analysis, visualization and biological interpretation
of gene expression data from multiple tissues and studies.
Figure 1A shows the data flow from the NCBI SRA (9).
Most submissions to the NCBI SRA have a correspond-
ing submission to the GEO (8). We decided not to use
the GEO submission because it is currently difficult to
reconcile datasets from GEO because of inconsistencies
in data formats and genome annotations. Furthermore,
we reasoned that remapping and recounting sequencing
reads from scratch have the advantage of homogenizing
the analytical procedures in terms of algorithms, reference
genomes and annotations. Raw sequencing data were iden-
tified and downloaded from the NCBI SRA; data were
verified to be true scRNA-seq data by manual inspection.

Figure 1. Overview of the database and features. (A) Data from selected single cell RNA sequencing experiments were downloaded from NCBI

SRA and filtered according to a number of different criteria. Only mouse and human data were included. The bulk of the data came from three

scRNA-seq platforms/protocols (10X Chromium, Drop-seq and SMART-seq2). Data were processed in a standardized bioinformatics pipeline. The

example shows the sample SRS3059959 from mouse cerebellum. Analyses were conducted on the final processed data, and files were uploaded to

PanglaoDB. (B) The three entry points of PanglaoDB are (i) the cell marker compendium, (ii) the gene search function and (iii) the sample list.
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Sequencing reads were processed in a standardized bioin-
formatics pipeline, involving mapping to reference genomes
and basic quality control. Cells in each sample were clus-
tered and cell types were inferred (Figure 1A). The three
main entry points to the database are the sample list, the
search function and the marker compendium (Figure 1B).
Currently, we have integrated 845 and 209 single-cell sam-
ples from mouse and human, respectively. Altogether, these
samples contain data from more than 4 million cells. We
anticipate these numbers to grow substantially over the next
few years as the use of scRNA-seq continues to be adopted
across the biological and medical disciplines.

All included samples can be browsed by navigating to
the ‘samples’ entry point; the list can be filtered by species,
protocol and/or sorted on several different attributes (time
added, tissue, protocol and number of cells). To explore
a particular sample of interest, the ‘samples’ entry point
should be used; a link is available to the right, ‘view’,
which opens a new page containing metadata, summary
statistics and 2D projections of the gene expression data.
While t-SNE is one of the most used algorithms to project
scRNA-seq data to a low-dimensional space, PanglaoDB
also offers projections generated using UMAP. Examples of
metadata that are shown for each sample are species (mouse
or human), tumor/cancer sample status, if it is a primary
adult tissue sample, the employed scRNA-seq protocol,
sequencing instrument and sampled tissue/organ. Summary
statistics include number of cells, number of expressed
genes, median number of expressed genes per cell and num-
ber of clusters. To show gene expression for a specific gene
in the selected dataset, one or multiple (comma separated)
gene symbols can be entered in the search box with the
label ‘Gene search’, which will open a bar plot where each
bar corresponds to a cell and colors correspond to clusters.
When querying individual samples, read counts have been
scaled to library size and log2(x+1) transformed (full-length
mRNA protocols also adjust for mRNA length). To perform
detailed exploration of gene expression, two buttons con-
taining the word ‘interactive’ are available below the 2D
projection plot. The interactive view can be used to explore
gene set signatures, cell cycle states, transcription factors
and other properties. PanglaoDB incorporates regulon pre-
dictions for all mouse datasets. Regulon data are accessible
from the interactive projection (shown by clicking ‘view’
on the right side in the sample list); clicking on a cell cluster
will open a panel to the right, showing predicted regulons
for the cell cluster. Differential expression analysis can be
performed between different cell clusters of the same sample
from the interactive view.

Each dataset in PanglaoDB represents one biological
sample and datasets can be uniquely identified using its cor-
responding SRS accession. Raw read counts can be down-

loaded as an R sparse matrix object and as a compressed
plain text file, so that researchers are not limited by pre-
computed analyses. If the scRNA-seq protocol is based on
full-length mRNA sequencing, count data are also available
as RPKM values. Due to disk space limitation, we don’t
store sequencing reads or alignments after processing and
analyses are completed; the original reads can nevertheless
be downloaded from the NCBI SRA if they are needed by
the user. Bulk download of all datasets in PanglaoDB can
be performed through the main menu (an archive file in tar
format, current file size is ∼22 GB).

Gene expression markers for cell-type inference

Useful biological insights from scRNA-seq data rely on
accurate inference of cell-type identity. At the time when
this work was initiated, there was no published database or
comprehensive list of genes that can be used for automatic
cell-type assignment [CellMarker (41) came out when this
manuscript was in preparation]. We therefore compiled a
compendium of 6631 gene markers mapping to 155 cell
types. The compendium was created using manual exam-
ination of the literature. We distinguished markers specific
to mouse and human. It is possible for a gene marker to map
to more than one cell type. Cell types were subsequently
grouped into organs (n = 26) and germ layers (n = 3). The
typical cell type has 28 (median) gene markers assigned, but
certain broad cell types such as fibroblasts have more than
100 assigned markers.

Assignment of genes to cell types requires broad exper-
tise; we implemented a community-based approach to cura-
tion of gene expression markers. Any gene marker can
be flagged by clicking a ‘flag’ link, which will mark it
for review; a mechanism to propose new markers is also
available. For each gene, the marker database computes an
ubiquitousness index (UI), which is an indicator of how
often the gene is expressed in cell clusters. UI takes values
between 0 and 1. Values toward 1 indicate the gene is
expressed in more cell clusters, indicating the gene to be
involved in housekeeping tasks. Sensitivity is also calculated
for every marker-cell type, representing a measure of how
frequently the marker identifies the cell type uniquely.

The list of cell type markers consists of the following
columns: (i) species, (ii) gene symbol, (iii) UI, (iv) sensitivity,
(v) marker count (number of cell types this marker is used
in; only shown if browsing a specific marker), (vi) cell type,
(vii) germ layer, (viii) organ, (ix) gene aliases, (x) product
description and (xi) if the gene has been associated with
any disease (Y for Yes, hovering the mouse over the ‘Y’
shows names of diseases). Canonical markers are shown in
green color. The complete list can be downloaded as a tab
delimited file for easy loading into scripts (link ‘get tsv file’).
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Search gene expression across datasets, cell

types and studies

PanglaoDB has a central search function that allows users
to search through the entire collection of included datasets
(Figure 2). Each row listed by a search query represents one
cell cluster. The search function finds cell clusters where

the median expression of the queried gene is higher than
0. To allow comparison of expression levels across studies,
we provide the gene expression rank within the cell cluster.
Users can type one or more comma-separated gene symbols
or Ensembl identifiers. Common aliases of most genes can
also be used. Executing a search query such as one for

Figure 2. Data analysis visualization interface. (A) The search window box is one of the primary entry points to the data. Genes are queried using

their gene symbols. The search function also recognizes any non-ambiguous gene aliases. Multiple genes can be separated by commas. (B) Partial

search results from a query for Sox10 (first six rows shown). Each row represents one cell cluster where the gene is expressed. Columns correspond

to the following: species (Mm = mouse, Hs = human), gene symbol, sampled tissue, study/sample identifier, cluster index (each sample is clustered

and clusters are identified by their corresponding 0-indexed identifier), the inferred cell type of the cluster, gene expression is shown as ranks, and

actions. The folder icon (indicated with a red circle) will open a more detailed view of the dataset where the cell cluster is located. (C) The interactive

view, showing the 2D projection from t-SNE of one dataset (SRS3026285) from the subventricular zone. Colors correspond to clusters. Hovering the

mouse over a cluster will open a transient window (blue box) with three rows: cluster identifier, number of cells in the cluster and putative cell type.

When clicking on the cluster, the left and right boxes will open. The left box shows the number of expressed transcription factors in the selected

cluster (the example lists 11 transcription factors in cluster 9). To explore gene set activities, the blue link can be clicked and a separate window will

open. The right boxes shows the inferred cell type of the cluster (in the example, Oligodendrocyte progenitor cells), a P value from a hypergeometric

test and a computed false discovery rate. Expressed marker genes are indicated in the box. Below boxes indicate number of cells in three phases of

the cell cycle. The final box can be used to explore regulons.
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Sox10 will list cell clusters (mouse and/or human) where
the median expression is higher than 0. The user can choose
to include tumor/cancer samples in the search as well as
non-adult samples, which represent experiments on devel-
opmental phases (embryo, fetal and post-natal periods).
The search box supports the boolean operators ‘AND’ and
‘NOT’, which can be used to list cell clusters where certain
genes are expressed and not expressed.

The columns in the search output correspond to (i) a
two-letter abbreviation of the species (Mm=Mus musculus,
Hs=Homo sapiens); (ii) gene symbol; (iii) the tissue or body
site where the sample originates from; (iv) the SRA sample
accession; (v) the cluster index (follows the Seurat naming
convention for cell clusters); (vi) the inferred cell type (based
on the marker compendium); (vii) the expression rank of
the gene within the cell cluster; and (viii) action links where
the rightmost link (folder icon) leads to the t-SNE plot
for the sample. In addition, each search query is summa-
rized by a bar plot showing the number of cell clusters
grouped by cell type (Y-axis is number of cell clusters and
X-axis is distinct cell types found). Hovering the mouse
over the bars will show a brief description of the cell
type.

Conclusions and future perspectives

We have developed an easy to use scRNA-seq platform,
PanglaoDB, enabling researchers to explore scRNA-seq
data from mouse and human using an interactive interface.
We have compiled a comprehensive compendium of more
than 6000 gene-cell markers, which we use to annotate cell
clusters of samples included in the database. In addition,
the compiled list of markers can be used in development
of novel algorithms for cell type inference. PanglaoDB will
be actively maintained and developed to accommodate the
needs of the biomedical research community. Further devel-
opment of the platform is planned to involve features to
submit custom data and cell lineage mapping. In conclusion,
PanglaoDB is to our knowledge the most easy to use, well-
purposed scRNA-seq data assembly to date providing an
interface to published scRNA-seq data.

Supplementary data
Supplementary data are available at Database Online.
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