

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

The Health Effects of Climate Change: An Overview of Systematic Reviews

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-046333
Article Type:	Original research
Date Submitted by the Author:	27-Oct-2020
Complete List of Authors:	Rocque, Rhea; The University of Winnipeg Beaudoin, Caroline; Université Laval, Faculty of Medicine Ndjaboue, Ruth; Université Laval, Faculty of Medicine; VITAM Research Centre for Sustainable Health Cameron, Laura; The University of Winnipeg Poirier-Bergeron, Louann; Université Laval, Faculty of Medicine Poulin-Rheault, Rose-Alice; Université Laval, Faculty of Medicine Fallon, Catherine; Université Laval, Faculty of Medicine; CHUQ Research Centre Tricco, Andrea; Li Ka Shing Knowledge Institute, ; University of Toronto, Institute for Health Policy, Management, and Evaluation Witteman, Holly; Laval University, Family and Emergency Medicine; VITAM Research Centre for Sustainable Health
Keywords:	PUBLIC HEALTH, SOCIAL MEDICINE, Public health < INFECTIOUS DISEASES

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

The Health Effects of Climate Change: An Overview of Systematic Reviews

Rhéa Rocque, PhD¹, Caroline Beaudoin, DEC², Ruth Ndjaboue, MPH, PhD^{2,3}, Laura Cameron, MA¹, Louann Poirier Bergeron, DES², Rose-Alice Poulin-Rheault, DEC², Catherine Fallon, MSc^{2,4}, Andrea C. Tricco, PhD^{5,6}, Holly O. Witteman, PhD^{2,3,4}

¹Prairie Climate Centre, University of Winnipeg, Winnipeg
²Faculty of Medicine, Laval University, Quebec City
³VITAM Research Centre for Sustainable Health, Quebec City
⁴Research Centre of the CHU de Québec-Laval University, Quebec City
⁵Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto
⁶Dalla Lana School of Public Health, University of Toronto, Toronto

Corresponding author: Rhéa Rocque – rhea.rocque@gmail.com

Abstract

Objectives: In this study, we aimed to develop a synthesis of systematic reviews of health impacts of climate change. Our research objectives were to synthesize studies' characteristics such as geographical regions, years of publication, and authors' affiliations, to map the climate impacts, health outcomes, and combinations of these that have been studied, and to synthesize key findings.

Design: We conducted an overview of systematic reviews of health impacts of climate change. We registered our review in PROSPERO (CRD42019145972). We systematically searched the literature using a predefined search strategy, inclusion, and exclusion criteria. We included systematic reviews that explored at least one health impact of climate change. We organized systematic reviews according to their key characteristics, including geographical regions, year of publication and authors' affiliations. We mapped the climate effects and health outcomes being studied and synthesized major findings. No ethical approval was required since we used secondary data. Additional data is not available.

Results: We included ninety-four systematic reviews. Most were published after 2015 and approximately one fifth contained meta-analyses. Reviews synthesized evidence about five categories of climate impacts; the two most common were meteorological and extreme weather events. Reviews covered ten health outcome categories; the three most common were 1) infectious diseases, 2) mortality, and 3) respiratory, cardiovascular, cardiopulmonary or neurological outcomes. Most reviews suggested a deleterious impact of climate change on multiple adverse health outcomes, although the majority also called for more research.

Conclusion: Overall, most systematic reviews suggest that climate change is associated with worse human health. Future research could explore the potential explanations between these

1	
2	
3	
4	
5	
6	
7	
8	
9	
9 10	
11	
12	
11 12 13 14 15 16 17 18	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	

60

associations to propose adaptation and mitigation strategies and could include psychological and broader social health impacts of climate change.

Funding: This work was supported by Canadian Institutes of Health Research FDN-148426

for beer teries only

Keywords

Health; Climate Change; Overview of Systematic Reviews; Extreme Weather Events; Air Quality; Global Warming

Strengths and limitations of this study

- A strength of this study is that it provides the first broad overview of previous systematic reviews exploring the health impacts of climate change.
- By targeting systematic reviews, we achieve a higher-order summary of findings than what would have been possible by consulting individual original studies.
- By synthesizing findings across all included studies and according to the combination of climate impact and health outcome, we offer a clear, detailed, and unique summary of the current state of evidence and knowledge gaps about how climate change may influence human health.
- A limitation of this study is that we were unable to access some full texts and therefore some studies were excluded, even though we deemed them potentially relevant after title and abstract inspection.
- Another limitation is that we could not conduct meta-meta-analyses of findings across reviews, due to the heterogeneity of the included systematic reviews and the relatively small proportion of studies reporting meta-analytic findings.

Summary boxes

What is already known on this topic?

Multiple studies have documented an association between climate change (and its related environmental consequences) and various human health impacts. But to better understand the multiple health impacts of climate change and to identify gaps in previous literature, we need a detailed over-arching overview of the current literature investigating the climate-health association.

What this study adds?

This study provides an up to date detailed overview of previous systematic reviews of health impacts of climate change based on a rigorous and consistent mapping of the key characteristics and findings of included reviews. Overall, most systematic reviews suggest a deleterious impact of climate change (and its related environmental consequences) on multiple adverse health outcomes. This study allows to guide health adaptation and to identify key gaps in literature.

Introduction

The environmental consequences of climate change such as rising temperatures, more extreme weather events, and increased droughts and flooding are impacting human health and lives.^{1,2}

Previous studies and reviews have documented the health impacts of climate change; however, they have focused on specific climate effects,^{3,4} health impacts,^{5,6} countries,^{7–9} or are no longer up to date.^{10,11} To guide future research and action to mitigate and adapt to the health impacts of climate change and its environmental consequences, we need a complete and thorough overview of the research already conducted. In this study, we aimed to develop such a synthesis of systematic reviews of health impacts of climate change. Our research objectives were to synthesize studies' characteristics such as geographical regions, years of publication, and authors' affiliations, to map the climate impacts, health outcomes, and combinations of these that have been studied, and to synthesize key findings.

Methods

We applied the Cochrane method for overviews of reviews.¹² This method is designed to systematically map the themes of studies on a topic and synthesize findings to achieve a broader overview of the available literature on the topic.

Research questions

Our research questions were the following: 1) What is known about the relationship between climate change and health, as shown in previous systematic reviews? 2) What are the characteristics of these studies? We registered our plan (CRD42019145972¹³) in PROSPERO, an international prospective register of systematic reviews and followed PRISMA 2020¹⁴ to report our findings, as a reporting guideline for overviews is still in development.¹⁵

Search strategy and selection criteria

To identify relevant studies, we used a systematic search strategy. We included studies in this review if they 1) were systematic reviews of original research and 2) reported at least one health impact as it related (directly or indirectly) to climate change.

We defined a systematic review, based on Cochrane's definition, as a review of the literature in which one "attempts to identify, appraise and synthesize all the empirical evidence that meets pre-specified eligibility criteria to answer a specific research question [by] us[ing] explicit, systematic methods that are selected with a view aimed at minimizing bias, to produce more reliable findings to inform decision making."¹⁶ We included systematic reviews of original research, with or without meta-analyses. We excluded narrative reviews, non-systematic literature reviews and systematic reviews of materials that were not original research (e.g., systematic reviews of guidelines.)

We based our definition of health impacts on the World Health Organization's (WHO) definition of health as, "a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity."¹⁷ Therefore, health impacts included, among others, morbidity, mortality, new conditions, worsening/improving conditions, injuries, and psychological well-being. Climate change (or global warming) could be referred to directly or indirectly, for instance, by synthesizing the direct or indirect health effects of temperature rises or of natural

conditions/disasters made more likely by climate change (e.g., floods, wildfires, temperature variability, droughts.) We included systematic reviews whose main focus was not the health impacts of climate change, providing they reported at least one result regarding health effects related to climate change (or consequences of climate change.)

On June 22, 2019, we retrieved systematic reviews regarding the health effects of climate change by searching the electronic databases Medline, CINAHL, Embase, Cochrane, Web of Science using a structured search (see Appendix 1 for final search strategy developed by a librarian.) We did not apply language restrictions. After removing duplicates, we imported references into Covidence.¹⁸

Screening process

To select studies, we first screened titles and abstracts to eliminate articles that did not meet our inclusion criteria. Two trained analysts independently screened each article. A senior analyst resolved any conflict or disagreement. Because the topic was new to some team members, to ensure a high-quality screening process, the trained analysts then re-screened all included records and the senior analyst re-screened all excluded records. Two analysts then independently screened the full text of retained articles, again with a senior analyst resolving disagreements.

Data extraction

Next, we decided on key information that needed to be extracted from studies. We extracted the first author's name, year of publication, number of studies included, time frame (in years) of the studies included in the article, first author's institution's country affiliation, whether the systematic review included a meta-analysis, geographical focus, population focus, the climate impact(s) and the health outcome(s) as well as the main findings and limitations of each systematic review.

Two or more trained analysts (RR, CB, RN, LC, LPB, RAPR) independently extracted data, using Covidence and spreadsheet software (Google Sheets). For analysts who were new to evidence syntheses (CB, LPB, RAPR), the training process included extracting data repeatedly from the same articles to ensure accurate understanding, weekly group meetings to clarify understanding, and daily supervision by more senior team members (RR, RN, HOW). An additional trained analyst from the group or senior research team member resolved disagreements between individual judgments.

Coding and Data Mapping

To summarize findings from previous reviews, we used a three-step procedure for coding and data mapping. First, to map articles according to climate impacts and health outcomes, two researchers (RR and LC) consulted the titles and abstracts of each article. We developed the categories for climate impacts separately from those for health outcomes and used a mixed approach to coding. We started with an inductive coding method, by identifying categories directly based on our data and followed up with a deductive approach to finalize categories by

consulting previous conceptual frameworks of climate impacts and health outcomes.^{1,2,19} The same two researchers independently coded each article according to their climate impact and health outcome. We then compared coding and resolved disagreements through discussion.

Next, still using spreadsheet software, we created a matrix to map articles according to their combination of climate impacts and health outcomes. Each health outcome occupied one row, whereas climate impacts each occupied one column. We placed each article in the matrix according to the combination(s) of their climate impact(s) and health outcome(s). For instance, if we coded an article as 'extreme weather' for climate and 'mental health' for health impact, we noted it in the cell at the intersection of these two codes. We calculated frequencies for each cell to identify frequent combinations and gaps in literature. Because one study could investigate more than one climate impact and health outcome, the frequency counts for each category could exceed the number of studies included in this review.

Finally, we summarized findings of the studies individually according to their combination of climate impacts and health outcomes. We re-read the Results and Discussion sections of each article as part of this step. We first wrote an individual summary for each study, then we collated the summaries of all studies exploring the same combination of categories to develop an overall summary of findings for each combination of categories.

Quality assessment

We used a modified version of AMSTAR-2 to assess the quality of the included systematic reviews (Appendix 2). Since AMSTAR-2 was developed for syntheses of systematic reviews of randomized controlled trials, working with a team member with expertise in knowledge synthesis (AT), we adapted it to suit a research context that is not amenable to randomized controlled trials. We used items 5, 6, 10, 11, 12, 14, 15, 16 without modification and modified items 1 to 4, 7 to 9 and 13.

Patient and Public Involvement

Patient and Public involvement. Patients and members of the public were not involved in this study.

Results

Articles identified

As shown in the PRISMA diagram in Figure 1, from an initial set of 2619 references, we retained 94 for inclusion.

Insert Figure 1 About Here

Study Descriptions

A detailed table of all articles and their characteristics can be found in Appendix 3. Publication years ranged from 2007 to 2019 (year of data extraction), with the great majority of included articles (n = 69; 73%) published since 2015 (Figure 2). A median of 30 studies had been included in the systematic reviews (mean = 60; SD = 49; range 7 to 722). Approximately one fifth of the systematic reviews included meta-analyses of their included studies (n = 18; 19%). The majority of included systematic reviews' first authors had affiliations in high-income countries, with the largest representations by continent in Europe (n = 30) and Australia (n = 24) (Figure 3).

Insert Figure 2 About Here

Insert Figure 3 About Here

Regarding the geographical focus of systematic reviews, most of the included studies (n = 68; 72%) had a global focus or no specified geographical limitations and therefore included studies published anywhere in the world. The remaining systematic reviews either targeted certain countries (n = 12) (1 for each Australia, Germany, Iran, India, Ethiopia, Malaysia, Nepal, New Zealand and 2 reviews focused on China and the United States), continents (n = 5) (3 focused on Europe and 2 on Asia), or regions according to geographical location (n = 6) (1 focused on Sub-Saharan Africa, 1 on Eastern Mediterranean countries, 1 on Tropical countries, and 3 focused on the Arctic), or according to the country's level of income (n = 3) (2 on low to middle income countries, 1 on high income countries).

Regarding specific populations of interest, most of the systematic reviews did not define a specific population of interest (n = 69; 73%). For the studies that specified a population of interest (n = 25; 26.6%), the most frequent populations were children (n = 7) and workers (n = 6), followed by vulnerable or susceptible populations more generally (n = 4), the elderly (n = 3), pregnant people (n = 2), people with disabilities or chronic illnesses (n = 2) and rural populations (n = 1).

Quality assessment

We assessed studies for quality according to our revised AMSTAR-2. Out of 94 systematic reviews, the most commonly fully satisfied criterion was #1 (PICO components) with 81/94 (86%) of included systematic reviews fully satisfying this criterion. The next most commonly-satisfied criteria were #16 (potential sources of conflict of interest reported) (78/94 = 83% fully), #13 (account for limitations in individual studies) (70/94 = 75% fully and 2/94 = 2% partially), #7 (explain both inclusion and exclusion criteria) (64/94 = 68% fully and 19/94 = 20% partially), #8 (description of included studies in adequate detail) (36/94 = 38% fully and 41/94 = 44% partially), and #4 (use of a comprehensive literature search strategy) (0/94 = 0% fully and 80/94 = 85% partially). For criteria #11, #12, and #15, which only applied to reviews including meta-analyses, 17/18 (94%) fully satisfied criterion #11 (use of an appropriate methods for statistical combination of results), 12/18 (67%) fully satisfied criterion #12 (assessment of the potential

impact of RoB in individual studies) (1/18 = 6% partially), and 11/18 (61%) fully satisfied criterion #15 (an adequate investigation of publication bias, small study bias). Full details are available in Appendix 4.

Climate Impacts and Health Outcomes

For both the climate impacts and health outcomes, systematic reviews could have a general or a specific focus. A general focus consisted of investigating the general impacts of climate change or multiple impacts simultaneously, whereas a specific focus targeted specifically only one climate impact or health outcome. When combining the climate impact to the health outcome, four combinations became apparent. Table 1 shows these four combinations with sample titles of systematic reviews within that combination. The most frequent combination (n = 52; 55%) consisted of studies investigating a specific climate impact on a specific health outcome (e.g., the impact of floods on mental health) and the least frequent combination (n = 5; 5%) consisted of studies exploring general or multiple climate impacts' effects on multiple health outcomes (e.g., health impacts of climate change.)

Frequency (%) and Example		Health Outcome		
Titles		Multiple (n = 29)	Specific (n = 65)	
Climate Impact	General or multiple (n = 18)	n = 5 (5%) E.g., "Health Impact of Climate Change in Older People: An Integrative Review and Implications for Nursing," ²⁰ and, "Climate Change and Health in the Eastern Mediterranean Countries: A Systematic Review." ²¹	n = 13 (14%) E.g., "Global Warming and Obesity," ²² and, "Systematic Review of Current Efforts to Quantify the Impacts of Climate Change on Undernutrition." ²³	
	Specific (n = 76)	n = 24 (26%) E.g., "Floods and Human Health: A Systematic Review," ³ and, "Health Effects of Drought: A Systematic Review of the Evidence." ²⁴	n = 52 (55%) E.g., "The Mental Health Outcomes of Drought: A Systematic Review and Causal Process Diagram," ²⁵ and, "The Association between Ambient Temperature and Childhood Asthma: A Systematic Review." ²⁶	

Table 1. Summary of the four scenarios possible when combining climate impact and
health outcome categories with frequencies and examples of paper titles.

Regarding climate impacts, we identified five mutually exclusive categories, with 13 publications targeting more than one category of climate impacts: 1) Meteorological (n = 71 papers) (e.g., temperature, heat waves, humidity, precipitation), 2) Extreme weather (n = 24) (e.g., water-

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

related, floods, cyclones, hurricanes, drought), 3) Air quality (n = 7) (e.g., air pollution and wildfire smoke exposure), 4) General (n = 5), and 5) Other (n = 3). "General" climate impacts included articles that did not specify climate change impacts but stated general climate change as their focus. "Other" climate impacts included studies investigating other effects indirectly related to climate change (e.g., impact of environmental contaminants) or general environmental risk factors (e.g., environmental hazards, sanitation, and access to clean water.)

We identified ten categories to describe the health outcomes studied by the systematic reviews, and 29 publications targeted more than one category of health outcomes: 1) Infectious diseases (n = 41 papers) (vector-, food- and water-borne), 2) Mortality (n = 32), 3) Respiratory, cardiovascular, cardiopulmonary and neurological (n = 22), 4) Healthcare systems (n = 16), 5) Mental health (n = 13), 6) Pregnancy and birth (n = 11), 7) Dietary (n = 9), 8) Skin and allergies (n = 9), 9) Occupational health and injuries (n = 6) and 10) Other health outcomes (n = 17) (e.g., sleep, arthritis, disability-adjusted life years, non-occupational injuries, etc.)

Figure 4 depicts the combinations of climate impact and health outcome for each study, with Appendix 5 offering further details. The 5 most common combinations are studies investigating the 1) meteorological impacts on infectious diseases (n = 35), 2) mortality (n = 24) and 3) respiratory, cardiovascular, cardiopulmonary and neurological outcomes (n = 17), and 4) extreme weather events' impacts on infectious diseases (n = 14) and 5) meteorological impacts on health systems (n = 11).

Insert Figure 4 About Here

For studies investigating meteorological impacts on health, the three most common health outcomes studied were impacts on 1) infectious diseases (n = 35), 2) mortality (n = 24) and 3) respiratory, cardiovascular, cardiopulmonary and neurological outcomes (n = 17). Extreme weather event studies most commonly reported health outcomes related to 1) infectious diseases (n = 14), 2) mental health outcomes (n = 9) and 3) dietary outcomes (n = 6) and other health outcomes (e.g., injuries, sleep) (n = 6). Studies focused on the impact of air quality were less frequent and explored mostly health outcomes linked to 1) respiratory, cardiovascular, cardiopulmonary and neurological outcomes (n = 6), 2) mortality (n = 5) and 3) pregnancy and birth outcomes (n = 3).

Meteorological factors' impact on all health outcomes are explored, although some health outcomes are more rarely explored (e.g., mental health and dietary outcomes). In contrast, the impact of extreme weather events and air quality on skin and allergies and occupational health are not explored and their impacts on respiratory, cardiovascular, cardiopulmonary and neurological outcomes, health systems and pregnancy outcomes are only rarely explored. The impacts of air quality on infectious diseases, dietary outcomes, skin and allergies, and occupational health and injuries are also not explored. Most health outcomes are most frequently explored according to the meteorological impacts, however, mental health outcomes and dietary outcomes are most frequently explored according to extreme weather events.

Summary of Findings

Most reviews suggest a deleterious impact of climate change on multiple adverse health outcomes, with some associations being explored and/or supported with consistent findings more often than others (see Table 2 for a summary of findings according to health outcomes). For instance, the association between meteorological factors, such as temperature and humidity, and vector-borne diseases is quite substantially supported by multiple reviews (n = 22) conducted in multiple geographic locations. In contrast, the association between wildfire smoke exposure and adverse birth outcomes is plausible, but the evidence from included reviews is still in its infancy stage because only a few reviews (n = 3) investigated this association and the findings are currently conflicting.

Most reviews concluded by calling for more research, noting the limitations observed among the studies included in their reviews, as well as limitations in their reviews themselves. These limitations included, amongst others, some systematic reviews having a small number of publications,^{27,28} language restrictions such as including only papers in English,^{20,23} arriving at conflicting evidence,²⁹ difficulty concluding a strong association due to the heterogeneity in methods and measurements or the limited equipment and access to quality data in certain contexts,^{27,30–32} and most studies included were conducted in high-income countries.^{33,34}

Previous authors also discussed the important challenge related to exploring the relationship between climate change and health. Not only is it difficult to explore the potential causal relationship between climate change and health, mostly due to methodological challenges, but there are also a wide variety of complex causal factors that may interact to determine health outcomes. Therefore, the possible causal mechanisms underlying these associations were at times still unknown or uncertain and the impacts of some climate factors were different according to geographical location and specificities of the context. Nonetheless, some reviews offered potential explanations for the climate-health association, with the climate factor at times, having a direct impact on health (e.g., flooding causing injuries) and in other cases, having an indirect impact (e.g., flooding causing stress which in turn may cause adverse birth outcomes.)

Table 2. Summary of findings from systematic reviews according to health outcome and climate impact. Reviews that covered multiple climate impacts are listed in each relevant category.

Climate Impact	F	Summary of Findings
Infectious of	disease	es (n = 41)
Vector borne infectious diseases ($n = 25$)		

Meteorolo gical	22	Systematic reviews suggest that meteorological factors, such as temperature, precipitation, humidity, and wind, are associated with diverse vector-borne infectious diseases, including malaria and dengue. ^{6,9,20,21,30,32,35–50} This association was mostly proportional (e.g., higher temperature and increased rainfall associated with vector-borne diseases), although findings were at times conflicting, with some suggesting an inversely proportional association ⁹ (e.g., decreased rainfall) or no association at all ⁴⁰ (e.g., with the human puumala hantavirus Infection.) Geographic location, seasonality and potential interaction with other climate-related factors may partly explain these inconsistencies. ^{9,30} Temperature, humidity and rainfall were the most common and important meteorological factors reported by reviews and factors such as wind, air pressure and sunshine were reported less often.
Extreme weather	7	There are limited and conflicting findings concerning the association of extreme weather events with vector-borne diseases. Some reviews suggest water-related extreme events ⁵¹ and flooding ^{3,32,52} are associated with an increased risk of vector-borne diseases, while drought is associated with a reduction of dengue incidence. ⁹ Other reviews focused specifically on Puerto Rico ⁴³ and Australia ⁵³ did not find an association between hurricanes and/or floods and mosquito-borne disease transmission.
Food and w	ater bo	orne infectious diseases (n = 19)
Meteorolo gical	14	Reviews suggest that meteorological factors, such as temperature, precipitation, and humidity, are associated with diverse food- and water-borne infectious diseases, in particular, cholera, food poisoning, schistosomiasis, salmonella and E. coli. ^{8,21,32,41,45,48,54–61} Overall, higher temperatures and humidity, ^{8,41,54,58} along with lower precipitation ^{21,61} was associated with these infectious diseases (e.g., E. coli ⁵⁸ ; bacterial gastrointestinal infections. ⁵⁴) Directionality and strength of the association seemed to vary according to disease and pathogens, ⁵⁹ seasons, and geographic region. ⁵⁶
Extreme weather	10	Reviews suggest a proportional association between extreme water-related events, ^{47,51,62} such as flooding ^{3,41,52} and heavy rainfall ³⁵ , and food- and water-borne diseases, including diarrhea, food contamination, cholera. ^{3,32,35,41,45,47,51,52,57,62} Drought may also be proportionally associated with food- and water-borne disease, ^{24,35} but these associations are less consistent than those with water-related extreme events. ⁵⁷
Other infect	ious dis	seases (n = 8)

Meteorolo gical	8	Reviews suggest an association of most meteorological factors, such as temperature and humidity, with various other infectious diseases, including meningitis, ^{27,35} Ebola, ²⁷ influenza, ³² and pediatric infectious diseases such as hand-foot-and-mouth disease. ^{4,5,31,49,55} This association was mostly proportional for meteorological factors such as temperature, ^{4,5,49} diurnal temperature range, ³¹ and humidity, ^{4,5,32} although some meteorological factors, such as air pressure ⁵ and lower temperatures ^{32,49} were inversely proportional to these diseases. Some conflicting evidence is reported concerning the association with some meteorological factors, such as sunshine with hand-foot-and-mouth disease, ^{4,5} and humidity and pediatric infectious diseases. ⁵⁵ No association was found between some meteorological factors, such as precipitation, wind speed and sunshine with hand-foot-and-mouth disease. ^{4,5}
Mortality (n	= 32)	
Meteorolo gical	24	Reviews suggest that temperature (high, low, or diurnal range) was consistently associated with all-cause and cause-specific mortality. ^{20,21,27,28,31,34,45,47,49,63-76} A strong association was reported between heat (including heat waves) and mortality (all-cause), ⁶³ heat-, ^{21,68} stroke-, ^{27,69} cardiovascular-, ^{34,47} and respiratory-related, ^{20,34,70} especially in rural, ⁶⁷ very young children ⁴⁹ and ageing populations. Mortality seems to be the most frequent health outcome studied in association with heatwaves. ⁶⁴ Inconsistent results are found concerning the association between heat and childhood mortality. ⁷⁴ Due to limited evidence, this association was weaker in some geographical regions. ^{27,71} Also, heat wave intensity (compared to duration) was more strongly associated with heat-related mortality. Finally, although less studied, low temperature was also associated with mortality. ^{49,76} specifically respiratory, ⁶³ stroke, ⁶⁹ and cardiovascular mortality. ^{47,66}
Extreme Weather	5	Reviews suggest an association between extreme weather events such as floods, ³ droughts, ²⁴ cyclones ⁷⁷ and other water-related events, ^{20,51} with direct (e.g. drowning) and indirect long-term mortality (e.g., due to malnutrition, environment toxin exposure, armed conflict, etc.). ^{3,24,51,77}
Air quality	5	Reviews suggest an association between exposure to air pollution ^{20,78} or wildfire smoke ^{79–81} and air pollution related-mortality, such as respiratory-specific mortality. There is currently limited evidence, but reviews suggest a potential association between wildfire smoke exposure and cardiovascular-specific mortality. ^{79–81}

17	Reviews suggest an association between meteorological factors, such as temperature and humidity, and cardiopulmonary, cardiovascular, respiratory and neurological outcomes. ^{20,26,27,31,34,37,45,49,55,63,66,68,69,73,74,82,83} Exposure to high temperatures and extreme heat are associated to cardiovascular and respiratory diseases, ^{20,27,37,49,66} stroke, ⁶⁹ long-term neurological outcomes (due to heat strokes), ⁶⁸ myocardial infarction, ^{34,83} and childhood asthma and pediatric respiratory diseases. ^{26,74} A review also suggests a beneficial association between heat and the shortening of a respiratory virus season. ⁴⁵ Exposure to low temperature (cold), temperature drop, or diurnal temperature range was associated with cardiovascular and respiratory diseases, ^{31,63,66} stroke, ⁶⁹ and myocardial infarctions. ³⁴ Humidity (most often high humidity, but also lower humidity) and low temperatures were also associated with respiratory diseases in children, including childhood asthma. ^{26,55,82}
1	A previous review suggests an association between drought and respiratory, cardiovascular and cardiopulmonary outcomes, most likely due to droughts leading to increased dust in the air. ²⁴
6	Reviews suggest a proportional association between exposure to air pollution ^{20,21,45} or wildfire smoke exposure ^{79–81} and respiratory outcomes, including asthma, chronic obstructive pulmonary disease, coughing, wheezing, and overall lung function. Although there is currently limited evidence, ⁷⁹ reviews also suggest a potential association between air pollution or wildfire smoke exposure and cardiovascular outcomes. ^{45,80,81}
ems (r	n = 16)
1	A previous review suggests that climate change in general puts a strain on public health resources, via population health issues and shows that using an integrated surveillance system may guide future adaptation to climate change. ⁸⁴
11	Previous reviews suggest an association between temperature change ³¹ extreme heat, aridity and cold temperatures and an increase in use of healthcare services (mostly linked to heat-related health impacts), such as an increase in emergency department visits, hospital admissions and use of ambulances. ^{20,21,27,31,34,49,64,71,74,83,85}
2	Reviews suggest that extreme weather events ³³ and flooding ³ are associated with an increase in use of healthcare services (e.g., increased hospitalizations) and a compromised quality of care as extreme weather events may lead to power outages. ³³
2	Reviews suggest an association between wildfire smoke exposure and an increase in use of healthcare services, such as an increase in emergency department visits. ^{79,81}
-	1 6 ems (r 1 11 2

Meteorolo gical	3	Reviews suggest an association of most meteorological factors such as temperature increase, aridity, heat, and heat waves with mental health outcomincluding hospital admissions for mental health reasons, ²¹ suicide, ⁸⁶ and exacerbation of pre-existing mental health conditions, difficulty sleeping, and fatigue. ⁸³ No association was found between sunlight duration and suicide incidence. ⁸⁶
Extreme weather	9	Most reviews reported a proportional association of extreme weather events, ^{45,51,87,88} flooding, ^{3,20,89} and drought ^{24,25} with diverse mental health issues including, psychological distress, post-traumatic stress disorder, anxiety, depression, psychotropic medication use, alcohol consumption. There was conflicting evidence regarding the association of floods with suicide, tobacco, alcohol and substance abuse. ⁸⁹ No association was found between drought an suicide. ²⁴
Air quality	1	A previous review suggests no association between wildfire smoke exposure a mental health, as measured by physician visits and hospitalizations for mental health reasons during wildfires. ⁸⁰
Pregnancy	and bi	rth outcomes (n = 11)
Meteorolo gical	5	Reviews suggest that adverse birth outcomes are higher among people expose to meteorological factors such as high temperature, heat, sunlight intensity, col and humidity. ^{21,90–93} These outcomes include low birth weight, preterm birth, eclampsia and preeclampsia, hypertension and length of pregnancy. ^{21,90–93} The association between heat and adverse birth outcomes seems to have stronger support than the association with cold temperatures. ⁹³
Extreme Weather	2	Reviews suggest an association of extreme weather events ⁸⁷ and flooding ³ wit adverse birth outcomes, such as low birth weight, preterm birth and pre- eclampsia. It is suggested that extreme weather events may indirectly affect bir outcomes via the pregnant person's well-being (e.g., stress and worry during pregnancy.) ^{3,87}
Air quality	3	There is limited and inconsistent evidence concerning the association between wildfire smoke exposure and adverse birth outcomes, but reviews suggest a potential proportional association between wildfire smoke exposure and lower birth weight. ^{79–81}
Other	1	The association between environmental pollutants and adverse birth outcomes (i.e., preterm birth) remains unclear due to conflicting evidence. ²⁹
Dietary (n =	: 9)	
General	1	A review suggests an association between climate change and obesity. ²²
Meteorolo gical	4	Reviews suggest an association between meteorological factors, such as chan in temperature, heat and precipitation, with diverse dietary outcomes, including undernutrition, malnutrition and child stunting. ^{21,23,27,71} This association may be

		explained by the impact of meteorological factors, such as temperature increase and precipitation decrease, on crop production and food insecurity. ^{21,71}
Extreme Weather	6	Reviews suggest an association between extreme weather events, such as flooding and droughts, ²⁴ and diverse dietary outcomes, including malnutrition and undernutrition in children and adults ^{21,23,35,45,47} via, amongst others, crops production and food insecurity (e.g., low food aid following flooding ²¹).
Other	1	A review suggests an association between certain environmental risk factors (e.g. sanitation, cooking fuels and food-borne mycotoxins), and childhood stunting, which could be aggravated by climate change. ⁹⁴
Skin and al	lergies	s (n = 9)
General	2	Reviews suggest a proportional association between climate change, in general, and skin and soft tissue infections (e.g., fatal vibrio vulnificus necrotizing) ⁹⁵ and ragweed pollen allergies in Europe. ⁹⁶
Meteorolo gical	7	Reviews suggest an association of meteorological factors, such as ultraviolet light exposure, temperature and humidity, with diverse skin and allergic diseases, including skin cancer, sunburn, acute urticaria, eczema and pediatric allergies and skin irritabilities. ^{27,45,47,49,55,83,97} Higher temperature and ultraviolet light exposure is proportionally associated with sunburn ⁸³ and skin cancer, ^{45,97} while low humidity and low temperatures were associated with eczema and skin irritabilities in children. ^{49,55}
Occupation	al hea	alth and injuries (n = 6)
Meteorolo gical	6	Reviews suggest that heat is associated with adverse occupational health outcomes, including injuries, heat strain, dehydration and kidney diseases. ^{98–103} The most frequent injuries consist of 'slips, trips, falls, wounds, lacerations and amputations.' ⁹⁹ This association was found in many occupational settings, including agriculture, construction, transport and fishing, and seems to affect both outdoor and indoor workers. ⁹⁸ This association may be explained by a combination of direct (e.g., dehydration) and indirect factors (e.g., impaired cognitive and physical performance.) ¹⁰²
Other	1	A review suggests an association between environmental pollution (e.g., heavy metals, fertilizers, etc.) and occupational diseases, such as chronic kidney disease. ¹⁰³ This association is suggested to be affected by increasing temperatures.

ו ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
12 13 14 15 16	
15	
16	
17	
18	
19	
20	
21	
22	
22	
24 25	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
47 48	
40 49	
49 50	
50 51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

60

General	1	A review suggests an association between climate change in general and disability-adjusted life years, which is an indicator that quantifies 'the burden of disease attributable to climate change'. ¹⁰⁴ Authors suggest that the cost of disability-adjusted life years could be high, especially in low to middle income countries.
Meteorolo gical	10	Reviews suggests an association between increasing temperatures and temperature changes, ³¹ and other various health outcomes, including acute gouty arthritis, ¹⁰⁵ unintentional injuries, ¹⁰⁶ diabetes, ⁶³ genitourinary diseases, ^{31,63} impaired sleep time and quality, ¹⁰⁷ cataracts (indirectly associated via people spending more time outside and therefore increased exposure to ultraviolet light), ^{45,47} heat stress, heat exhaustion and kidney failure, ⁸³ and renal diseases, fever and electrolyte imbalance in children. ^{49,74}
Extreme weather	6	Reviews suggests an association between extreme weather events, ⁸⁸ such as flooding, ³ cyclones, ⁷⁷ hurricanes, ¹⁰⁷ and drought, ²⁴ and other various health outcomes including injuries (e.g., debris, diving in water that is shallower than expected), ^{3,24,77,88} impaired sleep, ¹⁰⁷ esophageal cancer (likely linked to high salinity of water due to droughts), ²⁴ and exacerbation of chronic illnesses. ^{3,87}
Air quality	1	There is limited evidence, but a systematic review suggests an association between wildfire smoke exposure and ophthalmic outcomes, such as eye irritation and cataracts. ⁷⁹

Discussion

Principal results

In this overview of systematic reviews, we aimed to develop an overview of systematic reviews of health impacts of climate change by mapping the characteristics and findings of studies exploring the relationship between climate change and health. We identified four key findings.

First, the most common climate impact studied by included publications consists of meteorological impacts (e.g., temperature, heat, precipitation and humidity), which aligns with findings from a previous scoping review on the health impacts of climate change in the Philippines.⁷ Although this may not be surprising given that a key implication of climate change is the rise in temperature, this finding suggests we also need to undertake research focused on other climate impacts on health, such as the impact of droughts and wildfire smoke, to better prepare for the health crises that arise from these multiple climate-related impacts.

Second, systematic reviews primarily focus on physical health outcomes, such as infectious diseases, mortality, and respiratory, cardiopulmonary, cardiovascular and neurological outcomes, which also aligns with the country-specific previous scoping review.⁷ Regarding mortality, we support Campbell and colleagues'⁶⁴ suggestion that we should expand our focus

to include other types of health outcomes. This will allow us to better mitigate and adapt to the full range of threats of climate change.

It is unclear whether the distribution of frequencies of health outcomes reflects the actual burden of health impacts of climate change, or if the most frequently reported outcomes reflect a bias of Western definitions of health. The most commonly-studied health outcomes do not necessarily reflect the definition of health presented by the WHO as, "a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity."¹⁷ This suggests that future studies should investigate in greater depth the impacts of climate change on mental and broader social well-being. Indeed, some reviews suggested that climate change impacts psychological and social well-being, via broader consequences, such as political instability, health system capacity, migration, and crime,^{83,87} thus illustrating how our personal health is determined not only by biological and environmental factors but also by social and health systems.

Interestingly, the reviews that explored the mental health impacts of climate change were focused mostly on the direct impacts of experiencing extreme weather events. However, psychologists are also warning about indirect mental health impacts of climate change, which are becoming more prevalent for children and adults alike.^{108,109} Even people who do not experience direct climate impacts, such as extreme weather events, report experiencing disruptive negative emotions when thinking of the destruction of our environment or when worrying about one's uncertain future and the lack of actions being taken. To foster emotional resilience in the face of climate change, these mental health impacts of climate change need to be further explored. Humanity's ability to adapt to and mitigate climate change ultimately depends on our emotional capacity to face this threat.

Third, there is a notable geographic difference in the country affiliations of first authors, with three quarters of systematic reviews having been led by first authors affiliated to institutions in Europe, Australia, or North America. While perhaps unsurprising given the inequalities in research funding and institutions concentrated in Western countries, this is of critical importance given the significant health impacts that will be faced in other parts of the world. Research funding organizations should seek to provide more resources to authors in low- to middle-income countries to ensure their expertise and perspectives are better represented in the literature.

Fourth, overall, most reviews suggest an association between climate change and the deterioration of health in various ways, thus illustrating the interdependence of our health and well-being with the well-being of our environment. At times, climate change and its related environmental events may impact health directly (e.g., heat's impact on dehydration and exhaustion) and other times, it may impact it indirectly (e.g., via behaviour change due to heat.) The climate-health link has been the target of more research in recent years and it is also receiving increasing attention in both public health and climate communication literature.^{110,111} The health framing of climate communication also has implications for healthcare professionals¹¹² and policymakers, as these actors could play a key part in climate

communication, adaptation, and mitigation. These key stakeholders' perspectives on the climate-health link, as well as their perceived role in climate adaptation and mitigation could be explored,¹¹³ since research suggests that health professionals are important voices in climate communications¹¹² and especially since, ultimately, these adverse health outcomes will engender pressure on and cost to our health systems and health workers.

Strengths and Limitations

To the best of our knowledge, the current study provides the first broad overview of previous systematic reviews exploring the health impacts of climate change. Our review has three main strengths. First, by targeting systematic reviews, we achieve a higher-order summary of findings than what would have been possible by consulting individual original studies. Second, by synthesizing findings across all included studies and according to the combination of climate impact and health outcome, we offer a clear, detailed, and unique summary of the current state of evidence and knowledge gaps about how climate change may influence human health. This summary may be of use to researchers, policymakers, and communities. Third, we included studies published in all languages about any climate impact and any health outcome. In doing so, we provide a comprehensive and robust overview.

Our work has three main limitations. First, we were unable to access some full texts and therefore some studies were excluded, even though we deemed them potentially relevant after title and abstract inspection. Other potentially relevant systematic reviews may be missing due to unseen flaws in our systematic search. Second, due to the heterogeneity of the included systematic reviews and the relatively small proportion of studies reporting meta-analytic findings, we could not conduct meta-meta-analyses of findings across reviews. Future research is needed to quantify the climate and health links described in this review, as well as to investigate the causal relationship and other interacting factors. Third, due to limited resources, we did not assess overlap between the included reviews concerning the studies they included. Frequencies and findings should be interpreted with potential overlap in mind.

Conclusions

Overall, systematic reviews of the health impacts of climate change suggest an association between climate change and the deterioration of health in multiple ways, generally in the direction that climate change is associated with adverse human health outcomes. This is worrisome since these outcomes are predicted to rise in the near future, due to the temperature rise and increase in climate-change-related events such as extreme weather events and worsened air quality. Most studies included in this review focused on meteorological impacts of climate change on adverse physical health outcomes. Future studies could fill knowledge gaps by exploring other climate-related impacts and broader psychosocial health outcomes. Moreover, studies on health impacts of climate change have mostly been conducted by first authors affiliated with institutions in high-income countries. This inequity needs to be addressed, considering that the impacts of climate change are and will continue to predominantly impact lower-income countries. Finally, although most reviews also recommend more research to

better understand and quantify these associations, to adapt to and mitigate climate change's impacts on health, it will also be important to unpack the 'what, how, and where' of these effects. Health effects of climate change are unlikely to be distributed equally or randomly through populations. It will be important to mitigate the changing climate's potential to exacerbate health inequities.

tor beer terien only

Acknowledgements

The authors gratefully acknowledge the contributions of Selma Chipenda Dansokho, as research associate, and Thierry Provencher, as research assistant, to this project, and of Frederic Bergeron, for assistance with search strategy, screening and selection of articles for the systematic review.

Funding

This study was funded by the Canadian Institutes of Health Research (CIHR) FDN-148426. The CIHR had no role in determining the study design, the plans for data collection or analysis, the decision to publish, nor the preparation of this manuscript. ACT is funded by a Tier 2 Canada Research Chair in Knowledge Synthesis. HOW is funded by a Tier 2 Canada Research Chair in Human-Centred Digital Health.

Ethics Committee Approval

Since this is a systematic review of previous systematic reviews, no ethics approval was required, as we did not collect original data.

Authors' Contributions

RN, CF, ACT, HOW contributed to the design of the study. CB, RN, LPB, RAPR and HOW contributed to the systematic search of the literature and selection of studies. RR, HOW, LC conducted data analysis and interpretation. RR and HOW drafted the first version of the article with early revision by CB, LC and RN. All authors critically revised the article and approved the final version for submission for publication. RR and HOW had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Conflict of Interest Statement

The authors have no conflict of interest to declare.

Data Sharing Statement

No additional data available.

References

- 1 Portier C, Tart K, Carter S, et al. A Human Health Perspective On Climate Change A Report Outlining the Research Needs on the Human Health Effects of Climate Change. Environmental Health Perspectives and the National Institute of Environmental Health Sciences, 2010.
- 2 Watts N, Amann M, Arnell N, et al. The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. *Lancet* 2019; **394**: 1836–78.
- 3 Alderman K, Turner LR, Tong SL. Floods and human health: A systematic review. *Environ Int* 2012; **47**: 37–47.
- 4 Coates SJ, Davis MDP, Andersen LK. Temperature and humidity affect the incidence of hand, foot, and mouth disease: a systematic review of the literature a report from the International Society of Dermatology Climate Change Committee. *Int J Dermatol* 2019; **58**: 388–99.
- 5 Duan C, Zhang X, Jin H, *et al.* Meteorological factors and its association with hand, foot and mouth disease in Southeast and East Asia areas: a meta-analysis. *Epidemiology & Infection* 2018; **147**: 1–18.
- 6 Babaie J, Barati M, Azizi M, Ephtekhari A, Sadat SJ. A systematic evidence review of the effect of climate change on malaria in Iran. *J Parasit Dis* 2018; **42**: 331–40.
- 7 Chua PL, Dorotan MM, Sigua JA, Estanislao RD, Hashizume M, Salazar MA. Scoping Review of Climate Change and Health Research in the Philippines: A Complementary Tool in Research Agenda-Setting. *Int J Environ Res Public Health* 2019; **16**. DOI:10.3390/ijerph16142624.
- 8 Lal A, Lill AW, McIntyre M, Hales S, Baker MG, French NP. Environmental change and enteric zoonoses in New Zealand: a systematic review of the evidence. *Aust N Z J Public Health* 2015; **39**: 63–8.
- 9 Li C, Lu Y, Liu J, Wu X. Climate change and dengue fever transmission in China: Evidences and challenges. *Sci Total Environ* 2018; **622-623**: 493–501.
- 10 Herlihy N, Bar-Hen A, Verner G, *et al.* Climate change and human health: what are the research trends? A scoping review protocol. *BMJ Open* 2016; **6**: e012022.
- 11 Hosking J, Campbell-Lendrum D. How well does climate change and human health research match the demands of policymakers? A scoping review. *Environ Health Perspect* 2012; **120**: 1076–82.
- 12 Pollock M, Fernandes RM, Becker LA, Pieper D, Hartling L. Chapter V: Overviews of Reviews. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA,

	ed. Cochrane Handbook for Systematic Reviews of Interventions version 6.1 (updated September 2020). Cochrane, 2020.
13	Witteman HO, Dansokho SC, Ndjaboue R, Provencher T, Poulin-Rheault RA, Poirier- Bergeron L, Beaudoin C, Fallon C, Rocque R, Tricco A. Climate change and human health: an overview of systematic reviews. 2019; published online Dec 4. https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=145972 (accessed Aug 8, 2020).
14	Page M, McKenzie J, Bossuyt P, Boutron I, Hoffmann TC, Mulrow C, Shamseer L, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, et al. Updating the PRISMA reporting guideline for systematic reviews and meta-analyses. 2020. DOI:10.17605/OSF.IO/P93GE.
15	Pollock M, Fernandes RM, Pieper D, <i>et al.</i> Preferred Reporting Items for Overviews of Reviews (PRIOR): a protocol for development of a reporting guideline for overviews of reviews of healthcare interventions. <i>Syst Rev</i> 2019; 8 : 335.
16	About Cochrane Reviews. https://www.cochranelibrary.com/about/about-cochrane-reviews (accessed Sept 14, 2020).
17	World Health Organization. Preamble to the Constitution of WHO as adopted by the International Health Conference. New York, 19 June - 22 July 1946 signed on 22 July 1946 by the representatives of 61 States (Official Records of WHO, no. 2, p. 100) and entered into force on 7 April 1948. The definition has not been amended since 1948. https://apps.who.int/gb/bd/pdf_files/BD_49th-en.pdf#page=7.
18	Covidence systematic review software. www.covidence.org.
19	Boylan S, Beyer K, Schlosberg D, <i>et al.</i> A conceptual framework for climate change, health and wellbeing in NSW, Australia. <i>Public Health Res Pract</i> 2018; 28 . DOI:10.17061/phrp2841826.
20	Leyva EWA, Beaman A, Davidson PM. Health Impact of Climate Change in Older People: An Integrative Review and Implications for Nursing. <i>J Nurs Scholarsh</i> 2017; 49 : 670–8.
21	Khader YS, Abdelrahman M, Abdo N, <i>et al.</i> Climate change and health in the Eastern Mediterranean countries: a systematic review. <i>Rev Environ Health</i> 2015; 30 : 163–81.
22	An R, Ji M, Zhang S. Global warming and obesity: a systematic review. <i>Obes Rev</i> 2018; 19 : 150–63.
23	Phalkey RK, Aranda-Jan C, Marx S, Hofle B, Sauerborn R. Systematic review of current efforts to quantify the impacts of climate change on undernutrition. <i>Proc Natl Acad Sci U S A</i> 2015; 112 : E4522–9.
24	Stanke C, Kerac M, Prudhomme C, Medlock J, Murray V. Health Effects of Drought: A Systematic Review of the Evidence. <i>PLoS Curr</i> 2013. DOI:10.1371/currents.dis.7a2cee9e980f91ad7697b570bcc4b004.
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

25 Vins H, Bell J, Saha S, Hess JJ. The Mental Health Outcomes of Drought: A Systematic Review and Causal Process Diagram. *International Journal of Environmental Research & Public Health [Electronic Resource]* 2015; **12**: 13251–75.

- 26 Xu Z, Crooks JL, Davies JM, Khan AF, Hu W, Tong S. The association between ambient temperature and childhood asthma: a systematic review. *Int J Biometeorol* 2018; **62**: 471–81.
- Amegah AK, Rezza G, Jaakkola JJ. Temperature-related morbidity and mortality in Sub-Saharan Africa: A systematic review of the empirical evidence. *Environ Int* 2016; **91**: 133–49.
- Odame EA, Li Y, Zheng SM, Vaidyanathan A, Silver K. Assessing Heat-Related Mortality Risks among Rural Populations: A Systematic Review and Meta-Analysis of Epidemiological Evidence. *Int J Environ Res Public Health* 2018; 15. DOI:10.3390/ijerph15081597.
- 29 Porpora MG, Piacenti I, Scaramuzzino S, Masciullo L, Rech F, Panici PB. Environmental contaminants exposure and preterm birth: A systematic review. *Toxics* 2019; 7. DOI:10.3390/toxics7010011.
- 30 Bai L, Morton LC, Liu Q. Climate change and mosquito-borne diseases in China: a review. *Globalization & Health* 2013; **9**: 10–10.
- 31 Cheng J, Xu Z, Zhu R, *et al.* Impact of diurnal temperature range on human health: a systematic review. *Int J Biometeorol* 2014; **58**: 2011–24.
- 32 Phung D, Huang C, Rutherford S, Chu C, Wang X, Nguyen M. Climate Change, Water Quality, and Water-Related Diseases in the Mekong Delta Basin: A Systematic Review. *Asia Pac J Public Health* 2015; **27**: 265–76.
- Klinger C, Landeg O, Murray V. Power Outages, Extreme Events and Health: A Systematic Review of the Literature from 2011-2012. *PLoS Curr* 2014. DOI:10.1371/currents.dis.04eb1dc5e73dd1377e05a10e9edde673.
- 34 Sun Z, Chen C, Xu D, Li T. Effects of ambient temperature on myocardial infarction: A systematic review and meta-analysis. *Environ Pollut* 2018; **241**: 1106–14.
- Berhane K, Kumie A, Samet J. Health Effects of Environmental Exposures, Occupational Hazards and Climate Change in Ethiopia: Synthesis of Situational Analysis, Needs Assessment and the Way Forward. *Ethiopian Journal of Health Development* 2016; 30: 50–6.
- 36 Bernhardt V, Finkelmeier F, Verhoff MA, Amendt J. Myiasis in humans-a global case report evaluation and literature analysis. *Parasitol Res* 2019; **118**: 389–97.
- 37 de Sousa TCM, Amancio F, Hacon SS, Barcellos C. [Climate-sensitive diseases in Brazil and the world: systematic review] Enfermedades sensibles al clima en Brasil y el mundo:

BMJ Open

	revision sistematica. Rev Panam Salud Publica 2018; 42: e85.
38	Dhimal M, Ahrens B, Kuch U. Climate Change and Spatiotemporal Distributions of Vec Borne Diseases in NepalA Systematic Synthesis of Literature. <i>PLoS ONE [Electronic Resource]</i> 2015; 10 : e0129869.
39	Fan J, Wei W, Bai Z, <i>et al.</i> A systematic review and meta-analysis of dengue risk with temperature change. <i>Int J Environ Res Public Health</i> 2015; 12 : 1–15.
40	Gracia JR, Schumann B, Seidler A. Climate Variability and the Occurrence of Human Puumala Hantavirus Infections in Europe: A Systematic Review. <i>Zoonoses Public Healt</i> 2015; 62 : 465–78.
41	Hedlund C, Blomstedt Y, Schumann B. Association of climatic factors with infectious diseases in the Arctic and subarctic regiona systematic review. <i>Glob Health Action</i> 2017: 24161.
42	Hii YL, Zaki RA, Aghamohammadi N, Rocklov J. Research on Climate and Dengue in Malaysia: A Systematic Review. <i>Current Environmental Health Reports</i> 2016; 3 : 81–90
43	Matysiak A, Roess A. Interrelationship between Climatic, Ecologic, Social, and Cultural Determinants Affecting Dengue Emergence and Transmission in Puerto Rico and Their Implications for Zika Response. <i>J Trop Med</i> 2017; 2017 . DOI:10.1155/2017/8947067.
44	Naish S, Dale P, Mackenzie JS, McBride J, Mengersen K, Tong S. Climate change and dengue: a critical and systematic review of quantitative modelling approaches. <i>BMC Infe Dis</i> 2014; 14 : 167–167.
45	Nichols A, Maynard V, Goodman B, Richardson J. Health, climate change and sustainability: a systematic review and thematic analysis of the literature. <i>Environ Healt</i> . <i>Insights</i> 2009; : 63–88.
46	Racloz V, Ramsey R, Tong S, Hu W. Surveillance of dengue fever virus: a review of epidemiological models and early warning systems. <i>PLoS Neglected Tropical Diseases [electronic resource]</i> 2012; 6 : e1648.
47	Swynghedauw B. [Medical consequences of global warming]. <i>Presse Med</i> 2009; 38 : 55 61.
48	Waits A, Emelyanova A, Oksanen A, Abass K, Rautio A. Human infectious diseases and the changing climate in the Arctic. <i>Environ Int</i> 2018; 121 : 703–13.
49	Xu Z, Etzel RA, Su H, Huang C, Guo Y, Tong S. Impact of ambient temperature on children's health: a systematic review. <i>Environ Res</i> 2012; 117 : 120–31.
50	Yu W, Mengersen K, Dale P, <i>et al.</i> Projecting Future Transmission of Malaria Under Climate Change Scenarios: Challenges and Research Needs. <i>Crit Rev Environ Sci Techn</i> 2015; 45 : 777–811.

51 Veenema TG, Thornton CP, Lavin RP, Bender AK, Seal S, Corley A. Climate Change-Related Water Disasters' Impact on Population Health. *J Nurs Scholarsh* 2017; **49**: 625–34.

- 52 Brown L, Murray V. Examining the relationship between infectious diseases and flooding in Europe: A systematic literature review and summary of possible public health interventions. *Disaster Health* 2013; **1**: 117–27.
- Tall JA, Gatton ML, Tong S. Ross River Virus Disease Activity Associated With Naturally Occurring Nontidal Flood Events in Australia: A Systematic Review. *J Med Entomol* 2014; 51: 1097–108.
- 54 Ghazani M, FitzGerald G, Hu WB, Toloo G, Xu ZW. Temperature Variability and Gastrointestinal Infections: A Review of Impacts and Future Perspectives. *Int J Environ Res Public Health* 2018; **15**. DOI:10.3390/ijerph15040766.
- 55 Gao J, Sun Y, Lu Y, Li L. Impact of ambient humidity on child health: a systematic review. *PLoS ONE [Electronic Resource]* 2014; **9**: e112508.
- 56 Lal A, Fearnley E, Wilford E. Local weather, flooding history and childhood diarrhoea caused by the parasite Cryptosporidium spp.: A systematic review and meta-analysis. *Sci Total Environ* 2019; **674**: 300–6.
- 57 Levy K, Woster AP, Goldstein RS, Carlton EJ. Untangling the Impacts of Climate Change on Waterborne Diseases: a Systematic Review of Relationships between Diarrheal Diseases and Temperature, Rainfall, Flooding, and Drought. *Environ Sci Technol* 2016; **50**: 4905–22.
- Philipsborn R, Ahmed SM, Brosi BJ, Levy K. Climatic Drivers of Diarrheagenic Escherichia coli Incidence: A Systematic Review and Meta-analysis. *J Infect Dis* 2016; 214: 6–15.
- 59 Semenza JC, Herbst S, Rechenburg A, *et al.* Climate change impact assessment of foodand waterborne diseases. *Crit Rev Environ Sci Technol* 2012; **42**: 857–90.
- 60 Stensgaard AS, Vounatsou P, Sengupta ME, Utzinger J. Schistosomes, snails and climate change: Current trends and future expectations. *Acta Trop* 2019; **190**: 257–68.
- Welch K, Shipp-Hilts A, Eidson M, Saha S, Zansky S. Salmonella and the changing environment: systematic review using New York State as a model. *J Water Health* 2019; 17: 179–95.
- 62 Cann KF, Thomas DR, Salmon RL, Wyn-Jones AP, Kay D. Extreme water-related weather events and waterborne disease. *Epidemiology & Infection* 2013; **141**: 671–86.
- 63 Bunker A, Wildenhain J, Vandenbergh A, *et al.* Effects of Air Temperature on Climate-Sensitive Mortality and Morbidity Outcomes in the Elderly; a Systematic Review and Metaanalysis of Epidemiological Evidence. *EBioMedicine* 2016; **6**: 258–68.
- 64 Campbell S, Remenyi TA, White CJ, Johnston FH. Heatwave and health impact research: A

י ר	
2 3	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 290 31 32 33 34 35 36 37	
25	
26	
27	
28	
20	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
47 48	
48 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

global review. Health Place 2018; 53: 210-8.

- 65 Cunrui H, Barnett AG, Xiaoming W, Vaneckova P, FitzGerald G, Shilu T. Projecting Future Heat-Related Mortality under Climate Change Scenarios: A Systematic Review. *Environ Health Perspect* 2011; **119**: 1681–90.
- 66 Ghanizadeh G, Heidari M, Seifi B, Jafari H, Pakjouei S. The effect of climate change on cardiopulmonary disease-a systematic review. *J Clin Diagn Res* 2017; **11**: IE01–4.
- 67 Hajat S, Kosatky T. Heat-related mortality: a review and exploration of heterogeneity. *Journal of Epidemiology & Community Health* 2010; **64**: 753–60.
- 68 Lawton EM, Pearce H, Gabb GM. Review article: Environmental heatstroke and long-term clinical neurological outcomes: A literature review of case reports and case series 2000–2016. *Emerg Med Australas* 2019; **31**: 163–73.
- 69 Lian H, Ruan YP, Liang RJ, Liu XL, Fan ZJ. Short-Term Effect of Ambient Temperature and the Risk of Stroke: A Systematic Review and Meta-Analysis. *Int J Environ Res Public Health* 2015; **12**: 9068–88.
- 70 Moghadamnia MT, Ardalan A, Mesdaghinia A, Keshtkar A, Naddafi K, Yekaninejad MS. Ambient temperature and cardiovascular mortality: A systematic review and meta-analysis. *PeerJ* 2017; **2017**: 3574.
- 71 Salve HR, Parthasarathy R, Krishnan A, Pattanaik DR. Impact of ambient air temperature on human health in India. *Rev Environ Health* 2018; **33**: 433–9.
- 72 Sanderson M, Arbuthnott K, Kovats S, Hajat S, Falloon P. The use of climate information to estimate future mortality from high ambient temperature: A systematic literature review. *PLoS ONE [Electronic Resource]* 2017; **12**: e0180369.
- Witt C, Schubert AJ, Jehn M, *et al.* The Effects of Climate Change on Patients With Chronic Lung Disease. A Systematic Literature Review. *Dtsch Arztebl Int* 2015; 112: 878– 83.
- 74 Xu Z, Sheffield PE, Su H, Wang X, Bi Y, Tong S. The impact of heat waves on children's health: a systematic review. *Int J Biometeorol* 2014; **58**: 239–47.
- Xu Z, FitzGerald G, Guo Y, Jalaludin B, Tong S. Impact of heatwave on mortality under different heatwave definitions: A systematic review and meta-analysis. *Environ Int* 2016; 89-90: 193–203.
- 76 Yu W, Mengersen K, Wang X, *et al.* Daily average temperature and mortality among the elderly: a meta-analysis and systematic review of epidemiological evidence. *Int J Biometeorol* 2012; **56**: 569–81.
- 77 Doocy S, Dick A, Daniels A, Kirsch TD. The Human Impact of Tropical Cyclones: A Historical Review of Events 1980-2009 and Systematic Literature Review. *PLoS Curr*

2013. DOI:10.1371/currents.dis.2664354a5571512063ed29d25ffbce74.

- 78 Madaniyazi L, Guo Y, Yu W, Tong S. Projecting future air pollution-related mortality under a changing climate: Progress, uncertainties and research needs. *Environ Int* 2015; **75**: 21–32.
- 79 Liu JC, Pereira G, Uhl SA, Bravo MA, Bell ML. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. *Environ Res* 2015; 136: 120– 32.
- 80 Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT. Critical Review of Health Impacts of Wildfire Smoke Exposure. *Environ Health Perspect* 2016; **124**: 1334–43.
- 81 Youssouf H, Liousse C, Roblou L, *et al.* Non-accidental health impacts of wildfire smoke. *International Journal of Environmental Research & Public Health [Electronic Resource]* 2014; **11**: 11772–804.
- 82 Cong XW, Xu XJ, Zhang YL, Wang QH, Xu L, Huo X. Temperature drop and the risk of asthma: a systematic review and meta-analysis. *Environ Sci Pollut Res* 2017; 24: 22535–46.
- 83 Zuo J, Pullen S, Palmer J, Bennetts H, Chileshe N, Ma T. Impacts of heat waves and corresponding measures: a review. *J Clean Prod* 2015; **92**: 1–12.
- 84 Sawatzky A, Cunsolo A, Jones-Bitton A, Middleton J, Harper SL. Responding to Climate and Environmental Change Impacts on Human Health via Integrated Surveillance in the Circumpolar North: A Systematic Realist Review. *International Journal of Environmental Research & Public Health [Electronic Resource]* 2018; **15**: 30.
- Wald A. Emergency Department Visits and Costs for Heat-Related Illness Due to Extreme Heat or Heat Waves in the United States: An Integrated Review. *Nurs Econ* 2019; 37: 35–48.
- 86 Gao JJ, Cheng Q, Duan J, *et al.* Ambient temperature, sunlight duration, and suicide: A systematic review and meta-analysis. *Sci Total Environ* 2019; **646**: 1021–9.
- Benevolenza MA, DeRigne L. The impact of climate change and natural disasters on vulnerable populations: A systematic review of literature. *J Hum Behav Soc Environ* 2019; 29: 266–81.
- 88 Rataj E, Kunzweiler K, Garthus-Niegel S. Extreme weather events in developing countries and related injuries and mental health disorders a systematic review. *BMC Public Health* 2016; **16**: 1020–1020.
- 89 Fernandez A, Black J, Jones M, *et al.* Flooding and Mental Health: A Systematic Mapping Review. *PLoS ONE [Electronic Resource]* 2015; **10**. DOI:10.1371/journal.pone.0119929.
- 90 Carolan-Olah M, Frankowska D. High environmental temperature and preterm birth: A review of the evidence. *Midwifery* 2014; **30**: 50–9.

1	
2 3 4 5 6 7	91
6 7 8 9	92
10 11 12	93
13 14 15 16	94
17 18 19 20	95
21 22 23 24	96
25 26 27	97
28 29 30 31	98
32 33 34 35 36	99
37 38 39 40 41 42	10
43 44 45 46	10
47 48 49	10
50 51 52 53	10
54 55 56 57 58 59	
60	

- 91 Kuehn L, McCormick S. Heat Exposure and Maternal Health in the Face of Climate Change. *International Journal of Environmental Research & Public Health [Electronic Resource]* 2017; **14**: 29.
- 92 Poursafa P, Keikha M, Kelishadi R. Systematic review on adverse birth outcomes of climate change. *J Res Med Sci* 2015; **20**: 397–402.
- P3 Zhang YQ, Yu CH, Wang L. Temperature exposure during pregnancy and birth outcomes: An updated systematic review of epidemiological evidence. *Environ Pollut* 2017; 225: 700–12.
- 94 Vilcins D, Sly PD, Jagals P. Environmental Risk Factors Associated with Child Stunting: A Systematic Review of the Literature. *Annals of Global Health* 2018; **84**: 551–62.
- 95 Huang KC, Weng HH, Yang TY, Chang TS, Huang TW, Lee MS. Distribution of Fatal Vibrio Vulnificus Necrotizing Skin and Soft-Tissue Infections: A Systematic Review and Meta-Analysis. *Medicine* 2016; **95**: e2627.
- 96 Lake IR, Jones NR, Agnew M, *et al.* Climate Change and Future Pollen Allergy in Europe. *Environ Health Perspect* 2017; **125**: 385–91.
- 97 Augustin J, Franzke N, Augustin M, Kappas M. Does climate change affect the incidence of skin and allergic diseases in Germany? *J Dtsch Dermatol Ges* 2008; **6**: 632–8.
- 98 Binazzi A, Levi M, Bonafede M, *et al.* Evaluation of the impact of heat stress on the occurrence of occupational injuries: Meta-analysis of observational studies. *Am J Ind Med* 2019; **62**: 233–43.
- 99 Bonafede M, Marinaccio A, Asta F, Schifano P, Michelozzi P, Vecchi S. The association between extreme weather conditions and work-related injuries and diseases. A systematic review of epidemiological studies. *Annali Dell Istituto Superiore Di Sanita* 2016; **52**: 357– 67.
- 100 Flouris AD, Dinas PC, Ioannou LG, *et al.* Workers' health and productivity under occupational heat strain: a systematic review and meta-analysis. *The lancet Planetary Health* 2018; **2**: e521–31.
- 101 Levi M, Kjellstrom T, Baldasseroni A. Impact of climate change on occupational health and productivity: a systematic literature review focusing on workplace heat. *Medicina del Lavoro* 2018; **109**: 163–79.
- 102 Varghese BM, Hansen A, Bi P, Pisaniello D. Are workers at risk of occupational injuries due to heat exposure? A comprehensive literature review. *Saf Sci* 2018; **110**: 380–92.
- 103 Wimalawansa SA, Wimalawansa SJ. Environmentally induced, occupational diseases with emphasis on chronic kidney disease of multifactorial origin affecting tropical countries. *Annals of Occupational and Environmental Medicine* 2016; 28. DOI:10.1186/s40557-016-0119-y.

104 Zhang Y, Bi P, Hiller JE. Climate change and disability -- adjusted life years. *J Environ Health* 2007; **70**: 32–6.

- 105 Park KY, Kim HJ, Ahn HS, Yim SY, Jun JB. Association between acute gouty arthritis and meteorological factors: An ecological study using a systematic review and meta-analysis. *Semin Arthritis Rheum* 2017; 47: 369–75.
- 106 Kampe EOI, Kovats S, Hajat S. Impact of high ambient temperature on unintentional injuries in high-income countries: a narrative systematic literature review. *BMJ Open* 2016;
 6. DOI:10.1136/bmjopen-2015-010399.
- 107 Rifkin DI, Long MW, Perry MJ. Climate change and sleep: A systematic review of the literature and conceptual framework. *Sleep Med Rev* 2018; **42**: 3–9.
- 108 Clayton S. Climate anxiety: Psychological responses to climate change. *J Anxiety Disord* 2020; **74**: 102263.
- 109 Davenport L. Emotional Resiliency in the Era of Climate Change: A Clinician's Guide. London: Jessica Kingsley Publishers, 2017.
- 110 Maibach EW, Nisbet M, Baldwin P, Akerlof K, Diao G. Reframing climate change as a public health issue: an exploratory study of public reactions. *BMC Public Health* 2010; **10**: 299.
- 111 Stoknes PE. What we think about when we try not to think about global warming: Toward a new psychology of climate action. *White River Junction, Vermont: Chelsea Green Publishing* 2015.
- 112 Costello A, Montgomery H, Watts N. Climate change: the challenge for healthcare professionals. *BMJ* 2013; **347**: f6060.
- 113 Yang L, Liu C, Hess J, Phung D, Huang C. Health professionals in a changing climate: protocol for a scoping review. *BMJ Open* 2019; **9**: e024451.

Figure Legends

Figure 1. The flow chart for included articles in this review.

Figure 2. Number of included systematic reviews by year of publication.

Figure 3. Number of publications according to geographic affiliation of the first author.

*Countries of origin within continents in frequency order (highest to lowest frequency) and alphabetical: *Europe*: United-Kingdom (9), Germany (6), Italy (4), Sweden (4), Denmark (2), France (2), Georgia (1), Greece (1) and Finland (1). *Australia*: All Australia. *Asia*: China (11), Iran (4), India (1), Jordan (1), Korea (1), Nepal (1), Philippines (1), Taiwan (1). *North America*: United-States (15), Canada (1). *Africa*: Ethiopia (1), Ghana (1). *South America*: Brazil (1).

Figure 4. Summary of the combination of climate impact and health outcome

(frequencies). *Note:* The total frequency for one category of health outcome could exceed the number of publications included in this health outcome, since one publication could explore the health impact according to more than one climate factor (e.g., one publication could explore both the impact of extreme weather events and temperature on mental health.)

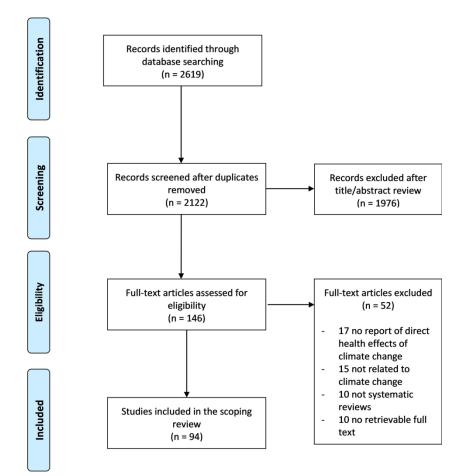
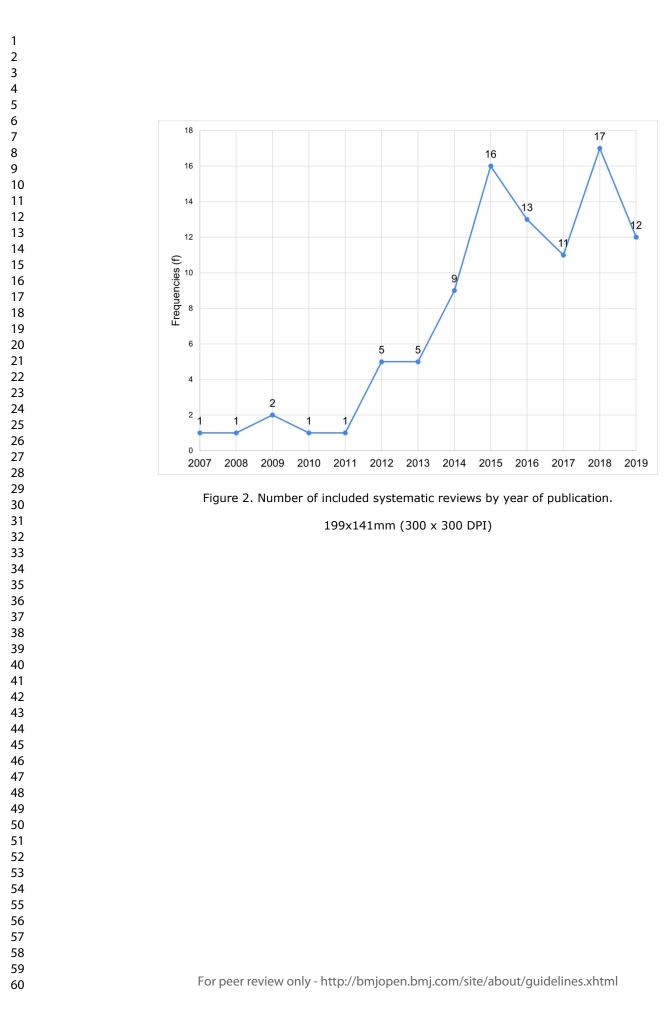



Figure 1. The flow chart for included articles in this review.

165x174mm (300 x 300 DPI)

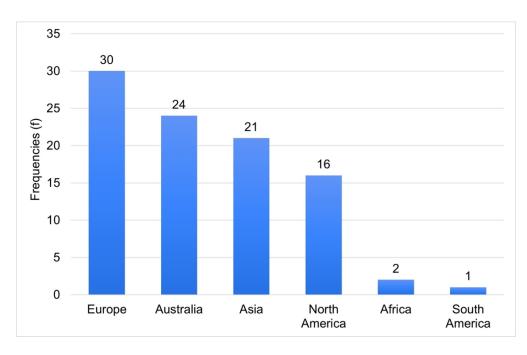


Figure 3. Number of publications according to geographic affiliation of the first author. *Countries of origin within continents in frequency order (highest to lowest frequency) and alphabetical: Europe: United-Kingdom (9), Germany (6), Italy (4), Sweden (4), Denmark (2), France (2), Georgia (1), Greece (1) and Finland (1). Australia: All Australia. Asia: China (11), Iran (4), India (1), Jordan (1), Korea (1), Nepal (1), Philippines (1), Taiwan (1). North America: United-States (15), Canada (1). Africa: Ethiopia (1), Ghana (1). South America: Brazil (1).

171x108mm (300 x 300 DPI)

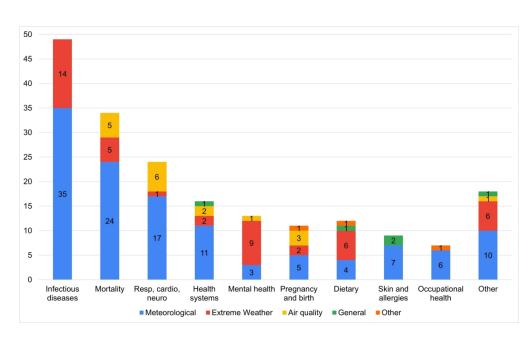


Figure 4. Summary of the combination of climate impact and health outcome (frequencies). Note: The total frequency for one category of health outcome could exceed the number of publications included in this health outcome, since one publication could explore the health impact according to more than one climate factor (e.g., one publication could explore both the impact of extreme weather events and temperature on mental health.)

270x160mm (300 x 300 DPI)

Appendix 1. Search Strategy

Database: MEDLINE (OVID)

No database limit

Concepts	#	Search strategy						
Global Warming	1	exp Climate Change/						
	2	"Global warming".ti,ab,kw						
	3	"Climate Change?".ti,ab,kw						
Global Warming combined	4	or/1-3						
Systematic review and meta-analysis	5	exp Meta-Analysis as Topic/						
	6	"Meta-Analysis"/						
	7	Meta-Analysis.ti,ab,kw						
	8	"meta analy*".ti,ab,kw						
	9	metaanaly*.ti,ab,kw						
	10	"Systematic Review"/						
	11	"Systematic Reviews as Topic"/						
	12	(systematic adj2 review).ti,ab,kw						
	13	(review adj1 ("selection criteria" OR "data extraction")).ti,ab						
Systematic review and meta-analysis combined	14	or/5-13						
Combination of concepts	15	4 AND 14						

Database: Embase.com

No database limit

Concepts	#	Search strategy
Global Warming	1	'climate change'/de
	2	'greenhouse effect'/de
	3	"Global warming":ti,ab,kw
	4	"Climate Change*":ti,ab,kw
Global Warming combined	5	#1 OR #2 OR #3 OR #4
Systematic review and meta-analysis	6	'meta analysis'/exp
	7	'meta analysis (topic)'/de
	8	Meta-Analysis:ti,ab,kw
	9	"meta analy*":ti,ab,kw
	10	metaanaly*:ti,ab,kw
	11	'systematic review'/de
	12	(systematic NEAR/2 review):ti,ab,kw
	13	(review NEAR/2 ("selection criteria" OR "data extraction")):ti,a
Systematic review and meta-analysis combined	14	#7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14

Combination of concepts	15	#14 AND #5
Embase database only	16	AND [embase]/lim NOT ([embase]/lim AND [medline]/lim)

Database: Web of Science

Limit to: Science Citation Index Expanded (SCI-EXPANDED) and Emerging Sources Citation Index (ESCI) index only

Concepts	#	Search strategy
Global Warming	9	TS=("Global warming" OR "Climate Change\$")
Systematic review and meta-analysis	2	TS=(Meta-Analysis)
	3	TS=("meta analy*")
	4	TS=(metaanaly*)
	5	TS=(systematic NEAR/2 review)
	6	TS=(review NEAR/1 ("selection criteria" OR "data extraction"))
Systematic review and meta-analysis combined	7	#6 OR #5 OR #4 OR #3 OR #2
Combination of concepts	8	#7 AND #1

Database: CINAHL

No database limit

Concepts	#	Search strategy
Global Warming	1	MH "Climate Change"

	2	MH "Greenhouse Effect"
	2	
	3	TI "Global warming"
	4	TI "Climate Change?"
	5	AB "Global warming"
	6	AB "Climate Change?"
Global Warming combined	7	S1 OR S2 OR S3 OR S4 OR S5 OR S6
Systematic review and	8	MH "Meta Analysis"
meta-analysis	9	TI "Meta-Analysis"
	10	AB "Meta-Analysis"
	11	TI "meta analy*"
	12	AB "meta analy*"
	13	TI metaanaly*
	14	AB metaanaly*
	15	MH "Systematic Review"
	16	TI (systematic N2 review)
	17	AB (systematic N2 review)
	18	TI (review N1 ("selection criteria" OR "data extraction"))
	19	AB (review N1 ("selection criteria" OR "data extraction"))

Systematic review and meta-analysis combined	20	S8 OR S9 OR S10 OR S11 OR S12 OR S13 OR S14 OR S15 OR S16 OR S17 OR S18 OR S19
Combination of concepts	21	S7 AND S20

TAND S20

ltem #	AMSTAR-2 Original Item	AMSTAR-2 Modifications
1	Did the research questions and inclusion criteria for the review include components of PICO? - Population - Intervention - Comparator group - Outcome - Timeframe for follow-up (optional)	"Population" became "Population and/or location". "Intervention" became "Exposure". The "Comparator group" category was taken out. A new section (#1.b)) was created, it includes "Definition of the exposure", "Definition of the outcome" and "Timeframe for follow up".
2	Did the report of the review contain an explicit statement that the review methods were established prior to the conduct of the review and did the report justify any significant deviations from the protocol?	To score "yes", a protocol must have been established before the review. There are no s criterias, you can only score yes or no.
3	Did the review authors explain their selection of the study designs for inclusion in the review?	If the study designs are specified, you score "partial yes". They must be explained to score "yes". No specific study design is required.
4	Did the review authors use a comprehensive literature search strategy?	The "searched trial/study registries" category was taken out. Justified publication restrictions (e.g. language moved from (partial yes) to (yes)
5	Did the review authors perform study selection in duplicate?	No modifications.
6	Did the review authors perform data extraction in duplicate?	No modifications.
7	Did the review authors provide a list of excluded studies and justify the exclusion?	The explanation of the inclusion and exclusion criteria is evaluated. If there is only one out of the two, you score "partial yes". The two must be explained to sc "yes".
8	Did the review authors describe the included studies in adequate detail?	 "Populations" became "Populations and/or locations". "Interventions" became "Exposures". "Comparator groups" became "Comparator groups (if applicable)". "Populations and/or locations", "Exposures" ar "Outcomes" must be described in details to score "yes"
9	Did the review authors use a satisfactory technique for assessing the risk of bias (RoB) in individual studies that were included in the review?	"RoB" became "limitations". Instead of assess the RoB, the review authors must have used a satisfactory technique for assessing the limitations in individual studies that were included in the review.

Appendix 2. Summary of AMSTAR-2 items and modified AMSTAR-2 items.

10	Did the review authors report on the sources of funding for the studies included in the review?	No modifications.
11	If meta-analysis was performed did the review authors use appropriate methods for statistical combination of results?	No modifications.
12	If meta-analysis was performed, did the review authors assess the potential impact of RoBin individual studies on the results of the meta-analysis or other evidence synthesis	No modifications.
13	Did the review authors account for RoB in individual studies when interpreting/discussing the results of the review?	"RoB" became "limitations". Instead of accounting for RoB in individual studies, the review authors must have accounted for limitations when interpreting/ discussing the results of the review.
14	Did the review authors provide a satisfactory explanation for, and discussion of, any heterogeneity observed in the results of the review?	No modifications.
15	If they performed quantitative synthesis did the review authors carry out an adequate investigation of publication bias (small study bias) and discuss its likely impact on the results of the review?	No modifications.
16	Did the review authors report any potential sources of conflict of interest, including any funding they received for conducting the review?	No modifications.

Page 43 of 63

 BMJ Open

Appendix 3. Overview of included studies (N=94) according to study characteristics and summary of climate impacts on health outcomes. Studies are presented in alphabetical order according to the first author's last name.

	First Author	Year	Country	Years of includ ed public ations	Years of the studies include d in the reviews	# of artic les	Meta- analys is	Specific Area of focus	Specific Population of interest	Climate Impact	Health Outcome	Summary of findings
1	Alderman	2012	Australi a	2004-2011	1931- 2007	35	No			Extreme weather	Infectious diseases Mortality Health systems Mental health Pregnancy and birth Other	Floods are associated with infectious diseases (water- and vector-borne diseases), mortality (e.g., drowning), exacerbation of chronic illnesses, mental health issues (e.g., PTSD), hospital admissions, pregnancy outcomes and injuries.
2	Amegah	2016	Ghana	1995- 2014	1960- 2010	23	No	Sub- sahara n Africa	L'e	Meteorolo gical	Infectious diseases Mortality Respiratory, cardiovascular and pulmonary, and neurological outcomes Health systems Dietary Skin and allergies	Temperature and temperature variability are suggested to be associated with infectious diseases, such as Ebola, cardiovascular diseases, mortality, cholera outbreaks, meningitis, undernutrition in children, respiratory outcomes, such as asthma, and skin diseases.
3	An	2018	United States	2002- 2017	2002- 2016	50	No			General	Dietary	Climate change is associated with obesity. This association can be explained in 4 ways, such that climate change may impact obesity, obesity may impact climate change, both

BMJ Open

Page 44 of 63

												factors may be associated with common causes, or both factors may influence each other.
4	Augustin	2008	Germa ny	1996- 2006	NS	320	No	Germa ny		Meteorolo gical	Skin and allergies	Although skin and allergic diseases are climate sensitive, there is not sufficien evidence to suggest a prediction concerning skin and allergic diseases linked to climate change in Germany.
5	Babaie	2018	Iran	2007- 2017	1970- 2015	14	No	Iran		Meteorolo gical	Infectious diseases	Temperature, precipitation and humidity are associated with the risk of transmission of Malaria.
6	Bai	2013	China	1995- 2011	1951- 2010	57	No	China		Meteorolo gical	Infectious diseases	Variability in temperature, precipitation and wind are associated with the risk of transmission of mosquito-borne diseases.
7	Benevolen za	2019	United States	2006- 2017	2005- 2015	13	No	10	Vulnerable population s	Extreme weather	Mental health Pregnancy and birth Other	Extreme weather events are associated with an exacerbation of pre-existing chronic health conditions, mental health issues (e.g., PTSD, isolation) and adverse birth outcomes.
8	Berhane	2016	Ethiopi a	NS	NS	23	No	Ethiopi a	0	Meteorolo gical Extreme weather	Infectious diseases Dietary	Meteorological factors and extreme weather events are associated with under- and mal- nutrition and the increased risk of climate sensitive infectious diseases (e.g., malaria, diarrhea, zoonotic infections, etc.).
9	Bernhardt	2019	Germa ny	1997- 2017	NS	464	No			Meteorolo gical	Infectious diseases	Rising temperatures are predicted to be associated with myiasis in the future.
10	Binazzi	2019	Italy	NS	1994- 2013	8	Yes		Workers	Meteorolo gical	Occupational health and injuries	High temperatures are positively associated with occupational injuries.
11	Bonafede	2016	Italy	2000- 2014	1985- 2010	8	No		Workers	Meteorolo gical	Occupational health and injuries	Extreme temperature (particularly heat) is associated with occupational injuries.

Page 45 of 63

 BMJ Open

12	Brown	2013	United Kingdo m	2004- 2012	1975- 2012	38	No	Europe		Extreme weather	Infectious diseases	Floods are associated with infectious diseases, including water-, rodent- and vector-borne diseases (from weeks to
												months after flooding).
13	Bunker	2016	Germa ny	1995- 2015	1974- 2013	61	Yes		Elderly	Meteorolo gical	Mortality Respiratory, cardiovascular and pulmonary, and neurological outcomes	Higher and lower temperatures are associated with cardiovascular and respiratory morbidity and mortality. Heat is also associated with diabetes and genitourinary infections.
14	Carranahall	2010	Australi	1964-	NS	188	Nie			Matagrala	Other	Meet studies surlaving the best
14	Campbell	2018	Australi a	2017	NS	188	No	F .		Meteorolo gical	Mortality Health systems	Most studies exploring the heat impacts on health focus on mortality outcomes, followed by hospital admissions and ambulance call outs.
15	Cann	2013	United	1973-	NS	83	No			Extreme	Infectious	Extreme water-related events are
			Kingdo m	2010				Č C		weather	diseases	associated with outbreaks of water- related infectious diseases.
16	Carolan- Olah	2014	Australi a	1997- 2012	1988- 2009	7	No		0	Meteorolo gical	Pregnancy and birth	High temperatures are associated with preterm birth.
17	Cheng	2014	China	1990- 2013	1941- 2012	25	No		Adults, Elderly, Children	Meteorolo gical	Infectious diseases Mortality Respiratory, cardiovascular and pulmonary, and neurological outcomes Health systems Other	Diurnal temperature range is associated with mortality and cardiovascular and respiratory outcomes, hospital admissions, and Hand Foot Mouth disease in children and genitourinary outcomes among the elderly.
18	Coates	2019	Denma rk	2003- 2018	NS	72	No			Meteorolo gical	Infectious diseases	Some meteorological factors (temperature, humidity) are positively associated with Hand Foot Mouth

												disease (HFMD). Precipitation, wind speed and sunshine are not associated with HFMD.
19	Cong	2017	China	1994- 2015	1982- 2013	26	Yes			Meteorolo gical	Respiratory, cardiovascular and pulmonary, and neurological outcomes	Temperature drop is associated with asthma.
20	Cunrui	2011	Australi a	1997- 2010	1961- 2100	14	No			Meteorolo gical	Mortality	Higher temperature is associated with heat-related mortality.
21	deSousa	2018	Brazil	1976- 2016	NS	106	No	- 10	V;	Meteorolo gical	Infectious diseases Respiratory, cardiovascular and pulmonary, and neurological outcomes	Meteorological factors (e.g., temperature, precipitation) are associated with infectious diseases (e.g., dengue, malaria) and cardiovascular and respiratory outcomes.
22	Dhimal	2015	Nepal	1956- 2014	1948- 2098	50	No	Nepal	.6	Meteorolo gical	Infectious diseases	Higher temperatures are associated with the distribution of vector-borne diseases.
23	Doocy	2013	United States	1975- 2011	1974- 2008	60	No			Extreme weather	Mortality Other	Cyclones are associated with mortality (e.g., drowning) and injuries.
24	Duan	2019	China	2010- 2018	2000- 2016	51	Yes	Southe ast and East Asia		Meteorolo gical	Infectious diseases	Some meteorological factors (mean maximum temperature, rainfall, humidity and sunshine) are positively associated with Hand Foot Mouth disease (HFMD), whereas air pressure is negatively associated with this disease and wind speed is not associated with HFMD.
25	Fan	2015	China	2004- 2013	1985- 2012	33	Yes			Meteorolo gical	Infectious diseases	Temperature is positively associated with transmission and incidence of Dengue.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

26	Fernandez	2015	Australi a	1995- 2014	NS	83	No			Extreme weather	Mental health	Floods are associated with negative mental health outcomes (e.g., PTSD,
			d	2014						weather		increased anxiety, depression, use of
												psychotropic medication). Conflicting
												evidence concerning suicide, tobacco
												alcohol and substance abuse.
27	Flouris	2018	Greece	1954-	NS	111	Yes		Workers	Meteorolo	Occupational	High temperatures are positively
				2018						gical	health and	associated with occupational heat
											injuries	strains, dehydration, kidney diseases
												and injuries.
28	Gao	2019	China	1994-	1969-	16	Yes			Meteorolo	Mental health	Temperature increase is associated
				2018	2015					gical		with suicide. No association between
												sunlight duration and suicide.
29	Gao	2014	China	1996-	1971-	37	No		Children	Meteorolo	Infectious	Ambient humidity is associated with
				2012	2010					gical	diseases	gastrointestinal, respiratory and
											Respiratory, cardiovascular	allergic diseases in children.
											and	
											pulmonary,	
											and	
											neurological	
									\sim		outcomes Skin	
										1	and allergies	
30	Ghanizade	2017	Iran	2009-	1990-	13	No			Meteorolo	Mortality	Meteorological factors, such as
	h			2016	2015					gical	Respiratory,	temperature and humidity, are
											cardiovascular	associated with cardiopulmonary
											and	health. Cold temperatures are also
											pulmonary,	associated with mortality from heart
											and	diseases.
											neurological	
31	Ghazani	2018	Australi	2006-	1991-	11	No			Meteorolo	outcomes Infectious	Higher temperature is associated wit
21	GildZdill	2019	a	2006-2017	2011	1 11	NO			gical	diseases	bacterial gastrointestinal infections.
			a	2017	2011					Bical	41364363	Humidity and rainfall may influence
												this association.
32	Gracia	2015	Swede	2003-	1959-	9	No	Europe		Meteorolo	Infectious	Temperature is positively associated
			n	2011	2008					gical	diseases	with Human Puumala Hantavirus in
												some regions of Europe. Results

												concerning precipitation and humidity are contradictory or null.
33	Hajat	2010	United Kingdo m	1994- 2008	1973- 2003	11	No			Meteorolo gical	Mortality	Ambient heat is associated with mortality.
34	Hedlund	2014	Swede n	1970- 2012	1750- 2009	29	No	Arctic, sub- Arctic	Vulnerable population s	Meteorolo gical Extreme weather	Infectious diseases	Higher temperatures and flooding are associated with food- and water-borr diseases. This association is weaker for vector- and rodent-borne diseases. A temperature and humidity seem to b associated with air-borne diseases.
35	Hii	2016	Swede n	2007- 2015	2003- 2012	9	No	Malaysi a		Meteorolo gical	Infectious diseases	Some meteorological factors (temperature, rainfall and humidity) are associated with Dengue, although these associations are inconsistent at times.
36	Huang	2016	Taiwan	1990- 2014	1978- 2011	19	Yes	14		General	Skin and allergies	Climate change, in general, may be associated with skin and soft-tissue infections.
37	Kampe	2016	United Kingdo m	1998- 2015	1971- 2010	13	No	High- income countri es	10	Meteorolo gical	Other	Higher temperature is associated with unintentional injuries.
38	Khader	2015	Jordan	2003- 2014	1991- 2012	78	No	Eastern Medite ranian	Vulnerable countries	Meteorolo gical Extreme weather Air quality	Infectious diseases Mortality Respiratory, cardiovascular and pulmonary, and neurological outcomes Health systems Mental health Pregnancy and birth	High temperature is associated with mortality. Temperature, humidity and precipitation are associated with vector-, food- and water-borne diseases. Air pollution is associated with respiratory outcomes, although some findings are inconsistent. Highe temperature is associated with menta health outcomes and hospital admissions. Higher temperature may also be associated with adverse birth outcomes. Meteorological and extreme weather events are associated with food insecurity.

Page 49 of 63

											Dietary	
39	Klinger	2014	United Kingdo m	2011- 2013	NS	20	No			Extreme weather	Health systems	Extreme weather events may lead to power outages which may pose challenges to healthcare quality.
40	Kuehn	2017	United States	2002- 2017	NS	28	No		Pregnant people	Meteorolo gical	Pregnancy and birth	Extreme heat exposure is associated with adverse birth outcomes (e.g. stillbirth, birth weight).
41	Lake	2017	United Kingdo m	NS	NS	66	No	Europe		General	Skin and allergies	Climate change may be associated with ragweed pollen allergy.
42	Lal	2019	Australi a	1982- 2011	NS	36	Yes		Children	Meteorolo gical	Infectious diseases	Rainfall is associated with childhood diarrhea, although this association differed according to season and latitude.
43	Lal	2015	Australi a	NS	NS	16	No	New Zealan d		Meteorolo gical	Infectious diseases	Temperature variability, higher temperature and rainfall are associated with enteric diseases.
44	Lawton	2019	Australi a	2000- 2015	NS	71	No	6	je	Meteorolo gical	Mortality Respiratory, cardiovascular and pulmonary, and neurological outcomes	Heat exposure is associated with hea stroke, long-term neurological outcomes (e.g., cerebellar injury) and heat-related mortality.
45	Levi	2018	Italy	2003- 2017	1977- 2014	184	No		Workers	Meteorolo gical	Occupational health and injuries	Heat exposure is associated with occupational injuries.
46	Levy	2016	United States	1972- 2013	1948- 2010	208	No			Meteorolo gical Extreme weather	Infectious diseases	Temperature is associated with bacterial diarrhea and drought is associated with all-cause diarrhea, although few studies explored the association between drought and diarrhea.
47	Leyva	2017	Asia	2009- 2017	NS	30	No		Elderly	Meteorolo gical	Infectious diseases Mortality	Meteorological factors, extreme weather events (e.g. typhoon, floods and air pollution are associated with

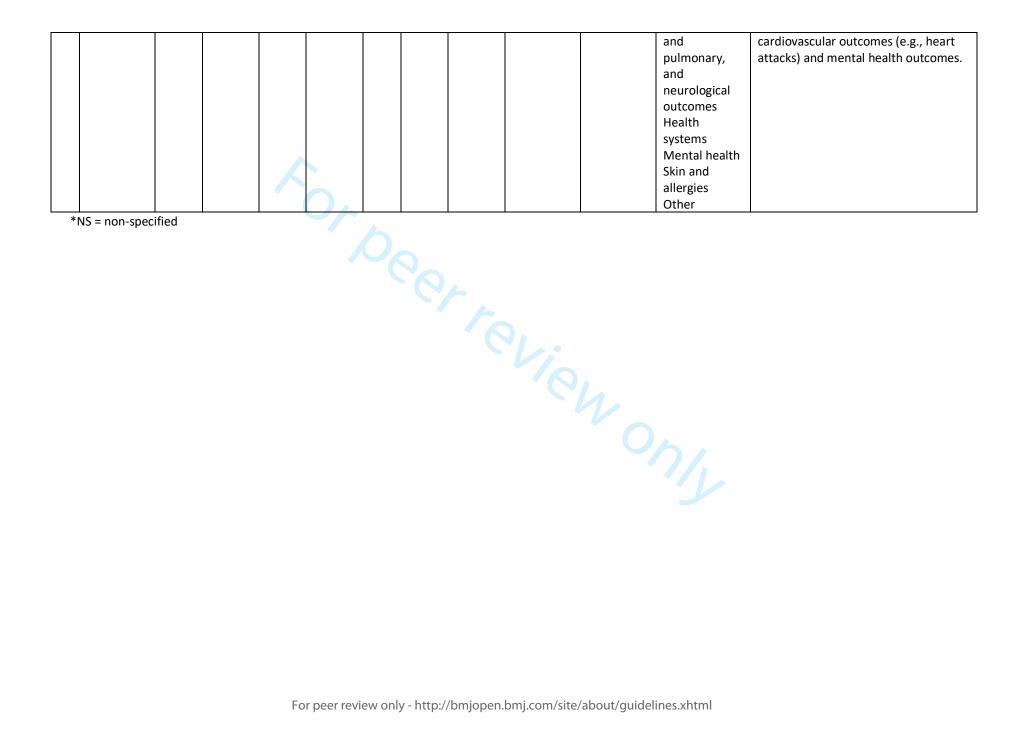
				X						Extreme weather Air quality	Respiratory, cardiovascular and pulmonary, and neurological outcomes Health systems Mental health	mortality and morbidity, especially cardiovascular- and respiratory- specific. Higher temperature is associated with vector-borne diseases. Heat and cold temperatures are associated with hospital admissions. Flooding is associated with mental health outcomes (e.g. PTSD, depression).
48	Li	2018	China	1988- 2017	NS	81	No	China		Meteorolo gical Extreme weather	Infectious diseases	Meteorological factors (temperature, precipitation, humidity, air pressure) and extreme weather events (floods, typhoons) are associated with Dengue fever in China.
49	Lian	2015	China	2003- 2014	NS	20	Yes	16	J.C.	Meteorolo gical	Mortality Respiratory, cardiovascular and pulmonary, and neurological outcomes	Higher and lower temperatures are associated with stroke-related mortality and low temperatures are also associated with stroke-related morbidities.
50	Liu	2015	United States	1990- 2014	NS	61	No			Air quality	Mortality Respiratory, cardiovascular and pulmonary, and neurological outcomes Health systems Pregnancy and birth Other	Wildfire smoke exposure is associated with mortality, respiratory outcomes and hospital admissions. Wildfire smoke exposure could also be associated with cardiovascular, ophthalmic and pregnancy outcomes, although more research is needed.
51	Madaniyaz i	2015	Australi a	2004- 2013	1961- 2100	15	No			Air quality	Mortality	Air pollution is associated with future mortality.

1 2 3 4 5	
6 7 8 9 1	0
1 1 1 1	4 5
1 1 2 2	6 7 8 9 0 1
2 2 2 2 2	2 3 4 5 6 7
2	Q
3 3 3 3 3	0 0 1 2 3 4 5 6 7
3	8 9 0 1
4 4 4 4 4	- 3 4 5 6

52	Matysiak	2017	Puerto Rico	2001-2005	NS	26	No	Puerto Rico (United -States)		Meteorolo gical Extreme weather	Infectious diseases	Meteorological factors (higher temperature and increased rainfall) are associated with vector-borne diseases, such as Dengue and Zika. Extreme weather events are less researched, but the few studies investigating this association suggest no association between hurricanes and floods and vector-borne diseases.
53	Moghada mnia	2017	Iran	2011- 2016	1979- 2013	26	Yes			Meteorolo gical	Mortality	Higher and lower temperature are associated with cardiovascular mortality.
54	Naish	2014	Australi a	NS	1931- 2010	16	No			Meteorolo gical	Infectious diseases	Meteorological factors (especially temperature, rainfall and humidity) are associated with Dengue.
55	Nichols	2009	United Kingdo m	1999- 2008	NS	36	Νο	1.6	L'IC	Meteorolo gical Extreme weather Air quality	Infectious diseases Mortality Respiratory, cardiovascular and pulmonary, and neurological outcomes Mental health Dietary Skin and allergies Other	Meteorological factors (e.g., higher temperature) are associated with mortality and various infectious diseases. Increased UV exposure is associated with skin cancer and cataracts. Extreme weather events are associated with mortality, injury, mental health outcomes, malnutrition, and food- and water-borne diseases. Air pollution is associated with cardio- respiratory outcomes.
56	Odame	2018	United States	2006- 2017	1893- 2013	14	Yes		Rural population s	Meteorolo gical	Mortality	Higher temperature is associated with all-cause mortality and cardiovascular specific mortality.
57	Park	2017	Korea	1920- 2015	1961- 2013	10	Yes			Meteorolo gical	Other	Higher temperature is associated with acute gouty arthritis.
58	Phalkey	2015	Germa ny	1989- 2012	1982- 2008	15	No	Low to middle- income	Children	Meteorolo gical	Dietary	Meteorological factors (rainfall, temperature) and extreme weather

								countri es		Extreme weather		events are associated with childhood undernutrition.
59	Philipsborn	2016	Georgi a	NS	1973- 2010	28	Yes			Meteorolo gical	Infectious diseases	Higher temperature is associated with Diarrheagenic Escherichia coli. No significant relationship between rainfall and E. coli.
60	Phung	2015	Australi a	2004- 2013	NS	13	No	Southe ast Asia		Meteorolo gical Extreme weather	Infectious diseases	Meteorological factors (temperature, humidity) and extreme weather event (flooding) are associated with vector- and water-borne infectious diseases.
61	Porpora	2019	Italy	1964- 2019	NS	78	No			Other	Pregnancy and birth	Environmental pollutants may be associated with preterm birth, however this association remains unclear due to conflicting evidence.
62	Poursafa	2015	Iran	2001- 2013	NS	15	No	× 10		Meteorolo gical	Pregnancy and birth	Meteorological factors (higher temperature, lower temperature, humidity, sunlight intensity) are associated with adverse birth outcomes (low birth weight, preterm birth, hypertension, eclampsia).
63	Racloz	2012	Australi a	NS	NS	63	No		0	Meteorolo gical	Infectious diseases	Higher temperature, increased precipitation and humidity are associated with Dengue.
64	Rataj	2016	Germa ny	1981- 2012	1978- 2008	17	No	Low to middle income countri es		Extreme weather	Mental health Other	Extreme weather events are associated with mental health outcomes (e.g., PTSD, anxiety, depression) and injuries.
65	Reid	2016	United States	1990- 2015	NS	53	No		Susceptibl e population s	Air quality	Mortality Respiratory, cardiovascular and pulmonary, and neurological outcomes Mental health	Wildfire smoke exposure is associated with respiratory outcomes (e.g., asthma) and mortality. Wildfire smoke exposure may be associated with cardiovascular, birth, and mental health outcomes, but more research is needed.

Page	53 (of	63
------	------	----	----


											Pregnancy and birth	
66	Rifkin	2018	United States	1995- 2017	1992- 2016	16	No			Meteorolo gical Extreme weather	Other	Temperature and extreme weather events (hurricanes) are associated with sleep quality.
67	Salve	2018	India	NS	NS		No	India		Meteorolo gical	Mortality Health systems Dietary	Increase in temperature is associated with all-cause mortality, cause-specific mortality (e.g., myocardial infarctions, stroke, heart diseases), hospitalizations (e.g., heat-related admissions, neonatal intensive unit admissions), and food insecurity and malnutrition, via agricultural issues.
68	Sanderson	2017	United Kingdo m	1988- 2017	1900- 2101	63	No	r r		Meteorolo gical	Mortality	Higher temperatures and heat waves are associated with mortality and heat-related mortality is likely to increase with increased temperatures.
69	Sawatzky	2018	Canada	2005- 2016	NS	85	No	Arctic and Subarct ic	Lie	General	Health systems	Climate change, in general, is associated with a strain in public health resources, via population health issues and surveillance systems may guide future adaptation to climate change.
70	Semenza	2012	Swede n	1998- 2009	1995- 2007	722	No			Meteorolo gical	Infectious diseases	Meteorological factors (temperature, rainfall) are associated with some food- and water-borne diseases.
71	Stanke	2013	United Kingdo m	1967- 2011	1876- 1879 and 1961- 2010	87	No			Extreme weather	Infectious diseases Mortality Respiratory, cardiovascular and pulmonary, and neurological outcomes Mental health	Droughts are associated with malnutrition, mortality, infectious diseases, cardiovascular and respiratory outcomes, mental health (e.g., increased worry, anxiety), injuries, and cancer.

											Dietary Other	
72	Stensgaard	2019	Denma rk	1995- 2017	NS	20	No			Meteorolo gical	Infectious diseases	Meteorological factors (temperature, precipitation, humidity) are associate with schistosomiasis and increasing temperatures are likely to affect the geographic range of this parasite.
73	Sun	2018	China	1999- 2017	1974- 2014	30(r evie w)2 3m eta- anal ysis	Yes	7		Meteorolo gical	Mortality Respiratory, cardiovascular and pulmonary, and neurological outcomes Health systems	Heat and cold exposure are associate with myocardial infarctions (MI) and hospitalization for MI. Heat exposure is associated with MI-specific mortality.
74	Swynghed auw	2009	France	NS	NS	NS	No	6	Vie	Meteorolo gical Extreme weather	Infectious diseases Mortality Skin and allergies Other	Heat and cold exposure are associate with mortality and more specifically, respiratory- and cardiovascular- specific mortality. Exposure to UV is associated with skin cancer and cataracts. Higher temperatures are associated with infectious diseases (mosquito- and food-borne diseases) and extreme weather events are associated with undernutrition and food-borne diseases.
75	Tall	2014	Australi a	1946- 2009	1886- 2006	22	No	Australi a		Extreme weather	Infectious diseases	There is no strong evidence for the association between flooding and the Ross River Virus.
76	Varghese	2018	Australi a	1983- 2017	1922- 2017	26	No		Workers	Meteorolo gical	Occupational health and injuries	Heat is associated with occupational injuries in many contexts of work (e.g agriculture, transport, construction, fishing).
77	Veenema	2017	United States	2006- 2016	NS	47	No			Extreme weather	Infectious diseases Mortality	Extreme water-related weather even are associated with mortality, water- and vector-borne infectious diseases,

											Mental health	mental health issues (e.g., PTSD, depression, anxiety).
78	Vilcins	2018	Australi a	NS	NS	72	No		Children	Other	Dietary	Certain environmental risk factors (e.g., sanitation, cooking fuels), which could be aggravated by climate change, may be associated with childhood stunting.
79	Vins	2015	United States	1995- 2005	NS	82	No			Extreme weather	Mental health	Drought is likely associated with adverse mental health outcomes.
80	Waits	2018	Finland	1970- 2017	NS	43	No	Arctic		Meteorolo gical	Infectious diseases	Meteorological factors (especially higher temperature and precipitation are associated with infectious disease (e.g. tick borne diseases, tularemia) i the Arctic.
81	Wald	2019	United States	2009- 2018	NS	17	No	United States		Meteorolo gical	Health systems	Higher temperature is associated wit emergency department (heat-related visits) visits and costs for healthcare systems.
82	Welch	2019	United States	NS	NS	91	No	Č	'Li	Meteorolo gical	Infectious diseases	Meteorological factors (temperature precipitation) are associated with Salmonella.
83	Wimalawa nsa	2016	United States	NS	NS	NS	No	Tropica l Countri es	Workers	Meteorolo gical Other	Occupational health and injuries	Increasing temperatures and environmental pollution (e.g., heavy metals, fertilizers) are associated wit occupational health outcomes, such chronic kidney disease of multifactor origin.
84	Witt	2015	Germa ny	NS	NS	33	Yes		Chronic lung disease patients	Meteorolo gical	Mortality Respiratory, cardiovascular and pulmonary, and neurological outcomes	Heat is associated with lung disease outcomes and mortality in patients with chronic lung diseases.
85	Xu	2018	Australi a	2004- 2016	1978- 2013	19	No		Children	Meteorolo gical	Respiratory, cardiovascular	Heat and cold temperatures are associated with childhood asthma.

											and pulmonary, and neurological outcomes	
86	Xu	2012	Australi a	2000- 2012	1983- 2010	33	No	- 10	Children	Meteorolo gical	Infectious diseases Mortality Respiratory, cardiovascular and pulmonary, and neurological outcomes Health systems Skin and allergies Other	Heat and cold are associated with hospital admissions and mortality in children. Temperature is also associated with various infectious diseases (e.g., HFMD, malaria), respiratory diseases (e.g., asthma) and skin outcomes (e.g, eczema). For example, high temperature is associated with Hand Foot Mouth Disease and renal diseases and low temperature is associated with eczema.
87	Xu	2016	Australi a	2001- 2015	NS	60	Yes		0	Meteorolo gical	Mortality	Heat waves are associated with mortality and it seems that the intensity of heatwaves is particularly important compared to length of heatwave.
88	Xu	2014	Australi a	1998- 2012	1983- 2009	12	No		Children	Meteorolo gical	Mortality Respiratory, cardiovascular and pulmonary, and neurological outcomes Health systems Other	Heat waves are associated with hospital admissions, respiratory diseases, renal diseases, fever and electrolyte imbalances. Evidence concerning the association between heatwaves and children mortality is inconsistent.
89	Youssouf	2014	France	1990- 2011	1987- 2008	94	No			Air quality	Mortality	Wildfire smoke exposure is associated with mortality, respiratory and

											Respiratory, cardiovascular and pulmonary, and neurological outcomes Health systems Pregnancy and birth	cardiovascular outcomes, hospital admissions. Wildfire smoke exposure may also be associated with adverse birth outcomes (low birth weight).
90	Yu	2015	Australi a	1998- 2012	1961- 1990 et 2020- 2100	20	No			Meteorolo gical	Infectious diseases	Meteorological factors (temperature, rainfall, humidity) may be associated with future malaria transmission, although findings are inconsistent, partly according to geographical focu
91	Yu	2012	Australi a	1997- 2008	1973- 2006	15	Yes	10	Elderly	Meteorolo gical	Mortality	Heat and cold temperatures are associated with mortality for the elderly, although heat-related associations seem stronger than cold related associations.
92	Zhang	2007	Australi a	NS	NS	NS	No		People with disabilities	General	Other	Climate change, in general, may be associated with disability-adjusted lif years (DALY), and the cost of DALY could be particularly important in low to middle income countries.
93	Zhang	2017	China	1997- 2016	1981- 2012	36	No		Pregnant people	Meteorolo gical	Pregnancy and birth	High temperature is associated with adverse birth outcomes, such as preterm birth, low birth weight and stillbirth. Low temperature is also associated with some adverse birth outcomes, including preterm birth an low birth, although the evidence is stronger for high temperature than for low temperatures.
94	Zuo	2015	Australi a	NS	NS	173	No			Meteorolo gical	Mortality Respiratory, cardiovascular	Heat waves are associated with mortality, hospital admissions, sunburn, heat exhaustion,

Page 59 of 63

BMJ Open

1
2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
55
54
55
50
57
58
50
59
60

Appendix 4. Summary of quality assessment according to revised AMSTAR-2 items. (Y = yes,	
PY = partial yes, N = no, NA = non-applicable).	

								A	MST	AR-2	Item	s						
First author	Year	1	1b	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Alderman	2012	Υ	Ν	Ν	ΡY	PY	Ν	Ν	PY	ΡY	Ν	Ν	NA	NA	Υ	Ν	NA	N
Amegah	2016	Y	Ν	Ν	Y	PY	Ν	Ν	PY	Y	Y	Ν	NA	NA	Y	Y	NA	Y
An	2018	Ν	Y	Ν	Ν	PY	Y	Ν	Y	Ν	Y	Ν	NA	NA	Y	Ν	NA	Y
Augustin	2008	Y	Y	N	Ν	PY	Ν	Ν	PY	Ν	PY	Ν	NA	NA	Y	Ν	NA	Y
Babaie	2018	Y	Υ	N	Ν	PY	Y	Ν	Y	PY	Ν	Ν	NA	NA	Ν	Ν	NA	N
Bai	2013	Y	Υ	Ν	PY	PY	Ν	Ν	PY	PY	Y	Ν	NA	NA	Y	Ν	NA	Y
Benevolenza	2019	Y	Υ	Ν	PY	Ν	Ν	Ν	Y	PY	PY	Ν	NA	NA	Y	Ν	NA	Ν
Berhane	2016	Υ	Ν	Y	N	Ν	Ν	Ν	Ν	PY	PY	Ν	NA	NA	Y	Ν	NA	Ν
Bernhardt	2019	Y	Ν	Ν	N	Ν	Ν	Ν	PY	PY	PY	Ν	NA	NA	ΡY	Ν	NA	Y
Binazzi	2019	Y	Y	Ν	Y	PY	Y	Ν	Y	Y	Y	Ν	Y	Y	Y	Y	Y	Y
Bonafede	2016	Y	Ν	Ν	PY	PY	Υ	N	Y	Y	Y	Ν	NA	NA	Y	Y	NA	Y
Brown	2013	Y	Y	Ν	PY	PY	N	Ν	Y	Y	PY	Ν	NA	NA	Y	Y	NA	Y
Bunker	2016	Y	Y	Ν	Υ	Ν	Y	PY	Y	Y	PY	Ν	Y	Y	Y	Y	Υ	Y
Campbell	2018	Y	Ν	Ν	Ν	PY	Ν	Ν	Y	ΡY	Ν	Ν	NA	NA	Y	PY	NA	Y
Cann	2013	Y	Y	Υ	PY	PY	Ν	Ν	Y	PY	PY	Ν	NA	NA	Y	Y	NA	Y
Carolan-Olah	2014	Y	Y	Ν	Ν	PY	Ν	Ν	Y	PY	Y	Ν	NA	NA	PY	PY	NA	N
Cheng	2014	Y	N	Ν	PY	PY	Ν	Ν	Y	Y	Y	N	NA	NA	Y	PY	NA	N
Coates	2019	Ν	Ν	Ν	Ν	Ν	Ν	Ν	PY	PY	Y	Ν	NA	NA	Y	PY	NA	N
Cong	2017	Ν	Y	Ν	Ν	PY	Ν	Y	Y	Y	Y	Ν	Y	Ν	Y	Y	Y	Y
Cunrui	2011	Y	Ν	Ν	PY	PY	Ν	Ν	Y	PY	Ν	N	NA	NA	Y	Ν	NA	Y
deSousa	2018	Y	Ν	Ν	PY	PY	Ν	Ν	Y	Ν	Ν	Ν	NA	NA	Y	Ν	NA	Y
Dhimal	2015	Y	Y	Ν	PY	PY	Ν	Ν	Y	Y	N	N	NA	NA	N	Ν	NA	N
Doocy	2013	Y	Ν	Ν	Ν	PY	Y	Ν	Y	Y	N	N	NA	NA	Y	PY	NA	Y
Duan	2019	Y	Ν	Ν	Ν	PY	Ν	Ν	Y	PY	Y	N	Y	Y	Y	Y	Y	Y
Fan	2015	Ν	Y	Ν	N	PY	Y	Y	PY	PY	Y	Ν	Y	Y	Y	Y	Y	Y
Fernandez	2015	Y	Y	Ν	ΡY	PY	Y	Ν	Y	PY	PY	Ν	NA	NA	Y	Ν	NA	N
Flouris	2018	Y	N	Y	PY	PY	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

г			r	[1			1										т
	Gao	2019	Ν	Y	Ν	PY	PY	Y	Ν	Y	Y	Y	Ν	Y	Y	Y	Y	Y	
	Gao	2014	Y	Ν	Ν	ΡY	PY	Ν	PY	Y	Y	Y	Ν	NA	NA	Y	Y	NA	
	Ghanizadeh	2017	Ν	Y	Ν	PY	Ν	Υ	ΡY	Υ	PY	Y	Ν	NA	NA	Ν	Ν	NA	
	Ghazani	2018	Ν	Ν	Ν	Ν	PY	Υ	Ν	Y	Y	PY	Ν	NA	NA	Y	PY	NA	Ī
	Gracia	2015	Y	Y	Ν	PY	PY	Υ	Ν	Υ	PY	Y	Ν	NA	NA	Y	Ν	NA	Ī
	Hajat	2010	Y	Ν	Ν	Υ	PY	Ν	Ν	Υ	PY	Ν	Ν	NA	NA	Ν	PY	NA	Ī
	Hedlund	2014	Y	Ν	Ν	PY	Ν	Υ	Y	Y	PY	Y	Ν	NA	NA	Y	Ν	NA	Ī
	Hii	2016	Y	N	N	ΡY	PY	Ν	N	PY	PY	N	Ν	NA	NA	Ν	N	NA	Ī
	Huang	2016	N	Ν	N	Ν	PY	Υ	Ν	PY	Y	Y	Ν	Y	Y	Y	PY	Ν	Ī
	Kampe	2016	Y	Ν	N	PY	PY	Υ	Ν	Y	Y	PY	Ν	NA	NA	Y	N	NA	Ī
	Khader	2015	Y	Ν	N	PY	PY	Υ	Ν	Y	Y	Ν	Ν	NA	NA	Y	PY	NA	Ī
	Klinger	2014	Ν	N	Ν	N	ΡY	Υ	Ν	Y	Ν	Y	Ν	NA	NA	Y	N	NA	Ī
	Kuehn	2017	Y	Ν	Ν	N	PY	Ν	Ν	Y	Υ	PY	Ν	NA	NA	Y	Ν	NA	Ī
	Lake	2017	Y	Y	Ν	Ν	PY	Y	Y	ΡY	ΡY	Ν	Ν	NA	NA	Ν	Ν	NA	Ī
	Lal	2019	Y	Ν	Y	Ν	PY	Ν	Y	Y	PY	Y	Ν	Y	Y	Y	Y	Ν	Ī
	Lal	2015	Y	Y	Ν	Ν	PY	Ν	Ν	Y	ΡY	PY	Ν	NA	NA	Y	PY	NA	Ī
	Lawton	2019	Y	Ν	Ν	ΡY	PY	Ν	N	Y	Y	Ν	Ν	NA	NA	Y	Ν	NA	Ī
	Levi	2018	Y	Y	Ν	PY	PY	Υ	N	Y	Y	Ν	Ν	NA	NA	Y	PY	NA	Ī
	Levy	2016	Ν	Ν	Ν	PY	PY	Υ	PY	Y	Y	Y	Ν	NA	NA	Y	Y	NA	Ī
	Leyva	2017	Y	Y	Ν	PY	PY	Ν	Ν	Y	Ν	Υ	Ν	NA	NA	Y	Ν	NA	Ī
	Li	2018	Y	Ν	Ν	Ν	PY	Ν	Ν	Ν	ΡY	Ν	Ν	NA	NA	Ν	Ν	NA	Ī
	Lian	2015	Y	Ν	Ν	ΡY	PY	Υ	Y	Y	Ν	Y	Ν	Y	Y	Y	Y	Y	Ī
	Liu	2015	Y	Y	Ν	Υ	PY	Ν	Ν	Y	Υ	PY	Ν	NA	NA	Y	PY	NA	Ī
	Madaniyazi	2015	Ν	Ν	Ν	PY	PY	Ν	Ν	Y	PY	Ν	Ν	NA	NA	Y	Ν	NA	Ī
	Matysiak	2017	Y	Y	Ν	ΡY	PY	Ν	Ν	Y	ΡY	Y	Ν	NA	NA	Y	Ν	NA	Ī
	Moghadamnia	2017	Y	Ν	Ν	ΡY	PY	Υ	Ν	Y	Υ	Y	Ν	Y	Ν	Y	Y	Ν	I
	Naish	2014	Y	Y	Ν	PY	PY	Ν	Ν	PY	PY	PY	Ν	NA	NA	Y	Ν	NA	Ĩ
	Nichols	2009	Y	Ν	Ν	ΡY	PY	Υ	Y	Y	Υ	Ν	Ν	NA	NA	Ν	Ν	NA	Ī
	Odame	2018	Y	Ν	Ν	ΡY	PY	Ν	Ν	ΡY	ΡY	Ν	Ν	Y	Ν	Y	Y	Y	Ī
	Park	2017	Y	Ν	Ν	Ν	PY	Υ	Y	Ν	PY	Y	Ν	Y	PY	Y	Y	Ν	Ī
	Phalkey	2015	Y	Y	Ν	ΡY	PY	Y	Y	Y	ΡY	PY	Ν	NA	NA	Y	N	NA	Ì

BMJ Open

Philipsb	orn	2016	Y	Y	Ν	ΡY	Ν	Ν	Ν	Y	PY	Ν	Ν	Y	Y	Ν	Y	N
Phi	ung	2015	Y	Y	Ν	N	PY	Ν	Ν	Y	Y	PY	Y	NA	NA	Ν	N	N
Porp	ora	2019	Y	Y	Y	PY	PY	Ν	Ν	Y	PY	N	Ν	NA	NA	Ν	Y	N
Pours	afa	2015	Y	N	Ν	PY	PY	Y	Y	PY	Y	PY	Ν	NA	NA	Y	Y	N
Rad	loz	2012	Y	Ν	Ν	N	PY	Ν	Ν	N	PY	N	Ν	NA	NA	Y	Y	N
R	ataj	2016	Y	Y	Y	PY	PY	Y	Y	PY	PY	Y	Ν	NA	NA	Y	Y	N
R	eid	2016	Y	Ν	Ν	ΡY	PY	Ν	Ν	Ν	ΡY	PY	Ν	NA	NA	Y	PY	Ν
Ri	fkin	2018	Y	Y	Υ	PY	PY	Y	Y	Y	PY	Ν	Ν	NA	NA	Y	Ν	N
Sa	alve	2018	Y	Y	N	Ν	PY	Y	Y	PY	PY	Ν	Ν	NA	NA	Y	Ν	Ν
Sanders	son	2017	Y	Y	N	Ν	PY	Y	Ν	Y	PY	PY	Ν	NA	NA	Y	Ν	Ν
Sawat	zky	2018	Y	Y	Ν	Ν	PY	Y	Ν	Y	Ν	Ν	Ν	NA	NA	Ν	Ν	Ν
Seme	nza	2012	Ν	Ν	Ν	N	N	Ν	Ν	Ν	Ν	Y	Ν	NA	NA	Ν	Ν	N
Sta	nke	2013	Y	Ν	Ν	PY	PY	Ν	Ν	Y	PY	Ν	Ν	NA	NA	Y	Ν	N
Stensga	ard	2019	Y	Y	Ν	Ν	PY	N	Y	Ν	PY	Ν	Ν	NA	NA	Ν	Ν	N
S	Sun	2018	Y	Y	Ν	PY	PY	Ν	Y	Y	Y	Y	Ν	Y	Y	Y	Y	`
Swyngheda	uw	2009	Y	Y	Ν	Ν	N	N	Ν	N	Ν	Ν	Ν	NA	NA	Ν	Ν	N
-	Tall	2014	Y	Ν	Ν	Ν	PY	Ν	Ν	Y	Y	PY	Ν	NA	NA	Y	Ν	N
Vargh	ese	2018	Y	Ν	Ν	Ν	PY	Ν	Ν	Y	Y	Ν	Ν	NA	NA	Y	Ν	Ν
Veene	ma	2017	Y	Ν	Y	Ν	PY	Ν	Ν	Y	Ν	PY	Ν	NA	NA	Ν	Ν	N
Vilo	cins	2018	Y	Ν	Υ	Ν	PY	Ν	Ν	Υ	Ν	Υ	Ν	NA	NA	Y	Ν	N
V	′ins	2015	Y	Y	Ν	Ν	PY	Ν	Ν	Υ	Ν	Ν	Ν	NA	NA	Υ	PY	N
W	aits	2018	Y	Y	Ν	Ν	PY	Ν	Ν	Y	Ν	N	Ν	NA	NA	Ν	Ν	N
W	'ald	2019	Y	Ν	Ν	Ν	PY	Ν	Ν	Y	Y	Ν	Ν	NA	NA	Y	Ν	N
We	elch	2019	Y	Y	Ν	Ν	Ν	Ν	Ν	PY	PY	Ν	Ν	NA	NA	Ν	Ν	N
Wimalawa	nsa	2016	Y	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	NA	NA	Ν	Ν	Ν
١	Nitt	2015	Y	Ν	Ν	Ν	PY	Ν	Ν	Y	Ν	Ν	Ν	Ν	Y	Y	Ν	1
	Xu	2018	Y	Ν	Ν	PY	PY	Ν	Ν	PY	PY	Ν	Ν	NA	NA	Y	Ν	N
	Xu	2012	Y	Ν	Ν	PY	PY	Ν	Ν	PY	Y	PY	Ν	NA	NA	Ν	Ν	Ν
	Xu	2016	Y	Ν	Ν	PY	PY	Ν	Ν	Y	Υ	Ν	Ν	Y	Ν	Υ	Υ	1
	Xu	2014	Υ	Υ	Ν	Ν	PY	Ν	Ν	Υ	Υ	Ν	Ν	NA	NA	Ν	Υ	N
Youss	ouf	2014	Y	Y	Ν	PY	PY	Ν	Ν	Y	Y	Ν	Ν	NA	NA	Y	Ν	N

59 60

Yu	2015	Ν	Ν	Ν	PY	PY	Ν	Ν	Y	Y	Ν	Ν	NA	NA	Y	ΡY	NA	Y
Yu	2012	Y	Y	Ν	ΡY	Ν	Ν	Y	Y	Y	Ν	Ν	Y	Ν	Y	Y	Y	Υ
Zhang	2007	Y	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	NA	NA	Y	Ν	NA	Ν
Zhang	2017	Y	Υ	Ν	ΡY	ΡY	Ν	Ν	ΡY	Y	Y	Ν	NA	NA	Y	Y	NA	Υ
Zuo	2015	Y	Y	Ν	Ν	ΡY	Ν	Ν	Ν	Ν	Ν	Ν	NA	NA	Ν	Ν	NA	Y
TOTAL	Yes	81	44	9	5	0	32	17	64	36	31	2	17	12	70	28	11	78
	Partial Yes	0	0	0	47	80	0	4	19	41	22	0	0	1	2	15	0	0
	No	13	50	85	42	14	62	73	11	17	41	92	1	5	22	51	7	16
	Not- Applic able	0	0	0	0	0	0	0	0	0	0	0	76	76	0	0	76	0

able <u>0 0 0 0 0 0 0 0 0 76 76 0 0</u>

 BMJ Open

Appendix 5. Summary table of publications according to climate impact and health outcome according to frequencies and references. References with a * explore only this specific combination of climate impact and health outcome and therefore appear only once in this table. Number of studies and references (according to alphabetical order) for each combination of categories are presented in the cells. Empty cells in this Table indicate an absence of studies at this combination of categories.

		Climate Impact			
Health Outcome	Meteorological (71)	Extreme weather (24)	Air quality (7)	General (5)	Other (3)
Infectious diseases (41)	35 Amegah, Babaie*, Bai*, Berhane, Bernhardt*, Cheng, Coates*, de Sousa, Dhimal*, Duan*, Fan*, Gao 2014, Ghazani*, Gracia*, Hedlund, Hii*, Khader, Lal 2015*, Lal 2019*, Levy, Leyva, Li, Matysiak, Naish*, Nichols, Philipsborn*, Phung, Racloz*, Semenza*, Stensgaard, Swynghedau, Waits*, Welch*, Xu 2012, Yu 2015*	14 Alderman, Berhane, Brown*, Cann*, Hedlund, Levy, Li, Matysiak, Nichols, Phung, Stanke, Swynghedau, Tall*, Veenema			
Mortality (32)	24 Amegah, Bunker, Campbell, Cheng, Cunrui*, Ghanizadeh, Hajat*, Khader, Lawton, Leyva, Lian, Moghdamnia*, Nichols, Odame*, Salve, Sanderson*, Sun, Swynghedauw, Witt, Xu 2012, Xu 2014, Xu 2016*, Yu 2012*, Zuo	5 Alderman, Doocy, Leyva, Stanke, Veenema	5 Leyva, Liu, Madniyazi*, Reid, Youssouf		
Respiratory, cardio-vascular, cardio-pulmonary and neurological (22)	17 Amegah, Bunker, Cheng, Cong*, de Sousa, Gao 2014, Ghanizadeh, Lawton, Leyva, Lian, Nichols, Sun, Witt, Xu 2012, Xu 2014, Xu 2018*, Zuo	1 Stanke	6 Khader, Leyva, Liu, Nichols, Reid, Youssouf		

Health systems (16)	11 Amegah, Campbell, Cheng, Khader, Leyva, Salve, Sun, Wald*, Xu 2012, Xu 2014, Zuo	2 Alderman, Klinger*	2 Liu, Youssouf	1 Sawatzky*	
Mental Health (13)	3 Gao 2019*, Khader, Zuo	9 Alderman, Benevolenza, Fernandez*, Leyva, Nichols, Rataj, Stanke, Veenema, Vins*	1 Reid		
Pregnancy and birth outcomes (11)	5 Carolan-Olah*, Kuehn*, Poursafa*, Khader, Zhang 2017*	2 Alderman, Benevolenza	3 Liu, Reid, Youssouf		1 Porpora*
Dietary (9)	4 Amegah, Khader, Phalkey, Salve	6 Berhane, Khader, Nichols, Phalkey, Stanke, Swynghedauw		1 An*	1 Vilcins*
Skin and allergies (9)	7 Amegah, Augustin*, Nichols, Gao 2014, Swynghedauw, Xu 2012, Zuo	Shop		2 Huang*, Lake*	
Occupational health and injuries (6)	6 Binazzi*, Bonafede*, Flouris*, Levi*, Varghese*, Wimalawans				1 Wimalawans
Other (17)	10 Bunker, Cheng, Kampe*, Nichols, Park*, Rifkin, Swynghedauw, Xu 2012, Xu 2014, Zuo	6 Alderman, Benevolenza, Doocy, Rataj, Rifkin, Stanke	1 Liu	1 Zhang 2007*	

BMJ Open

BMJ Open

The Health Effects of Climate Change: An Overview of Systematic Reviews

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-046333.R1
Article Type:	Original research
Date Submitted by the Author:	06-Mar-2021
Complete List of Authors:	Rocque, Rhea; The University of Winnipeg Beaudoin, Caroline; Université Laval, Faculty of Medicine Ndjaboue, Ruth; Université Laval, Faculty of Medicine; VITAM Research Centre for Sustainable Health Cameron, Laura; The University of Winnipeg Poirier-Bergeron, Louann; Université Laval, Faculty of Medicine Poulin-Rheault, Rose-Alice; Université Laval, Faculty of Medicine Fallon, Catherine; Université Laval, Faculty of Medicine; CHUQ Research Centre Tricco, Andrea; Li Ka Shing Knowledge Institute, ; University of Toronto, Institute for Health Policy, Management, and Evaluation Witteman, Holly; Laval University, Family and Emergency Medicine; VITAM Research Centre for Sustainable Health
Primary Subject Heading :	Public health
Secondary Subject Heading:	Public health, Global health
Keywords:	PUBLIC HEALTH, SOCIAL MEDICINE, Public health < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2		The Lieghth Effects of Climete Changes
4	1	The Health Effects of Climate Change:
5	2	An Overview of Systematic Reviews
6 7	3	Rhéa Rocque, PhD ¹ , Caroline Beaudoin, DEC ² , Ruth Ndjaboue, MPH, PhD ^{2,3} , Laura Cameron,
8	4	MA ¹ , Louann Poirier Bergeron, DES ² , Rose-Alice Poulin-Rheault, DEC ² , Catherine S. Fallon,
9	5	MSc ^{2,4} , Andrea C. Tricco, PhD ^{5,6} , Holly O. Witteman, PhD ^{2,3,4}
10	6	······································
11	7	¹ Prairie Climate Centre, University of Winnipeg, Winnipeg
12 13	8	² Faculty of Medicine, Laval University, Quebec City
14	9	³ VITAM Research Centre for Sustainable Health, Quebec City
15	10	⁴ Research Centre of the CHU de Québec-Laval University, Quebec City
16	11	⁵ Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto
17	12	⁶ Dalla Lana School of Public Health, University of Toronto, Toronto
18 19	13	
20	14	Corresponding author:
21	15	Rhéa Rocque - rhea.rocque@gmail.com
22	16	Prairie Climate Centre
23	17	University of Winnipeg
24 25	18	515 Portage Avenue
26	19	Winnipeg, Manitoba, Canada R3B 2E9
27	20	
28	20	Phone number: 1.204.786.7811
29	22	Fax number: 1.204.783.4996
30 31	~~	
32		
33	23	Abstract
34	24	Objectives: We aimed to develop a systematic synthesis of systematic reviews of health impacts
35 36	25	of climate change, by synthesizing studies' characteristics, climate impacts, health outcomes,
37	26	and key findings.
38	20	
39	27	Design: We conducted an overview of systematic reviews of health impacts of climate change.
40	28	We registered our review in PROSPERO (CRD42019145972). No ethical approval was required
41 42	29	since we used secondary data. Additional data is not available.
42		
44	30	Data Sources: On June 22, 2019, we searched Medline, CINAHL, Embase, Cochrane, and Web
45	31	of Science.
46		
47 48	32	Eligibility Criteria: We included systematic reviews that explored at least one health impact of
40 49	33	climate change.
50		
51	34	Data Extraction and Synthesis: We organized systematic reviews according to their key
52	35	characteristics, including geographical regions, year of publication and authors' affiliations. We
53 54	36	mapped the climate effects and health outcomes being studied and synthesized major findings.
55	37	We used a modified version of AMSTAR-2 to assess the quality of studies.
56		
57		
58 50		
59		Tannaan waxiya an ha hatta //hanian an hani araa //ita/ahaa t/anidalin araahtaal
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1	
2	
3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
13 14 15 16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
37 38	
38 39	
40 41	
41 42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

60

38 Results: We included ninety-four systematic reviews. Most were published after 2015 and

39 approximately one fifth contained meta-analyses. Reviews synthesized evidence about five

- 40 categories of climate impacts; the two most common were meteorological and extreme weather
- events. Reviews covered ten health outcome categories; the three most common were 1)
 infectious diseases, 2) mortality, and 3) respiratory, cardiovascular, or neurological outcomes
- 42 infectious diseases, 2) mortality, and 3) respiratory, cardiovascular, or neurological outcomes.
 43 Most reviews suggested a deleterious impact of climate change on multiple adverse health
- 44 outcomes, although the majority also called for more research.

45 Conclusions: Most systematic reviews suggest that climate change is associated with worse
46 human health. This study provides a comprehensive higher-order summary of research on
47 health impacts of climate change. Study limitations include the date of the systematic search
48 and that we did not assess for overlap. Future research could explore the potential explanations
49 between these associations to propose adaptation and mitigation strategies and could include
50 broader socio-psychological health impacts of climate change.

51 Keywords

52 Health; Climate Change; Overview of Systematic Reviews; Extreme Weather Events; Air

53 Quality; Global Warming54

55 Strengths and limitations of this study

- A strength of this study is that it provides the first broad overview of previous systematic reviews exploring the health impacts of climate change. By targeting systematic reviews, we achieve a higher-order summary of findings than what would have been possible by consulting individual original studies.
- By synthesizing findings across all included studies and according to the combination of climate impact and health outcome, we offer a clear, detailed, and unique summary of the current state of evidence and knowledge gaps about how climate change may influence human health.
 - A limitation of this study is that we were unable to access some full texts and therefore some studies were excluded, even though we deemed them potentially relevant after title and abstract inspection.
- Another limitation is that we could not conduct meta-meta-analyses of findings across reviews, due to the heterogeneity of the included systematic reviews and the relatively small proportion of studies reporting meta-analytic findings.
- Finally, the date of the systematic search is a limitation, as we conducted the search in June 2019.

72 Introduction

The environmental consequences of climate change such as sea-level rise, increasing
 temperatures, more extreme weather events, increased droughts, flooding, and wildfires are

BMJ Open

impacting human health and lives.^{1,2} Previous studies and reviews have documented the multiple health impacts of climate change, including an increase in infectious diseases, respiratory disorders, heat-related morbidity and mortality, undernutrition due to food insecurity, and adverse health outcomes ensuing from increased socio-political tension and conflicts.^{2–5} Indeed, the most recent Lancet Countdown report,² which investigates 43 indicators of the relationship between climate change and human health, arrived at their most worrisome findings since the beginning of their on-going annual work. This report underlines that the health impacts of climate change continue to worsen and are being felt on every continent, although they are having a disproportionate and unequal impact on populations.² Authors caution that these health impacts will continue to worsen unless we see an immediate international response to limiting climate change.

To guide future research and action to mitigate and adapt to the health impacts of climate change and its environmental consequences, we need a complete and thorough overview of the research already conducted regarding the health impacts of climate change. Although the number of original studies researching the health impacts of climate change has greatly increased in the recent decade,² these do not allow for an in-depth overview of the current literature on the topic. Systematic reviews, on the other hand, allow a higher-order overview of the literature. Although previous systematic reviews have been conducted on the health impacts of climate change, these tend to focus on specific climate effects (e.g., impact of wildfires on health),^{6,7} health impacts (e.g., occupational health outcomes),^{8,9} countries,^{10–12} or are no longer up to date.^{13,14} thus limiting our global understanding of what is currently known about the multiple health impacts of climate change across the world.

In this study, we aimed to develop such a complete overview by synthesizing systematic reviews of health impacts of climate change. This higher-order overview of the literature will allow us to better prepare for the worsening health impacts of climate change, by identifying and describing the diversity and range of health impacts studied, as well as by identifying gaps in previous research. Our research objectives were to synthesize studies' characteristics such as geographical regions, years of publication, and authors' affiliations, to map the climate impacts, health outcomes, and combinations of these that have been studied, and to synthesize key findings.

44 107 **Methods**

We applied the Cochrane method for overviews of reviews.¹⁵ This method is designed to
systematically map the themes of studies on a topic and synthesize findings to achieve a
broader overview of the available literature on the topic.

51 111 Research questions

⁵²
⁵³ 112 Our research questions were the following: 1) What is known about the relationship between
⁵⁴ 113 climate change and health, as shown in previous systematic reviews? 2) What are the
⁵⁵ 114 characteristics of these studies? We registered our plan (CRD42019145972¹⁶) in PROSPERO,

BMJ Open

1		
2 3	445	
4	115	an international prospective register of systematic reviews and followed PRISMA 2020 ¹⁷ to
5	116	report our findings, as a reporting guideline for overviews is still in development. ¹⁸
6		
7 8	117	Search strategy and selection criteria
9	118	To identify relevant studies, we used a systematic search strategy. There were two inclusion
10	119	criteria. We included studies in this review if they 1) were systematic reviews of original
11 12	120	research and 2) reported at least one health impact as it related (directly or indirectly) to climate
13	121	change.
14	122	
15	123	We defined a systematic review, based on Cochrane's definition, as a review of the literature in
16 17	124	which one "attempts to identify, appraise and synthesize all the empirical evidence that meets
18	125	pre-specified eligibility criteria to answer a specific research question [by] us[ing] explicit,
19	126	systematic methods that are selected with a view aimed at minimizing bias, to produce more
20	127	reliable findings to inform decision making." ¹⁹ We included systematic reviews of original
21 22	128	research, with or without meta-analyses. We excluded narrative reviews, non-systematic
23	129	literature reviews and systematic reviews of materials that were not original research (e.g.,
24	130 131	systematic reviews of guidelines.)
25	132	We based our definition of health impacts on the World Health Organization's (WHO) definition
26 27	132	of health as, "a state of complete physical, mental and social well-being and not merely the
28	134	absence of disease or infirmity." ²⁰ Therefore, health impacts included, among others, morbidity,
29	135	mortality, new conditions, worsening/improving conditions, injuries, and psychological well-
30 31	136	being. Included studies could refer to climate change or global warming directly or indirectly, for
32	137	instance, by synthesizing the direct or indirect health effects of temperature rises or of natural
33	138	conditions/disasters made more likely by climate change (e.g., floods, wildfires, temperature
34	139	variability, droughts.) Although climate change and global warming are not equivalent terms, in
35 36	140	an effort to avoid missing relevant literature, we included studies using either term. We included
37	141	systematic reviews whose main focus was not the health impacts of climate change, providing
38	142	they reported at least one result regarding health effects related to climate change (or
39	143	consequences of climate change.) We excluded studies if they did not report at least one health
40 41	144	effect of climate change. For instance, we excluded studies which reported on existing
42	145	measures of health impacts of climate change (and not the health impact itself) and studies
43	146	which reported on certain health impacts without a mention of climate change, global warming
44 45	147	or environmental consequences made more likely by climate change.
45	148	
47	149	On June 22, 2019, we retrieved systematic reviews regarding the health effects of climate
48	150	change by searching from inception the electronic databases Medline, CINAHL, Embase,
49 50	151 152	Cochrane, Web of Science using a structured search (see Appendix 1 for final search strategy developed by a librarian.) We did not apply language restrictions. After removing duplicates, we
51	152	imported references into Covidence. ²¹
52	155	imported references into covidence.
53		
54 55		
56		
57		
58 59		A
59 60		4 For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

Screening process and data extraction To select studies, two trained analysts first screened independently titles and abstracts to eliminate articles that did not meet our inclusion criteria. Next, the two analysts independently screened the full text of each article. A senior analyst resolved any conflict or disagreement. Next, we decided on key information that needed to be extracted from studies. We extracted the first author's name, year of publication, number of studies included, time frame (in years) of the studies included in the article, first author's institution's country affiliation, whether the systematic review included a meta-analysis, geographical focus, population focus, the climate impact(s) and the health outcome(s) as well as the main findings and limitations of each systematic review. Two or more trained analysts (RR, CB, RN, LC, LPB, RAPR) independently extracted data, using Covidence and spreadsheet software (Google Sheets). An additional trained analyst from the group or senior research team member resolved disagreements between individual judgments. Coding and Data Mapping To summarize findings from previous reviews, we first mapped articles according to climate impacts and health outcomes. To develop the categories of climate impacts and health outcomes, two researchers (RR and LC) consulted the titles and abstracts of each article. We started by identifying categories directly based on our data and finalized our categories by consulting previous conceptual frameworks of climate impacts and health outcomes.^{1,22,23} The same two researchers independently coded each article according to their climate impact and health outcome. We then compared coding and resolved disagreements through discussion. Next, using spreadsheet software, we created a matrix to map articles according to their combination of climate impacts and health outcomes. Each health outcome occupied one row, whereas climate impacts each occupied one column. We placed each article in the matrix according to the combination(s) of their climate impact(s) and health outcome(s). For instance, if we coded an article as 'extreme weather' for climate and 'mental health' for health impact, we noted the reference of this article in the cell at the intersection of these two codes. We calculated frequencies for each cell to identify frequent combinations and gaps in literature. Because one study could investigate more than one climate impact and health outcome, the frequency counts for each category could exceed the number of studies included in this review. Finally, we re-read the Results and Discussion sections of each article to summarize findings of the studies. We first wrote an individual summary for each study, then we collated the summaries of all studies exploring the same combination of categories to develop an overall summary of findings for each combination of categories.

1 2			
3	194	Quality assessment	
4 5 7 8 9 10 11 12 13	195 196 197 198 199 200 201	We used a modified version of AMSTAR-2 to assess the quality of the included systematic reviews (Appendix 2). Since AMSTAR-2 was developed for syntheses of systematic reviews of randomized controlled trials, working with a team member with expertise in knowledge synthesis (AT), we adapted it to suit a research context that is not amenable to randomized controlled trials. For instance, we changed assessing and accounting for risk of bias in studies' included randomized controlled trials to assessing and accounting for limitations in studies' included articles. Complete modifications are presented in Appendix 2.	s
14 15	202	Patient and Public Involvement	
16 17 18	203	Patients and members of the public were not involved in this study.	
19 20 21	204	Results	
22 23	205	Articles identified	
24 25 26 27 28 29 30	206 207 208 209 210	As shown in the PRISMA diagram in Figure 1, from an initial set of 2619 references, we retained 94 for inclusion. More precisely, following screening of titles and abstracts, 146 studies remained for full text inspection. During full text inspection, we excluded 52 studies, as they did not report a direct health effect of climate change ($n = 17$), did not relate to climate change ($n = 15$), were not systematic reviews ($n = 10$), or we could not retrieve the full text ($n = 10$).	
31 32	211 212	Insert Figure 1 About Here	
33 34			
35	213	Study Descriptions	
36 37 38 39 40 41 42 43 44 45 46	214 215 216 217 218 219 220 221 222	A detailed table of all articles and their characteristics can be found in Appendix 3. Publication years ranged from 2007 to 2019 (year of data extraction), with the great majority of included articles (n = 69; 73%) published since 2015 (Figure 2). A median of 30 studies had been included in the systematic reviews (mean = 60; SD = 49; range 7 to 722). Approximately one fifth of the systematic reviews included meta-analyses of their included studies (n = 18; 19%). The majority of included systematic reviews' first authors had affiliations in high-income countries, with the largest representations by continent in Europe (n = 30) and Australia (n = 24 (Figure 3).)
47 48	223	Insert Figure 2 About Here	
49	224 225	Insert Figure 3 About Here	
50 51	226		
52 53 54 55 56 57	227 228 229 230	Regarding the geographical focus of systematic reviews, most of the included studies (n = 68; 72%) had a global focus or no specified geographical limitations and therefore included studies published anywhere in the world. The remaining systematic reviews either targeted certain countries (n = 12) (1 for each Australia, Germany, Iran, India, Ethiopia, Malaysia, Nepal, New	
58 59			6
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Zealand and 2 reviews focused on China and the United States), continents (n = 5) (3 focused
on Europe and 2 on Asia), or regions according to geographical location (n = 6) (1 focused on
Sub-Saharan Africa, 1 on Eastern Mediterranean countries, 1 on Tropical countries, and 3
focused on the Arctic), or according to the country's level of income (n = 3) (2 on low to middle
income countries, 1 on high income countries).

Regarding specific populations of interest, most of the systematic reviews did not define a specific population of interest (n = 69; 73%). For the studies that specified a population of interest (n = 25; 26.6%), the most frequent populations were children (n = 7) and workers (n =6), followed by vulnerable or susceptible populations more generally (n = 4), the elderly (n = 3), pregnant people (n = 2), people with disabilities or chronic illnesses (n = 2) and rural populations (n = 1).

¹⁹ 243 Quality assessment

We assessed studies for quality according to our revised AMSTAR-2. The purpose of this assessment was to evaluate the quality of the included studies as a whole to get a sense of the overall guality of evidence in this field. Therefore, individual guality scores were not compiled for each article, but scores were aggregated according to items. Complete scores for each article and each item are available in Appendix 4. Out of 94 systematic reviews, the most commonly fully satisfied criterion was #1 (PICO components) with 81/94 (86%) of included systematic reviews fully satisfying this criterion. The next most commonly-satisfied criteria were #16 (potential sources of conflict of interest reported) (78/94 = 83% fully), #13 (account for limitations in individual studies) (70/94 = 75% fully and 2/94 = 2% partially), #7 (explain both inclusion and exclusion criteria) (64/94 = 68% fully and 19/94 = 20% partially), #8 (description of included studies in adequate detail) (36/94 = 38% fully and 41/94 = 44% partially), and #4 (use of a comprehensive literature search strategy) (0/94 = 0% fully and 80/94 = 85% partially). For criteria #11, #12, and #15, which only applied to reviews including meta-analyses, 17/18 (94%) fully satisfied criterion #11 (use of an appropriate methods for statistical combination of results), 12/18 (67%) fully satisfied criterion #12 (assessment of the potential impact of RoB in individual studies) (1/18 = 6% partially), and 11/18 (61%) fully satisfied criterion #15 (an adequate investigation of publication bias, small study bias).

⁴³ 261 Climate Impacts and Health Outcomes

Regarding climate impacts, we identified five mutually exclusive categories, with 13 publications targeting more than one category of climate impacts: 1) Meteorological (n = 71 papers) (e.g., temperature, heat waves, humidity, precipitation), 2) Extreme weather (n = 24) (e.g., water-related, floods, cyclones, hurricanes, drought), 3) Air quality (n = 7) (e.g., air pollution and wildfire smoke exposure), 4) General (n = 5), and 5) Other (n = 3). "General" climate impacts included articles that did not specify climate change impacts but stated general climate change as their focus. "Other" climate impacts included studies investigating other effects indirectly related to climate change (e.g., impact of environmental contaminants) or general environmental risk factors (e.g., environmental hazards, sanitation and access to clean water.)

We identified ten categories to describe the health outcomes studied by the systematic reviews.

and 29 publications targeted more than one category of health outcomes: 1) Infectious diseases (n = 41 papers) (vector-, food- and water-borne), 2) Mortality (n = 32), 3) Respiratory, cardiovascular, and neurological (n = 23), 4) Healthcare systems (n = 16), 5) Mental health (n = 16), 7) 13), 6) Pregnancy and birth (n = 11), 7) Nutritional (n = 9), 8) Skin diseases and allergies (n = 8), 9) Occupational health and injuries (n = 6) and 10) Other health outcomes (n = 17) (e.g., sleep, arthritis, disability-adjusted life years, non-occupational injuries, etc.) Figure 4 depicts the combinations of climate impact and health outcome for each study, with Appendix 5 offering further details. The 5 most common combinations are studies investigating the 1) meteorological impacts on infectious diseases (n = 35), 2) mortality (n = 24) and 3) respiratory, cardiovascular, and neurological outcomes (n = 17), 4) extreme weather events' impacts on infectious diseases (n = 14), and 5) meteorological impacts on health systems (n = 11). **Insert Figure 4 About Here** For studies investigating meteorological impacts on health, the three most common health outcomes studied were impacts on 1) infectious diseases (n = 35), 2) mortality (n = 24) and 3) respiratory, cardiovascular, and neurological outcomes (n = 17). Extreme weather event studies most commonly reported health outcomes related to 1) infectious diseases (n = 14), 2) mental health outcomes (n = 9) and 3) nutritional outcomes (n = 6) and other health outcomes (e.g., injuries, sleep) (n = 6). Studies focused on the impact of air quality were less frequent and explored mostly health outcomes linked to 1) respiratory, cardiovascular, and neurological outcomes (n = 6), 2) mortality (n = 5) and 3) pregnancy and birth outcomes (n = 3). Summary of Findings Most reviews suggest a deleterious impact of climate change on multiple adverse health

outcomes, with some associations being explored and/or supported with consistent findings more often than others. Some reviews also report conflicting findings or an absence of association between the climate impact and health outcome studied (see Table 1 for a detailed summary of findings according to health outcomes).

Notable findings of health outcomes according to climate impact include the following. For meteorological factors (n = 71), temperature and humidity are the variables most often studied and report the most consistent associations with infectious diseases and respiratory, cardiovascular, and neurological outcomes. Temperature is also consistently associated with mortality and healthcare service use. Some associations are less frequently studied, but remain consistent, including the association between some meteorological factors (e.g., temperature and heat) and some adverse mental health outcomes (e.g., hospital admissions for mental health reasons, suicide, exacerbation of previous mental health conditions), and the association between heat and adverse occupational outcomes and some adverse birth outcomes. Temperature is also associated with adverse nutritional outcomes (likely via crop production and food insecurity) and temperature and humidity are associated with some skin diseases and

315 allergies. Some health outcomes are less frequently studied, but studies suggest an association
 316 between temperature and diabetes, impaired sleep, cataracts, heat stress, heat exhaustion and
 317 renal diseases.

Extreme weather events (n = 24) are consistently associated with mortality, some mental health outcomes (e.g., distress, anxiety, depression) and adverse nutritional outcomes (likely via crop production and food insecurity). Some associations are explored less frequently, but these studies suggest an association between drought and respiratory and cardiovascular outcomes (likely via air quality), between extreme weather events and an increased use of healthcare services and some adverse birth outcomes (likely due to indirect causes, such as experiencing stress). Some health outcomes are less frequently studied, but studies suggest an association between extreme weather events and injuries, impaired sleep, esophageal cancer and exacerbation of chronic illnesses. There are limited and conflicting findings for the association between extreme weather events and infectious diseases, as well as for certain mental health outcomes (e.g., suicide and substance abuse). At times, different types of extreme weather events (e.g., drought vs flood) led to conflicting findings for some health outcomes (e.g., mental health outcomes, infectious diseases), but for other health outcomes, the association was consistent independently of the extreme weather event studied (e.g., mortality, healthcare service use and nutritional outcomes).

The impact of air quality on health (n = 7) was less frequently studied, but the few studies exploring this association report consistent findings regarding an association with respiratory-specific mortality, adverse respiratory outcomes and an increase in healthcare service use. There is limited evidence regarding the association between air quality and cardiovascular outcomes, limited and inconsistent evidence between wildfire smoke exposure and adverse birth outcomes, and no association is found between exposure to wildfire smoke and increase in use of health services for mental health reasons. Only one review explored the impact of wildfire smoke exposure on ophthalmic outcomes, and it suggests that it may be associated with eye irritation and cataracts.

Reviews investigating the general impacts of climate change on health are less frequent (n = 5), but they suggest an association between climate change generally and pollen allergies in Europe, increased use of healthcare services, obesity, skin diseases and allergies and an association with disability-adjusted life years. Reviews investigating the impact of other climate-related factors (n = 3) show inconsistent findings concerning the association between environmental pollutant and adverse birth outcomes, and two reviews suggest an association between environmental risk factors and pollutants and childhood stunting and occupational diseases.

Most reviews concluded by calling for more research, noting the limitations observed among the studies included in their reviews, as well as limitations in their reviews themselves. These limitations included, amongst others, some systematic reviews having a small number of publications,^{24,25} language restrictions such as including only papers in English,^{26,27} arriving at conflicting evidence,²⁸ difficulty concluding a strong association due to the heterogeneity in

methods and measurements or the limited equipment and access to quality data in certain
 contexts,^{24,29–31} and most studies included were conducted in high-income countries.^{32,33}
 361

Previous authors also discussed the important challenge related to exploring the relationship between climate change and health. Not only is it difficult to explore the potential causal relationship between climate change and health, mostly due to methodological challenges, but there are also a wide variety of complex causal factors that may interact to determine health outcomes. Therefore, the possible causal mechanisms underlying these associations were at times still unknown or uncertain and the impacts of some climate factors were different according to geographical location and specificities of the context. Nonetheless, some reviews offered potential explanations for the climate-health association, with the climate factor at times, having a direct impact on health (e.g., flooding causing injuries, heat causing dehydration) and in other cases, having an indirect impact (e.g., flooding causing stress which in turn may cause adverse birth outcomes, heat causing difficulty concentrating leading to occupational injuries.)

Table 1. Summary of findings from systematic reviews according to health outcome and climate
 impact. Reviews that covered multiple climate impacts are listed in each relevant category.

Climate Impact	F	Summary of Findings			
Infectious of	Infectious diseases (n = 41)				
Vector born	e infect	tious diseases (n = 25)			
Meteorolo gical	22	Systematic reviews suggest that meteorological factors, such as temperature, precipitation, humidity, and wind, are associated with diverse vector-borne infectious diseases, including malaria and dengue. ^{9,12,26,29,31,34–50} This association was mostly proportional (e.g., higher temperature and increased rainfall associated with vector-borne diseases), although findings were at times conflicting, with some suggesting an inversely proportional association ¹² (e.g., decreased rainfall) or no association at all ³⁹ (e.g., with the human puumala hantavirus Infection.) Geographic location, seasonality and potential interaction with other climate-related factors may partly explain these inconsistencies. ^{12,29} Temperature, humidity and rainfall were the most common and important meteorological factors reported by reviews and factors such as wind, air pressure and sunshine were reported less often.			
Extreme weather	7	There are limited and conflicting findings concerning the association of extreme weather events with vector-borne diseases. Some reviews suggest water-related extreme events ⁵¹ and flooding ^{6,31,52} are associated with an increased risk of vector-borne diseases, while drought is associated with a reduction of dengue incidence. ¹² Other reviews focused specifically on Puerto Rico ⁴³ and Australia ⁵³ did not find an association between hurricanes and/or floods and mosquito-borne disease transmission.			

Meteorolo gical	14	Reviews suggest that meteorological factors, such as temperature, precipitation, and humidity, are associated with diverse food- and water-borne infectious diseases, in particular, cholera, schistosomiasis, salmonella and E. coli gastroenteritis. ^{11,31,40,42,45,48,54–61} Overall, higher temperatures and humidity, ^{11,40,54,5} along with lower precipitation ^{42,61} was associated with these infectious diseases. Directionality and strength of the association seemed to vary according to disease and pathogens, ⁵⁹ seasons, and geographic region. ⁵⁶
Extreme weather	10	Reviews suggest a proportional association between extreme water-related events, ^{47,51,62} such as flooding ^{6,40,52} and heavy rainfall ³⁴ , and food- and water-borne diseases, including diarrhea, food contamination, cholera. ^{6,31,34,40,45,47,51,52,57,62} Drought may also be proportionally associated with food- and water-borne disease, ^{34,63} but these associations are less consistent that those with water-related extreme events. ⁵⁷
Other infect	ious di	seases (n = 8)
Meteorolo gical	8	Reviews suggest an association of most meteorological factors, such as temperature and humidity, with various other infectious diseases, including meningitis, ^{24,34} Ebola, ²⁴ influenza, ³¹ and pediatric infectious diseases such as hand-foot-and-mouth disease. ^{7,8,30,49,55} This association was mostly proportional for meteorological factors such as temperature, ^{7,8,49} diurnal temperature range, ³⁰ and humidity, ^{7,8,31} although some meteorological factors, such as air pressure ⁸ and lower temperatures ^{31,49} were inversely proportional to these diseases. Some conflicting evidence is reported concerning the association with some meteorological factors, such as sunshine with hand-foot-and-mouth disease, ^{7,8} and humidity and pediatric infectious diseases. ⁵⁵ No association was found between some meteorological factors, such as precipitation, wind speed and sunshine with hand-foot-and-mouth disease. ^{7,8}
Mortality (n	= 32)	
Meteorolo gical	24	Reviews suggest that temperature (high, low, or diurnal range) was consistently associated with all-cause and cause-specific mortality. ^{24–26,30,33,42,45,47,49,64–77} A strong association was reported between heat (including heat waves) and mortality (all-cause), ⁶⁴ heat-, ^{42,69} stroke-, ^{24,70} cardiovascular-, ^{33,47} and respiratory-related, ^{26,33,71} especially in rural, ⁶⁸ very young children ⁴⁹ and ageing populations. ² Mortality seems to be the most frequent health outcome studied in association with heatwaves. ⁶⁵ Inconsistent results are found concerning the association between heat and childhood mortality. ⁷⁵ Due to limited evidence, this association was weaker in some geographical regions. ^{24,72} Also, heat wave intensity (compared to duration) was more strongly associated with heat-related mortality. ^{49,77} specifically respiratory, ⁶⁴ stroke, ⁷⁰ and cardiovascular mortality. ^{47,67,77}

Extreme Weather	5	Reviews suggest an association between extreme weather events such as floods, ⁶ droughts, ⁶³ cyclones ⁷⁸ and other water-related events, ^{26,51} with direct (e drowning) and indirect long-term mortality (e.g., due to malnutrition, environment toxin exposure, armed conflict, etc.). ^{6,51,63,78}
Air quality	5	Reviews suggest an association between exposure to air pollution ^{26,79} or wildfire smoke ^{80–82} and air pollution related-mortality, such as respiratory-specific mortality. There is currently limited evidence, but reviews suggest a potential association between wildfire smoke exposure and cardiovascular-specific mortality. ^{80–82}
Respiratory	/, neur	ological, and cardiovascular (n = 23)
General	1	A review suggests a proportional association between climate change, in general and ragweed pollen allergies in Europe. ⁸³
Meteorolo gical	17	Reviews suggest an association between meteorological factors, such as temperature and humidity, and cardiovascular, respiratory and neurological outcomes. ^{24,26,30,33,36,45,49,55,64,67,69,70,74,75,84–86} Exposure to high temperatures and extreme heat are associated to cardiovascular and respiratory diseases, ^{24,26,36,45} stroke, ⁷⁰ long-term neurological outcomes (due to heat strokes), ⁶⁹ myocardial infarction, ^{33,85} and childhood asthma and pediatric respiratory diseases. ^{75,86} A review also suggests a beneficial association between heat and the shortening of a respiratory virus season. ⁴⁵ Exposure to low temperature (cold), temperature drop, or diurnal temperature range was associated with cardiovascular and respiratory diseases, ^{30,64,67} stroke, ⁷⁰ and myocardial infarctions. ³³ Humidity (most often high humidity, but also lower humidity) and low temperatures were also associated with respiratory diseases in children, including childhood asthma. ^{55,84}
Extreme Weather	1	A previous review suggests an association between drought and respiratory and cardiovascular outcomes, most likely due to droughts leading to increased dust the air. ⁶³
Air quality	6	Reviews suggest a proportional association between exposure to air pollution ^{26,42,45} or wildfire smoke exposure ^{80–82} and respiratory outcomes, includi asthma, chronic obstructive pulmonary disease, coughing, wheezing, and overa lung function. Although there is currently limited evidence, ⁸⁰ reviews also sugges a potential association between air pollution or wildfire smoke exposure and cardiovascular outcomes. ^{45,81,82}
Health syst	ems (r	n = 16)
General	1	A previous review suggests that climate change in general puts a strain on publi health resources, via population health issues and shows that using an integrate surveillance system may guide future adaptation to climate change. ⁸⁷
Meteorolo gical	11	Previous reviews suggest an association between temperature change ³⁰ extrem heat, aridity and cold temperatures and an increase in use of healthcare service (mostly linked to heat-related health impacts), such as an increase in emergence

		department visits, hospital admissions and use of ambulances. ^{24,26,30,33,42,49,65,72,75,85,88}
Extreme weather	2	Reviews suggest that extreme weather events ³² and flooding ⁶ may be associated with an increase in use of healthcare services (e.g., increased hospitalizations) and a compromised quality of care as extreme weather events may lead to powe outages. ³²
Air quality	2	Reviews suggest an association between wildfire smoke exposure and an increase in use of healthcare services, such as an increase in emergency department visits. ^{80,82}
Mental heal	lth (n =	= 13)
Meteorolo gical	3	Reviews suggest an association of most meteorological factors such as temperature increase, aridity, heat, and heat waves with mental health outcomes including hospital admissions for mental health reasons, ⁴² suicide, ⁸⁹ and exacerbation of pre-existing mental health conditions, difficulty sleeping, and fatigue. ⁸⁵ No association was found between sunlight duration and suicide incidence. ⁸⁹
Extreme weather	9	Most reviews reported a proportional association of extreme weather events, ^{45,51,90,91} flooding, ^{6,26,92} and drought ^{63,93} with diverse mental health issues, including, psychological distress, post-traumatic stress disorder, anxiety, depression, psychotropic medication use, alcohol consumption. There was conflicting evidence regarding the association of floods with suicide, tobacco, alcohol and substance abuse. ⁹² No association was found between drought and suicide. ⁶³
Air quality	1	A previous review suggests no association between wildfire smoke exposure and mental health, as measured by physician visits and hospitalizations for mental health reasons during wildfires. ⁸¹
Pregnancy	and bi	irth outcomes (n = 11)
Meteorolo gical	5	Reviews suggest that adverse birth outcomes may be higher among people exposed to meteorological factors such as high temperature, heat, sunlight intensity, cold and humidity. ^{42,94–97} These outcomes include low birth weight, preterm birth, eclampsia and preeclampsia, hypertension and length of pregnancy. ^{42,94–97} The association between heat and adverse birth outcomes seems to have stronger support than the association with cold temperatures. ⁹⁷
Extreme Weather	2	Reviews suggest a potential association of extreme weather events ⁹⁰ and flooding ⁶ with adverse birth outcomes, such as low birth weight, preterm birth and pre-eclampsia. It is suggested that extreme weather events may indirectly affect birth outcomes via the pregnant person's well-being (e.g., stress and worry durin pregnancy.) ^{6,90}

3	There is limited and inconsistent evidence concerning the association between wildfire smoke exposure and adverse birth outcomes, but reviews suggest a potential proportional association between wildfire smoke exposure and lower birth weight. ^{80–82}
1	The association between environmental pollutants and adverse birth outcomes (i.e., preterm birth) remains unclear due to conflicting evidence. ²⁸
n = 9)	
1	A review suggests an association between climate change and obesity.98
4	Reviews suggest an association between meteorological factors, such as chang in temperature, heat and precipitation, with diverse nutritional outcomes, includir undernutrition, malnutrition and child stunting. ^{24,27,42,72} This association may be explained by the impact of meteorological factors, such as temperature increase and precipitation decrease, on crop production and food insecurity. ^{42,72}
6	Reviews suggest an association between extreme weather events, such as flooding and droughts, ⁶³ and diverse nutritional outcomes, including malnutrition and undernutrition in children and adults ^{27,34,42,45,47} via, amongst others, crops production and food insecurity (e.g., low food aid following flooding ⁴²).
1	A review suggests a potential association between certain environmental risk factors (e.g., sanitation, cooking fuels and food-borne mycotoxins), and childhoo stunting, which could be aggravated by climate change. ⁹⁹
es and	d allergies (n = 8)
1	A review suggests a potential proportional association between climate change, general, and skin and soft tissue infections (e.g., fatal vibrio vulnificus necrotizing). ¹⁰⁰
7	Reviews suggest an association of meteorological factors, such as ultraviolet lig exposure, temperature and humidity, with diverse skin diseases and allergies, including skin cancer, sunburn, acute urticaria, eczema and pediatric skin irritabilities. ^{24,45,47,49,55,85,101} Higher temperature and ultraviolet light exposure is proportionally associated with sunburn ⁸⁵ and skin cancer, ^{45,101} while low humidity and low temperatures were associated with eczema and skin irritabilities in children. ^{49,55}
	1 n = 9) 1 4 6 1 es anc 1

Meteorolo gical	6	Reviews suggest that heat is associated with adverse occupational health outcomes, including injuries (e.g., slips, trips, falls, wounds, lacerations and amputations), heat strain, dehydration and kidney diseases. ^{102–107} ¹⁰³ This association was found in many occupational settings, including agriculture, construction, transport and fishing, and seems to affect both outdoor and indoor workers. ¹⁰² This association may be explained by a combination of direct (e.g., dehydration) and indirect factors (e.g., impaired cognitive and physical performance.) ¹⁰⁶
Other	1	A review suggests a potential association between environmental pollution (e.g., heavy metals, fertilizers, etc.) and occupational diseases, such as chronic kidney disease. ¹⁰⁷ This association is suggested to be affected by increasing temperatures.
Other (n = ′	17)	
General	1	A review suggests a potential association between climate change in general and disability-adjusted life years, which is an indicator that quantifies 'the burden of disease attributable to climate change'. ¹⁰⁸ Authors suggest that the cost of disability-adjusted life years could be high, especially in low to middle income countries.
Meteorolo gical	10	Reviews suggests an association between increasing temperatures and temperature changes, ³⁰ and other various health outcomes, including acute gouty arthritis, ¹⁰⁹ unintentional injuries, ¹¹⁰ diabetes, ⁶⁴ genitourinary diseases, ^{30,64} impaired sleep time and quality, ¹¹¹ cataracts (indirectly associated via people spending more time outside and therefore increased exposure to ultraviolet light), ^{45,47} heat stress, heat exhaustion and kidney failure, ⁸⁵ and renal diseases, fever and electrolyte imbalance in children. ^{49,75}
Extreme weather	6	Reviews suggests an association between extreme weather events, ⁹¹ such as flooding, ⁶ cyclones, ⁷⁸ hurricanes, ¹¹¹ and drought, ⁶³ and other various health outcomes including injuries (e.g., debris, diving in water that is shallower than expected), ^{6,63,78,91} impaired sleep, ¹¹¹ esophageal cancer (likely linked to high salinity of water due to droughts), ⁶³ and exacerbation of chronic illnesses. ^{6,90}
Air quality	1	There is limited evidence, but a systematic review suggests a potential associatio between wildfire smoke exposure and ophthalmic outcomes, such as eye irritation and cataracts. ⁸⁰

376 Discussion

377 Principal results

In this overview of systematic reviews, we aimed to develop a synthesis of systematic reviews
of health impacts of climate change by mapping the characteristics and findings of studies
exploring the relationship between climate change and health. We identified four key findings.

First, the most common climate impact studied by included publications consists of meteorological impacts, mostly related to temperature and humidity, which aligns with findings from a previous scoping review on the health impacts of climate change in the Philippines.¹⁰ Indeed, meteorological factors' impact on all health outcomes are explored, although some health outcomes are more rarely explored (e.g., mental health and nutritional outcomes). Although this may not be surprising given that a key implication of climate change is the rise in temperature, this finding suggests we also need to undertake research focused on other climate impacts on health, such as the impact of droughts and wildfire smoke, to better prepare for the health crises that arise from these ever-increasing climate-related impacts. For instance, the impacts of extreme weather events and air quality on certain health outcomes are not explored (e.g., skin diseases and allergies, occupational health) or only rarely explored (e.g., pregnancy outcomes).

Second, systematic reviews primarily focus on physical health outcomes, such as infectious diseases, mortality, and respiratory, cardiovascular and neurological outcomes, which also aligns with the country-specific previous scoping review.¹⁰ Regarding mortality, we support Campbell and colleagues⁷⁶⁵ suggestion that we should expand our focus to include other types of health outcomes. This will allow us to better mitigate and adapt to the full range of threats of climate change.

Moreover, it is unclear whether the distribution of frequencies of health outcomes reflects the actual burden of health impacts of climate change, or if the most frequently-reported outcomes reflect a bias of Western definitions of health. The most commonly-studied health outcomes do not necessarily reflect the definition of health presented by the WHO as, "a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity."20 This suggests that future studies should investigate in greater depth the impacts of climate change on mental and broader social well-being. Indeed, some reviews suggested that climate change impacts psychological and social well-being, via broader consequences, such as political instability, health system capacity, migration, and crime, ^{3,4,85,90} thus illustrating how our personal health is determined not only by biological and environmental factors but also by social and health systems. The importance of expanding our scope of health in this field is also recognized in the most recent Lancet report, which states that future reports will include a new mental health indicator.²

416 Interestingly, the reviews that explored the mental health impacts of climate change were
 417 focused mostly on the direct and immediate impacts of experiencing extreme weather events.

However, psychologists are also warning about the long-term indirect mental health impacts of climate change, which are becoming more prevalent for children and adults alike (e.g., eco-anxiety, climate depression).^{112,113} Even people who do not experience direct climate impacts, such as extreme weather events, report experiencing distressing emotions when thinking of the destruction of our environment or when worrying about one's uncertain future and the lack of actions being taken. To foster emotional resilience in the face of climate change, these mental health impacts of climate change need to be further explored. Humanity's ability to adapt to and mitigate climate change ultimately depends on our emotional capacity to face this threat. Third, there is a notable geographic difference in the country affiliations of first authors, with three guarters of systematic reviews having been led by first authors affiliated to institutions in Europe, Australia, or North America, which aligns with the findings of the most recent Lancet report.² While perhaps unsurprising given the inequalities in research funding and institutions concentrated in Western countries, this is of critical importance given the significant health impacts that are currently faced (and will remain) in other parts of the world. Research funding organizations should seek to provide more resources to authors in low- to middle-income countries to ensure their expertise and perspectives are better represented in the literature. Fourth, overall, most reviews suggest an association between climate change and the deterioration of health in various ways, thus illustrating the interdependence of our health and well-being with the well-being of our environment. At times, climate change and its related environmental events may impact health directly (e.g., heat's impact on dehydration and exhaustion) and other times, it may impact it indirectly (e.g., via behavior change due to heat.) The most frequently explored and consistently supported associations include an association between temperature and humidity with infectious diseases, mortality, and adverse respiratory, cardiovascular and neurological outcomes. Other less frequently studied but consistent associations include associations between climate impacts and increased use of healthcare services, some adverse mental health outcomes, adverse nutritional outcomes, and adverse occupational health outcomes. These associations align with key findings of the most recent Lancet report, in which authors report, amongst others, increasing heat exposure being associated with increasing morbidities and mortality, climate change leading to food insecurity and undernutrition, and to an increase in infectious disease transmission.² That said, a number of reviews included in this study reported limited, conflicting and/or an absence of evidence regarding the association between the climate impact and health outcome. For instance, there was conflicting or limited evidence concerning the association between extreme weather events and infectious diseases, cardiorespiratory outcomes and some mental health outcomes and the association between air guality and cardiovascular-specific mortality and adverse birth outcomes. Finally, most reviews, whether they reported consistent evidence or not, concluded with the need for further research, as these associations are complex and likely determined by multiple interacting factors. The climate-health link has been the target of more research in recent years and it is also receiving increasing attention from the public and in both public health and climate

Page 19 of 65

BMJ Open

communication literature.^{2,114–116} However, the health framing of climate change information is

still underused in climate communications, and researchers suggest we should be doing more

engagement with the climate crisis.^{2,116–118} The health framing of climate communication also

has implications for healthcare professionals¹¹⁹ and policymakers, as these actors could play a

key part in climate communication, adaptation, and mitigation.^{116,117,120} These key stakeholders'

perspectives on the climate-health link, as well as their perceived role in climate adaptation and

mitigation could be explored,¹²¹ since research suggests that health professionals are important

voices in climate communications¹¹⁹ and especially since, ultimately, these adverse health

outcomes will engender pressure on and cost to our health systems and health workers.

to make the link between human health and climate change more explicit to increase

1	
2	2
3	
4	-
5	
6	•
7	,
8	;
0	
9	
-	0
1	
1 1	0
1 1 1	0 1
1 1 1 1	0 1 2
1 1 1 1	0 1 2 3

472 Strengths and Limitations

To the best of our knowledge, the current study provides the first broad overview of previous systematic reviews exploring the health impacts of climate change. Our review has three main strengths. First, by targeting systematic reviews, we achieve a higher-order summary of findings than what would have been possible by consulting individual original studies. Second, by synthesizing findings across all included studies and according to the combination of climate impact and health outcome, we offer a clear, detailed, and unique summary of the current state of evidence and knowledge gaps about how climate change may influence human health. This summary may be of use to researchers, policymakers, and communities. Third, we included studies published in all languages about any climate impact and any health outcome. In doing so, we provide a comprehensive and robust overview.

Our work has four main limitations. First, we were unable to access some full texts and therefore some studies were excluded, even though we deemed them potentially relevant after title and abstract inspection. Other potentially relevant systematic reviews may be missing due to unseen flaws in our systematic search. Second, due to the heterogeneity of the included systematic reviews and the relatively small proportion of studies reporting meta-analytic findings, we could not conduct meta-meta-analyses of findings across reviews. Future research is needed to quantify the climate and health links described in this review, as well as to investigate the causal relationship and other interacting factors. Third, due to limited resources, we did not assess overlap between the included reviews concerning the studies they included. Frequencies and findings should be interpreted with potential overlap in mind. Fourth, we conducted the systematic search of the literature in June 2019, and it is therefore likely that some recent systematic reviews are not included in this study.

496 Conclusions

Overall, most systematic reviews of the health impacts of climate change suggest an association between climate change and the deterioration of health in multiple ways, generally in the direction that climate change is associated with adverse human health outcomes. This is worrisome since these outcomes are predicted to rise in the near future, due to the rise in temperature and increase in climate-change-related events such as extreme weather events

and worsened air quality. Most studies included in this review focused on meteorological impacts of climate change on adverse physical health outcomes. Future studies could fill knowledge gaps by exploring other climate-related impacts and broader psychosocial health outcomes. Moreover, studies on health impacts of climate change have mostly been conducted by first authors affiliated with institutions in high-income countries. This inequity needs to be addressed, considering that the impacts of climate change are and will continue to predominantly impact lower-income countries. Finally, although most reviews also recommend more research to better understand and quantify these associations, to adapt to and mitigate climate change's impacts on health, it will also be important to unpack the 'what, how, and Jts. n. opulations. n. . .nequities. where' of these effects. Health effects of climate change are unlikely to be distributed equally or randomly through populations. It will be important to mitigate the changing climate's potential to exacerbate health inequities.

516 Acknowledgements

517 The authors gratefully acknowledge the contributions of Selma Chipenda Dansokho, as 518 research associate, and Thierry Provencher, as research assistant, to this project, and of 519 Frederic Bergeron, for assistance with search strategy, screening and selection of articles for 520 the systematic review.

² 521 Funding

522 This study was funded by the Canadian Institutes of Health Research (CIHR) FDN-148426. The 523 CIHR had no role in determining the study design, the plans for data collection or analysis, the 524 decision to publish, nor the preparation of this manuscript. ACT is funded by a Tier 2 Canada 525 Research Chair in Knowledge Synthesis. HOW is funded by a Tier 2 Canada Research Chair in 526 Human-Centred Digital Health.

² 527 Ethics Committee Approval

528 Since this is a systematic review of previous systematic reviews, no ethics approval was 5 529 required, as we did not collect original data.

⁸ 530 Authors' Contributions

RN, CF, ACT, HOW contributed to the design of the study. CB, RN, LPB, RAPR and HOW
 contributed to the systematic search of the literature and selection of studies. RR, HOW, LC
 conducted data analysis and interpretation. RR and HOW drafted the first version of the article
 with early revision by CB, LC and RN. All authors critically revised the article and approved the
 final version for submission for publication. RR and HOW had full access to all the data in the
 study and had final responsibility for the decision to submit for publication.

⁹ 537 Conflict of Interest Statement

¹ 538 The authors have no conflict of interest to declare.

⁴ 539 Data Sharing Statement

5 540 No additional data available.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

References

- Portier C, Tart K, Carter S, et al. A Human Health Perspective On Climate Change A Report Outlining the Research Needs on the Human Health Effects of Climate Change. Environmental Health Perspectives and the National Institute of Environmental Health Sciences, 2010.
- Watts N, Amann M, Arnell N, et al. The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises. Lancet 2021; 397: 129-70.
- Hsiang SM, Burke M. Climate, conflict, and social stability: what does the evidence say? *Clim Change* 2014; **123**: 39–55.
- Hsiang SM, Burke M, Miguel E. Quantifying the Influence of Climate on Human Conflict. Science 2013; 341. DOI:10.1126/science.1235367.
- Patz JA, Frumkin H, Holloway T, Vimont DJ, Haines A. Climate change: challenges and opportunities for global health. JAMA 2014; 312: 1565-80.
- Alderman K, Turner LR, Tong SL. Floods and human health: A systematic review. *Environ* Int 2012; 47: 37–47.
- Coates SJ, Davis MDP, Andersen LK. Temperature and humidity affect the incidence of hand, foot, and mouth disease: a systematic review of the literature - a report from the International Society of Dermatology Climate Change Committee. Int J Dermatol 2019; 58: 388-99.
- Duan C, Zhang X, Jin H, et al. Meteorological factors and its association with hand, foot and mouth disease in Southeast and East Asia areas: a meta-analysis. Epidemiology & Infection 2018; 147: 1–18.
- Babaie J, Barati M, Azizi M, Ephtekhari A, Sadat SJ. A systematic evidence review of the effect of climate change on malaria in Iran. J Parasit Dis 2018; 42: 331-40.
- Chua PL, Dorotan MM, Sigua JA, Estanislao RD, Hashizume M, Salazar MA. Scoping Review of Climate Change and Health Research in the Philippines: A Complementary Tool in Research Agenda-Setting. Int J Environ Res Public Health 2019; 16. DOI:10.3390/ijerph16142624.
- Lal A, Lill AW, McIntyre M, Hales S, Baker MG, French NP. Environmental change and enteric zoonoses in New Zealand: a systematic review of the evidence. Aust NZJ Public *Health* 2015; **39**: 63–8.
- 12 Li C, Lu Y, Liu J, Wu X. Climate change and dengue fever transmission in China: Evidences and challenges. Sci Total Environ 2018; 622-623: 493-501.
- 13 Herlihy N, Bar-Hen A, Verner G, et al. Climate change and human health: what are the

 research trends? A scoping review protocol. <i>BMJ Open</i> 2016; 6: c012022. research match the demands of policymakers? A scoping review. <i>Environ Health Perspect</i> 2012; 120: 1076-82. Pollock M, Fernandes RM, Becker LA, Pieper D, Hartling L. Chapter V: Overviews of Reviews. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, ed. Cochrane Handbook for Systematic Reviews of Interventions version 6.1 (updated September 2020). Cochrane, 2020. Hollo, O. Witternan, Schma Chipenda Dansokho, Ruth Ndjaboue, Thierry Provencher, Rose-Alice Poulin-Rheault, Louann Poirier-Bergeron, Caroline Beaudoin, Catherine Fallon, Rhéa Rocque, Andrea Tricco. Climate change and human health: an overview of systematic reviews. 2019; published online Dec 4. https://www.erd/york.ac.uk/PROSPERO/display_record.php?RecordID=145972 (accessed Aug 8, 2020). Page M, McKenzie J, Bossuyt P, <i>et al.</i> Updating the PRISMA reporting guideline for systematic reviews and meta-analyses. 2020. DOI:10.17605/OSF. IO/P93GE. Pollock M, Fernandes RM, Pieper D, <i>et al.</i> Preferred Reporting Items for Overviews of reviews of PRIOR): a protocol for development of a reporting guideline for overviews of reviews of healthcare interventions. <i>Syst Rev</i> 2019; 8: 335. About Cochrane Reviews. https://www.cochranelibrary.com/about/about-cochrane-reviews for reviews of healthcare interventions. <i>Syst Rev</i> 2019; 8: 335. Voorld Health Organization. Preamble to the Constitution of WHO as adopted by the International Health Conference. New York, 19 June - 22 July 1946 signed on 22 July 1946 by the Greesend Sept 14, 2020). World Health Organization. Preamble to the Constitution of WHO as 10, p. 100 and entered into force on 7 April 1948. The definition has not been amended since 1948. https://apps.who.in/gb/bd/pdf_files/BD_49th-en.pdf#page=7. Covidence systematic review software, www.covidence.org.	1 2			
 14 Fieldship Calingbeth-Lendon D. How were does enhance and mutan heading research match the demands of policymakers? A scoping review. Environ Health Perspect 2012; 120: 1076–82. 15 Pollock M, Fernandes RM, Becker LA, Pieper D, Hartling L. Chapter V: Overviews of Reviews. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, ed. Cochrane Handbook for Systematic Reviews of Interventions version 6.1 (updated September 2020). Cochrane, 2020. 16 Holly O, Witteman, Solma Chipenda Dansokho, Ruth Ndjaboue, Thierry Provencher, Rose-Alice Poulin-Rheault, Loanage and human health: an overview of systematic reviews. 2019; published online Dec 4. 17 Page M, McKenzie J, Bossuyt P, et al. Updating the PRISMA reporting guideline for systematic reviews and meta-analyses. 2020. DOI:10.17605/OSF.IO/P93GE. 18 Pollock M, Fernandes RM, Pieper D, et al. Preferred Reporting Hems for Overviews of reviews of healthcare interventions. Syst Rev 2019, 8: 335. 19 About Cochrane Reviews. https://www.cochranelibrary.com/about/about-cochrane-reviews for eviews of healthcare interventions. Syst Rev 2019, 8: 335. 19 About Cochrane Reviews. https://www.cochranelibrary.com/about/about-cochrane-reviews (accessed Sept 14, 2020). 20 World Health Organization. Preamble to the Constitution of WHO as adopted by the Intermational Health Conference. New York, 19 June - 22 July 1946 signed on 22 July 1946 by the representatives of 61 States (Official Records of WHO), no. 2, p. 100) and entered into force on 7 April 1948. The definition has not been amended since 1948. https://aps.who.int/gb/bd/pdf_files/BD_49th-en.pdf#page=7. 21 Covidence systematic review software, www.covidence.org. 22 Watts N, Amann M, Arnell N, et al. The 2019 report of The Lancet Coundown on health and climate change: ensuing that the health of a child born today is not defined by a changing climate. Lancet 2019, 394: 1836–78.	3	576		research trends? A scoping review protocol. BMJ Open 2016; 6: e012022.
 15 Pollock M, Fernandes RM, Becker LA, Pieper D, Hartling L. Chapter V: Overviews of Reviews. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, ed. Cochrane Handbook for Systematic Reviews of Interventions version 6.1 (updated September 2020). Cochrane, 2020. 16 Holly O. Witteman, Selma Chipenda Dansokho, Ruth Ndjaboue, Thierry Provencher, Rose- Alice Poulin-Rheault, Louann Poirier-Bergeron, Caroline Beaudoin, Catherine Fallon, Rhéa Rocque, Andrea Tricco. Climate change and human health: an overview of systematic reviews. 2019; published online Dec 4. https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=145972 (accessed Aug 8, 2020). 17 Page M, McKenzie J, Bossuyt P, <i>et al.</i> Updating the PRISMA reporting guideline for systematic reviews and meta-analyses. 2020. DOI:10.17605/OSF.IO/P93GE. 18 Pollock M, Fernandes RM, Pieper D, <i>et al.</i> Preferred Reporting Items for Overviews of Reviews (PRIOR): a protocol for development of a reporting guideline for overviews of neviews of healthcare interventions. <i>Syst Rev</i> 2019; 8: 335. 19 About Cochrane Reviews. https://www.cochranelibrary.com/about/about-cochrane-reviews (accessed Sept 14, 2020). 20 World Health Organization. Preamble to the Constitution of WHO as adopted by the Intermational Health Conference. New York, 19 June - 22 July 1946 signed on 22 July 1946 by the representatives of 61 States (Official Records of WHO, no. 2, p. 100) and entered into force on 7 April 1948. The definition has not been amended since 1948. https://apps.who.in/gb/bdf/pdf_files/BD_49th-en.pdf#page=7. 21 Covidence systematic review software. www.covidence.org. 22 Watts N, Amann M, Arnell N, et al. The 2019 report of The Lancet Countdown on health and elimate change: ensuring that the health of a child born today is not defined by a changing climate. <i>Lancet</i> 2019; 394: 1836–78. 23 Boylan S, Beyer K, Schlosberg D, <i>et al.</i> A	6 7	578	14	research match the demands of policymakers? A scoping review. Environ Health Perspect
 16 Holly O. Witteman, Selma Chipenda Dansokho, Ruth Ndjaboue, Thierry Provencher, Rose-Alice Poulin-Rheault, Louann Poirier-Bergeron, Caroline Beaudoin, Catherine Fallon, Rhéa Rocque, Andrea Tricco. Climate change and human health: an overview of systematic reviews. 2019; published online Dec 4. https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=145972 (accessed Aug 8, 2020). 17 Page M, McKenzie J, Bossuyt P, et al. Updating the PRISMA reporting guideline for systematic reviews and meta-analyses. 2020. DOI:10.17605/OSF.IO/P93GE. 18 Pollock M, Fernandes RM, Pieper D, et al. Preferred Reporting ltems for Overviews of Reviews of healthcare interventions. <i>Syst Rev</i> 2019; 8: 335. 19 About Cochrane Reviews. https://www.cochranelibrary.com/about/about-cochrane-reviews (accessed Sept 14, 2020). 20 World Health Organization. Preamble to the Constitution of WHO as adopted by the International Health Conference. New York, 19 June - 22 July 1946 by the representatives of 61 States (Official Records of WHO, no. 2, p. 100) and entered into force or 0.7 April 1948. The definition has not been amended since 1948. https://apps.who.int/gb/bd/pdf_files/BD_49th-en.pdf#page=7. 21 Covidence systematic review software. www.covidence.org. 22 Watts N, Amann M, Arnell N, et al. The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. <i>Lancet</i> 2019; 394: 1836–78. 23 Boylan S, Beyer K, Schlosberg D, <i>et al.</i> A conceptual framework for climate change, health and welbeing in NSW, Australia. <i>Public Health Res Pract</i> 2018; 28. DOI:10.17061/phrp2841826. 24 Amegah AK, Rezza G, Jaakkola JJ. Temperature-related morbidity and mortality in Sub-Saharan Africa: A systematic review of the empirical evidence. <i>Environ Int</i> 2016; 91: 133–49. 	10 11 12 13	581 582	15	Reviews. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, ed. Cochrane Handbook for Systematic Reviews of Interventions version 6.1 (updated
 590 17 Page M, NCKELZE J, Bosslyl F, et al. Optialing the PKISMA reporting gluterine for systematic reviews and meta-analyses. 2020. DOI:10.17605/OSF.10/P93GE. 591 18 Pollock M, Fernandes RM, Pieper D, et al. Preferred Reporting Items for Overviews of Reviews (PRIOR): a protocol for development of a reporting guideline for overviews of reviews of healthcare interventions. <i>Syst Rev</i> 2019; 8: 335. 19 About Cochrane Reviews. https://www.cochranelibrary.com/about/about-cochrane-reviews (accessed Sept 14, 2020). 597 20 World Health Organization. Preamble to the Constitution of WHO as adopted by the International Health Conference. New York, 19 June - 22 July 1946 signed on 22 July 1946 by the representatives of 61 States (Official Records of WHO, no. 2, p. 100) and entered into force on 7 April 1948. The definition has not been amended since 1948. https://apps.who.int/gb/bd/pdf_files/BD_49th-en.pdf#page=7. 602 21 Covidence systematic review software. www.covidence.org. 603 22 Watts N, Amann M, Arnell N, et al. The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. <i>Lancet</i> 2019; 394: 1836–78. 606 23 Boylan S, Beyer K, Schlosberg D, <i>et al.</i> A conceptual framework for climate change, health and wellbeing in NSW, Australia. <i>Public Health Res Pract</i> 2018; 28. DOI:10.17061/phrp2841826. 609 24 Amegah AK, Rezza G, Jaakkola JJ. Temperature-related morbidity and mortality in Sub-Saharan Africa: A systematic review of the empirical evidence. <i>Environ Int</i> 2016; 91: 133–49. 	16 17 18 19 20 21	585 586 587 588	16	Alice Poulin-Rheault, Louann Poirier-Bergeron, Caroline Beaudoin, Catherine Fallon, Rhéa Rocque, Andrea Tricco. Climate change and human health: an overview of systematic reviews. 2019; published online Dec 4. https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=145972 (accessed
 592 18 Pollock M, Fernandes RM, Pieper D, et al. Preferred Reporting Items for Overviews of Reviews (PRIOR): a protocol for development of a reporting guideline for overviews of reviews of healthcare interventions. <i>Syst Rev</i> 2019; 8: 335. 595 19 About Cochrane Reviews. https://www.cochranelibrary.com/about/about-cochrane-reviews (accessed Sept 14, 2020). 597 20 World Health Organization. Preamble to the Constitution of WHO as adopted by the International Health Conference. New York, 19 June - 22 July 1946 signed on 22 July 1946 by the representatives of 61 States (Official Records of WHO, no. 2, p. 100) and entered into force on 7 April 1948. The definition has not been amended since 1948. https://apps.who.int/gb/bd/pdf_files/BD_49th-en.pdf#page=7. 602 21 Covidence systematic review software. www.covidence.org. 603 22 Watts N, Amann M, Arnell N, et al. The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. <i>Lancet</i> 2019; 394: 1836–78. 606 23 Boylan S, Beyer K, Schlosberg D, <i>et al.</i> A conceptual framework for climate change, health and wellbeing in NSW, Australia. <i>Public Health Res Pract</i> 2018; 28. DOI:10.17061/phrp2841826. 609 24 Amegah AK, Rezza G, Jaakkola JJ. Temperature-related morbidity and mortality in Sub- Saharan Africa: A systematic review of the empirical evidence. <i>Environ Int</i> 2016; 91: 133– 49. 	24		17	
 595 19 About Cochrane Reviews. https://www.cochranelibrary.com/about/about-cochrane-reviews (accessed Sept 14, 2020). 597 20 World Health Organization. Preamble to the Constitution of WHO as adopted by the International Health Conference. New York, 19 June - 22 July 1946 signed on 22 July 1946 by the representatives of 61 States (Official Records of WHO, no. 2, p. 100) and entered into force on 7 April 1948. The definition has not been amended since 1948. https://apps.who.int/gb/bd/pdf_files/BD_49th-en.pdf#page=7. 602 21 Covidence systematic review software. www.covidence.org. 603 22 Watts N, Amann M, Arnell N, et al. The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. <i>Lancet</i> 2019; 394: 1836–78. 606 23 Boylan S, Beyer K, Schlosberg D, <i>et al.</i> A conceptual framework for climate change, health and wellbeing in NSW, Australia. <i>Public Health Res Pract</i> 2018; 28. DOI:10.17061/phrp2841826. 609 24 Amegah AK, Rezza G, Jaakkola JJ. Temperature-related morbidity and mortality in Sub-Saharan Africa: A systematic review of the empirical evidence. <i>Environ Int</i> 2016; 91: 133–49. 	27 28 29	593	18	Reviews (PRIOR): a protocol for development of a reporting guideline for overviews of
 S97 20 World Health Organization. Preamble to the Constitution of WHO as adopted by the International Health Conference. New York, 19 June - 22 July 1946 signed on 24 Watts N, Amann M, Arnell N, et al. The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. <i>Lancet</i> 2019; 394: 1836–78. 606 23 Boylan S, Beyer K, Schlosberg D, <i>et al.</i> A conceptual framework for climate change, health and wellbeing in NSW, A	31 32		19	1 2
 602 21 Covidence systematic review software. www.covidence.org. 603 22 Watts N, Amann M, Arnell N, et al. The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. <i>Lancet</i> 2019; 394: 1836–78. 606 23 Boylan S, Beyer K, Schlosberg D, <i>et al.</i> A conceptual framework for climate change, health and wellbeing in NSW, Australia. <i>Public Health Res Pract</i> 2018; 28. DOI:10.17061/phrp2841826. 609 24 Amegah AK, Rezza G, Jaakkola JJ. Temperature-related morbidity and mortality in Sub- Saharan Africa: A systematic review of the empirical evidence. <i>Environ Int</i> 2016; 91: 133– 49. 	35 36 37 38 39	598 599 600	20	International Health Conference. New York, 19 June - 22 July 1946 signed on 22 July 1946 by the representatives of 61 States (Official Records of WHO, no. 2, p. 100) and entered into force on 7 April 1948. The definition has not been amended since 1948.
 Watts N, Alhalm M, Alhalm N, et al. The 2019 report of the Earleet Countdown of fleath 604 and climate change: ensuring that the health of a child born today is not defined by a 605 changing climate. <i>Lancet</i> 2019; 394: 1836–78. 606 23 Boylan S, Beyer K, Schlosberg D, <i>et al.</i> A conceptual framework for climate change, health 607 and wellbeing in NSW, Australia. <i>Public Health Res Pract</i> 2018; 28. 608 DOI:10.17061/phrp2841826. 52 609 24 Amegah AK, Rezza G, Jaakkola JJ. Temperature-related morbidity and mortality in Sub- 53 610 Saharan Africa: A systematic review of the empirical evidence. <i>Environ Int</i> 2016; 91: 133– 611 49. 	41	602	21	Covidence systematic review software. www.covidence.org.
 48 606 23 Boylan S, Beyer K, Schlosberg D, <i>et al.</i> A conceptual framework for climate change, health and wellbeing in NSW, Australia. <i>Public Health Res Pract</i> 2018; 28. 50 608 DOI:10.17061/phrp2841826. 51 609 24 Amegah AK, Rezza G, Jaakkola JJ. Temperature-related morbidity and mortality in Sub-Saharan Africa: A systematic review of the empirical evidence. <i>Environ Int</i> 2016; 91: 133–611 49. 56 57 58 59 50 50 50 50 50 50 50 50 50 50 50 50 50	44 45 46	604	22	and climate change: ensuring that the health of a child born today is not defined by a
 609 610 610 610 611 611	48 49 50	607	23	and wellbeing in NSW, Australia. Public Health Res Pract 2018; 28.
58 59 22	52 53 54 55 56	610	24	Saharan Africa: A systematic review of the empirical evidence. <i>Environ Int</i> 2016; 91: 133–
	58 59			22 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3 4 5 6 7	612 613 614 615	25	Odame EA, Li Y, Zheng SM, Vaidyanathan A, Silver K. Assessing Heat-Related Mortality Risks among Rural Populations: A Systematic Review and Meta-Analysis of Epidemiological Evidence. <i>Int J Environ Res Public Health</i> 2018; 15 . DOI:10.3390/ijerph15081597.
8 9 10 11	616 617	26	Leyva EWA, Beaman A, Davidson PM. Health Impact of Climate Change in Older People: An Integrative Review and Implications for Nursing. <i>J Nurs Scholarsh</i> 2017; 49 : 670–8.
12 13 14 15	618 619 620	27	Phalkey RK, Aranda-Jan C, Marx S, Hofle B, Sauerborn R. Systematic review of current efforts to quantify the impacts of climate change on undernutrition. <i>Proc Natl Acad Sci U S A</i> 2015; 112 : E4522–9.
16 17 18 19 20	621 622 623	28	Porpora MG, Piacenti I, Scaramuzzino S, Masciullo L, Rech F, Panici PB. Environmental contaminants exposure and preterm birth: A systematic review. <i>Toxics</i> 2019; 7 . DOI:10.3390/toxics7010011.
21 22 23	624 625	29	Bai L, Morton LC, Liu Q. Climate change and mosquito-borne diseases in China: a review. <i>Globalization & Health</i> 2013; 9 : 10–10.
24 25 26	626 627	30	Cheng J, Xu Z, Zhu R, <i>et al.</i> Impact of diurnal temperature range on human health: a systematic review. <i>Int J Biometeorol</i> 2014; 58 : 2011–24.
27 28 29 30 31	628 629 630	31	Phung D, Huang C, Rutherford S, Chu C, Wang X, Nguyen M. Climate Change, Water Quality, and Water-Related Diseases in the Mekong Delta Basin: A Systematic Review. <i>Asia Pac J Public Health</i> 2015; 27 : 265–76.
32 33 34 35	631 632 633	32	Klinger C, Landeg O, Murray V. Power Outages, Extreme Events and Health: A Systematic Review of the Literature from 2011-2012. <i>PLoS Curr</i> 2014. DOI:10.1371/currents.dis.04eb1dc5e73dd1377e05a10e9edde673.
36 37 38	634 635	33	Sun Z, Chen C, Xu D, Li T. Effects of ambient temperature on myocardial infarction: A systematic review and meta-analysis. <i>Environ Pollut</i> 2018; 241 : 1106–14.
39 40 41 42 43 44	636 637 638 639	34	Berhane K, Kumie A, Samet J. Health Effects of Environmental Exposures, Occupational Hazards and Climate Change in Ethiopia: Synthesis of Situational Analysis, Needs Assessment and the Way Forward. <i>Ethiopian Journal of Health Development</i> 2016; 30 : 50–6.
45 46 47	640 641	35	Bernhardt V, Finkelmeier F, Verhoff MA, Amendt J. Myiasis in humans-a global case report evaluation and literature analysis. <i>Parasitol Res</i> 2019; 118 : 389–97.
48 49 50 51 52	642 643 644	36	de Sousa TCM, Amancio F, Hacon SS, Barcellos C. [Climate-sensitive diseases in Brazil and the world: systematic review] Enfermedades sensibles al clima en Brasil y el mundo: revision sistematica. <i>Rev Panam Salud Publica</i> 2018; 42 : e85.
53 54 55 56	645 646 647	37	Dhimal M, Ahrens B, Kuch U. Climate Change and Spatiotemporal Distributions of Vector-Borne Diseases in NepalA Systematic Synthesis of Literature. <i>PLoS ONE [Electronic Resource]</i> 2015; 10 : e0129869.
57 58 59 60			23 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2			
3 4 5	648 649	38	Fan J, Wei W, Bai Z, <i>et al.</i> A systematic review and meta-analysis of dengue risk with temperature change. <i>Int J Environ Res Public Health</i> 2015; 12 : 1–15.
6 7 8 9 10	650 651 652	39	Gracia JR, Schumann B, Seidler A. Climate Variability and the Occurrence of Human Puumala Hantavirus Infections in Europe: A Systematic Review. <i>Zoonoses Public Health</i> 2015; 62 : 465–78.
10 11 12 13 14	653 654 655	40	Hedlund C, Blomstedt Y, Schumann B. Association of climatic factors with infectious diseases in the Arctic and subarctic regiona systematic review. <i>Glob Health Action</i> 2014; 7 : 24161.
15 16 17	656 657	41	Hii YL, Zaki RA, Aghamohammadi N, Rocklov J. Research on Climate and Dengue in Malaysia: A Systematic Review. <i>Current Environmental Health Reports</i> 2016; 3 : 81–90.
18 19 20	658 659	42	Khader YS, Abdelrahman M, Abdo N, <i>et al.</i> Climate change and health in the Eastern Mediterranean countries: a systematic review. <i>Rev Environ Health</i> 2015; 30 : 163–81.
21 22 23 24 25	660 661 662	43	Matysiak A, Roess A. Interrelationship between Climatic, Ecologic, Social, and Cultural Determinants Affecting Dengue Emergence and Transmission in Puerto Rico and Their Implications for Zika Response. <i>J Trop Med</i> 2017; 2017 . DOI:10.1155/2017/8947067.
23 26 27 28 29 30 31 32 33 34	663 664 665	44	Naish S, Dale P, Mackenzie JS, McBride J, Mengersen K, Tong S. Climate change and dengue: a critical and systematic review of quantitative modelling approaches. <i>BMC Infect Dis</i> 2014; 14 : 167–167.
	666 667 668	45	Nichols A, Maynard V, Goodman B, Richardson J. Health, climate change and sustainability: a systematic review and thematic analysis of the literature. <i>Environ Health Insights</i> 2009; : 63–88.
35 36 37 38	669 670 671	46	Racloz V, Ramsey R, Tong S, Hu W. Surveillance of dengue fever virus: a review of epidemiological models and early warning systems. <i>PLoS Neglected Tropical Diseases [electronic resource]</i> 2012; 6 : e1648.
39 40 41 42	672 673	47	Swynghedauw B. [Medical consequences of global warming]. <i>Presse Med</i> 2009; 38 : 551–61.
43 44 45	674 675	48	Waits A, Emelyanova A, Oksanen A, Abass K, Rautio A. Human infectious diseases and the changing climate in the Arctic. <i>Environ Int</i> 2018; 121 : 703–13.
46 47 48	676 677	49	Xu Z, Etzel RA, Su H, Huang C, Guo Y, Tong S. Impact of ambient temperature on children's health: a systematic review. <i>Environ Res</i> 2012; 117 : 120–31.
49 50 51 52 53	678 679 680	50	Yu W, Mengersen K, Dale P, <i>et al.</i> Projecting Future Transmission of Malaria Under Climate Change Scenarios: Challenges and Research Needs. <i>Crit Rev Environ Sci Technol</i> 2015; 45 : 777–811.
53 54 55 56 57	681 682	51	Veenema TG, Thornton CP, Lavin RP, Bender AK, Seal S, Corley A. Climate Change- Related Water Disasters' Impact on Population Health. <i>J Nurs Scholarsh</i> 2017; 49 : 625–34.
58 59 60			24 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3 4 5 6	683 684 685	52	Brown L, Murray V. Examining the relationship between infectious diseases and flooding in Europe: A systematic literature review and summary of possible public health interventions. <i>Disaster Health</i> 2013; 1 : 117–27.
7 8 9 10 11	686 687 688	53	Tall JA, Gatton ML, Tong S. Ross River Virus Disease Activity Associated With Naturally Occurring Nontidal Flood Events in Australia: A Systematic Review. <i>J Med Entomol</i> 2014; 51 : 1097–108.
12 13 14 15	689 690 691	54	Ghazani M, FitzGerald G, Hu WB, Toloo G, Xu ZW. Temperature Variability and Gastrointestinal Infections: A Review of Impacts and Future Perspectives. <i>Int J Environ Res Public Health</i> 2018; 15 . DOI:10.3390/ijerph15040766.
16 17 18	692 693	55	Gao J, Sun Y, Lu Y, Li L. Impact of ambient humidity on child health: a systematic review. <i>PLoS ONE [Electronic Resource]</i> 2014; 9 : e112508.
19 20 21 22 23	694 695 696	56	Lal A, Fearnley E, Wilford E. Local weather, flooding history and childhood diarrhoea caused by the parasite Cryptosporidium spp.: A systematic review and meta-analysis. <i>Sci Total Environ</i> 2019; 674 : 300–6.
24 25 26 27	697 698 699	57	Levy K, Woster AP, Goldstein RS, Carlton EJ. Untangling the Impacts of Climate Change on Waterborne Diseases: a Systematic Review of Relationships between Diarrheal Diseases and Temperature, Rainfall, Flooding, and Drought. <i>Environ Sci Technol</i> 2016; 50 : 4905–22.
28 29 30 31 32	700 701 702	58	Philipsborn R, Ahmed SM, Brosi BJ, Levy K. Climatic Drivers of Diarrheagenic Escherichia coli Incidence: A Systematic Review and Meta-analysis. <i>J Infect Dis</i> 2016; 214 : 6–15.
33 34 35	703 704	59	Semenza JC, Herbst S, Rechenburg A, <i>et al.</i> Climate change impact assessment of food- and waterborne diseases. <i>Crit Rev Environ Sci Technol</i> 2012; 42 : 857–90.
36 37 38	705 706	60	Stensgaard AS, Vounatsou P, Sengupta ME, Utzinger J. Schistosomes, snails and climate change: Current trends and future expectations. <i>Acta Trop</i> 2019; 190 : 257–68.
39 40 41 42 43	707 708 709	61	Welch K, Shipp-Hilts A, Eidson M, Saha S, Zansky S. Salmonella and the changing environment: systematic review using New York State as a model. <i>J Water Health</i> 2019; 17 : 179–95.
44 45 46	710 711	62	Cann KF, Thomas DR, Salmon RL, Wyn-Jones AP, Kay D. Extreme water-related weather events and waterborne disease. <i>Epidemiology & Infection</i> 2013; 141 : 671–86.
47 48 49 50 51	712 713 714	63	Stanke C, Kerac M, Prudhomme C, Medlock J, Murray V. Health Effects of Drought: A Systematic Review of the Evidence. <i>PLoS Curr</i> 2013. DOI:10.1371/currents.dis.7a2cee9e980f91ad7697b570bcc4b004.
51 52 53 54 55 56	715 716 717	64	Bunker A, Wildenhain J, Vandenbergh A, <i>et al.</i> Effects of Air Temperature on Climate-Sensitive Mortality and Morbidity Outcomes in the Elderly; a Systematic Review and Meta- analysis of Epidemiological Evidence. <i>EBioMedicine</i> 2016; 6 : 258–68.
57 58 59 60			25 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 27 of 65

BMJ Open

1 2				
3 4 5	718 719	65	Campbell S, Remenyi TA, White CJ, Johnston FH. Heatwave and health impact research global review. <i>Health Place</i> 2018; 53 : 210–8.	: A
6 7 8 9 10	720 721 722	66	Cunrui H, Barnett AG, Xiaoming W, Vaneckova P, FitzGerald G, Shilu T. Projecting Future Heat-Related Mortality under Climate Change Scenarios: A Systematic Review. <i>Environ Health Perspect</i> 2011; 119 : 1681–90.	
10 11 12 13	723 724	67	Ghanizadeh G, Heidari M, Seifi B, Jafari H, Pakjouei S. The effect of climate change on cardiopulmonary disease-a systematic review. <i>J Clin Diagn Res</i> 2017; 11 : IE01–4.	
14 15 16	725 726	68	Hajat S, Kosatky T. Heat-related mortality: a review and exploration of heterogeneity. <i>Journal of Epidemiology & Community Health</i> 2010; 64 : 753–60.	
17 18 19 20 21	727 728 729	69	Lawton EM, Pearce H, Gabb GM. Review article: Environmental heatstroke and long-ter clinical neurological outcomes: A literature review of case reports and case series 2000–2016. <i>Emerg Med Australas</i> 2019; 31 : 163–73.	m
22 23 24 25	730 731 732	70	Lian H, Ruan YP, Liang RJ, Liu XL, Fan ZJ. Short-Term Effect of Ambient Temperature and the Risk of Stroke: A Systematic Review and Meta-Analysis. <i>Int J Environ Res Publi</i> <i>Health</i> 2015; 12 : 9068–88.	
26 27 28 29 30	733 734 735	71	Moghadamnia MT, Ardalan A, Mesdaghinia A, Keshtkar A, Naddafi K, Yekaninejad MS Ambient temperature and cardiovascular mortality: A systematic review and meta-analys <i>PeerJ</i> 2017; 2017 : 3574.	
31 32 33	736 737	72	Salve HR, Parthasarathy R, Krishnan A, Pattanaik DR. Impact of ambient air temperature on human health in India. <i>Rev Environ Health</i> 2018; 33 : 433–9.)
34 35 36 37	738 739 740	73	Sanderson M, Arbuthnott K, Kovats S, Hajat S, Falloon P. The use of climate information to estimate future mortality from high ambient temperature: A systematic literature review <i>PLoS ONE [Electronic Resource]</i> 2017; 12 : e0180369.	
38 39 40 41 42	741 742 743	74	Witt C, Schubert AJ, Jehn M, <i>et al.</i> The Effects of Climate Change on Patients With Chronic Lung Disease. A Systematic Literature Review. <i>Dtsch Arztebl Int</i> 2015; 112 : 878 83.	}_
43 44 45	744 745	75	Xu Z, Sheffield PE, Su H, Wang X, Bi Y, Tong S. The impact of heat waves on children' health: a systematic review. <i>Int J Biometeorol</i> 2014; 58 : 239–47.	S
46 47 48 49	746 747 748	76	Xu Z, FitzGerald G, Guo Y, Jalaludin B, Tong S. Impact of heatwave on mortality under different heatwave definitions: A systematic review and meta-analysis. <i>Environ Int</i> 2016; 89-90 : 193–203.	
50 51 52 53 54	749 750 751	77	Yu W, Mengersen K, Wang X, <i>et al.</i> Daily average temperature and mortality among the elderly: a meta-analysis and systematic review of epidemiological evidence. <i>Int J Biometeorol</i> 2012; 56 : 569–81.	
55 56 57	752	78	Doocy S, Dick A, Daniels A, Kirsch TD. The Human Impact of Tropical Cyclones: A	
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	26

1 2			
3 4 5	753 754		Historical Review of Events 1980-2009 and Systematic Literature Review. <i>PLoS Curr</i> 2013. DOI:10.1371/currents.dis.2664354a5571512063ed29d25ffbce74.
6 7 8 9	755 756 757	79	Madaniyazi L, Guo Y, Yu W, Tong S. Projecting future air pollution-related mortality under a changing climate: Progress, uncertainties and research needs. <i>Environ Int</i> 2015; 75 : 21–32.
9 10 11 12 13 14 15 16 17 18	758 759 760	80	Liu JC, Pereira G, Uhl SA, Bravo MA, Bell ML. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. <i>Environ Res</i> 2015; 136 : 120–32.
16 17	761 762	81	Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT. Critical Review of Health Impacts of Wildfire Smoke Exposure. <i>Environ Health Perspect</i> 2016; 124 : 1334–43.
18 19 20 21 22	763 764 765	82	Youssouf H, Liousse C, Roblou L, <i>et al.</i> Non-accidental health impacts of wildfire smoke. <i>International Journal of Environmental Research & Public Health [Electronic Resource]</i> 2014; 11 : 11772–804.
23 24 25	766 767	83	Lake IR, Jones NR, Agnew M, <i>et al.</i> Climate Change and Future Pollen Allergy in Europe. <i>Environ Health Perspect</i> 2017; 125 : 385–91.
26 27 28	768 769	84	Cong XW, Xu XJ, Zhang YL, Wang QH, Xu L, Huo X. Temperature drop and the risk of asthma: a systematic review and meta-analysis. <i>Environ Sci Pollut Res</i> 2017; 24 : 22535–46.
29 30 31 32 33 34 35 36	770 771	85	Zuo J, Pullen S, Palmer J, Bennetts H, Chileshe N, Ma T. Impacts of heat waves and corresponding measures: a review. <i>J Clean Prod</i> 2015; 92 : 1–12.
	772 773 774	86	Xu Z, Crooks JL, Davies JM, Khan AF, Hu W, Tong S. The association between ambient temperature and childhood asthma: a systematic review. <i>Int J Biometeorol</i> 2018; 62 : 471–81.
37 38 39 40 41 42	775 776 777 778	87	Sawatzky A, Cunsolo A, Jones-Bitton A, Middleton J, Harper SL. Responding to Climate and Environmental Change Impacts on Human Health via Integrated Surveillance in the Circumpolar North: A Systematic Realist Review. <i>International Journal of Environmental</i> <i>Research & Public Health [Electronic Resource]</i> 2018; 15 : 30.
43 44 45 46	779 780 781	88	Wald A. Emergency Department Visits and Costs for Heat-Related Illness Due to Extreme Heat or Heat Waves in the United States: An Integrated Review. <i>Nurs Econ</i> 2019; 37 : 35–48.
47 48 49	782 783	89	Gao JJ, Cheng Q, Duan J, <i>et al.</i> Ambient temperature, sunlight duration, and suicide: A systematic review and meta-analysis. <i>Sci Total Environ</i> 2019; 646 : 1021–9.
50 51 52 53 54	784 785 786	90	Benevolenza MA, DeRigne L. The impact of climate change and natural disasters on vulnerable populations: A systematic review of literature. <i>J Hum Behav Soc Environ</i> 2019; 29 : 266–81.
55 56 57	787	91	Rataj E, Kunzweiler K, Garthus-Niegel S. Extreme weather events in developing countries
58 59 60			27 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3 4 5	788 789		and related injuries and mental health disorders - a systematic review. <i>BMC Public Health</i> 2016; 16 : 1020–1020.
6 7 8 9 10 11 12 13	790 791	92	Fernandez A, Black J, Jones M, <i>et al.</i> Flooding and Mental Health: A Systematic Mapping Review. <i>PLoS ONE [Electronic Resource]</i> 2015; 10 . DOI:10.1371/journal.pone.0119929.
	792 793 794	93	Vins H, Bell J, Saha S, Hess JJ. The Mental Health Outcomes of Drought: A Systematic Review and Causal Process Diagram. <i>International Journal of Environmental Research & Public Health [Electronic Resource]</i> 2015; 12 : 13251–75.
14 15 16	795 796	94	Carolan-Olah M, Frankowska D. High environmental temperature and preterm birth: A review of the evidence. <i>Midwifery</i> 2014; 30 : 50–9.
17 18 19 20 21	797 798 799	95	Kuehn L, McCormick S. Heat Exposure and Maternal Health in the Face of Climate Change. <i>International Journal of Environmental Research & Public Health [Electronic Resource]</i> 2017; 14 : 29.
21 22 23 24	800 801	96	Poursafa P, Keikha M, Kelishadi R. Systematic review on adverse birth outcomes of climate change. <i>J Res Med Sci</i> 2015; 20 : 397–402.
25 26 27 28	802 803 804	97	Zhang YQ, Yu CH, Wang L. Temperature exposure during pregnancy and birth outcomes: An updated systematic review of epidemiological evidence. <i>Environ Pollut</i> 2017; 225 : 700–12.
29 30 31 32	805 806	98	An R, Ji M, Zhang S. Global warming and obesity: a systematic review. <i>Obes Rev</i> 2018; 19 : 150–63.
33 34 35	807 808	99	Vilcins D, Sly PD, Jagals P. Environmental Risk Factors Associated with Child Stunting: A Systematic Review of the Literature. <i>Annals of Global Health</i> 2018; 84 : 551–62.
36 37 38 39	809 810 811	100	Huang KC, Weng HH, Yang TY, Chang TS, Huang TW, Lee MS. Distribution of Fatal Vibrio Vulnificus Necrotizing Skin and Soft-Tissue Infections: A Systematic Review and Meta-Analysis. <i>Medicine</i> 2016; 95 : e2627.
40 41 42 43	812 813	101	Augustin J, Franzke N, Augustin M, Kappas M. Does climate change affect the incidence of skin and allergic diseases in Germany? <i>J Dtsch Dermatol Ges</i> 2008; 6 : 632–8.
44 45 46 47 48 49 50 51 52	814 815 816	102	Binazzi A, Levi M, Bonafede M, <i>et al.</i> Evaluation of the impact of heat stress on the occurrence of occupational injuries: Meta-analysis of observational studies. <i>Am J Ind Med</i> 2019; 62 : 233–43.
	817 818 819 820	103	Bonafede M, Marinaccio A, Asta F, Schifano P, Michelozzi P, Vecchi S. The association between extreme weather conditions and work-related injuries and diseases. A systematic review of epidemiological studies. <i>Annali Dell Istituto Superiore Di Sanita</i> 2016; 52 : 357–67.
53 54 55 56 57	821 822	104	Flouris AD, Dinas PC, Ioannou LG, <i>et al.</i> Workers' health and productivity under occupational heat strain: a systematic review and meta-analysis. <i>The lancet Planetary</i>
58 59 60			28 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
2 3 4	823		<i>Health</i> 2018; 2 : e521–31.
5 6 7 8	824 825 826	105	Levi M, Kjellstrom T, Baldasseroni A. Impact of climate change on occupational health and productivity: a systematic literature review focusing on workplace heat. <i>Medicina del Lavoro</i> 2018; 109 : 163–79.
9 10 11 12	827 828	106	Varghese BM, Hansen A, Bi P, Pisaniello D. Are workers at risk of occupational injuries due to heat exposure? A comprehensive literature review. <i>Saf Sci</i> 2018; 110 : 380–92.
13 14 15 16 17	829 830 831 832	107	Wimalawansa SA, Wimalawansa SJ. Environmentally induced, occupational diseases with emphasis on chronic kidney disease of multifactorial origin affecting tropical countries. <i>Annals of Occupational and Environmental Medicine</i> 2016; 28 . DOI:10.1186/s40557-016-0119-y.
18 19 20 21	833 834	108	Zhang Y, Bi P, Hiller JE. Climate change and disability adjusted life years. <i>J Environ Health</i> 2007; 70 : 32–6.
22 23 24 25	835 836 837	109	Park KY, Kim HJ, Ahn HS, Yim SY, Jun JB. Association between acute gouty arthritis and meteorological factors: An ecological study using a systematic review and meta-analysis. <i>Semin Arthritis Rheum</i> 2017; 47 : 369–75.
26 27 28 29	838 839 840	110	Kampe EOI, Kovats S, Hajat S. Impact of high ambient temperature on unintentional injuries in high-income countries: a narrative systematic literature review. <i>BMJ Open</i> 2016; 6 . DOI:10.1136/bmjopen-2015-010399.
30 31 32 33	841 842	111	Rifkin DI, Long MW, Perry MJ. Climate change and sleep: A systematic review of the literature and conceptual framework. <i>Sleep Med Rev</i> 2018; 42 : 3–9.
34 35 36	843 844	112	Clayton S. Climate anxiety: Psychological responses to climate change. <i>J Anxiety Disord</i> 2020; 74 : 102263.
37 38 39	845 846	113	Davenport L. Emotional Resiliency in the Era of Climate Change: A Clinician's Guide. London: Jessica Kingsley Publishers, 2017.
40 41 42 43 44	847 848 849	114	Maibach EW, Nisbet M, Baldwin P, Akerlof K, Diao G. Reframing climate change as a public health issue: an exploratory study of public reactions. <i>BMC Public Health</i> 2010; 10 : 299.
45 46 47 48	850 851 852	115	Stoknes PE. What we think about when we try not to think about global warming: Toward a new psychology of climate action. <i>White River Junction, Vermont: Chelsea Green Publishing</i> 2015.
49 50 51 52	853 854 855	116	Ahmadi S, Schütte S, Herlihy N, Hemono M, Flahault A, Depoux A. Health as a Key Driver of Climate Change Communication. A Scoping Review. <i>Preprints</i> 2020; 2020100095 . DOI:10.20944/preprints202010.0095.v1.

⁵⁴ 856
 ⁵⁵ 857
 ⁵⁶ 857
 ¹¹⁷ Adlong W, Dietsch E. Environmental education and the health professions: framing climate change as a health issue. *Environ Educ Res* 2015; **21**: 687–709.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
- 3 4 5	858 859	118	Myers TA, Nisbet MC, Maibach EW, Leiserowitz AA. A public health frame arouses hopeful emotions about climate change. <i>Clim Change</i> 2012; 113 : 1105–12.
6 7 8	860 861	119	Costello A, Montgomery H, Watts N. Climate change: the challenge for healthcare professionals. <i>BMJ</i> 2013; 347 : f6060.
9 10 11 12	862 863	120	Gould S, Rudolph L. Challenges and Opportunities for Advancing Work on Climate Change and Public Health. <i>Int J Environ Res Public Health</i> 2015; 12 : 15649–72.
13 14 15	864 865	121	Yang L, Liu C, Hess J, Phung D, Huang C. Health professionals in a changing climate: protocol for a scoping review. <i>BMJ Open</i> 2019; 9 : e024451.
16 17	866		
18 19 20	867		
21			
22 23			
24 25			
26 27			
28 29			
30 31			
32			
33 34			
35 36			
37 38			
39 40			
41			
42 43			
44 45			
46 47			
48			
49 50			
51 52			
53 54			
55			
56 57			
58 59			
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

868 Figure Legends

870 Figure 1. The flow chart for included articles in this review.

872 Figure 2. Number of included systematic reviews by year of publication.

Figure 3. Number of publications according to geographic affiliation of the first author.

*Countries of origin within continents in frequency order (highest to lowest frequency) and
alphabetical: *Europe*: United-Kingdom (9), Germany (6), Italy (4), Sweden (4), Denmark (2),
France (2), Georgia (1), Greece (1) and Finland (1). *Australia*: All Australia. *Asia*: China (11),
Iran (4), India (1), Jordan (1), Korea (1), Nepal (1), Philippines (1), Taiwan (1). *North America*:
United-States (15), Canada (1). *Africa*: Ethiopia (1), Ghana (1). *South America*: Brazil (1).

881 Figure 4. Summary of the combination of climate impact and health outcome

881 (frequencies). Note: The total frequency for one category of health outcome could exceed the
 883 number of publications included in this health outcome, since one publication could explore the
 884 health impact according to more than one climate factor (e.g., one publication could explore
 885 both the impact of extreme weather events and temperature on mental health.

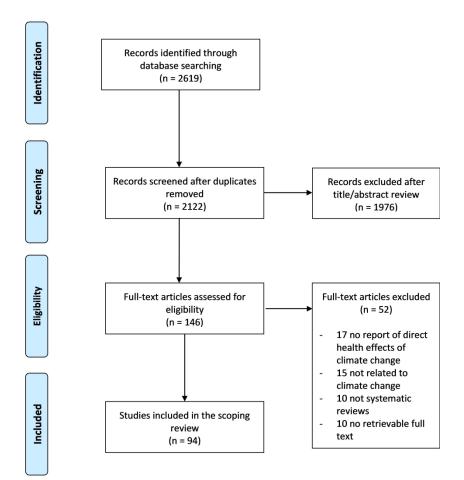
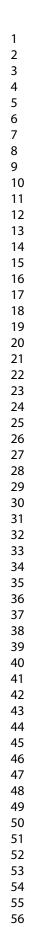



Figure 1. The flow chart for included articles in this review.

165x174mm (600 x 600 DPI)

60

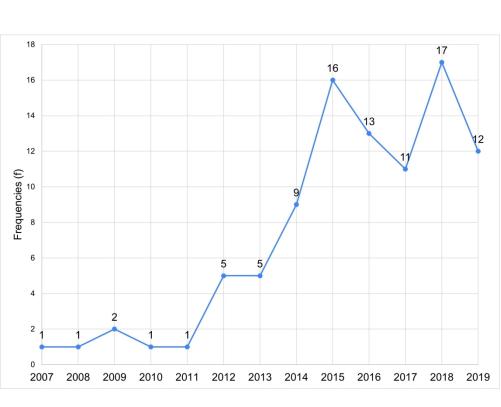


Figure 2. Number of included systematic reviews by year of publication.

199x141mm (330 x 330 DPI)

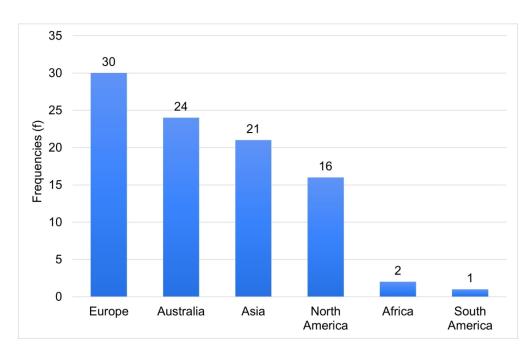
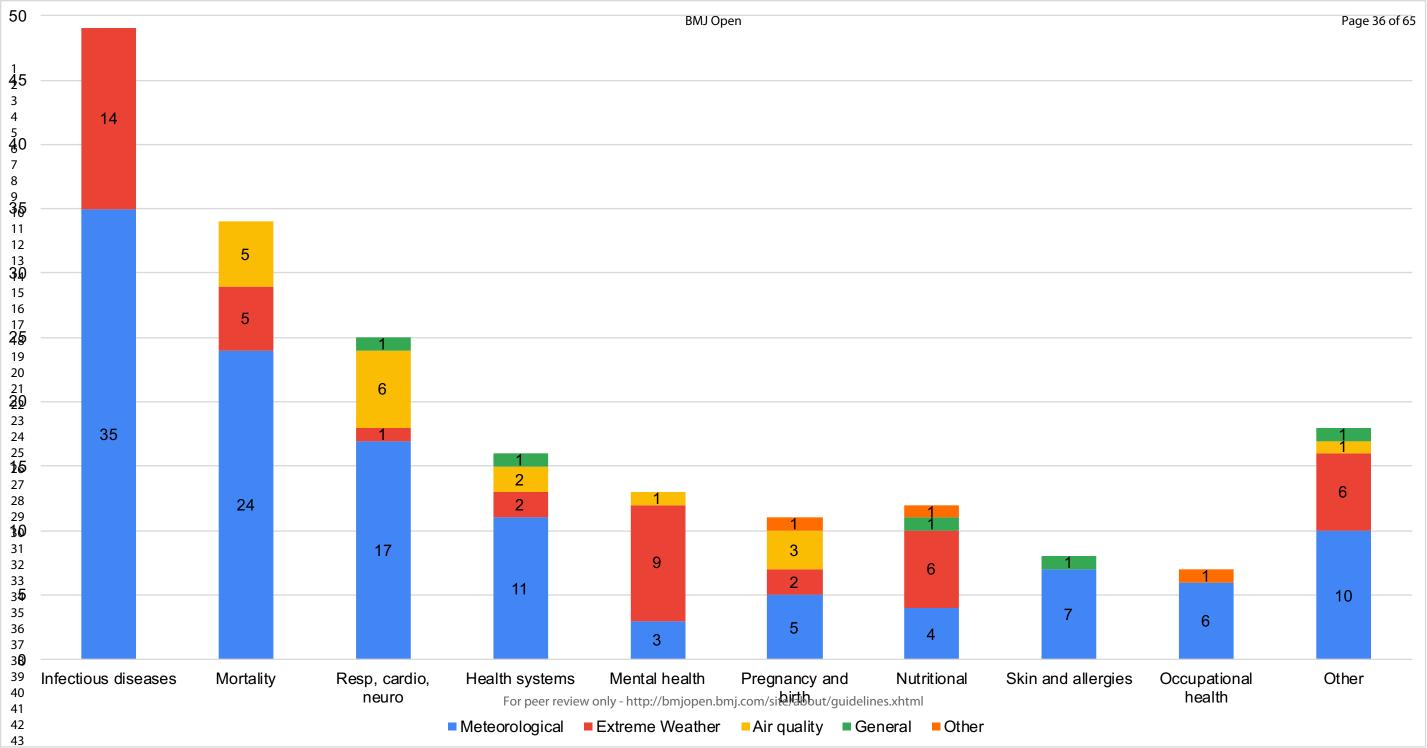



Figure 3. Number of publications according to geographic affiliation of the first author. *Countries of origin within continents in frequency order (highest to lowest frequency) and alphabetical: Europe: United-Kingdom (9), Germany (6), Italy (4), Sweden (4), Denmark (2), France (2), Georgia (1), Greece (1) and Finland (1). Australia: All Australia. Asia: China (11), Iran (4), India (1), Jordan (1), Korea (1), Nepal (1), Philippines (1), Taiwan (1). North America: United-States (15), Canada (1). Africa: Ethiopia (1), Ghana (1). South America: Brazil (1).

172x108mm (330 x 330 DPI)

Appendix 1. Search Strategy

Database: MEDLINE (OVID)

No database limit

Concepts	#	Search strategy
Global Warming	1	exp Climate Change/
	2	"Global warming".ti,ab,kw
	3	"Climate Change?".ti,ab,kw
Global Warming combined	4	or/1-3
Systematic review and meta-analysis	5	exp Meta-Analysis as Topic/
	6	"Meta-Analysis"/
	7	Meta-Analysis.ti,ab,kw
	8	"meta analy*".ti,ab,kw
	9	metaanaly*.ti,ab,kw
	10	"Systematic Review"/
	11	"Systematic Reviews as Topic"/
	12	(systematic adj2 review).ti,ab,kw
	13	(review adj1 ("selection criteria" OR "data extraction")).ti,ab
Systematic review and meta-analysis combined	14	or/5-13
Combination of concepts	15	4 AND 14

Database: Embase.com

No database limit

Concepts	#	Search strategy
Global Warming	1	'climate change'/de
	2	'greenhouse effect'/de
	3	"Global warming":ti,ab,kw
	4	"Climate Change*":ti,ab,kw
Global Warming combined	5	#1 OR #2 OR #3 OR #4
Systematic review and meta-analysis	6	'meta analysis'/exp
	7	'meta analysis (topic)'/de
	8	Meta-Analysis:ti,ab,kw
	9	"meta analy*":ti,ab,kw
	10	metaanaly*:ti,ab,kw
	11	'systematic review'/de
	12	(systematic NEAR/2 review):ti,ab,kw
	13	(review NEAR/2 ("selection criteria" OR "data extraction")):ti,a
Systematic review and meta-analysis combined	14	#7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14

Combination of concepts	15	#14 AND #5
Embase database only	16	AND [embase]/lim NOT ([embase]/lim AND [medline]/lim)

Database: Web of Science

Limit to: Science Citation Index Expanded (SCI-EXPANDED) and Emerging Sources Citation Index (ESCI) index only

Concepts	#	Search strategy
Global Warming	10	TS=("Global warming" OR "Climate Change\$")
Systematic review and meta-analysis	2	TS=(Meta-Analysis)
	3	TS=("meta analy*")
	4	TS=(metaanaly*)
	5	TS=(systematic NEAR/2 review)
	6	TS=(review NEAR/1 ("selection criteria" OR "data extraction"))
Systematic review and meta-analysis combined	7	#6 OR #5 OR #4 OR #3 OR #2
Combination of concepts	8	#7 AND #1

Database: CINAHL

No database limit

Concepts	#	Search strategy
Global Warming	1	MH "Climate Change"

	2	MH "Greenhouse Effect"
	3	TI "Global warming"
	4	TI "Climate Change?"
	5	AB "Global warming"
	6	AB "Climate Change?"
Global Warming combined	7	S1 OR S2 OR S3 OR S4 OR S5 OR S6
Systematic review and meta-analysis	8	MH "Meta Analysis"
	9	TI "Meta-Analysis"
	10	AB "Meta-Analysis"
	11	TI "meta analy*"
	12	AB "meta analy*"
	13	TI metaanaly*
	14	AB metaanaly*
	15	MH "Systematic Review"
	16	TI (systematic N2 review)
	17	AB (systematic N2 review)
	18	TI (review N1 ("selection criteria" OR "data extraction"))
	19	AB (review N1 ("selection criteria" OR "data extraction"))

Systematic review and meta-analysis combined	20	S8 OR S9 OR S10 OR S11 OR S12 OR S13 OR S14 OR S15 OR S16 OR S17 OR S18 OR S19
Combination of concepts	21	S7 AND S20
For peer rev	iew only - I	http://bmjopen.bmj.com/site/about/guidelines.xhtml

Topic #	AMSTAR-2 Original Items	AMSTAR-2 Modifications
1	Did the research questions and inclusion criteria for the review include components of PICO? - Population - Intervention - Comparator group - Outcome - Timeframe for follow-up (optional)	"Population" became "Population and/or location". "Intervention" became "Exposure". The "Comparator group" category was ta out. A new section (#1.b)) was created, it inc "Definition of the exposure", "Definition of outcome" and "Timeframe for follow up".
2	Did the report of the review contain an explicit statement that the review methods were established prior to the conduct of the review and did the report justify any significant deviations from the protocol?	To score "yes", a protocol must have be established before the review. There are criteria, you can only score yes or no.
3	Did the review authors explain their selection of the study designs for inclusion in the review?	If the study designs are specified, you so "partial yes". They must be explained to "yes". No specific study design is require
4	Did the review authors use a comprehensive literature search strategy?	The "searched trial/study registries" cate was taken out. Justified publication restrictions (e.g. lan moved from (partial yes) to (yes)
5	Did the review authors perform study selection in duplicate?	No modifications.
6	Did the review authors perform data extraction in duplicate?	No modifications.
7	Did the review authors provide a list of excluded studies and justify the exclusion?	The explanation of the inclusion and exc criteria is evaluated. If there is only one out of the two, you so "partial yes". The two must be explained "yes".
8	Did the review authors describe the included studies in adequate detail?	"Populations" became "Populations and/ locations". "Interventions" became "Exposures". "Comparator groups" became "Compara groups (if applicable)". "Populations and/or locations", "Exposur "Outcomes" must be described in details score "yes"
9	Did the review authors use a satisfactory technique for assessing the risk of bias (RoB) in individual studies that were included in the review?	"RoB" became "limitations". Instead of as the RoB, the review authors must have u satisfactory technique for assessing the limitations in individual studies that were included in the review.

Appendix 2. Summary of AMSTAR-2 items and modified AMSTAR-2 items.

10	Did the review authors report on the sources	No modifications.
-	of funding for the studies included in the review?	
11	If meta-analysis was performed did the review authors use appropriate methods for statistical combination of results?	No modifications.
12	If meta-analysis was performed, did the review authors assess the potential impact of RoBin individual studies on the results of the meta-analysis or other evidence synthesis	No modifications.
13	Did the review authors account for RoB in individual studies when interpreting/discussing the results of the review?	"RoB" became "limitations". Instead of accounting for RoB in individual studies, the review authors must have accounted for limitations when interpreting/ discussing the results of the review.
14	Did the review authors provide a satisfactory explanation for, and discussion of, any heterogeneity observed in the results of the review?	No modifications.
15	If they performed quantitative synthesis did the review authors carry out an adequate investigation of publication bias (small study bias) and discuss its likely impact on the results of the review?	No modifications.
16	Did the review authors report any potential sources of conflict of interest, including any funding they received for conducting the review?	No modifications.

Appendix 3. Overview of included studies (N=94) according to study characteristics and summary of climate impacts on health outcomes. Studies are presented in alphabetical order according to the first author's last name.

	First Author	Year	Country	Years of includ ed public ations	Years of the studies include d in the reviews	# of artic les	Meta- analys is	Specific Area of focus	Specific Population of interest	Climate Impact	Health Outcome	Summary of findings
1	Alderman	2012	Australi a	2004- 2011	1931- 2007	35	No	4		Extreme weather	Infectious diseases Mortality Health systems Mental health Pregnancy and birth Other	Floods are associated with infectious diseases (water- and vector-borne diseases), mortality (e.g., drowning), exacerbation of chronic illnesses, mental health issues (e.g., PTSD), hospital admissions, pregnancy outcomes and injuries.
2	Amegah	2016	Ghana	1995- 2014	1960- 2010	23	No	Sub- sahara n Africa	Vie	Meteorolo gical	Infectious diseases Mortality Respiratory, cardiovascular, and neurological outcomes Health systems Nutritional Skin diseases and allergies	Temperature and temperature variability are suggested to be associated with infectious diseases, such as Ebola, cardiovascular diseases, mortality, cholera outbreaks, meningitis, undernutrition in children, respiratory outcomes, such as asthma, and skin diseases.
3	An	2018	United States	2002- 2017	2002- 2016	50	No			General	Nutritional	Climate change is associated with obesity. This association can be explained in 4 ways, such that climate change may impact obesity, obesity may impact climate change, both factors may be associated with common causes, or both factors may influence each other.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4 5 6	
6 7 8 9	
9 10 11	
12 13	
14 15	
16 17	
18 19 20	
21	
22 23 24 25	
25 26 27	
28	
30 31	
32 33	
29 30 31 32 33 34 35 36 37	
37 38	
39 40	
41 42 43	
43 44 45	
46 47	

4	Augustin	2008	Germa	1996-	NS	320	No	Germa		Meteorolo	Skin diseases	Although skin and allergic diseases
			ny	2006				ny		gical	and allergies	are climate sensitive, there is not
												sufficient evidence to suggest a
												prediction concerning skin and
												allergic diseases linked to climate
												change in Germany.
5	Babaie	2018	Iran	2007-	1970-	14	No	Iran		Meteorolo	Infectious	Temperature, precipitation and
				2017	2015					gical	diseases	humidity are associated with the ris
												of transmission of Malaria.
6	Bai	2013	China	1995-	1951-	57	No	China		Meteorolo	Infectious	Variability in temperature,
				2011	2010					gical	diseases	precipitation and wind are
												associated with the risk of
												transmission of mosquito-borne
												diseases.
7	Benevolen	2019	United	2006-	2005-	13	No		Vulnerable	Extreme	Mental health	Extreme weather events are
	za		States	2017	2015			6	population	weather	Pregnancy and	associated with an exacerbation of
								6	S		birth	pre-existing chronic health
											Other	conditions, mental health issues
												(e.g., PTSD, isolation) and adverse
												birth outcomes.
8	Berhane	2016	Ethiopi	NS	NS	23	No	Ethiopi		Meteorolo	Infectious	Meteorological factors and extreme
			а					а		gical	diseases	weather events are associated with
										Extreme	Nutritional	under- and mal- nutrition and the
										weather		increased risk of climate sensitive
											6	infectious diseases (e.g., malaria,
9	Bernhardt	2019	Germa	1997-	NS	464	No			Meteorolo	Infectious	diarrhea, zoonotic infections, etc.).
9	Bernharut	2019		2017	IN S	404	INO					Rising temperatures are predicted to be associated with myiasis in the
			ny	2017						gical	diseases	future.
10	Binazzi	2019	Italy	NS	1994-	8	Yes		Workers	Meteorolo	Occupational	High temperatures are positively
10	DIIIdZZI	2019	Italy	IND	2013	0	res		WORKERS	gical	health and	associated with occupational
					2013					gical	injuries	injuries.
11	Bonafede	2016	Italy	2000-	1985-	8	No		Workers	Meteorolo	Occupational	Extreme temperature (particularly
тт	buildleue	2010	italy	2000-2014	2010	°	NU		VVUI KEIS	gical	health and	heat) is associated with occupationa
				2014	2010					Bical	injuries	injuries.
		l									injunes	injunes.

12	Brown	2013	United Kingdo	2004- 2012	1975- 2012	38	No	Europe		Extreme weather	Infectious diseases	Floods are associated with infectious diseases, including water-, rodent-
			m									and vector-borne diseases (from weeks to months after flooding).
13	Bunker	2016	Germa ny	1995- 2015	1974- 2013	61	Yes		Elderly	Meteorolo gical	Mortality Respiratory, cardiovascular, and neurological outcomes Other	Higher and lower temperatures are associated with cardiovascular and respiratory morbidity and mortality. Heat is also associated with diabetes and genitourinary infections.
14	Campbell	2018	Australi a	1964- 2017	NS	188	No			Meteorolo gical	Mortality Health systems	Most studies exploring the heat impacts on health focus on mortality outcomes, followed by hospital admissions and ambulance call outs.
15	Cann	2013	United Kingdo m	1973- 2010	NS	83	No	r fr		Extreme weather	Infectious diseases	Extreme water-related events are associated with outbreaks of water-related infectious diseases.
16	Carolan- Olah	2014	Australi a	1997- 2012	1988- 2009	7	No	Ċ		Meteorolo gical	Pregnancy and birth	High temperatures are associated with preterm birth.
17	Cheng	2014	China	1990- 2013	1941- 2012	25	No		Adults, Elderly, Children	Meteorolo gical	Infectious diseases Mortality Respiratory, cardiovascular, and neurological outcomes Health systems Other	Diurnal temperature range is associated with mortality and cardiovascular and respiratory outcomes, hospital admissions, and Hand Foot Mouth disease in children and genitourinary outcomes among the elderly.
18	Coates	2019	Denma rk	2003- 2018	NS	72	No			Meteorolo gical	Infectious diseases	Some meteorological factors (temperature, humidity) are positively associated with Hand Foot Mouth disease (HFMD). Precipitation, wind speed and sunshine are not associated with HFMD.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4 5 6 7	
8 9 10 11 12 13 14	
15 16 17 18 19 20 21 22 23	
24 25 26 27 28 29	
30 31 32 33 34 35 36	
37 38 39 40 41 42 43	
44 45 46 47	

19	Cong	2017	China	1994- 2015	1982- 2013	26	Yes			Meteorolo gical	Respiratory, cardiovascular, and neurological	Temperature drop is associated with asthma.
20	Cunrui	2011	Australi	1997-	1961-	14	No			Meteorolo	outcomes Mortality	Higher temperature is associated
			а	2010	2100					gical		with heat-related mortality.
21	deSousa	2018	Brazil	1976- 2016	NS	106	No			Meteorolo gical	Infectious diseases Respiratory, cardiovascular, and neurological outcomes	Meteorological factors (e.g., temperature, precipitation) are associated with infectious diseases (e.g., dengue, malaria) and cardiovascular and respiratory outcomes.
22	Dhimal	2015	Nepal	1956- 2014	1948- 2098	50	No	Nepal		Meteorolo gical	Infectious diseases	Higher temperatures are associated with the distribution of vector-borned diseases.
23	Doocy	2013	United States	1975- 2011	1974- 2008	60	No	6		Extreme weather	Mortality Other	Cyclones are associated with mortality (e.g., drowning) and injuries.
24	Duan	2019	China	2010- 2018	2000- 2016	51	Yes	Southe ast and East Asia	0	Meteorolo gical	Infectious diseases	Some meteorological factors (mean maximum temperature, rainfall, humidity and sunshine) are positive associated with Hand Foot Mouth disease (HFMD), whereas air pressure is negatively associated with this disease and wind speed is not associated with HFMD.
25	Fan	2015	China	2004- 2013	1985- 2012	33	Yes			Meteorolo gical	Infectious diseases	Temperature is positively associated with transmission and incidence of Dengue.
26	Fernandez	2015	Australi a	1995- 2014	NS	83	No			Extreme weather	Mental health	Floods are associated with negative mental health outcomes (e.g., PTSD increased anxiety, depression, use of psychotropic medication). Conflictin evidence concerning suicide,

												tobacco, alcohol and substance abuse.
27	Flouris	2018	Greece	1954- 2018	NS	111	Yes		Workers	Meteorolo gical	Occupational health and injuries	High temperatures are positively associated with occupational heat strains, dehydration, kidney diseases and injuries.
28	Gao	2019	China	1994- 2018	1969- 2015	16	Yes			Meteorolo gical	Mental health	Temperature increase is associated with suicide. No association betwee sunlight duration and suicide.
29	Gao	2014	China	1996- 2012	1971- 2010	37	No		Children	Meteorolo gical	Infectious diseases Respiratory, cardiovascular, and neurological outcomes Skin diseases and allergies	Ambient humidity is associated with gastrointestinal, respiratory and allergic diseases in children.
30	Ghanizade h	2017	Iran	2009- 2016	1990- 2015	13	No	0	Vie	Meteorolo gical	Mortality Respiratory, cardiovascular, and neurological outcomes	Meteorological factors, such as temperature and humidity, are associated with cardiopulmonary health. Cold temperatures are also associated with mortality from hear diseases.
31	Ghazani	2018	Australi a	2006- 2017	1991- 2011	11	No			Meteorolo gical	Infectious diseases	Higher temperature is associated with bacterial gastrointestinal infections. Humidity and rainfall ma influence this association.
32	Gracia	2015	Swede n	2003- 2011	1959- 2008	9	No	Europe		Meteorolo gical	Infectious diseases	Temperature is positively associated with Human Puumala Hantavirus in some regions of Europe. Results concerning precipitation and humidity are contradictory or null.
33	Hajat	2010	United Kingdo m	1994- 2008	1973- 2003	11	No			Meteorolo gical	Mortality	Ambient heat is associated with mortality.

1 2 3 4 5 6 7	
8 9 10 11 12 13 14 15	<u>2</u> 3 4
16 17 18 19 20 21 22 23))
24 25 26 27 28 29	+ ; ; ; ; ;
30 31 32 33 34 35 36 37	<u>)</u> }
38 39 40 41 42 43	3)) <u>)</u>
44 45 46 47	5

34	Hedlund	2014	Swede n	1970- 2012	1750- 2009	29	No	Arctic, sub- Arctic	Vulnerable population s	Meteorolo gical Extreme weather	Infectious diseases	Higher temperatures and flooding are associated with food- and water- borne diseases. This association is weaker for vector- and rodent-borne diseases. Air temperature and
35	Hii	2016	Swede n	2007- 2015	2003- 2012	9	No	Malaysi a		Meteorolo gical	Infectious diseases	humidity seem to be associated with air-borne diseases. Some meteorological factors (temperature, rainfall and humidity) are associated with Dengue, although these associations are inconsistent at times.
36	Huang	2016	Taiwan	1990- 2014	1978- 2011	19	Yes			General	Skin diseases and allergies	Climate change, in general, may be associated with skin and soft-tissue infections.
37	Kampe	2016	United Kingdo m	1998- 2015	1971- 2010	13	No	High- income countri es		Meteorolo gical	Other	Higher temperature is associated with unintentional injuries.
38	Khader	2015	Jordan	2003- 2014	1991- 2012	78	No	Eastern Medite ranian	Vulnerable countries	Meteorolo gical Extreme weather Air quality	Infectious diseases Mortality Respiratory, cardiovascular, and neurological outcomes Health systems Mental health Pregnancy and birth Nutritional	High temperature is associated with mortality. Temperature, humidity and precipitation are associated with vector-, food- and water-borne diseases. Air pollution is associated with respiratory outcomes, although some findings are inconsistent. Higher temperature is associated with mental health outcomes and hospital admissions. Higher temperature may also be associated with adverse birth outcomes. Meteorological and extreme weathe events are associated with food insecurity.
39	Klinger	2014	United Kingdo m	2011- 2013	NS	20	No			Extreme weather	Health systems	Extreme weather events may lead to power outages which may pose challenges to healthcare quality.

40	Kuehn	2017	United States	2002- 2017	NS	28	No		Pregnant people	Meteorolo gical	Pregnancy and birth	Extreme heat exposure is associated with adverse birth outcomes (e.g. stillbirth, birth weight).
41	Lake	2017	United Kingdo m	NS	NS	66	No	Europe		General	Respiratory, cardiovascular, and neurological outcomes	Climate change may be associated with ragweed pollen allergy.
42	Lal	2019	Australi a	1982- 2011	NS	36	Yes		Children	Meteorolo gical	Infectious diseases	Rainfall is associated with childhood diarrhea, although this association differed according to season and latitude.
43	Lal	2015	Australi a	NS	NS	16	No	New Zealan d		Meteorolo gical	Infectious diseases	Temperature variability, higher temperature and rainfall are associated with enteric diseases.
44	Lawton	2019	Australi a	2000- 2015	NS	71	No	10		Meteorolo gical	Mortality Respiratory, cardiovascular, and neurological outcomes	Heat exposure is associated with heat stroke, long-term neurological outcomes (e.g., cerebellar injury) an heat-related mortality.
45	Levi	2018	Italy	2003- 2017	1977- 2014	184	No		Workers	Meteorolo gical	Occupational health and injuries	Heat exposure is associated with occupational injuries.
46	Levy	2016	United States	1972- 2013	1948- 2010	208	No			Meteorolo gical Extreme weather	Infectious diseases	Temperature is associated with bacterial diarrhea and drought is associated with all-cause diarrhea, although few studies explored the association between drought and diarrhea.
47	Leyva	2017	Asia	2009- 2017	NS	30	No		Elderly	Meteorolo gical Extreme weather Air quality	Infectious diseases Mortality Respiratory, cardiovascular, and	Meteorological factors, extreme weather events (e.g. typhoon, floods) and air pollution are associated with mortality and morbidity, especially cardiovascular and respiratory-specific. Higher temperature is associated with

											neurological outcomes Health systems Mental health	vector-borne diseases. Heat and cold temperatures are associated with hospital admissions. Flooding is associated with mental health outcomes (e.g. PTSD, depression).
48	Li	2018	China	1988- 2017	NS	81	No	China		Meteorolo gical Extreme weather	Infectious diseases	Meteorological factors (temperature, precipitation, humidity, air pressure) and extreme weather events (floods, typhoons) are associated with Dengue fever in China.
49	Lian	2015	China	2003- 2014	NS	20	Yes	4		Meteorolo gical	Mortality Respiratory, cardiovascular, and neurological outcomes	Higher and lower temperatures are associated with stroke-related mortality and low temperatures are also associated with stroke-related morbidities.
50	Liu	2015	United States	1990- 2014	NS	61	No		Vie.	Air quality	Mortality Respiratory, cardiovascular, and neurological outcomes Health systems Pregnancy and birth Other	Wildfire smoke exposure is associated with mortality, respiratory outcomes and hospital admissions. Wildfire smoke exposure could also be associated with cardiovascular, ophthalmic and pregnancy outcomes, although more research is needed.
51	Madaniyaz i	2015	Australi a	2004- 2013	1961- 2100	15	No			Air quality	Mortality	Air pollution is associated with future mortality.
52	Matysiak	2017	Puerto Rico	2001- 2005	NS	26	No	Puerto Rico (United -States)		Meteorolo gical Extreme weather	Infectious diseases	Meteorological factors (higher temperature and increased rainfall) are associated with vector-borne diseases, such as Dengue and Zika. Extreme weather events are less researched, but the few studies investigating this association suggest no association between hurricanes

												and floods and vector-borne diseases.
53	Moghada mnia	2017	Iran	2011- 2016	1979- 2013	26	Yes			Meteorolo gical	Mortality	Higher and lower temperature are associated with cardiovascular mortality.
54	Naish	2014	Australi a	NS	1931- 2010	16	No			Meteorolo gical	Infectious diseases	Meteorological factors (especially temperature, rainfall and humidity) are associated with Dengue.
55	Nichols	2009	United Kingdo m	1999- 2008	NS	36	No	10	Vi	Meteorolo gical Extreme weather Air quality	Infectious diseases Mortality Respiratory, cardiovascular, and neurological outcomes Mental health Nutritional Skin diseases and allergies Other	Meteorological factors (e.g., higher temperature) are associated with mortality and various infectious diseases. Increased UV exposure is associated with skin cancer and cataracts. Extreme weather events are associated with mortality, injur mental health outcomes, malnutrition, and food- and water- borne diseases. Air pollution is associated with cardio-respiratory outcomes.
56	Odame	2018	United States	2006- 2017	1893- 2013	14	Yes		Rural population s	Meteorolo gical	Mortality	Higher temperature is associated with all-cause mortality and cardiovascular specific mortality.
57	Park	2017	Korea	1920- 2015	1961- 2013	10	Yes			Meteorolo gical	Other	Higher temperature is associated with acute gouty arthritis.
58	Phalkey	2015	Germa ny	1989- 2012	1982- 2008	15	No	Low to middle- income countri es	Children	Meteorolo gical Extreme weather	Nutritional	Meteorological factors (rainfall, temperature) and extreme weather events are associated with childhoo undernutrition.
59	Philipsborn	2016	Georgi a	NS	1973- 2010	28	Yes			Meteorolo gical	Infectious diseases	Higher temperature is associated with Diarrheagenic Escherichia coli No significant relationship betweer rainfall and E. coli.
60	Phung	2015	Australi a	2004- 2013	NS	13	No	Southe ast Asia		Meteorolo gical	Infectious diseases	Meteorological factors (temperature humidity) and extreme weather

Page 5	3 of 65
--------	---------

										Extreme weather		events (flooding) are associated with vector- and water-borne infectious diseases.
61	Porpora	2019	Italy	1964- 2019	NS	78	No			Other	Pregnancy and birth	Environmental pollutants may be associated with preterm birth, however this association remains unclear due to conflicting evidence.
62	Poursafa	2015	Iran	2001- 2013	NS	15	No			Meteorolo gical	Pregnancy and birth	Meteorological factors (higher temperature, lower temperature, humidity, sunlight intensity) are associated with adverse birth outcomes (low birth weight, preterr birth, hypertension, eclampsia).
63	Racloz	2012	Australi a	NS	NS	63	No			Meteorolo gical	Infectious diseases	Higher temperature, increased precipitation and humidity are associated with Dengue.
64	Rataj	2016	Germa ny	1981- 2012	1978- 2008	17	No	Low to middle income countri es	Vi.	Extreme weather	Mental health Other	Extreme weather events are associated with mental health outcomes (e.g., PTSD, anxiety, depression) and injuries.
65	Reid	2016	United States	1990- 2015	NS	53	No		Susceptibl e population s	Air quality	Mortality Respiratory, cardiovascular, and neurological outcomes Mental health Pregnancy and birth	Wildfire smoke exposure is associated with respiratory outcomes (e.g., asthma) and mortality. Wildfire smoke exposure may be associated with cardiovascular, birth, and mental health outcomes, but more research is needed.
66	Rifkin	2018	United States	1995- 2017	1992- 2016	16	No			Meteorolo gical Extreme weather	Other	Temperature and extreme weather events (hurricanes) are associated with sleep quality.
67	Salve	2018	India	NS	NS	11	No	India		Meteorolo gical	Mortality Health systems Nutritional	Increase in temperature is associate with all-cause mortality, cause- specific mortality (e.g., myocardial

Page !	54 of	65
--------	-------	----

											infarctions, stroke, heart diseases), hospitalizations (e.g., heat-related admissions, neonatal intensive unit admissions), and food insecurity and malnutrition, via agricultural issues.
68	Sanderson	2017	United Kingdo m	1988- 2017	1900- 2101	63	No		Meteorolo gical	Mortality	Higher temperatures and heat waves are associated with mortality and heat-related mortality is likely to increase with increased temperatures.
69	Sawatzky	2018	Canada	2005- 2016	NS	85	No	Arctic and Subarct ic	General	Health systems	Climate change, in general, is associated with a strain in public health resources, via population health issues and surveillance systems may guide future adaptation to climate change.
70	Semenza	2012	Swede n	1998- 2009	1995- 2007	722	No	10	Meteorolo gical	Infectious diseases	Meteorological factors (temperature, rainfall) are associated with some food- and water-borne diseases.
71	Stanke	2013	United Kingdo m	1967- 2011	1876- 1879 and 1961- 2010	87	No	4	Extreme weather	Infectious diseases Mortality Respiratory, cardiovascular, and neurological outcomes Mental health Nutritional Other	Droughts are associated with malnutrition, mortality, infectious diseases, cardiovascular and respiratory outcomes, mental health (e.g., increased worry, anxiety), injuries, and cancer.
72	Stensgaard	2019	Denma rk	1995- 2017	NS	20	No		Meteorolo gical	Infectious diseases	Meteorological factors (temperature, precipitation, humidity) are associated with schistosomiasis and increasing temperatures are likely to affect the geographic range of this parasite.
73	Sun	2018	China	1999- 2017	1974- 2014	30(r evie	Yes		Meteorolo gical	Mortality	Heat and cold exposure are associated with myocardial

75

76

77

78

79

Swynghed

auw

Tall

Varghese

Veenema

Vilcins

Vins

2014

2018

2017

2018

2015

Australi

а

Australi

а

United

States

Australi

а

United

States

1946-

2009

1983-

2017

2006-

2016

NS

1995-

2005

1886-

2006

1922-

2017

NS

NS

NS

22

26

47

72

82

No

No

No

No

No

Australi

а

Workers

Children

Extreme

weather

Meteorolo

gical

Extreme

weather

Other

Extreme

weather

Infectious

Occupational

health and

Infectious

Mortality

Nutritional

Mental health

Mental health

diseases

injuries

diseases

						BMJ Open			
				w)2 3m eta- anal ysis				Respiratory, cardiovascular, and neurological outcomes Health systems	infarctions (MI) and hospitalization for MI. Heat exposure is associated with MI-specific mortality.
2009	France	NS	NS	NS	No		Meteorolo gical Extreme weather	Infectious diseases Mortality Skin diseases and allergies Other	Heat and cold exposure are associated with mortality and more specifically, respiratory- and cardiovascular-specific mortality. Exposure to UV is associated with skin cancer and cataracts. Higher temperatures are associated with infectious diseases (mosquito- and food-borne diseases) and extreme weather events are associated with

undernutrition and food-borne

There is no strong evidence for the

association between flooding and

injuries in many contexts of work

Extreme water-related weather

mortality, water- and vector-borne

infectious diseases, mental health issues (e.g., PTSD, depression,

Certain environmental risk factors (e.g., sanitation, cooking fuels),

climate change, may be associated

Drought is likely associated with

adverse mental health outcomes.

which could be aggravated by

with childhood stunting.

(e.g., agriculture, transport,

events are associated with

Heat is associated with occupational

the Ross River Virus.

construction, fishing).

diseases.

anxiety).

80	Waits	2018	Finland	1970-	NS	43	No	Arctic		Meteorolo	Infectious	Meteorological factors (especially
				2017						gical	diseases	higher temperature and
										8.001		precipitation) are associated with
												infectious diseases (e.g. tick borne
												diseases, tularemia) in the Arctic.
81	Wald	2019	United	2009-	NS	17	No	United		Meteorolo	Health systems	Higher temperature is associated
			States	2018				States		gical		with emergency department (heat-
										0		related visits) visits and costs for
												healthcare systems.
82	Welch	2019	United	NS	NS	91	No			Meteorolo	Infectious	Meteorological factors (temperature,
_			States			_	_			gical	diseases	precipitation) are associated with
										0		Salmonella.
83	Wimalawa	2016	United	NS	NS	NS	No	Tropica	Workers	Meteorolo	Occupational	Increasing temperatures and
	nsa		States					İ		gical	health and	environmental pollution (e.g., heavy
								Countri		Other	injuries	metals, fertilizers) are associated
								🖲 es				with occupational health outcomes,
												such as chronic kidney disease of
							· · · ·					multifactorial origin.
84	Witt	2015	Germa	NS	NS	33	Yes		Chronic	Meteorolo	Mortality	Heat is associated with lung disease
			ny						lung	gical	Respiratory,	outcomes and mortality in patients
									disease		cardiovascular,	with chronic lung diseases.
									patients		and	
											neurological	
											outcomes	
85	Xu	2018	Australi	2004-	1978-	19	No		Children	Meteorolo	Respiratory,	Heat and cold temperatures are
			а	2016	2013					gical	cardiovascular,	associated with childhood asthma.
											and	
											neurological	
											outcomes	
86	Xu	2012	Australi	2000-	1983-	33	No		Children	Meteorolo	Infectious	Heat and cold are associated with
			а	2012	2010					gical	diseases	hospital admissions and mortality in
											Mortality	children. Temperature is also
											Respiratory,	associated with various infectious
											cardiovascular,	diseases (e.g., HFMD, malaria),
											and	respiratory diseases (e.g., asthma)
											neurological	and skin outcomes (e.g, eczema). For
											outcomes	example, high temperature is
											Health systems	associated with Hand Foot Mouth

Page 57	of 65
---------	-------

											Skin diseases and allergies Other	Disease and renal diseases and low temperature is associated with eczema.
87	Xu	2016	Australi a	2001- 2015	NS	60	Yes			Meteorolo gical	Mortality	Heat waves are associated with mortality and it seems that the intensity of heatwaves is particularly important compared to length of heatwave.
88	Xu	2014	Australi a	1998- 2012	1983- 2009		No		Children	Meteorolo gical	Mortality Respiratory, cardiovascular, and neurological outcomes Health systems Other	Heat waves are associated with hospital admissions, respiratory diseases, renal diseases, fever and electrolyte imbalances. Evidence concerning the association between heatwaves and children mortality is inconsistent.
89	Youssouf	2014	France	1990- 2011	1987- 2008	94	No	16	L'e	Air quality	Mortality Respiratory, cardiovascular, and neurological outcomes Health systems Pregnancy and birth	Wildfire smoke exposure is associated with mortality, respiratory and cardiovascular outcomes, hospital admissions. Wildfire smoke exposure may also be associated with adverse birth outcomes (low birth weight).
90	Yu	2015	Australi a	1998- 2012	1961- 1990 et 2020- 2100	20	No			Meteorolo gical	Infectious diseases	Meteorological factors (temperature rainfall, humidity) may be associated with future malaria transmission, although findings are inconsistent, partly according to geographical focus.
91	Yu	2012	Australi a	1997- 2008	1973- 2006	15	Yes		Elderly	Meteorolo gical	Mortality	Heat and cold temperatures are associated with mortality for the elderly, although heat-related associations seem stronger than cold-related associations.

92	Zhang	2007	Australi a	NS	NS	NS	No		People with disabilities	General	Other	Climate change, in general, may be associated with disability-adjusted life years (DALY), and the cost of DALY could be particularly important in low to middle income countries.
93	Zhang	2017	China	1997- 2016	1981- 2012	36	No		Pregnant people	Meteorolo gical	Pregnancy and birth	High temperature is associated with adverse birth outcomes, such as preterm birth, low birth weight and stillbirth. Low temperature is also associated with some adverse birth outcomes, including preterm birth and low birth, although the evidence is stronger for high temperature than for low temperatures.
94	Zuo	2015	Australi a	NS	NS	173	No	-1-6	Vie	Meteorolo gical	Mortality Respiratory, cardiovascular, and neurological outcomes Health systems Mental health Skin diseases and allergies Other	Heat waves are associated with mortality, hospital admissions, sunburn, heat exhaustion, cardiovascular outcomes (e.g., heart attacks) and mental health outcomes.
*N	IS = non-spec	ified									NJ.	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 59 of 65

BMJ Open

1
2
2
4
5
5 6
0
8
8 9
9 10
11 12
13
14
15
16
17
18
19
20
20
21 22
23
24
25
26
27
28
20 29
30
31
32
33
34 35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
55 54
55
56
57
58
59
60

Appendix 4. Summary of quality assessment according to revised AMSTAR-2 items. (Y = yes,	,
PY = partial yes, N = no, NA = non-applicable).	

								A	MST	AR-2	Item	S						
First author	Year	1	1b	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Alderman	2012	Υ	Ν	Ν	ΡY	PY	Ν	Ν	ΡY	ΡY	Ν	Ν	NA	NA	Υ	Ν	NA	Ν
Amegah	2016	Y	Ν	Ν	Υ	PY	Ν	Ν	ΡY	Υ	Y	Ν	NA	NA	Y	Y	NA	Y
An	2018	Ν	Y	Ν	Ν	PY	Y	Ν	Y	Ν	Y	Ν	NA	NA	Y	Ν	NA	Y
Augustin	2008	Y	Y	N	Ν	PY	Ν	Ν	PY	Ν	PY	Ν	NA	NA	Y	Ν	NA	Y
Babaie	2018	Y	Υ	N	Ν	PY	Y	Ν	Y	PY	Ν	Ν	NA	NA	Ν	Ν	NA	Ν
Bai	2013	Y	Υ	Ν	PY	PY	Ν	Ν	PY	PY	Y	Ν	NA	NA	Y	Ν	NA	Y
Benevolenza	2019	Y	Υ	Ν	PY	Ν	Ν	Ν	Y	ΡY	PY	Ν	NA	NA	Y	Ν	NA	Ν
Berhane	2016	Y	Ν	Y	N	Ν	Ν	Ν	Ν	ΡY	PY	Ν	NA	NA	Y	Ν	NA	Ν
Bernhardt	2019	Y	Ν	Ν	Ν	Ν	Ν	Ν	ΡY	ΡY	PY	Ν	NA	NA	PY	Ν	NA	Y
Binazzi	2019	Y	Y	Ν	Y	PY	Y	Ν	Y	Υ	Y	Ν	Y	Y	Y	Y	Y	Y
Bonafede	2016	Y	Ν	Ν	PY	PY	Υ	N	Y	Υ	Y	Ν	NA	NA	Y	Y	NA	Y
Brown	2013	Y	Y	Ν	PY	PY	Ν	Ν	Y	Y	PY	Ν	NA	NA	Y	Y	NA	Y
Bunker	2016	Y	Y	Ν	Y	N	Y	PY	Y	Y	PY	Ν	Y	Y	Y	Y	Y	Y
Campbell	2018	Y	N	Ν	Ν	PY	Ν	N	Y	ΡY	Ν	N	NA	NA	Y	PY	NA	Y
Cann	2013	Y	Y	Y	PY	PY	Ν	Ν	Y	PY	PY	Ν	NA	NA	Y	Y	NA	Y
Carolan-Olah	2014	Y	Y	Ν	Ν	PY	Ν	Ν	Y	PY	Υ	N	NA	NA	PY	PY	NA	Ν
Cheng	2014	Y	N	Ν	PY	PY	Ν	N	Y	Y	Y	N	NA	NA	Y	PY	NA	Ν
Coates	2019	Ν	Ν	Ν	Ν	N	Ν	Ν	ΡY	PY	Y	Ν	NA	NA	Y	PY	NA	Ν
Cong	2017	N	Y	Ν	Ν	PY	Ν	Y	Y	Y	Y	N	Y	Ν	Y	Y	Y	Y
Cunrui	2011	Y	N	Ν	PY	PY	Ν	N	Y	PY	Ν	N	NA	NA	Y	Ν	NA	Y
deSousa	2018	Y	N	Ν	PY	PY	Ν	Ν	Y	Ν	Ν	N	NA	NA	Y	Ν	NA	Y
Dhimal	2015	Y	Y	Ν	PY	PY	Ν	Ν	Y	Y	Ν	Ν	NA	NA	Ν	Ν	NA	Ν
Doocy	2013	Y	Ν	Ν	Ν	PY	Y	Ν	Y	Y	Ν	Ν	NA	NA	Y	PY	NA	Y
Duan	2019	Y	Ν	Ν	Ν	PY	Ν	Ν	Y	PY	Y	Ν	Y	Y	Y	Y	Y	Y
Fan	2015	N	Y	Ν	N	PY	Y	Y	ΡY	PY	Y	N	Y	Y	Y	Y	Y	Y
Fernandez	2015	Y	Y	Ν	PY	PY	Y	N	Y	PY	PY	N	NA	NA	Y	N	NA	N
Flouris	2018	Y	N	Y	PY	PY	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

	Gao	2019	Ν	Y	Ν	PY	PY	Y	Ν	Y	Y	Y	Ν	Y	Y	Y	Υ	Y
	Gao	2014	Υ	Ν	Ν	ΡY	PY	Ν	PY	Y	Y	Y	Ν	NA	NA	Y	Y	NA
	Ghanizadeh	2017	Ν	Y	Ν	PY	Ν	Y	PY	Y	PY	Y	Ν	NA	NA	Ν	Ν	NA
	Ghazani	2018	Ν	Ν	Ν	Ν	PY	Y	Ν	Y	Y	PY	Ν	NA	NA	Y	ΡY	NA
	Gracia	2015	Y	Y	Ν	PY	PY	Y	N	Y	PY	Y	Ν	NA	NA	Y	Ν	NA
	Hajat	2010	Y	Ν	Ν	Y	PY	Ν	N	Y	PY	N	Ν	NA	NA	Ν	ΡY	NA
	Hedlund	2014	Y	Ν	Ν	PY	Ν	Y	Y	Y	PY	Y	Ν	NA	NA	Y	Ν	NA
	Hii	2016	Y	Ν	N	PY	PY	Ν	N	PY	PY	N	Ν	NA	NA	Ν	Ν	NA
	Huang	2016	N	N	N	N	PY	Y	N	PY	Y	Y	Ν	Y	Y	Y	ΡY	Ν
	Kampe	2016	Y	N	N	PY	PY	Y	N	Y	Y	PY	Ν	NA	NA	Y	Ν	NA
	Khader	2015	Y	N	N	PY	PY	Y	N	Y	Y	N	Ν	NA	NA	Y	ΡY	NA
	Klinger	2014	N	N	Ν	N	PY	Y	N	Y	N	Y	N	NA	NA	Y	N	NA
-	Kuehn	2017	Y	N	N	N	PY	N	N	Y	Y	PY	N	NA	NA	Y	N	NA
-	Lake	2017	Y	Y	N	N	PY	Y	Y	PY	PY	N	N	NA	NA	N	N	NA
	Lal	2019	Y	N	Y	N	PY	N	Y	Y	PY	Y	N	Y	Y	Y	Y	N
	Lal	2015	Y	Y	N	N	PY	N	N	Y	PY	PY	N	NA	NA	Y	PY	NA
	Lawton	2019	Y	N	N	PY	PY	N	N	Y	Y	 N	N	NA	NA	Y	 N	NA
	Levi	2018	Y	Y	N	PY	PY	Y	N	Y	Y	N	N	NA	NA	Y	PY	NA
-	Levy	2010	N	۰ N	N	PY	PY	Y	PY	Y	Y	Y	N	NA	NA	Y	Y	NA
	Leyva	2010	Y	Y	N	PY	PY	۱ N	N	۲ ۲	N	Y	N	NA	NA	۲ ۲	N	NA
	Leyva		r Y				PY			n N	PY						N	
	Lian	2018		N	N	N		N	N			N	N	NA	NA	N		NA
		2015	Y	N	N	PY	PY	Y	Y	Y	N	Y	N	Y	Y	Y	Y	Y
	Liu	2015	Y	Y	N	Y	PY	N	N	Y	Y	PY	N	NA	NA	Y	PY	NA
	Madaniyazi	2015	N	N	N	PY	PY	N	N	Y	PY	N	N	NA	NA	Y	N	NA
-	Matysiak	2017	Y	Y	N	PY	PY	Ν	N	Y	PY	Y	Ν	NA	NA	Y	Ν	NA
M	loghadamnia	2017	Y	N	N	PY	PY	Y	N	Y	Y	Y	Ν	Y	N	Y	Y	Ν
	Naish	2014	Y	Y	Ν	PY	PY	Ν	N	PY	PY	PY	Ν	NA	NA	Y	Ν	NA
	Nichols	2009	Y	Ν	Ν	PY	PY	Y	Y	Y	Y	N	Ν	NA	NA	Ν	Ν	NA
	Odame	2018	Y	Ν	Ν	PY	PY	Ν	Ν	PY	PY	Ν	Ν	Y	Ν	Y	Y	Y
	Park	2017	Y	Ν	Ν	Ν	PY	Y	Y	Ν	PY	Y	Ν	Y	PY	Y	Y	Ν
	Phalkey	2015	Y	Y	Ν	PY	ΡY	Y	Υ	Y	ΡY	ΡY	Ν	NA	NA	Y	Ν	NA

BMJ Open

Philips	oorn	2016	Y	Y	Ν	ΡY	Ν	Ν	Ν	Υ	ΡY	Ν	Ν	Υ	Υ	Ν	Y	Ν
Pł	nung	2015	Y	Y	Ν	N	PY	Ν	Ν	Y	Y	PY	Y	NA	NA	Ν	N	N
Por	oora	2019	Y	Y	Y	PY	PY	N	Ν	Y	PY	N	Ν	NA	NA	Ν	Y	Ν
Pour	safa	2015	Y	N	N	PY	PY	Y	Y	PY	Y	PY	Ν	NA	NA	Y	Y	N
Ra	cloz	2012	Y	Ν	Ν	N	PY	N	Ν	N	PY	N	Ν	NA	NA	Y	Y	N
F	Rataj	2016	Y	Y	Y	PY	PY	Y	Y	PY	PY	Y	Ν	NA	NA	Y	Y	N
	Reid	2016	Y	Ν	Ν	PY	PY	Ν	Ν	Ν	PY	PY	Ν	NA	NA	Y	PY	N
F	ifkin	2018	Y	Y	Y	PY	PY	Y	Y	Y	PY	Ν	Ν	NA	NA	Y	Ν	N
S	alve	2018	Y	Y	Ν	N	PY	Y	Y	PY	PY	N	Ν	NA	NA	Y	Ν	Ν
Sande	rson	2017	Y	Y	N	N	PY	Y	Ν	Y	PY	PY	Ν	NA	NA	Y	Ν	Ν
Sawa	tzky	2018	Y	Y	Ν	Ν	PY	Y	Ν	Y	Ν	N	Ν	NA	NA	Ν	Ν	Ν
Seme	enza	2012	Ν	Ν	Ν	N	N	N	Ν	N	Ν	Y	Ν	NA	NA	Ν	Ν	Ν
Sta	anke	2013	Y	Ν	Ν	PY	PY	Ν	Ν	Y	PY	Ν	Ν	NA	NA	Y	Ν	Ν
Stensg	aard	2019	Y	Y	Ν	Ν	PY	N	Y	Ν	PY	Ν	Ν	NA	NA	Ν	Ν	Ν
	Sun	2018	Y	Y	Ν	PY	PY	Ν	Y	Y	Υ	Y	Ν	Y	Y	Y	Y	`
Swynghed	auw	2009	Y	Y	Ν	Ν	Ν	N	Ν	N	Ν	Ν	Ν	NA	NA	Ν	Ν	N
	Tall	2014	Y	Ν	Ν	Ν	PY	Ν	Ν	Υ	Y	PY	Ν	NA	NA	Υ	Ν	Ν
Vargl	nese	2018	Y	Ν	Ν	Ν	PY	Ν	Ν	Y	Y	Ν	Ν	NA	NA	Y	Ν	Ν
Veen	ema	2017	Y	Ν	Υ	Ν	PY	Ν	Ν	Y	Ν	PY	Ν	NA	NA	Ν	Ν	Ν
Vi	cins	2018	Y	Ν	Y	Ν	PY	Ν	Ν	Y	Ν	Υ	Ν	NA	NA	Y	Ν	Ν
	Vins	2015	Y	Y	Ν	Ν	PY	Ν	Ν	Y	Ν	Ν	Ν	NA	NA	Y	PY	Ν
V	/aits	2018	Y	Y	Ν	Ν	PY	Ν	Ζ	Y	Ν	N	Z	NA	NA	Ζ	Ν	Ζ
١	Vald	2019	Y	Ν	Ν	Ν	PY	Ν	Ζ	Y	Υ	Ν	Z	NA	NA	Y	Ν	Ζ
W	elch	2019	Y	Y	Ν	Ν	Ν	Ν	Ν	PY	PY	Ν	Z	NA	NA	Ν	Ν	Ν
Wimalawa	ansa	2016	Υ	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	NA	NA	Ν	Ν	Ν
	Witt	2015	Y	Ν	Ν	Ν	PY	Ν	Ν	Y	Ν	Ν	Ν	Ν	Y	Υ	Ν	١
	Xu	2018	Y	Ν	Ν	PY	PY	Ν	Ν	PY	ΡY	Ν	Ν	NA	NA	Υ	Ν	Ν
	Xu	2012	Y	Ν	Ν	PY	PY	Ν	Ζ	PY	Υ	PY	Ν	NA	NA	Ζ	Ν	~
	Xu	2016	Y	Ν	Ν	PY	PY	Ν	Ν	Y	Υ	Ν	Ν	Y	Ν	Υ	Y	1
	Xu	2014	Y	Y	Ν	Ν	PY	Ν	Ν	Y	Y	Ν	Ν	NA	NA	Ν	Y	Ν
Yous	souf	2014	Y	Y	Ν	PY	PY	Ν	Ν	Y	Υ	Ν	Ν	NA	NA	Υ	Ν	Ν

59 60

Yu	2015	Ν	Ν	Ν	PY	PY	Ν	Ν	Y	Y	Ν	Ν	NA	NA	Y	PY	NA	Y
Yu	2012	Y	Y	Ν	ΡY	Ν	Ν	Y	Y	Y	Ν	Ν	Y	Ν	Y	Y	Y	Υ
Zhang	2007	Y	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	NA	NA	Y	Ν	NA	Ν
Zhang	2017	Y	Υ	Ν	ΡY	ΡY	Ν	Ν	ΡY	Y	Υ	Ν	NA	NA	Y	Y	NA	Y
Zuo	2015	Y	Y	Ν	Ν	ΡY	Ν	Ν	Ν	Ν	Ν	Ν	NA	NA	Ν	Ν	NA	Υ
TOTAL	Yes	81	44	9	5	0	32	17	64	36	31	2	17	12	70	28	11	78
	Partial Yes	0	0	0	47	80	0	4	19	41	22	0	0	1	2	15	0	0
	No	13	50	85	42	14	62	73	11	17	41	92	1	5	22	51	7	16
	Not- Applic able	0	0	0	0	0	0	0	0	0	0	0	76	76	0	0	76	0

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Appendix 5. Summary table of publications according to climate impact and health outcome according to frequencies and references. References with a * explore only this specific combination of climate impact and health outcome and therefore appear only once in this table. Number of studies and references (according to alphabetical order) for each combination of categories are presented in the cells. Empty cells in this Table indicate an absence of studies at this combination of categories.

		Climate Impact			
Health Outcome	Meteorological (71)	Extreme weather (24)	Air quality (7)	General (5)	Other (3)
Infectious diseases (41)	35 Amegah, Babaie*, Bai*, Berhane, Bernhardt*, Cheng, Coates*, de Sousa, Dhimal*, Duan*, Fan*, Gao 2014, Ghazani*, Gracia*, Hedlund, Hii*, Khader, Lal 2015*, Lal 2019*, Levy, Leyva, Li, Matysiak, Naish*, Nichols, Philipsborn*, Phung, Racloz*, Semenza*, Stensgaard, Swynghedau, Waits*, Welch*, Xu 2012, Yu 2015*	14 Alderman, Berhane, Brown*, Cann*, Hedlund, Levy, Li, Matysiak, Nichols, Phung, Stanke, Swynghedau, Tall*, Veenema			
Mortality (32)	24 Amegah, Bunker, Campbell, Cheng, Cunrui*, Ghanizadeh, Hajat*, Khader, Lawton, Leyva, Lian, Moghdamnia*, Nichols, Odame*, Salve, Sanderson*, Sun, Swynghedauw, Witt, Xu 2012, Xu 2014, Xu 2016*, Yu 2012*, Zuo	5 Alderman, Doocy, Leyva, Stanke, Veenema	5 Leyva, Liu, Madniyazi*, Reid, Youssouf		
Respiratory, cardiovascular, and neurological (23)	17 Amegah, Bunker, Cheng, Cong*, de Sousa, Gao 2014, Ghanizadeh, Lawton, Leyva, Lian, Nichols, Sun, Witt, Xu 2012, Xu 2014, Xu 2018*, Zuo	1 Stanke	6 Khader, Leyva, Liu, Nichols, Reid, Youssouf	1 Lake*	

Health systems (16)	11 Amegah, Campbell, Cheng, Khader, Leyva, Salve, Sun, Wald*, Xu 2012, Xu 2014, Zuo	2 Alderman, Klinger*	2 Liu, Youssouf	1 Sawatzky*	
Mental Health (13)	3 Gao 2019*, Khader, Zuo	9 Alderman, Benevolenza, Fernandez*, Leyva, Nichols, Rataj, Stanke, Veenema, Vins*	1 Reid		
Pregnancy and birth outcomes (11)	5 Carolan-Olah*, Kuehn*, Poursafa*, Khader, Zhang 2017*	2 Alderman, Benevolenza	3 Liu, Reid, Youssouf		1 Porpora*
Nutritional (9)	4 Amegah, Khader, Phalkey, Salve	6 Berhane, Khader, Nichols, Phalkey, Stanke, Swynghedauw		1 An*	1 Vilcins*
Skin diseases and allergies (8)	7 Amegah, Augustin*, Nichols, Gao 2014, Swynghedauw, Xu 2012, Zuo	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.	1 Huang*	
Occupational health and injuries (6)	6 Binazzi*, Bonafede*, Flouris*, Levi*, Varghese*, Wimalawans				1 Wimalawans
Other (17)	10 Bunker, Cheng, Kampe*, Nichols, Park*, Rifkin, Swynghedauw, Xu 2012, Xu 2014, Zuo	6 Alderman, Benevolenza, Doocy, Rataj, Rifkin, Stanke	1 Liu	1 Zhang 2007*	

PRISMA 2009 Checklist

4 5 6	Section/topic	#	Checklist item	Reported on page #
7	TITLE			
8 9	Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
10	ABSTRACT			
12 12 13 14	Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	1
15	INTRODUCTION			
17	Rationale	3	Describe the rationale for the review in the context of what is already known.	2
18	Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	2
20 21	METHODS			
22 23	Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	3
24 25 26	Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	3
27 28	3	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	3
29 30 31	Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	31
32 33	Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	3,4
34 35 36	Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	4
37	Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	4
39 40	Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	5
42	Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	4
43 44 45	Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	4,5

Page 1 of 2

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	5, 53-56
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	NA
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	6
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	6-8
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	8
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	38-52
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	11-17
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	8,53-56
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	NA
DISCUSSION	•	·	
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	17-18
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	19
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	19
FUNDING	<u>.</u>		
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	21

41 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. 42 doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.

Page 2 of 2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open

The Health Effects of Climate Change: An Overview of Systematic Reviews

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-046333.R2
Article Type:	Original research
Date Submitted by the Author:	22-May-2021
Complete List of Authors:	Rocque, Rhea; The University of Winnipeg, Prairie Climate Centre Beaudoin, Caroline; Université Laval, Faculty of Medicine Ndjaboue, Ruth; Université Laval, Faculty of Medicine; VITAM Research Centre for Sustainable Health Cameron, Laura; The University of Winnipeg, Prairie Climate Centre Poirier-Bergeron, Louann; Université Laval, Faculty of Medicine Poulin-Rheault, Rose-Alice; Université Laval, Faculty of Medicine Fallon, Catherine; Université Laval, Faculty of Medicine; CHUQ Research Centre Tricco, Andrea; Li Ka Shing Knowledge Institute, ; University of Toronto, Dalla Lana School of Public Health Witteman, Holly; Laval University, Faculty of Medicine; VITAM Research Centre for Sustainable Health
Primary Subject Heading :	Public health
Secondary Subject Heading:	Public health, Global health
Keywords:	PUBLIC HEALTH, SOCIAL MEDICINE, Public health < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2		The Legith Effects of Climete Changes
4	1	The Health Effects of Climate Change:
5	2	An Overview of Systematic Reviews
6 7	3	Rhéa Rocque, PhD ¹ , Caroline Beaudoin, DEC ² , Ruth Ndjaboue, MPH, PhD ^{2,3} , Laura Cameron,
8	4	MA ¹ , Louann Poirier Bergeron, DES ² , Rose-Alice Poulin-Rheault, DEC ² , Catherine S. Fallon,
9	5	MSc ^{2,4} , Andrea C. Tricco, PhD ^{5,6} , Holly O. Witteman, PhD ^{2,3,4}
10	6	······································
11	7	¹ Prairie Climate Centre, University of Winnipeg, Winnipeg
12 13	8	² Faculty of Medicine, Laval University, Quebec City
14	9	³ VITAM Research Centre for Sustainable Health, Quebec City
15	10	⁴ Research Centre of the CHU de Québec-Laval University, Quebec City
16	11	⁵ Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto
17	12	⁶ Dalla Lana School of Public Health, University of Toronto, Toronto
18 19	13	
20	14	Corresponding author:
21	15	Rhéa Rocque - rhea.rocque@gmail.com
22	16	Prairie Climate Centre
23	17	University of Winnipeg
24 25	18	515 Portage Avenue
26	19	Winnipeg, Manitoba, Canada R3B 2E9
27	20	
28	20	Phone number: 1.204.786.7811
29	22	Fax number: 1.204.783.4996
30 31	22	
32		
33	23	Abstract
34	24	Objectives: We aimed to develop a systematic synthesis of systematic reviews of health impacts
35 36	25	of climate change, by synthesizing studies' characteristics, climate impacts, health outcomes,
37	26	and key findings.
38	20	
39	27	Design: We conducted an overview of systematic reviews of health impacts of climate change.
40	28	We registered our review in PROSPERO (CRD42019145972). No ethical approval was required
41 42	29	since we used secondary data. Additional data is not available.
42		
44	30	Data Sources: On June 22, 2019, we searched Medline, CINAHL, Embase, Cochrane, and Web
45	31	of Science.
46		
47 48	32	Eligibility Criteria: We included systematic reviews that explored at least one health impact of
40 49	33	climate change.
50		
51	34	Data Extraction and Synthesis: We organized systematic reviews according to their key
52	35	characteristics, including geographical regions, year of publication and authors' affiliations. We
53 54	36	mapped the climate effects and health outcomes being studied and synthesized major findings.
55	37	We used a modified version of AMSTAR-2 to assess the quality of studies.
56		
57		
58		
		1 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
33 34	
34 35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54	

38 Results: We included ninety-four systematic reviews. Most were published after 2015 and

39 approximately one fifth contained meta-analyses. Reviews synthesized evidence about five

- 40 categories of climate impacts; the two most common were meteorological and extreme weather
- 41 events. Reviews covered ten health outcome categories; the three most common were 1)
- 42 infectious diseases, 2) mortality, and 3) respiratory, cardiovascular, or neurological outcomes.
 43 Most reviews suggested a deleterious impact of climate change on multiple adverse health
- 44 outcomes, although the majority also called for more research.

45 Conclusions: Most systematic reviews suggest that climate change is associated with worse 46 human health. This study provides a comprehensive higher-order summary of research on 47 health impacts of climate change. Study limitations include possible missed relevant reviews, no 48 meta-meta-analyses, and no assessment of overlap. Future research could explore the potential 49 explanations between these associations to propose adaptation and mitigation strategies and 50 could include broader socio-psychological health impacts of climate change.

51 Keywords

Health; Climate Change; Overview of Systematic Reviews; Extreme Weather Events; Air
 Quality; Global Warming

53 Quality; 54

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

55

60

55 Strengths and limitations of this study

- A strength of this study is that it provides the first broad overview of previous systematic reviews exploring the health impacts of climate change. By targeting systematic reviews, we achieve a higher-order summary of findings than what would have been possible by consulting individual original studies.
- By synthesizing findings across all included studies and according to the combination of climate impact and health outcome, we offer a clear, detailed, and unique summary of the current state of evidence and knowledge gaps about how climate change may influence human health.
 - A limitation of this study is that we were unable to access some full texts and therefore some studies were excluded, even though we deemed them potentially relevant after title and abstract inspection.
- Another limitation is that we could not conduct meta-meta-analyses of findings across reviews, due to the heterogeneity of the included systematic reviews and the relatively small proportion of studies reporting meta-analytic findings.
- Finally, the date of the systematic search is a limitation, as we conducted the search in June 2019.

72 Introduction

The environmental consequences of climate change such as sea-level rise, increasing
 temperatures, more extreme weather events, increased droughts, flooding, and wildfires are

BMJ Open

impacting human health and lives.^{1,2} Previous studies and reviews have documented the multiple health impacts of climate change, including an increase in infectious diseases, respiratory disorders, heat-related morbidity and mortality, undernutrition due to food insecurity, and adverse health outcomes ensuing from increased socio-political tension and conflicts.^{2–5} Indeed, the most recent Lancet Countdown report,² which investigates 43 indicators of the relationship between climate change and human health, arrived at their most worrisome findings since the beginning of their on-going annual work. This report underlines that the health impacts of climate change continue to worsen and are being felt on every continent, although they are having a disproportionate and unequal impact on populations.² Authors caution that these health impacts will continue to worsen unless we see an immediate international response to limiting climate change.

To guide future research and action to mitigate and adapt to the health impacts of climate change and its environmental consequences, we need a complete and thorough overview of the research already conducted regarding the health impacts of climate change. Although the number of original studies researching the health impacts of climate change has greatly increased in the recent decade,² these do not allow for an in-depth overview of the current literature on the topic. Systematic reviews, on the other hand, allow a higher-order overview of the literature. Although previous systematic reviews have been conducted on the health impacts of climate change, these tend to focus on specific climate effects (e.g., impact of wildfires on health),^{6,7} health impacts (e.g., occupational health outcomes),^{8,9} countries,^{10–12} or are no longer up to date.^{13,14} thus limiting our global understanding of what is currently known about the multiple health impacts of climate change across the world.

In this study, we aimed to develop such a complete overview by synthesizing systematic reviews of health impacts of climate change. This higher-order overview of the literature will allow us to better prepare for the worsening health impacts of climate change, by identifying and describing the diversity and range of health impacts studied, as well as by identifying gaps in previous research. Our research objectives were to synthesize studies' characteristics such as geographical regions, years of publication, and authors' affiliations, to map the climate impacts, health outcomes, and combinations of these that have been studied, and to synthesize key findings.

44 107 **Methods**

We applied the Cochrane method for overviews of reviews.¹⁵ This method is designed to
 systematically map the themes of studies on a topic and synthesize findings to achieve a
 broader overview of the available literature on the topic.

51 111 Research questions

⁵²
⁵³ 112 Our research questions were the following: 1) What is known about the relationship between
⁵⁴ 113 climate change and health, as shown in previous systematic reviews? 2) What are the
⁵⁵ 114 characteristics of these studies? We registered our plan (CRD42019145972¹⁶) in PROSPERO,

BMJ Open

1		
2 3	445	
4	115	an international prospective register of systematic reviews and followed PRISMA 2020 ¹⁷ to
5	116	report our findings, as a reporting guideline for overviews is still in development. ¹⁸
6		
7 8	117	Search strategy and selection criteria
9	118	To identify relevant studies, we used a systematic search strategy. There were two inclusion
10	119	criteria. We included studies in this review if they 1) were systematic reviews of original
11 12	120	research and 2) reported at least one health impact as it related (directly or indirectly) to climate
13	121	change.
14	122	
15	123	We defined a systematic review, based on Cochrane's definition, as a review of the literature in
16 17	124	which one "attempts to identify, appraise and synthesize all the empirical evidence that meets
18	125	pre-specified eligibility criteria to answer a specific research question [by] us[ing] explicit,
19	126	systematic methods that are selected with a view aimed at minimizing bias, to produce more
20	127	reliable findings to inform decision making." ¹⁹ We included systematic reviews of original
21 22	128	research, with or without meta-analyses. We excluded narrative reviews, non-systematic
23	129	literature reviews and systematic reviews of materials that were not original research (e.g.,
24	130 131	systematic reviews of guidelines.)
25	132	We based our definition of health impacts on the World Health Organization's (WHO) definition
26 27	132	of health as, "a state of complete physical, mental and social well-being and not merely the
28	134	absence of disease or infirmity." ²⁰ Therefore, health impacts included, among others, morbidity,
29	135	mortality, new conditions, worsening/improving conditions, injuries, and psychological well-
30 31	136	being. Included studies could refer to climate change or global warming directly or indirectly, for
32	137	instance, by synthesizing the direct or indirect health effects of temperature rises or of natural
33	138	conditions/disasters made more likely by climate change (e.g., floods, wildfires, temperature
34	139	variability, droughts.) Although climate change and global warming are not equivalent terms, in
35 36	140	an effort to avoid missing relevant literature, we included studies using either term. We included
37	141	systematic reviews whose main focus was not the health impacts of climate change, providing
38	142	they reported at least one result regarding health effects related to climate change (or
39	143	consequences of climate change.) We excluded studies if they did not report at least one health
40 41	144	effect of climate change. For instance, we excluded studies which reported on existing
42	145	measures of health impacts of climate change (and not the health impact itself) and studies
43	146	which reported on certain health impacts without a mention of climate change, global warming
44 45	147	or environmental consequences made more likely by climate change.
45	148	
47	149	On June 22, 2019, we retrieved systematic reviews regarding the health effects of climate
48	150	change by searching from inception the electronic databases Medline, CINAHL, Embase,
49 50	151 152	Cochrane, Web of Science using a structured search (see Appendix 1 for final search strategy developed by a librarian.) We did not apply language restrictions. After removing duplicates, we
51	152	imported references into Covidence. ²¹
52	155	imported references into covidence.
53		
54 55		
56		
57		
58 59		A
59 60		4 For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

Screening process and data extraction To select studies, two trained analysts first screened independently titles and abstracts to eliminate articles that did not meet our inclusion criteria. Next, the two analysts independently screened the full text of each article. A senior analyst resolved any conflict or disagreement. Next, we decided on key information that needed to be extracted from studies. We extracted the first author's name, year of publication, number of studies included, time frame (in years) of the studies included in the article, first author's institution's country affiliation, whether the systematic review included a meta-analysis, geographical focus, population focus, the climate impact(s) and the health outcome(s) as well as the main findings and limitations of each systematic review. Two or more trained analysts (RR, CB, RN, LC, LPB, RAPR) independently extracted data, using Covidence and spreadsheet software (Google Sheets). An additional trained analyst from the group or senior research team member resolved disagreements between individual judgments. Coding and Data Mapping To summarize findings from previous reviews, we first mapped articles according to climate impacts and health outcomes. To develop the categories of climate impacts and health outcomes, two researchers (RR and LC) consulted the titles and abstracts of each article. We started by identifying categories directly based on our data and finalized our categories by consulting previous conceptual frameworks of climate impacts and health outcomes.^{1,22,23} The same two researchers independently coded each article according to their climate impact and health outcome. We then compared coding and resolved disagreements through discussion. Next, using spreadsheet software, we created a matrix to map articles according to their combination of climate impacts and health outcomes. Each health outcome occupied one row, whereas climate impacts each occupied one column. We placed each article in the matrix according to the combination(s) of their climate impact(s) and health outcome(s). For instance, if we coded an article as 'extreme weather' for climate and 'mental health' for health impact, we noted the reference of this article in the cell at the intersection of these two codes. We calculated frequencies for each cell to identify frequent combinations and gaps in literature. Because one study could investigate more than one climate impact and health outcome, the frequency counts for each category could exceed the number of studies included in this review. Finally, we re-read the Results and Discussion sections of each article to summarize findings of the studies. We first wrote an individual summary for each study, then we collated the summaries of all studies exploring the same combination of categories to develop an overall summary of findings for each combination of categories.

- Quality assessment We used a modified version of AMSTAR-2 to assess the quality of the included systematic reviews (Appendix 2). The purpose of this assessment was to evaluate the quality of the included studies as a whole to get a sense of the overall quality of evidence in this field. Therefore, individual quality scores were not compiled for each article, but scores were aggregated according to items. Since AMSTAR-2 was developed for syntheses of systematic reviews of randomized controlled trials, working with a team member with expertise in knowledge synthesis (AT), we adapted it to suit a research context that is not amenable to randomized controlled trials. For instance, we changed assessing and accounting for risk of bias in studies' included randomized controlled trials to assessing and accounting for limitations in studies' included articles. Complete modifications are presented in Appendix 2. Patient and Public Involvement Patients and members of the public were not involved in this study. Results Articles identified As shown in the PRISMA diagram in Figure 1, from an initial set of 2619 references, we retained 94 for inclusion. More precisely, following screening of titles and abstracts, 146 studies remained for full text inspection. During full text inspection, we excluded 52 studies, as they did not report a direct health effect of climate change (n = 17), did not relate to climate change (n = 17) 15), were not systematic reviews (n = 10), or we could not retrieve the full text (n = 10). **Insert Figure 1 About Here** Study Descriptions A detailed table of all articles and their characteristics can be found in Appendix 3. Publication years ranged from 2007 to 2019 (year of data extraction), with the great majority of included articles (n = 69; 73%) published since 2015 (Figure 2). A median of 30 studies had been included in the systematic reviews (mean = 60; SD = 49; range 7 to 722). Approximately one fifth of the systematic reviews included meta-analyses of their included studies (n = 18; 19%). The majority of included systematic reviews' first authors had affiliations in high-income countries, with the largest representations by continent in Europe (n = 30) and Australia (n = 24) (Figure 3). Countries of origin by continents include (from highest to lowest frequency, then by alphabetical order): Europe (30); United-Kingdom (9), Germany (6), Italy (4), Sweden (4), Denmark (2), France (2), Georgia (1), Greece (1) and Finland (1); Australia (24); Asia (21); China (11), Iran (4), India (1), Jordan (1), Korea (1), Nepal (1), Philippines (1), Taiwan (1); North America (16); United-States (15), Canada (1); Africa (2); Ethiopia (1), Ghana (1), and South America (1); Brazil (1).

1		
2 3	231	
4	231	Insert Figure 2 About Here
5 6	233	
7	234	Insert Figure 3 About Here
8	235	
9 10	236	Regarding the geographical focus of systematic reviews, most of the included studies (n = 68;
11	237	72%) had a global focus or no specified geographical limitations and therefore included studies
12	238	published anywhere in the world. The remaining systematic reviews either targeted certain
13 14	239	countries (n = 12) (1 for each Australia, Germany, Iran, India, Ethiopia, Malaysia, Nepal, New
14	240	Zealand and 2 reviews focused on China and the United States), continents ($n = 5$) (3 focused on Europe and 2 on Asia), or regions according to geographical location ($n = 6$) (1 focused on
16	241 242	on Europe and 2 on Asia), or regions according to geographical location (n = 6) (1 focused on Sub-Saharan Africa, 1 on Eastern Mediterranean countries, 1 on Tropical countries, and 3
17 18	242	focused on the Arctic), or according to the country's level of income ($n = 3$) (2 on low to middle
18 19	244	income countries, 1 on high income countries).
20	245	
21	246	Regarding specific populations of interest, most of the systematic reviews did not define a
22 23	247	specific population of interest (n = 69; 73%). For the studies that specified a population of
24	248	interest (n = 25; 26.6%), the most frequent populations were children (n = 7) and workers (n =
25	249	6), followed by vulnerable or susceptible populations more generally $(n = 4)$, the elderly $(n = 3)$,
26 27	250	pregnant people ($n = 2$), people with disabilities or chronic illnesses ($n = 2$) and rural populations
28	251	(n = 1).
29 30		
30 31	252	Quality assessment
32	253	We assessed studies for quality according to our revised AMSTAR-2. Complete scores for each
33 34	254	article and each item are available in Appendix 4. Out of 94 systematic reviews, the most
35	255	commonly fully satisfied criterion was #1 (PICO components) with 81/94 (86%) of included
36	256	systematic reviews fully satisfying this criterion. The next most commonly-satisfied criteria were
37 38	257 258	#16 (potential sources of conflict of interest reported) (78/94 = 83% fully), #13 (account for limitations in individual studies) (70/94 = 75% fully and 2/94 = 2% partially), #7 (explain both
39	259	inclusion and exclusion criteria) ($64/94 = 68\%$ fully and $19/94 = 20\%$ partially), #7 (explain both inclusion and exclusion criteria) ($64/94 = 68\%$ fully and $19/94 = 20\%$ partially), #8 (description of
40	260	included studies in adequate detail) (36/94 = 38% fully and 41/94 = 44% partially), and #4 (use
41 42	261	of a comprehensive literature search strategy) ($0/94 = 0\%$ fully and $80/94 = 85\%$ partially). For
42	262	criteria #11, #12, and #15, which only applied to reviews including meta-analyses, 17/18 (94%)
44	263	fully satisfied criterion #11 (use of an appropriate methods for statistical combination of results),
45 46	264	12/18 (67%) fully satisfied criterion #12 (assessment of the potential impact of RoB in individual
40 47	265	studies) (1/18 = 6% partially), and 11/18 (61%) fully satisfied criterion #15 (an adequate
48	266	investigation of publication bias, small study bias).
49 50		
50 51	267	Climate Impacts and Health Outcomes
52	268	Regarding climate impacts, we identified five mutually exclusive categories, with 13 publications
53 54	269	targeting more than one category of climate impacts: 1) Meteorological (n = 71 papers) (e.g.,
55	270	temperature, heat waves, humidity, precipitation, sunlight, wind, air pressure), 2) Extreme
56	271	weather (n = 24) (e.g., water-related, floods, cyclones, hurricanes, drought), 3) Air quality (n = 7)

Page 9 of 65

BMJ Open

1		
2 3		
4	272	(e.g., air pollution and wildfire smoke exposure), 4) General ($n = 5$), and 5) Other ($n = 3$).
5	273	Although heat waves could be considered an extreme weather event, papers investigating heat
6	274	waves' impact on health were classified in the meteorological impact category, since some of
7	275	these studies treated them with high temperature. "General" climate impacts included articles
8	276	that did not specify climate change impacts but stated general climate change as their focus.
9 10	277	"Other" climate impacts included studies investigating other effects indirectly related to climate
11	278	change (e.g., impact of environmental contaminants) or general environmental risk factors (e.g.,
12	279	environmental hazards, sanitation and access to clean water.)
13	280	
14	281	We identified ten categories to describe the health outcomes studied by the systematic reviews,
15 16	282	and 29 publications targeted more than one category of health outcomes: 1) Infectious diseases
17	283	(n = 41 papers) (vector-, food- and water-borne), 2) Mortality (n = 32), 3) Respiratory,
18	284	cardiovascular, and neurological (n = 23), 4) Healthcare systems (n = 16), 5) Mental health (n =
19	285	13), 6) Pregnancy and birth (n = 11), 7) Nutritional (n = 9), 8) Skin diseases and allergies (n =
20	286	8), 9) Occupational health and injuries (n = 6) and 10) Other health outcomes (n = 17) (e.g.,
21 22	287	sleep, arthritis, disability-adjusted life years, non-occupational injuries, etc.)
23	288	
24	289	Figure 4 depicts the combinations of climate impact and health outcome for each study, with
25	290	Appendix 5 offering further details. The 5 most common combinations are studies investigating
26 27	291	the 1) meteorological impacts on infectious diseases (n = 35), 2) mortality (n = 24) and 3)
28	292	respiratory, cardiovascular, and neurological outcomes (n = 17), 4) extreme weather events'
29	293	impacts on infectious diseases (n = 14), and 5) meteorological impacts on health systems (n =
30	294	11).
31	295	
32	296	Insert Figure 4 About Here
33 34	297	
34 35	298	For studies investigating meteorological impacts on health, the three most common health
34 35 36	298 299	For studies investigating meteorological impacts on health, the three most common health outcomes studied were impacts on 1) infectious diseases ($n = 35$), 2) mortality ($n = 24$) and 3)
34 35 36 37	298 299 300	For studies investigating meteorological impacts on health, the three most common health outcomes studied were impacts on 1) infectious diseases (n = 35), 2) mortality (n = 24) and 3) respiratory, cardiovascular, and neurological outcomes (n = 17). Extreme weather event studies
34 35 36	298 299 300 301	For studies investigating meteorological impacts on health, the three most common health outcomes studied were impacts on 1) infectious diseases ($n = 35$), 2) mortality ($n = 24$) and 3) respiratory, cardiovascular, and neurological outcomes ($n = 17$). Extreme weather event studies most commonly reported health outcomes related to 1) infectious diseases ($n = 14$), 2) mental
34 35 36 37 38 39 40	298 299 300 301 302	For studies investigating meteorological impacts on health, the three most common health outcomes studied were impacts on 1) infectious diseases ($n = 35$), 2) mortality ($n = 24$) and 3) respiratory, cardiovascular, and neurological outcomes ($n = 17$). Extreme weather event studies most commonly reported health outcomes related to 1) infectious diseases ($n = 14$), 2) mental health outcomes ($n = 9$) and 3) nutritional outcomes ($n = 6$) and other health outcomes (e.g.,
34 35 36 37 38 39 40 41	298 299 300 301 302 303	For studies investigating meteorological impacts on health, the three most common health outcomes studied were impacts on 1) infectious diseases (n = 35), 2) mortality (n = 24) and 3) respiratory, cardiovascular, and neurological outcomes (n = 17). Extreme weather event studies most commonly reported health outcomes related to 1) infectious diseases (n = 14), 2) mental health outcomes (n = 9) and 3) nutritional outcomes (n = 6) and other health outcomes (e.g., injuries, sleep) (n = 6). Studies focused on the impact of air quality were less frequent and
34 35 36 37 38 39 40 41 42	298 299 300 301 302 303 304	For studies investigating meteorological impacts on health, the three most common health outcomes studied were impacts on 1) infectious diseases (n = 35), 2) mortality (n = 24) and 3) respiratory, cardiovascular, and neurological outcomes (n = 17). Extreme weather event studies most commonly reported health outcomes related to 1) infectious diseases (n = 14), 2) mental health outcomes (n = 9) and 3) nutritional outcomes (n = 6) and other health outcomes (e.g., injuries, sleep) (n = 6). Studies focused on the impact of air quality were less frequent and explored mostly health outcomes linked to 1) respiratory, cardiovascular, and neurological
34 35 36 37 38 39 40 41 42 43	298 299 300 301 302 303	For studies investigating meteorological impacts on health, the three most common health outcomes studied were impacts on 1) infectious diseases (n = 35), 2) mortality (n = 24) and 3) respiratory, cardiovascular, and neurological outcomes (n = 17). Extreme weather event studies most commonly reported health outcomes related to 1) infectious diseases (n = 14), 2) mental health outcomes (n = 9) and 3) nutritional outcomes (n = 6) and other health outcomes (e.g., injuries, sleep) (n = 6). Studies focused on the impact of air quality were less frequent and
34 35 36 37 38 39 40 41 42	298 299 300 301 302 303 304	For studies investigating meteorological impacts on health, the three most common health outcomes studied were impacts on 1) infectious diseases (n = 35), 2) mortality (n = 24) and 3) respiratory, cardiovascular, and neurological outcomes (n = 17). Extreme weather event studies most commonly reported health outcomes related to 1) infectious diseases (n = 14), 2) mental health outcomes (n = 9) and 3) nutritional outcomes (n = 6) and other health outcomes (e.g., injuries, sleep) (n = 6). Studies focused on the impact of air quality were less frequent and explored mostly health outcomes linked to 1) respiratory, cardiovascular, and neurological outcomes (n = 6), 2) mortality (n = 5) and 3) pregnancy and birth outcomes (n = 3).
34 35 36 37 38 39 40 41 42 43 44 45 46	298 299 300 301 302 303 304	For studies investigating meteorological impacts on health, the three most common health outcomes studied were impacts on 1) infectious diseases (n = 35), 2) mortality (n = 24) and 3) respiratory, cardiovascular, and neurological outcomes (n = 17). Extreme weather event studies most commonly reported health outcomes related to 1) infectious diseases (n = 14), 2) mental health outcomes (n = 9) and 3) nutritional outcomes (n = 6) and other health outcomes (e.g., injuries, sleep) (n = 6). Studies focused on the impact of air quality were less frequent and explored mostly health outcomes linked to 1) respiratory, cardiovascular, and neurological
34 35 36 37 38 39 40 41 42 43 44 45 46 47	298 299 300 301 302 303 304 305 306	For studies investigating meteorological impacts on health, the three most common health outcomes studied were impacts on 1) infectious diseases (n = 35), 2) mortality (n = 24) and 3) respiratory, cardiovascular, and neurological outcomes (n = 17). Extreme weather event studies most commonly reported health outcomes related to 1) infectious diseases (n = 14), 2) mental health outcomes (n = 9) and 3) nutritional outcomes (n = 6) and other health outcomes (e.g., injuries, sleep) (n = 6). Studies focused on the impact of air quality were less frequent and explored mostly health outcomes linked to 1) respiratory, cardiovascular, and neurological outcomes (n = 6), 2) mortality (n = 5) and 3) pregnancy and birth outcomes (n = 3).
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	298 299 300 301 302 303 304 305 306 307	For studies investigating meteorological impacts on health, the three most common health outcomes studied were impacts on 1) infectious diseases ($n = 35$), 2) mortality ($n = 24$) and 3) respiratory, cardiovascular, and neurological outcomes ($n = 17$). Extreme weather event studies most commonly reported health outcomes related to 1) infectious diseases ($n = 14$), 2) mental health outcomes ($n = 9$) and 3) nutritional outcomes ($n = 6$) and other health outcomes (e.g., injuries, sleep) ($n = 6$). Studies focused on the impact of air quality were less frequent and explored mostly health outcomes linked to 1) respiratory, cardiovascular, and neurological outcomes ($n = 6$), 2) mortality ($n = 5$) and 3) pregnancy and birth outcomes ($n = 3$). Summary of Findings Most reviews suggest a deleterious impact of climate change on multiple adverse health
34 35 36 37 38 39 40 41 42 43 44 45 46 47	298 299 300 301 302 303 304 305 306 307 308	For studies investigating meteorological impacts on health, the three most common health outcomes studied were impacts on 1) infectious diseases (n = 35), 2) mortality (n = 24) and 3) respiratory, cardiovascular, and neurological outcomes (n = 17). Extreme weather event studies most commonly reported health outcomes related to 1) infectious diseases (n = 14), 2) mental health outcomes (n = 9) and 3) nutritional outcomes (n = 6) and other health outcomes (e.g., injuries, sleep) (n = 6). Studies focused on the impact of air quality were less frequent and explored mostly health outcomes linked to 1) respiratory, cardiovascular, and neurological outcomes (n = 6), 2) mortality (n = 5) and 3) pregnancy and birth outcomes (n = 3).
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	298 299 300 301 302 303 304 305 306 307 308 309	For studies investigating meteorological impacts on health, the three most common health outcomes studied were impacts on 1) infectious diseases (n = 35), 2) mortality (n = 24) and 3) respiratory, cardiovascular, and neurological outcomes (n = 17). Extreme weather event studies most commonly reported health outcomes related to 1) infectious diseases (n = 14), 2) mental health outcomes (n = 9) and 3) nutritional outcomes (n = 6) and other health outcomes (e.g., injuries, sleep) (n = 6). Studies focused on the impact of air quality were less frequent and explored mostly health outcomes linked to 1) respiratory, cardiovascular, and neurological outcomes (n = 6), 2) mortality (n = 5) and 3) pregnancy and birth outcomes (n = 3). Summary of Findings Most reviews suggest a deleterious impact of climate change on multiple adverse health outcomes, with some associations being explored and/or supported with consistent findings more often than others. Some reviews also report conflicting findings or an absence of
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	298 299 300 301 302 303 304 305 306 307 308 309 310	For studies investigating meteorological impacts on health, the three most common health outcomes studied were impacts on 1) infectious diseases ($n = 35$), 2) mortality ($n = 24$) and 3) respiratory, cardiovascular, and neurological outcomes ($n = 17$). Extreme weather event studies most commonly reported health outcomes related to 1) infectious diseases ($n = 14$), 2) mental health outcomes ($n = 9$) and 3) nutritional outcomes ($n = 6$) and other health outcomes (e.g., injuries, sleep) ($n = 6$). Studies focused on the impact of air quality were less frequent and explored mostly health outcomes linked to 1) respiratory, cardiovascular, and neurological outcomes ($n = 6$), 2) mortality ($n = 5$) and 3) pregnancy and birth outcomes ($n = 3$). Summary of Findings Most reviews suggest a deleterious impact of climate change on multiple adverse health outcomes, with some associations being explored and/or supported with consistent findings more often than others. Some reviews also report conflicting findings or an absence of association between the climate impact and health outcome studied (see Table 1 for a detailed
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	298 299 300 301 302 303 304 305 306 307 308 309 310 311	For studies investigating meteorological impacts on health, the three most common health outcomes studied were impacts on 1) infectious diseases (n = 35), 2) mortality (n = 24) and 3) respiratory, cardiovascular, and neurological outcomes (n = 17). Extreme weather event studies most commonly reported health outcomes related to 1) infectious diseases (n = 14), 2) mental health outcomes (n = 9) and 3) nutritional outcomes (n = 6) and other health outcomes (e.g., injuries, sleep) (n = 6). Studies focused on the impact of air quality were less frequent and explored mostly health outcomes linked to 1) respiratory, cardiovascular, and neurological outcomes (n = 6), 2) mortality (n = 5) and 3) pregnancy and birth outcomes (n = 3).
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	298 299 300 301 302 303 304 305 306 307 308 309 310	For studies investigating meteorological impacts on health, the three most common health outcomes studied were impacts on 1) infectious diseases ($n = 35$), 2) mortality ($n = 24$) and 3) respiratory, cardiovascular, and neurological outcomes ($n = 17$). Extreme weather event studies most commonly reported health outcomes related to 1) infectious diseases ($n = 14$), 2) mental health outcomes ($n = 9$) and 3) nutritional outcomes ($n = 6$) and other health outcomes (e.g., injuries, sleep) ($n = 6$). Studies focused on the impact of air quality were less frequent and explored mostly health outcomes linked to 1) respiratory, cardiovascular, and neurological outcomes ($n = 6$), 2) mortality ($n = 5$) and 3) pregnancy and birth outcomes ($n = 3$). Summary of Findings Most reviews suggest a deleterious impact of climate change on multiple adverse health outcomes, with some associations being explored and/or supported with consistent findings more often than others. Some reviews also report conflicting findings or an absence of association between the climate impact and health outcomes studied (see Table 1 for a detailed summary of findings according to health outcomes).
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	298 299 300 301 302 303 304 305 306 307 308 309 310 311 312	For studies investigating meteorological impacts on health, the three most common health outcomes studied were impacts on 1) infectious diseases ($n = 35$), 2) mortality ($n = 24$) and 3) respiratory, cardiovascular, and neurological outcomes ($n = 17$). Extreme weather event studies most commonly reported health outcomes related to 1) infectious diseases ($n = 14$), 2) mental health outcomes ($n = 9$) and 3) nutritional outcomes ($n = 6$) and other health outcomes (e.g., injuries, sleep) ($n = 6$). Studies focused on the impact of air quality were less frequent and explored mostly health outcomes linked to 1) respiratory, cardiovascular, and neurological outcomes ($n = 6$), 2) mortality ($n = 5$) and 3) pregnancy and birth outcomes ($n = 3$). Summary of Findings Most reviews suggest a deleterious impact of climate change on multiple adverse health outcomes, with some associations being explored and/or supported with consistent findings more often than others. Some reviews also report conflicting findings or an absence of association between the climate impact and health outcome studied (see Table 1 for a detailed
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313	For studies investigating meteorological impacts on health, the three most common health outcomes studied were impacts on 1) infectious diseases (n = 35), 2) mortality (n = 24) and 3) respiratory, cardiovascular, and neurological outcomes (n = 17). Extreme weather event studies most commonly reported health outcomes related to 1) infectious diseases (n = 14), 2) mental health outcomes (n = 9) and 3) nutritional outcomes (n = 6) and other health outcomes (e.g., injuries, sleep) (n = 6). Studies focused on the impact of air quality were less frequent and explored mostly health outcomes linked to 1) respiratory, cardiovascular, and neurological outcomes (n = 6), 2) mortality (n = 5) and 3) pregnancy and birth outcomes (n = 3). Summary of Findings Most reviews suggest a deleterious impact of climate change on multiple adverse health outcomes, with some associations being explored and/or supported with consistent findings more often than others. Some reviews also report conflicting findings or an absence of association between the climate impact and health outcome studied (see Table 1 for a detailed summary of findings according to health outcomes).
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313	For studies investigating meteorological impacts on health, the three most common health outcomes studied were impacts on 1) infectious diseases (n = 35), 2) mortality (n = 24) and 3) respiratory, cardiovascular, and neurological outcomes (n = 17). Extreme weather event studies most commonly reported health outcomes related to 1) infectious diseases (n = 14), 2) mental health outcomes (n = 9) and 3) nutritional outcomes (n = 6) and other health outcomes (e.g., injuries, sleep) (n = 6). Studies focused on the impact of air quality were less frequent and explored mostly health outcomes linked to 1) respiratory, cardiovascular, and neurological outcomes (n = 6), 2) mortality (n = 5) and 3) pregnancy and birth outcomes (n = 3). Summary of Findings Most reviews suggest a deleterious impact of climate change on multiple adverse health outcomes, with some associations being explored and/or supported with consistent findings more often than others. Some reviews also report conflicting findings or an absence of association between the climate impact and health outcomes studied (see Table 1 for a detailed summary of findings according to health outcomes). Notable findings of health outcomes according to climate impact include the following. For meteorological factors (n = 71), temperature and humidity are the variables most often studied
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313	For studies investigating meteorological impacts on health, the three most common health outcomes studied were impacts on 1) infectious diseases ($n = 35$), 2) mortality ($n = 24$) and 3) respiratory, cardiovascular, and neurological outcomes ($n = 17$). Extreme weather event studies most commonly reported health outcomes related to 1) infectious diseases ($n = 14$), 2) mental health outcomes ($n = 9$) and 3) nutritional outcomes ($n = 6$) and other health outcomes (e.g., injuries, sleep) ($n = 6$). Studies focused on the impact of air quality were less frequent and explored mostly health outcomes linked to 1) respiratory, cardiovascular, and neurological outcomes ($n = 6$), 2) mortality ($n = 5$) and 3) pregnancy and birth outcomes ($n = 3$). Summary of Findings Most reviews suggest a deleterious impact of climate change on multiple adverse health outcomes, with some associations being explored and/or supported with consistent findings more often than others. Some reviews also report conflicting findings or an absence of association between the climate impact and health outcome studied (see Table 1 for a detailed summary of findings according to health outcomes).

and report the most consistent associations with infectious diseases and respiratory. cardiovascular, and neurological outcomes. Temperature is also consistently associated with mortality and healthcare service use. Some associations are less frequently studied, but remain consistent, including the association between some meteorological factors (e.g., temperature and heat) and some adverse mental health outcomes (e.g., hospital admissions for mental health reasons, suicide, exacerbation of previous mental health conditions), and the association between heat and adverse occupational outcomes and some adverse birth outcomes. Temperature is also associated with adverse nutritional outcomes (likely via crop production and food insecurity) and temperature and humidity are associated with some skin diseases and allergies. Some health outcomes are less frequently studied, but studies suggest an association between temperature and diabetes, impaired sleep, cataracts, heat stress, heat exhaustion and renal diseases.

Extreme weather events (n = 24) are consistently associated with mortality, some mental health outcomes (e.g., distress, anxiety, depression) and adverse nutritional outcomes (likely via crop production and food insecurity). Some associations are explored less frequently, but these studies suggest an association between drought and respiratory and cardiovascular outcomes (likely via air quality), between extreme weather events and an increased use of healthcare services and some adverse birth outcomes (likely due to indirect causes, such as experiencing stress). Some health outcomes are less frequently studied, but studies suggest an association between extreme weather events and injuries, impaired sleep, esophageal cancer and exacerbation of chronic illnesses. There are limited and conflicting findings for the association between extreme weather events and infectious diseases, as well as for certain mental health outcomes (e.g., suicide and substance abuse). At times, different types of extreme weather events (e.g., drought vs flood) led to conflicting findings for some health outcomes (e.g., mental health outcomes, infectious diseases), but for other health outcomes, the association was consistent independently of the extreme weather event studied (e.g., mortality, healthcare service use and nutritional outcomes).

The impact of air quality on health (n = 7) was less frequently studied, but the few studies exploring this association report consistent findings regarding an association with respiratory-specific mortality, adverse respiratory outcomes and an increase in healthcare service use. There is limited evidence regarding the association between air quality and cardiovascular outcomes, limited and inconsistent evidence between wildfire smoke exposure and adverse birth outcomes, and no association is found between exposure to wildfire smoke and increase in use of health services for mental health reasons. Only one review explored the impact of wildfire smoke exposure on ophthalmic outcomes, and it suggests that it may be associated with eye irritation and cataracts.

Reviews which stated climate change as their general focus and did not specify the climate impact(s) under study were less frequent (n = 5), but they suggest an association between climate change and pollen allergies in Europe, increased use of healthcare services, obesity, skin diseases and allergies and an association with disability-adjusted life years. Reviews investigating the impact of other climate-related factors (n = 3) show inconsistent findings

BMJ Open

2		
3	359	concerning the association between environmental pollutant and adverse birth outcomes, and
4 5	360	two reviews suggest an association between environmental risk factors and pollutants and
6	361	childhood stunting and occupational diseases.
7	362	
8	363	Most reviews concluded by calling for more research, noting the limitations observed among the
9	364	studies included in their reviews, as well as limitations in their reviews themselves. These
10 11	365	limitations included, amongst others, some systematic reviews having a small number of
12	366	publications, ^{24,25} language restrictions such as including only papers in English, ^{26,27} arriving at
13	367	conflicting evidence, ²⁸ difficulty concluding a strong association due to the heterogeneity in
14	368	methods and measurements or the limited equipment and access to quality data in certain
15 16	369	contexts, ^{24,29–31} and most studies included were conducted in high-income countries. ^{32,33}
17	370	
18	371	Previous authors also discussed the important challenge related to exploring the relationship
19	372	between climate change and health. Not only is it difficult to explore the potential causal
20	373	relationship between climate change and health, mostly due to methodological challenges, but
21 22	374	there are also a wide variety of complex causal factors that may interact to determine health
23	375	outcomes. Therefore, the possible causal mechanisms underlying these associations were at
24	376	times still unknown or uncertain and the impacts of some climate factors were different
25	377	according to geographical location and specificities of the context. Nonetheless, some reviews
26 27	378	offered potential explanations for the climate-health association, with the climate factor at times,
27 28	379	having a direct impact on health (e.g., flooding causing injuries, heat causing dehydration) and
29	380	in other cases, having an indirect impact (e.g., flooding causing stress which in turn may cause
30	381	adverse birth outcomes, heat causing difficulty concentrating leading to occupational injuries.)
31	382	
32 33	383	Table 1. Summary of findings from systematic reviews according to health outcome and climate
33 34	384	impact. Reviews that covered multiple climate impacts are listed in each relevant category.

	Climate Impact	F	Summary of Findings
Infectious diseases (n = 41)		es (n = 41)	
	Vector borne infectious diseases (n = 25)		

Meteorolo gical	22	Systematic reviews suggest that meteorological factors, such as temperature, precipitation, humidity, and wind, are associated with diverse vector-borne infectious diseases, including malaria and dengue. ^{9,12,26,29,31,34–50} This association was mostly proportional (e.g., higher temperature and increased rainfall associated with vector-borne diseases), although findings were at times conflicting, with some suggesting an inversely proportional association ¹² (e.g., decreased rainfall) or no association at all ³⁹ (e.g., with the human puumala hantavirus Infection.) Geographic location, seasonality and potential interaction with other climate-related factors may partly explain these inconsistencies. ^{12,29} Temperature, humidity and rainfall were the most common and important meteorological factors reported by reviews and factors such as wind, air pressure and sunshine were reported less often.
Extreme weather	7	There are limited and conflicting findings concerning the association of extreme weather events with vector-borne diseases. Some reviews suggest water-related extreme events ⁵¹ and flooding ^{6,31,52} are associated with an increased risk of vector-borne diseases, while drought is associated with a reduction of dengue incidence. ¹² Other reviews focused specifically on Puerto Rico ⁴³ and Australia ⁵³ did not find an association between hurricanes and/or floods and mosquito-borne disease transmission.
Food and w	ater bo	orne infectious diseases (n = 19)
Meteorolo gical	14	Reviews suggest that meteorological factors, such as temperature, precipitation, and humidity, are associated with diverse food- and water-borne infectious diseases, in particular, cholera, schistosomiasis, salmonella and E. coli gastroenteritis. ^{11,31,40,42,45,48,54–61} Overall, higher temperatures and humidity, ^{11,40,54,58} along with lower precipitation ^{42,61} was associated with these infectious diseases. Directionality and strength of the association seemed to vary according to disease and pathogens, ⁵⁹ seasons, and geographic region. ⁵⁶
Extreme weather	10	Reviews suggest a proportional association between extreme water-related events, ^{47,51,62} such as flooding ^{6,40,52} and heavy rainfall ³⁴ , and food- and water-borne diseases, including diarrhea, food contamination, cholera. ^{6,31,34,40,45,47,51,52,57,62} Drought may also be proportionally associated with food- and water-borne disease, ^{34,63} but these associations are less consistent than those with water-related extreme events. ⁵⁷
Other infect	ious dis	seases $(n = 8)$

Meteorolo gical	8	Reviews suggest an association of most meteorological factors, such as temperature and humidity, with various other infectious diseases, including meningitis, ^{24,34} Ebola, ²⁴ influenza, ³¹ and pediatric infectious diseases such as hand-foot-and-mouth disease. ^{7,8,30,49,55} This association was mostly proportional for meteorological factors such as temperature, ^{7,8,49} diurnal temperature range, ³ and humidity, ^{7,8,31} although some meteorological factors, such as air pressure ⁸ and lower temperatures ^{31,49} were inversely proportional to these diseases. Som conflicting evidence is reported concerning the association with some meteorological factors, such as sunshine with hand-foot-and-mouth disease, ^{7,8} and humidity and pediatric infectious diseases. ⁵⁵ No association was found between some meteorological factors, such as precipitation, wind speed and sunshine with hand-foot-and-mouth disease. ^{7,8}
Mortality (n	= 32)	
Meteorolo gical	24	Reviews suggest that temperature (high, low, or diurnal range) was consistently associated with all-cause and cause-specific mortality. ^{24–26,30,33,42,45,47,49,64–77} A strong association was reported between heat (including heat waves) and mortality (all-cause), ⁶⁴ heat-, ^{42,69} stroke-, ^{24,70} cardiovascular-, ^{33,47} and respirator, related, ^{26,33,71} especially in rural, ⁶⁸ very young children ⁴⁹ and ageing populations. Mortality seems to be the most frequent health outcome studied in association with heatwaves. ⁶⁵ Inconsistent results are found concerning the association between heat and childhood mortality. ⁷⁵ Due to limited evidence, this association was weaker in some geographical regions. ^{24,72} Also, heat wave intensity (compared to duration) was more strongly associated with heat-related mortality. Finally, although less studied, low temperature was also associated with mortality. ^{49,77} specifically respiratory, ⁶⁴ stroke, ⁷⁰ and cardiovascular mortality. ^{47,6}
Extreme Weather	5	Reviews suggest an association between extreme weather events such as floods, ⁶ droughts, ⁶³ cyclones ⁷⁸ and other water-related events, ^{26,51} with direct (e drowning) and indirect long-term mortality (e.g., due to malnutrition, environment toxin exposure, armed conflict, etc.). ^{6,51,63,78}
Air quality	5	Reviews suggest an association between exposure to air pollution ^{26,79} or wildfin smoke ^{80–82} and air pollution related-mortality, such as respiratory-specific mortality. There is currently limited evidence, but reviews suggest a potential association between wildfire smoke exposure and cardiovascular-specific mortality. ^{80–82}
Respiratory	/, neur	ological, and cardiovascular (n = 23)
General	1	A review suggests a proportional association between climate change, in generation and ragweed pollen allergies in Europe. ⁸³

Meteorolo gical	17	Reviews suggest an association between meteorological factors, such as temperature and humidity, and cardiovascular, respiratory and neurological outcomes. ^{24,26,30,33,36,45,49,55,64,67,69,70,74,75,84–86} Exposure to high temperatures and extreme heat are associated to cardiovascular and respiratory diseases, ^{24,26,36,49,67} stroke, ⁷⁰ long-term neurological outcomes (due to heat strokes), ⁶⁹ myocardial infarction, ^{33,85} and childhood asthma and pediatric respiratory diseases. ^{75,86} A review also suggests a beneficial association between heat and the shortening of a respiratory virus season. ⁴⁵ Exposure to low temperature (cold), temperature drop, or diurnal temperature range was associated with cardiovascular and respiratory diseases, ^{30,64,67} stroke, ⁷⁰ and myocardial infarctions. ³³ Humidity (most often high humidity, but also lower humidity) and low temperatures were also associated with respiratory diseases in children, including childhood asthma. ^{55,84,86}
Extreme Weather	1	A previous review suggests an association between drought and respiratory and cardiovascular outcomes, most likely due to droughts leading to increased dust in the air. ⁶³
Air quality	6	Reviews suggest a proportional association between exposure to air pollution ^{26,42,45} or wildfire smoke exposure ^{80–82} and respiratory outcomes, including asthma, chronic obstructive pulmonary disease, coughing, wheezing, and overall lung function. Although there is currently limited evidence, ⁸⁰ reviews also suggest a potential association between air pollution or wildfire smoke exposure and cardiovascular outcomes. ^{45,81,82}
Health syst	ems (I	n = 16)
General	1	A previous review suggests that climate change in general puts a strain on public health resources, via population health issues and shows that using an integrated surveillance system may guide future adaptation to climate change. ⁸⁷
Meteorolo gical	11	Previous reviews suggest an association between temperature change ³⁰ extreme heat, aridity and cold temperatures and an increase in use of healthcare services (mostly linked to heat-related health impacts), such as an increase in emergency department visits, hospital admissions and use of ambulances. ^{24,26,30,33,42,49,65,72,75,85,88}
Extreme weather	2	Reviews suggest that extreme weather events ³² and flooding ⁶ may be associated with an increase in use of healthcare services (e.g., increased hospitalizations) and a compromised quality of care as extreme weather events may lead to power outages. ³²
Air quality	2	Reviews suggest an association between wildfire smoke exposure and an increase in use of healthcare services, such as an increase in emergency department visits. ^{80,82}
Mental hea	lth (n =	= 13)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	

_		
Meteorolo gical	3	Reviews suggest an association of most meteorological factors such as temperature increase, aridity, heat, and heat waves with mental health outcomes, including hospital admissions for mental health reasons, ⁴² suicide, ⁸⁹ and exacerbation of pre-existing mental health conditions, difficulty sleeping, and fatigue. ⁸⁵ No association was found between sunlight duration and suicide incidence. ⁸⁹
Extreme weather	9	Most reviews reported a proportional association of extreme weather events, ^{45,51,90,91} flooding, ^{6,26,92} and drought ^{63,93} with diverse mental health issues, including, psychological distress, post-traumatic stress disorder, anxiety, depression, psychotropic medication use, alcohol consumption. There was conflicting evidence regarding the association of floods with suicide, tobacco, alcohol and substance abuse. ⁹² No association was found between drought and suicide. ⁶³
Air quality	1	A previous review suggests no association between wildfire smoke exposure and mental health, as measured by physician visits and hospitalizations for mental health reasons during wildfires. ⁸¹
Pregnancy	and bi	irth outcomes (n = 11)
Meteorolo gical	5	Reviews suggest that adverse birth outcomes may be higher among people exposed to meteorological factors such as high temperature, heat, sunlight intensity, cold and humidity. ^{42,94–97} These outcomes include low birth weight, preterm birth, eclampsia and preeclampsia, hypertension and length of pregnancy. ^{42,94–97} The association between heat and adverse birth outcomes seems to have stronger support than the association with cold temperatures. ⁹⁷
Extreme Weather	2	Reviews suggest a potential association of extreme weather events ⁹⁰ and flooding ⁶ with adverse birth outcomes, such as low birth weight, preterm birth and pre-eclampsia. It is suggested that extreme weather events may indirectly affect birth outcomes via the pregnant person's well-being (e.g., stress and worry during pregnancy.) ^{6,90}
Air quality	3	There is limited and inconsistent evidence concerning the association between wildfire smoke exposure and adverse birth outcomes, but reviews suggest a potential proportional association between wildfire smoke exposure and lower birth weight. ^{80–82}
Other	1	The association between environmental pollutants and adverse birth outcomes (i.e., preterm birth) remains unclear due to conflicting evidence. ²⁸
Nutritional	(n = 9)	
General	1	A review suggests an association between climate change and obesity.98
Meteorolo	4	Reviews suggest an association between meteorological factors, such as changes in temperature, heat and precipitation, with diverse nutritional outcomes, including

		explained by the impact of meteorological factors, such as temperature increase and precipitation decrease, on crop production and food insecurity. ^{42,72}
Extreme Weather	6	Reviews suggest an association between extreme weather events, such as flooding and droughts, ⁶³ and diverse nutritional outcomes, including malnutrition and undernutrition in children and adults ^{27,34,42,45,47} via, amongst others, crops production and food insecurity (e.g., low food aid following flooding ⁴²).
Other	1	A review suggests a potential association between certain environmental risk factors (e.g., sanitation, cooking fuels and food-borne mycotoxins), and childhood stunting, which could be aggravated by climate change. ⁹⁹
Skin diseas	ses an	d allergies (n = 8)
General	1	A review suggests a potential proportional association between climate change, in general, and skin and soft tissue infections (e.g., fatal vibrio vulnificus necrotizing). ¹⁰⁰
Meteorolo gical	7	Reviews suggest an association of meteorological factors, such as ultraviolet ligh exposure, temperature and humidity, with diverse skin diseases and allergies, including skin cancer, sunburn, acute urticaria, eczema and pediatric skin irritabilities. ^{24,45,47,49,55,85,101} Higher temperature and ultraviolet light exposure is proportionally associated with sunburn ⁸⁵ and skin cancer, ^{45,101} while low humidity and low temperatures were associated with eczema and skin irritabilities in children. ^{49,55}
Occupation	nal hea	Ith and injuries (n = 6)
Meteorolo gical	6	Reviews suggest that heat is associated with adverse occupational health outcomes, including injuries (e.g., slips, trips, falls, wounds, lacerations and amputations), heat strain, dehydration and kidney diseases. ^{102–107 103} This association was found in many occupational settings, including agriculture, construction, transport and fishing, and seems to affect both outdoor and indoor workers. ¹⁰² This association may be explained by a combination of direct (e.g., dehydration) and indirect factors (e.g., impaired cognitive and physical performance.) ¹⁰⁶
Other	1	A review suggests a potential association between environmental pollution (e.g., heavy metals, fertilizers, etc.) and occupational diseases, such as chronic kidney disease. ¹⁰⁷ This association is suggested to be affected by increasing temperatures.

2		
3 4		G
5 6		
7		
8 9		
9 10		Met
11 12		
12		
14		
15 16		
17		
18 19		
20		Ex W
21		W
22 23		
24		
25 26		Air
27		
28 29		
30		
31	385	Disc
32 33		
34	386	Prin
35 36	387	In this
37	388	of hea
38 39	389	explo
39 40	390	-
41	391	First,
42 43	392	comn
44	393 394	scopi mete
45 46	395	althou
47	396	outco
48	397	the lo
49 50	398	unde
51	399	indire
52 53	400 401	allow relate
54	402	health
55 56	403	rarely
50 57		-
58		
59 60		

General	1	A review suggests a potential association between climate change in general and disability-adjusted life years, which is an indicator that quantifies 'the burden of disease attributable to climate change'. ¹⁰⁸ Authors suggest that the cost of disability-adjusted life years could be high, especially in low to middle income countries.
Meteorolo gical	10	Reviews suggests an association between increasing temperatures and temperature changes, ³⁰ and other various health outcomes, including acute gouty arthritis, ¹⁰⁹ unintentional injuries, ¹¹⁰ diabetes, ⁶⁴ genitourinary diseases, ^{30,64} impaired sleep time and quality, ¹¹¹ cataracts (indirectly associated via people spending more time outside and therefore increased exposure to ultraviolet light), ^{45,47} heat stress, heat exhaustion and kidney failure, ⁸⁵ and renal diseases, fever and electrolyte imbalance in children. ^{49,75}
Extreme weather	6	Reviews suggests an association between extreme weather events, ⁹¹ such as flooding, ⁶ cyclones, ⁷⁸ hurricanes, ¹¹¹ and drought, ⁶³ and other various health outcomes including injuries (e.g., debris, diving in water that is shallower than expected), ^{6,63,78,91} impaired sleep, ¹¹¹ esophageal cancer (likely linked to high salinity of water due to droughts), ⁶³ and exacerbation of chronic illnesses. ^{6,90}
Air quality	1	There is limited evidence, but a systematic review suggests a potential association between wildfire smoke exposure and ophthalmic outcomes, such as eye irritation and cataracts. ⁸⁰

cussion

cipal results

s overview of systematic reviews, we aimed to develop a synthesis of systematic reviews alth impacts of climate change by mapping the characteristics and findings of studies pring the relationship between climate change and health. We identified four key findings.

meteorological impacts, mostly related to temperature and humidity, were the most non impacts studied by included publications, which aligns with findings from a previous ing review on the health impacts of climate change in the Philippines.¹⁰ Indeed, orological factors' impact on all health outcomes identified in this review are explored. ugh some health outcomes are more rarely explored (e.g., mental health and nutritional omes). Although this may not be surprising given that a key implication of climate change is ong-term meteorological impact of temperature rise, this finding suggests we also need to rtake research focused on other climate impacts on health, including potential direct and ect effects of temperature rise, such as the impact of droughts and wildfire smoke. This will us to better prepare for the health crises that arise from these ever-increasing climateed impacts. For instance, the impacts of extreme weather events and air quality on certain h outcomes are not explored (e.g., skin diseases and allergies, occupational health) or only y explored (e.g., pregnancy outcomes).

Second, systematic reviews primarily focus on physical health outcomes, such as infectious diseases, mortality, and respiratory, cardiovascular and neurological outcomes, which also aligns with the country-specific previous scoping review.¹⁰ Regarding mortality, we support Campbell and colleagues'65 suggestion that we should expand our focus to include other types of health outcomes. This will provide better support for mitigation policies and allow us to adapt to the full range of threats of climate change.

Moreover, it is unclear whether the distribution of frequencies of health outcomes reflects the actual burden of health impacts of climate change. The most commonly-studied health outcomes do not necessarily reflect the definition of health presented by the WHO as, "a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity."20 This suggests that future studies should investigate in greater depth the impacts of climate change on mental and broader social well-being. Indeed, some reviews suggested that climate change impacts psychological and social well-being, via broader consequences, such as political instability, health system capacity, migration, and crime, ^{3,4,85,90} thus illustrating how our personal health is determined not only by biological and environmental factors but also by social and health systems. The importance of expanding our scope of health in this field is also recognized in the most recent Lancet report, which states that future reports will include a new mental health indicator.²

Interestingly, the reviews that explored the mental health impacts of climate change were focused mostly on the direct and immediate impacts of experiencing extreme weather events. However, psychologists are also warning about the long-term indirect mental health impacts of climate change, which are becoming more prevalent for children and adults alike (e.g., eco-anxiety, climate depression).^{112,113} Even people who do not experience direct climate impacts, such as extreme weather events, report experiencing distressing emotions when thinking of the destruction of our environment or when worrying about one's uncertain future and the lack of actions being taken. To foster emotional resilience in the face of climate change, these mental health impacts of climate change need to be further explored. Humanity's ability to adapt to and mitigate climate change ultimately depends on our emotional capacity to face this threat.

Third, there is a notable geographic difference in the country affiliations of first authors, with three guarters of systematic reviews having been led by first authors affiliated to institutions in Europe, Australia, or North America, which aligns with the findings of the most recent Lancet report.² While perhaps unsurprising given the inequalities in research funding and institutions concentrated in Western countries, this is of critical importance given the significant health impacts that are currently faced (and will remain) in other parts of the world. Research funding organizations should seek to provide more resources to authors in low- to middle-income countries to ensure their expertise and perspectives are better represented in the literature.

Fourth, overall, most reviews suggest an association between climate change and the deterioration of health in various ways, illustrating the interdependence of our health and well-being with the well-being of our environment. This interdependence may be direct (e.g., heat's

BMJ Open

1	
2	
3	
4	
4	
2	
6	
/	
8	
9	
1	0
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	8
1	9
	0
	1
	2
	3
2	4
2	5
2	6
2	7
2	8
2	9
3	0 1
3	1
2	

- impact on dehydration and exhaustion) or indirect (e.g., via behavior change due to heat.) The most frequently-explored and consistently-supported associations include an association between temperature and humidity with infectious diseases, mortality, and adverse respiratory, cardiovascular and neurological outcomes. Other less frequently studied but consistent associations include associations between climate impacts and increased use of healthcare services, some adverse mental health outcomes, adverse nutritional outcomes, and adverse occupational health outcomes. These associations support key findings of the most recent Lancet report, in which authors report, amongst others, increasing heat exposure being associated with increasing morbidities and mortality, climate change leading to food insecurity and undernutrition, and to an increase in infectious disease transmission.²
- That said, a number of reviews included in this study reported limited, conflicting and/or an absence of evidence regarding the association between the climate impact and health outcome. For instance, there was conflicting or limited evidence concerning the association between extreme weather events and infectious diseases, cardiorespiratory outcomes and some mental health outcomes and the association between air quality and cardiovascular-specific mortality and adverse birth outcomes. These conflicting and limited findings highlight the need for further research. These associations are complex and there exist important methodological challenges inherent to exploring the causal relationship between climate change and health outcomes. This relationship may at times be indirect and likely determined by multiple interacting factors.
- The climate-health link has been the target of more research in recent years and it is also receiving increasing attention from the public and in both public health and climate communication literature.^{2,114–116} However, the health framing of climate change information is still underused in climate communications, and researchers suggest we should be doing more to make the link between human health and climate change more explicit to increase engagement with the climate crisis.^{2,116–118} The health framing of climate communication also has implications for healthcare professionals¹¹⁹ and policymakers, as these actors could play a key part in climate communication, adaptation, and mitigation.^{116,117,120} These key stakeholders' perspectives on the climate-health link, as well as their perceived role in climate adaptation and mitigation could be explored,¹²¹ since research suggests that health professionals are important voices in climate communications¹¹⁹ and especially since, ultimately, these adverse health outcomes will engender pressure on and cost to our health systems and health workers.
- 45 481 Strengths and Limitations

To the best of our knowledge, the current study provides the first broad overview of previous systematic reviews exploring the health impacts of climate change. Our review has three main strengths. First, by targeting systematic reviews, we achieve a higher-order summary of findings than what would have been possible by consulting individual original studies. Second, by synthesizing findings across all included studies and according to the combination of climate impact and health outcome, we offer a clear, detailed, and unique summary of the current state of evidence and knowledge gaps about how climate change may influence human health. This summary may be of use to researchers, policymakers, and communities. Third, we included

studies published in all languages about any climate impact and any health outcome. In doing so, we provide a comprehensive and robust overview.

Our work has four main limitations. First, we were unable to access some full texts and therefore some studies were excluded, even though we deemed them potentially relevant after title and abstract inspection. Other potentially relevant systematic reviews may be missing due to unseen flaws in our systematic search. Second, due to the heterogeneity of the included systematic reviews and the relatively small proportion of studies reporting meta-analytic findings, we could not conduct meta-meta-analyses of findings across reviews. Future research is needed to quantify the climate and health links described in this review, as well as to investigate the causal relationship and other interacting factors. Third, due to limited resources, we did not assess overlap between the included reviews concerning the studies they included. Frequencies and findings should be interpreted with potential overlap in mind. Fourth, we conducted the systematic search of the literature in June 2019, and it is therefore likely that some recent systematic reviews are not included in this study.

Conclusions

 Overall, most systematic reviews of the health impacts of climate change suggest an association between climate change and the deterioration of health in multiple ways, generally in the direction that climate change is associated with adverse human health outcomes. This is worrisome since these outcomes are predicted to rise in the near future, due to the rise in temperature and increase in climate-change-related events such as extreme weather events and worsened air quality. Most studies included in this review focused on meteorological impacts of climate change on adverse physical health outcomes. Future studies could fill knowledge gaps by exploring other climate-related impacts and broader psychosocial health outcomes. Moreover, studies on health impacts of climate change have mostly been conducted by first authors affiliated with institutions in high-income countries. This inequity needs to be addressed, considering that the impacts of climate change are and will continue to predominantly impact lower-income countries. Finally, although most reviews also recommend more research to better understand and quantify these associations, to adapt to and mitigate climate change's impacts on health, it will also be important to unpack the 'what, how, and where' of these effects. Health effects of climate change are unlikely to be distributed equally or randomly through populations. It will be important to mitigate the changing climate's potential to exacerbate health inequities.

525 Acknowledgements

526 The authors gratefully acknowledge the contributions of Selma Chipenda Dansokho, as 527 research associate, and Thierry Provencher, as research assistant, to this project, and of 528 Frederic Bergeron, for assistance with search strategy, screening and selection of articles for 529 the systematic review.

2 530 Funding

531 This study was funded by the Canadian Institutes of Health Research (CIHR) FDN-148426. The 532 CIHR had no role in determining the study design, the plans for data collection or analysis, the 533 decision to publish, nor the preparation of this manuscript. ACT is funded by a Tier 2 Canada 534 Research Chair in Knowledge Synthesis. HOW is funded by a Tier 2 Canada Research Chair in 535 Human-Centred Digital Health.

² 536 Authors' Contributions

RN, CF, ACT, HOW contributed to the design of the study. CB, RN, LPB, RAPR and HOW
contributed to the systematic search of the literature and selection of studies. RR, HOW, LC
conducted data analysis and interpretation. RR and HOW drafted the first version of the article
with early revision by CB, LC and RN. All authors critically revised the article and approved the
final version for submission for publication. RR and HOW had full access to all the data in the
study and had final responsibility for the decision to submit for publication.

- ²³ 543 Conflict of Interest Statement
- 5 544 The authors have no conflict of interest to declare.

⁸ 545 Data Sharing Statement

546 No additional data available.

547 Ethics Statement

548 Since this is a systematic review of previous systematic reviews, no ethics approval was 549 required, as we did not collect original data.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

References

- Portier C, Tart K, Carter S, et al. A Human Health Perspective On Climate Change A Report Outlining the Research Needs on the Human Health Effects of Climate Change. Environmental Health Perspectives and the National Institute of Environmental Health Sciences, 2010.
- Watts N, Amann M, Arnell N, et al. The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises. Lancet 2021; 397: 129-70.
- Hsiang SM, Burke M. Climate, conflict, and social stability: what does the evidence say? *Clim Change* 2014; **123**: 39–55.
- Hsiang SM, Burke M, Miguel E. Quantifying the Influence of Climate on Human Conflict. Science 2013; 341. DOI:10.1126/science.1235367.
- Patz JA, Frumkin H, Holloway T, Vimont DJ, Haines A. Climate change: challenges and opportunities for global health. JAMA 2014; 312: 1565-80.
- Alderman K, Turner LR, Tong SL. Floods and human health: A systematic review. Environ Int 2012; 47: 37–47.
- Coates SJ, Davis MDP, Andersen LK. Temperature and humidity affect the incidence of hand, foot, and mouth disease: a systematic review of the literature - a report from the International Society of Dermatology Climate Change Committee. Int J Dermatol 2019; 58: 388-99.
- Duan C, Zhang X, Jin H, et al. Meteorological factors and its association with hand, foot and mouth disease in Southeast and East Asia areas: a meta-analysis. Epidemiology & Infection 2018; 147: 1–18.
- Babaie J, Barati M, Azizi M, Ephtekhari A, Sadat SJ. A systematic evidence review of the effect of climate change on malaria in Iran. J Parasit Dis 2018; 42: 331-40.
- 10 Chua PL, Dorotan MM, Sigua JA, Estanislao RD, Hashizume M, Salazar MA. Scoping Review of Climate Change and Health Research in the Philippines: A Complementary Tool in Research Agenda-Setting. Int J Environ Res Public Health 2019; 16. DOI:10.3390/ijerph16142624.
- Lal A, Lill AW, McIntyre M, Hales S, Baker MG, French NP. Environmental change and enteric zoonoses in New Zealand: a systematic review of the evidence. Aust NZJ Public *Health* 2015; **39**: 63–8.
- 12 Li C, Lu Y, Liu J, Wu X. Climate change and dengue fever transmission in China: Evidences and challenges. Sci Total Environ 2018; 622-623: 493-501.
- 13 Herlihy N, Bar-Hen A, Verner G, et al. Climate change and human health: what are the

BMJ Open

1 2			
- 3 4	584		research trends? A scoping review protocol. BMJ Open 2016; 6: e012022.
5 6 7 8	585 586 587	14	Hosking J, Campbell-Lendrum D. How well does climate change and human health research match the demands of policymakers? A scoping review. <i>Environ Health Perspect</i> 2012; 120 : 1076–82.
9 10 11 12 13 14 15 16 17 18 19 20 21 22	588 589 590 591	15	Pollock M, Fernandes RM, Becker LA, Pieper D, Hartling L. Chapter V: Overviews of Reviews. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, ed. Cochrane Handbook for Systematic Reviews of Interventions version 6.1 (updated September 2020). Cochrane, 2020.
	592 593 594 595 596 597	16	Holly O. Witteman, Selma Chipenda Dansokho, Ruth Ndjaboue, Thierry Provencher, Rose- Alice Poulin-Rheault, Louann Poirier-Bergeron, Caroline Beaudoin, Catherine Fallon, Rhéa Rocque, Andrea Tricco. Climate change and human health: an overview of systematic reviews. 2019; published online Dec 4. https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=145972 (accessed Aug 8, 2020).
23 24 25	598 599	17	Page M, McKenzie J, Bossuyt P, <i>et al.</i> Updating the PRISMA reporting guideline for systematic reviews and meta-analyses. 2020. DOI:10.17605/OSF.IO/P93GE.
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	600 601 602	18	Pollock M, Fernandes RM, Pieper D, <i>et al.</i> Preferred Reporting Items for Overviews of Reviews (PRIOR): a protocol for development of a reporting guideline for overviews of reviews of healthcare interventions. <i>Syst Rev</i> 2019; 8 : 335.
	603 604	19	About Cochrane Reviews. https://www.cochranelibrary.com/about/about-cochrane-reviews (accessed Sept 14, 2020).
	605 606 607 608 609	20	World Health Organization. Preamble to the Constitution of WHO as adopted by the International Health Conference. New York, 19 June - 22 July 1946 signed on 22 July 1946 by the representatives of 61 States (Official Records of WHO, no. 2, p. 100) and entered into force on 7 April 1948. The definition has not been amended since 1948. https://apps.who.int/gb/bd/pdf_files/BD_49th-en.pdf#page=7.
41 42	610	21	Covidence systematic review software. www.covidence.org.
43 44 45 46 47 48 49 50 51	611 612 613	22	Watts N, Amann M, Arnell N, et al. The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. <i>Lancet</i> 2019; 394 : 1836–78.
	614 615 616	23	Boylan S, Beyer K, Schlosberg D, <i>et al.</i> A conceptual framework for climate change, health and wellbeing in NSW, Australia. <i>Public Health Res Pract</i> 2018; 28 . DOI:10.17061/phrp2841826.
52 53 54 55 56 57	617 618 619	24	Amegah AK, Rezza G, Jaakkola JJ. Temperature-related morbidity and mortality in Sub-Saharan Africa: A systematic review of the empirical evidence. <i>Environ Int</i> 2016; 91 : 133–49.
58 59 60			22 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3 4 5 6 7	620 621 622 623	25	Odame EA, Li Y, Zheng SM, Vaidyanathan A, Silver K. Assessing Heat-Related Mortality Risks among Rural Populations: A Systematic Review and Meta-Analysis of Epidemiological Evidence. <i>Int J Environ Res Public Health</i> 2018; 15 . DOI:10.3390/ijerph15081597.
8 9 10 11	624 625	26	Leyva EWA, Beaman A, Davidson PM. Health Impact of Climate Change in Older People: An Integrative Review and Implications for Nursing. <i>J Nurs Scholarsh</i> 2017; 49 : 670–8.
12 13 14 15	626 627 628	27	Phalkey RK, Aranda-Jan C, Marx S, Hofle B, Sauerborn R. Systematic review of current efforts to quantify the impacts of climate change on undernutrition. <i>Proc Natl Acad Sci U S A</i> 2015; 112 : E4522–9.
16 17 18 19 20	629 630 631	28	Porpora MG, Piacenti I, Scaramuzzino S, Masciullo L, Rech F, Panici PB. Environmental contaminants exposure and preterm birth: A systematic review. <i>Toxics</i> 2019; 7 . DOI:10.3390/toxics7010011.
20 21 22 23	632 633	29	Bai L, Morton LC, Liu Q. Climate change and mosquito-borne diseases in China: a review. <i>Globalization & Health</i> 2013; 9 : 10–10.
24 25 26	634 635	30	Cheng J, Xu Z, Zhu R, <i>et al.</i> Impact of diurnal temperature range on human health: a systematic review. <i>Int J Biometeorol</i> 2014; 58 : 2011–24.
27 28 29 30	636 637 638	31	Phung D, Huang C, Rutherford S, Chu C, Wang X, Nguyen M. Climate Change, Water Quality, and Water-Related Diseases in the Mekong Delta Basin: A Systematic Review. <i>Asia Pac J Public Health</i> 2015; 27 : 265–76.
31 32 33 34 35	639 640 641	32	Klinger C, Landeg O, Murray V. Power Outages, Extreme Events and Health: A Systematic Review of the Literature from 2011-2012. <i>PLoS Curr</i> 2014. DOI:10.1371/currents.dis.04eb1dc5e73dd1377e05a10e9edde673.
36 37 38	642 643	33	Sun Z, Chen C, Xu D, Li T. Effects of ambient temperature on myocardial infarction: A systematic review and meta-analysis. <i>Environ Pollut</i> 2018; 241 : 1106–14.
39 40 41 42 43 44	644 645 646 647	34	Berhane K, Kumie A, Samet J. Health Effects of Environmental Exposures, Occupational Hazards and Climate Change in Ethiopia: Synthesis of Situational Analysis, Needs Assessment and the Way Forward. <i>Ethiopian Journal of Health Development</i> 2016; 30 : 50–6.
45 46 47	648 649	35	Bernhardt V, Finkelmeier F, Verhoff MA, Amendt J. Myiasis in humans-a global case report evaluation and literature analysis. <i>Parasitol Res</i> 2019; 118 : 389–97.
48 49 50 51 52	650 651 652	36	de Sousa TCM, Amancio F, Hacon SS, Barcellos C. [Climate-sensitive diseases in Brazil and the world: systematic review] Enfermedades sensibles al clima en Brasil y el mundo: revision sistematica. <i>Rev Panam Salud Publica</i> 2018; 42 : e85.
53 54 55 56	653 654 655	37	Dhimal M, Ahrens B, Kuch U. Climate Change and Spatiotemporal Distributions of Vector-Borne Diseases in NepalA Systematic Synthesis of Literature. <i>PLoS ONE [Electronic Resource]</i> 2015; 10 : e0129869.
57 58 59 60			23 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2			
3 4 5	656 657	38	Fan J, Wei W, Bai Z, <i>et al.</i> A systematic review and meta-analysis of dengue risk with temperature change. <i>Int J Environ Res Public Health</i> 2015; 12 : 1–15.
6 7 8 9 10	658 659 660	39	Gracia JR, Schumann B, Seidler A. Climate Variability and the Occurrence of Human Puumala Hantavirus Infections in Europe: A Systematic Review. <i>Zoonoses Public Health</i> 2015; 62 : 465–78.
10 11 12 13 14	661 662 663	40	Hedlund C, Blomstedt Y, Schumann B. Association of climatic factors with infectious diseases in the Arctic and subarctic regiona systematic review. <i>Glob Health Action</i> 2014; 7 : 24161.
15 16 17	664 665	41	Hii YL, Zaki RA, Aghamohammadi N, Rocklov J. Research on Climate and Dengue in Malaysia: A Systematic Review. <i>Current Environmental Health Reports</i> 2016; 3 : 81–90.
18 19 20	666 667	42	Khader YS, Abdelrahman M, Abdo N, <i>et al.</i> Climate change and health in the Eastern Mediterranean countries: a systematic review. <i>Rev Environ Health</i> 2015; 30 : 163–81.
21 22 23 24 25	668 669 670	43	Matysiak A, Roess A. Interrelationship between Climatic, Ecologic, Social, and Cultural Determinants Affecting Dengue Emergence and Transmission in Puerto Rico and Their Implications for Zika Response. <i>J Trop Med</i> 2017; 2017 . DOI:10.1155/2017/8947067.
25 26 27 28 29 30 31 32 33 34	671 672 673	44	Naish S, Dale P, Mackenzie JS, McBride J, Mengersen K, Tong S. Climate change and dengue: a critical and systematic review of quantitative modelling approaches. <i>BMC Infect Dis</i> 2014; 14 : 167–167.
	674 675 676	45	Nichols A, Maynard V, Goodman B, Richardson J. Health, climate change and sustainability: a systematic review and thematic analysis of the literature. <i>Environ Health Insights</i> 2009; : 63–88.
35 36 37 38	677 678 679	46	Racloz V, Ramsey R, Tong S, Hu W. Surveillance of dengue fever virus: a review of epidemiological models and early warning systems. <i>PLoS Neglected Tropical Diseases [electronic resource]</i> 2012; 6 : e1648.
39 40 41 42 43 44 45	680 681	47	Swynghedauw B. [Medical consequences of global warming]. <i>Presse Med</i> 2009; 38 : 551–61.
	682 683	48	Waits A, Emelyanova A, Oksanen A, Abass K, Rautio A. Human infectious diseases and the changing climate in the Arctic. <i>Environ Int</i> 2018; 121 : 703–13.
46 47 48	684 685	49	Xu Z, Etzel RA, Su H, Huang C, Guo Y, Tong S. Impact of ambient temperature on children's health: a systematic review. <i>Environ Res</i> 2012; 117 : 120–31.
48 49 50 51 52 53	686 687 688	50	Yu W, Mengersen K, Dale P, <i>et al.</i> Projecting Future Transmission of Malaria Under Climate Change Scenarios: Challenges and Research Needs. <i>Crit Rev Environ Sci Technol</i> 2015; 45 : 777–811.
53 54 55 56 57	689 690	51	Veenema TG, Thornton CP, Lavin RP, Bender AK, Seal S, Corley A. Climate Change- Related Water Disasters' Impact on Population Health. <i>J Nurs Scholarsh</i> 2017; 49 : 625–34.
58 59 60			24 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2			
3 4 5 6	691 692 693	52	Brown L, Murray V. Examining the relationship between infectious diseases and flooding in Europe: A systematic literature review and summary of possible public health interventions. <i>Disaster Health</i> 2013; 1 : 117–27.
7 8 9 10 11	694 695 696	53	Tall JA, Gatton ML, Tong S. Ross River Virus Disease Activity Associated With Naturally Occurring Nontidal Flood Events in Australia: A Systematic Review. <i>J Med Entomol</i> 2014; 51 : 1097–108.
12 13 14 15	697 698 699	54	Ghazani M, FitzGerald G, Hu WB, Toloo G, Xu ZW. Temperature Variability and Gastrointestinal Infections: A Review of Impacts and Future Perspectives. <i>Int J Environ Res Public Health</i> 2018; 15 . DOI:10.3390/ijerph15040766.
16 17 18	700 701	55	Gao J, Sun Y, Lu Y, Li L. Impact of ambient humidity on child health: a systematic review. <i>PLoS ONE [Electronic Resource]</i> 2014; 9 : e112508.
19 20 21 22 23	702 703 704	56	Lal A, Fearnley E, Wilford E. Local weather, flooding history and childhood diarrhoea caused by the parasite Cryptosporidium spp.: A systematic review and meta-analysis. <i>Sci Total Environ</i> 2019; 674 : 300–6.
24 25 26 27	705 706 707	57	Levy K, Woster AP, Goldstein RS, Carlton EJ. Untangling the Impacts of Climate Change on Waterborne Diseases: a Systematic Review of Relationships between Diarrheal Diseases and Temperature, Rainfall, Flooding, and Drought. <i>Environ Sci Technol</i> 2016; 50 : 4905–22.
28 29 30 31 32	708 709 710	58	Philipsborn R, Ahmed SM, Brosi BJ, Levy K. Climatic Drivers of Diarrheagenic Escherichia coli Incidence: A Systematic Review and Meta-analysis. <i>J Infect Dis</i> 2016; 214 : 6–15.
33 34 35	711 712	59	Semenza JC, Herbst S, Rechenburg A, <i>et al.</i> Climate change impact assessment of food- and waterborne diseases. <i>Crit Rev Environ Sci Technol</i> 2012; 42 : 857–90.
36 37 38	713 714	60	Stensgaard AS, Vounatsou P, Sengupta ME, Utzinger J. Schistosomes, snails and climate change: Current trends and future expectations. <i>Acta Trop</i> 2019; 190 : 257–68.
39 40 41 42 43	715 716 717	61	Welch K, Shipp-Hilts A, Eidson M, Saha S, Zansky S. Salmonella and the changing environment: systematic review using New York State as a model. <i>J Water Health</i> 2019; 17 : 179–95.
44 45 46	718 719	62	Cann KF, Thomas DR, Salmon RL, Wyn-Jones AP, Kay D. Extreme water-related weather events and waterborne disease. <i>Epidemiology & Infection</i> 2013; 141 : 671–86.
47 48 49 50 51	720 721 722	63	Stanke C, Kerac M, Prudhomme C, Medlock J, Murray V. Health Effects of Drought: A Systematic Review of the Evidence. <i>PLoS Curr</i> 2013. DOI:10.1371/currents.dis.7a2cee9e980f91ad7697b570bcc4b004.
51 52 53 54 55 56 57	723 724 725	64	Bunker A, Wildenhain J, Vandenbergh A, <i>et al.</i> Effects of Air Temperature on Climate-Sensitive Mortality and Morbidity Outcomes in the Elderly; a Systematic Review and Meta- analysis of Epidemiological Evidence. <i>EBioMedicine</i> 2016; 6 : 258–68.
57 58 59 60			25 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 27 of 65

BMJ Open

1 2				
3 4 5	726 727	65	Campbell S, Remenyi TA, White CJ, Johnston FH. Heatwave and health impact research global review. <i>Health Place</i> 2018; 53 : 210–8.	: A
6 7 8 9 10	728 729 730	66	Cunrui H, Barnett AG, Xiaoming W, Vaneckova P, FitzGerald G, Shilu T. Projecting Future Heat-Related Mortality under Climate Change Scenarios: A Systematic Review. <i>Environ Health Perspect</i> 2011; 119 : 1681–90.	
10 11 12 13	731 732	67	Ghanizadeh G, Heidari M, Seifi B, Jafari H, Pakjouei S. The effect of climate change on cardiopulmonary disease-a systematic review. <i>J Clin Diagn Res</i> 2017; 11 : IE01–4.	
14 15 16	733 734	68	Hajat S, Kosatky T. Heat-related mortality: a review and exploration of heterogeneity. <i>Journal of Epidemiology & Community Health</i> 2010; 64 : 753–60.	
17 18 19 20 21	735 736 737	69	Lawton EM, Pearce H, Gabb GM. Review article: Environmental heatstroke and long-ter clinical neurological outcomes: A literature review of case reports and case series 2000–2016. <i>Emerg Med Australas</i> 2019; 31 : 163–73.	m
22 23 24 25	738 739 740	70	Lian H, Ruan YP, Liang RJ, Liu XL, Fan ZJ. Short-Term Effect of Ambient Temperature and the Risk of Stroke: A Systematic Review and Meta-Analysis. <i>Int J Environ Res Publi</i> <i>Health</i> 2015; 12 : 9068–88.	
26 27 28 29 30	741 742 743	71	Moghadamnia MT, Ardalan A, Mesdaghinia A, Keshtkar A, Naddafi K, Yekaninejad MS Ambient temperature and cardiovascular mortality: A systematic review and meta-analys <i>PeerJ</i> 2017; 2017 : 3574.	
31 32 33	744 745	72	Salve HR, Parthasarathy R, Krishnan A, Pattanaik DR. Impact of ambient air temperature on human health in India. <i>Rev Environ Health</i> 2018; 33 : 433–9.	9
34 35 36 37	746 747 748	73	Sanderson M, Arbuthnott K, Kovats S, Hajat S, Falloon P. The use of climate information to estimate future mortality from high ambient temperature: A systematic literature review <i>PLoS ONE [Electronic Resource]</i> 2017; 12 : e0180369.	
38 39 40 41 42	749 750 751	74	Witt C, Schubert AJ, Jehn M, <i>et al.</i> The Effects of Climate Change on Patients With Chronic Lung Disease. A Systematic Literature Review. <i>Dtsch Arztebl Int</i> 2015; 112 : 878 83.	3—
43 44 45	752 753	75	Xu Z, Sheffield PE, Su H, Wang X, Bi Y, Tong S. The impact of heat waves on children' health: a systematic review. <i>Int J Biometeorol</i> 2014; 58 : 239–47.	'S
46 47 48 49	754 755 756	76	Xu Z, FitzGerald G, Guo Y, Jalaludin B, Tong S. Impact of heatwave on mortality under different heatwave definitions: A systematic review and meta-analysis. <i>Environ Int</i> 2016; 89-90 : 193–203.	
50 51 52 53 54	757 758 759	77	Yu W, Mengersen K, Wang X, <i>et al.</i> Daily average temperature and mortality among the elderly: a meta-analysis and systematic review of epidemiological evidence. <i>Int J Biometeorol</i> 2012; 56 : 569–81.	
55 56 57	760	78	Doocy S, Dick A, Daniels A, Kirsch TD. The Human Impact of Tropical Cyclones: A	
58 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	26

BMJ Open

1 2			
3 4 5	761 762		Historical Review of Events 1980-2009 and Systematic Literature Review. <i>PLoS Curr</i> 2013. DOI:10.1371/currents.dis.2664354a5571512063ed29d25ffbce74.
6 7 8 9	763 764 765	79	Madaniyazi L, Guo Y, Yu W, Tong S. Projecting future air pollution-related mortality under a changing climate: Progress, uncertainties and research needs. <i>Environ Int</i> 2015; 75 : 21–32.
5 6 7 8	766 767 768	80	Liu JC, Pereira G, Uhl SA, Bravo MA, Bell ML. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. <i>Environ Res</i> 2015; 136 : 120–32.
16 17	769 770	81	Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT. Critical Review of Health Impacts of Wildfire Smoke Exposure. <i>Environ Health Perspect</i> 2016; 124 : 1334–43.
19 20 21	771 772 773	82	Youssouf H, Liousse C, Roblou L, <i>et al.</i> Non-accidental health impacts of wildfire smoke. <i>International Journal of Environmental Research & Public Health [Electronic Resource]</i> 2014; 11 : 11772–804.
23 24	774 775	83	Lake IR, Jones NR, Agnew M, <i>et al.</i> Climate Change and Future Pollen Allergy in Europe. <i>Environ Health Perspect</i> 2017; 125 : 385–91.
27 28	776 777	84	Cong XW, Xu XJ, Zhang YL, Wang QH, Xu L, Huo X. Temperature drop and the risk of asthma: a systematic review and meta-analysis. <i>Environ Sci Pollut Res</i> 2017; 24 : 22535–46.
 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 	778 779	85	Zuo J, Pullen S, Palmer J, Bennetts H, Chileshe N, Ma T. Impacts of heat waves and corresponding measures: a review. <i>J Clean Prod</i> 2015; 92 : 1–12.
	780 781 782	86	Xu Z, Crooks JL, Davies JM, Khan AF, Hu W, Tong S. The association between ambient temperature and childhood asthma: a systematic review. <i>Int J Biometeorol</i> 2018; 62 : 471–81.
	783 784 785 786	87	Sawatzky A, Cunsolo A, Jones-Bitton A, Middleton J, Harper SL. Responding to Climate and Environmental Change Impacts on Human Health via Integrated Surveillance in the Circumpolar North: A Systematic Realist Review. <i>International Journal of Environmental</i> <i>Research & Public Health [Electronic Resource]</i> 2018; 15 : 30.
	787 788 789	88	Wald A. Emergency Department Visits and Costs for Heat-Related Illness Due to Extreme Heat or Heat Waves in the United States: An Integrated Review. <i>Nurs Econ</i> 2019; 37 : 35–48.
47 48 49	790 791	89	Gao JJ, Cheng Q, Duan J, <i>et al.</i> Ambient temperature, sunlight duration, and suicide: A systematic review and meta-analysis. <i>Sci Total Environ</i> 2019; 646 : 1021–9.
50 51 52 53 54	792 793 794	90	Benevolenza MA, DeRigne L. The impact of climate change and natural disasters on vulnerable populations: A systematic review of literature. <i>J Hum Behav Soc Environ</i> 2019; 29 : 266–81.
55 56 57	795	91	Rataj E, Kunzweiler K, Garthus-Niegel S. Extreme weather events in developing countries
58 59 60			27 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3 4 5	796 797		and related injuries and mental health disorders - a systematic review. <i>BMC Public Health</i> 2016; 16 : 1020–1020.
6 7 8	798 799	92	Fernandez A, Black J, Jones M, <i>et al.</i> Flooding and Mental Health: A Systematic Mapping Review. <i>PLoS ONE [Electronic Resource]</i> 2015; 10 . DOI:10.1371/journal.pone.0119929.
9 10 11 12 13	800 801 802	93	Vins H, Bell J, Saha S, Hess JJ. The Mental Health Outcomes of Drought: A Systematic Review and Causal Process Diagram. <i>International Journal of Environmental Research & Public Health [Electronic Resource]</i> 2015; 12 : 13251–75.
14 15 16	803 804	94	Carolan-Olah M, Frankowska D. High environmental temperature and preterm birth: A review of the evidence. <i>Midwifery</i> 2014; 30 : 50–9.
17 18 19 20 21	805 806 807	95	Kuehn L, McCormick S. Heat Exposure and Maternal Health in the Face of Climate Change. <i>International Journal of Environmental Research & Public Health [Electronic Resource]</i> 2017; 14 : 29.
22 23 24	808 809	96	Poursafa P, Keikha M, Kelishadi R. Systematic review on adverse birth outcomes of climate change. <i>J Res Med Sci</i> 2015; 20 : 397–402.
25 26 27 28	810 811 812	97	Zhang YQ, Yu CH, Wang L. Temperature exposure during pregnancy and birth outcomes: An updated systematic review of epidemiological evidence. <i>Environ Pollut</i> 2017; 225 : 700–12.
 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	813 814	98	An R, Ji M, Zhang S. Global warming and obesity: a systematic review. <i>Obes Rev</i> 2018; 19 : 150–63.
	815 816	99	Vilcins D, Sly PD, Jagals P. Environmental Risk Factors Associated with Child Stunting: A Systematic Review of the Literature. <i>Annals of Global Health</i> 2018; 84 : 551–62.
	817 818 819	100	Huang KC, Weng HH, Yang TY, Chang TS, Huang TW, Lee MS. Distribution of Fatal Vibrio Vulnificus Necrotizing Skin and Soft-Tissue Infections: A Systematic Review and Meta-Analysis. <i>Medicine</i> 2016; 95 : e2627.
	820 821	101	Augustin J, Franzke N, Augustin M, Kappas M. Does climate change affect the incidence of skin and allergic diseases in Germany? <i>J Dtsch Dermatol Ges</i> 2008; 6 : 632–8.
	822 823 824	102	Binazzi A, Levi M, Bonafede M, <i>et al.</i> Evaluation of the impact of heat stress on the occurrence of occupational injuries: Meta-analysis of observational studies. <i>Am J Ind Med</i> 2019; 62 : 233–43.
	825 826 827 828	103	Bonafede M, Marinaccio A, Asta F, Schifano P, Michelozzi P, Vecchi S. The association between extreme weather conditions and work-related injuries and diseases. A systematic review of epidemiological studies. <i>Annali Dell Istituto Superiore Di Sanita</i> 2016; 52 : 357–67.
54 55 56 57	829 830	104	Flouris AD, Dinas PC, Ioannou LG, <i>et al.</i> Workers' health and productivity under occupational heat strain: a systematic review and meta-analysis. <i>The lancet Planetary</i>
58 59 60			28 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
-			

2			
3 4	831		<i>Health</i> 2018; 2 : e521–31.
5 6 7 8 9	832 833 834	105	Levi M, Kjellstrom T, Baldasseroni A. Impact of climate change on occupational health and productivity: a systematic literature review focusing on workplace heat. <i>Medicina del Lavoro</i> 2018; 109 : 163–79.
9 10 11 12	835 836	106	Varghese BM, Hansen A, Bi P, Pisaniello D. Are workers at risk of occupational injuries due to heat exposure? A comprehensive literature review. <i>Saf Sci</i> 2018; 110 : 380–92.
 13 14 15 16 17 18 19 20 21 22 23 24 25 	837 838 839 840	107	Wimalawansa SA, Wimalawansa SJ. Environmentally induced, occupational diseases with emphasis on chronic kidney disease of multifactorial origin affecting tropical countries. <i>Annals of Occupational and Environmental Medicine</i> 2016; 28 . DOI:10.1186/s40557-016-0119-y.
	841 842	108	Zhang Y, Bi P, Hiller JE. Climate change and disability adjusted life years. <i>J Environ Health</i> 2007; 70 : 32–6.
	843 844 845	109	Park KY, Kim HJ, Ahn HS, Yim SY, Jun JB. Association between acute gouty arthritis and meteorological factors: An ecological study using a systematic review and meta-analysis. <i>Semin Arthritis Rheum</i> 2017; 47 : 369–75.
26 27 28 29 30	846 847 848	110	Kampe EOI, Kovats S, Hajat S. Impact of high ambient temperature on unintentional injuries in high-income countries: a narrative systematic literature review. <i>BMJ Open</i> 2016; 6 . DOI:10.1136/bmjopen-2015-010399.
50			

- 111 Rifkin DI, Long MW, Perry MJ. Climate change and sleep: A systematic review of the literature and conceptual framework. Sleep Med Rev 2018; 42: 3–9.
- 112 Clayton S. Climate anxiety: Psychological responses to climate change. J Anxiety Disord 2020; 74: 102263.
- 113 Davenport L. Emotional Resiliency in the Era of Climate Change: A Clinician's Guide. London: Jessica Kingsley Publishers, 2017.
- 114 Maibach EW, Nisbet M, Baldwin P, Akerlof K, Diao G. Reframing climate change as a public health issue: an exploratory study of public reactions. BMC Public Health 2010; 10: 299.
- 115 Stoknes PE. What we think about when we try not to think about global warming: Toward a new psychology of climate action. White River Junction, Vermont: Chelsea Green Publishing 2015.
- 116 Ahmadi S, Schütte S, Herlihy N, Hemono M, Flahault A, Depoux A. Health as a Key Driver of Climate Change Communication. A Scoping Review. Preprints 2020; 2020100095. DOI:10.20944/preprints202010.0095.v1.
- 117 Adlong W, Dietsch E. Environmental education and the health professions: framing climate change as a health issue. Environ Educ Res 2015; 21: 687-709.

1 2			
- 3 4 5	866 867	118	Myers TA, Nisbet MC, Maibach EW, Leiserowitz AA. A public health frame arouses hopeful emotions about climate change. <i>Clim Change</i> 2012; 113 : 1105–12.
6 7 8	868 869	119	Costello A, Montgomery H, Watts N. Climate change: the challenge for healthcare professionals. <i>BMJ</i> 2013; 347 : f6060.
9 10 11 12	870 871	120	Gould S, Rudolph L. Challenges and Opportunities for Advancing Work on Climate Change and Public Health. <i>Int J Environ Res Public Health</i> 2015; 12 : 15649–72.
13 14 15	872 873	121	Yang L, Liu C, Hess J, Phung D, Huang C. Health professionals in a changing climate: protocol for a scoping review. <i>BMJ Open</i> 2019; 9 : e024451.
16 17	874		
18 19	875		
20 21 22			
23 24			
25 26			
27 28			
29			
30 31			
32 33			
34 35			
36 37			
38			
39 40			
41 42			
43 44			
45			
46 47			
48 49			
50 51			
52			
53 54			
55 56			
57			
58 59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

876 Figure Legends

878 Figure 1. The flow chart for included articles in this review.

880 Figure 2. Number of included systematic reviews by year of publication.

882 Figure 3. Number of publications according to geographic affiliation of the first author.

884 Figure 4. Summary of the combination of climate impact and health outcome

(frequencies). Note: The total frequency for one category of health outcome could exceed the number of publications included in this health outcome, since one publication could explore the health impact according to more than one climate factor (e.g., one publication could explore both the impact of extreme weather events and temperature on mental health.

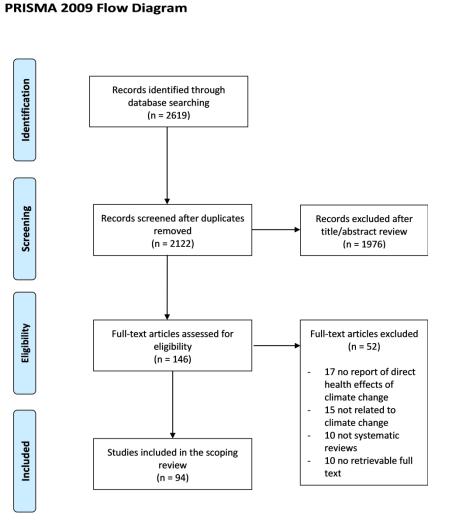
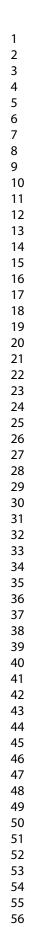



Figure 1. The flow chart for included articles in this review.

165x174mm (600 x 600 DPI)

60

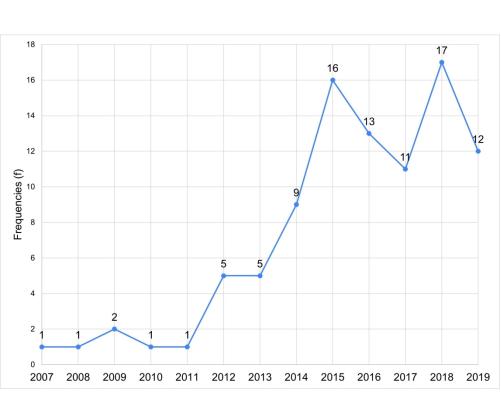


Figure 2. Number of included systematic reviews by year of publication.

199x141mm (330 x 330 DPI)

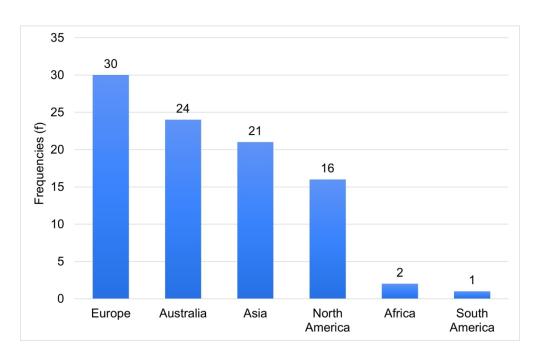
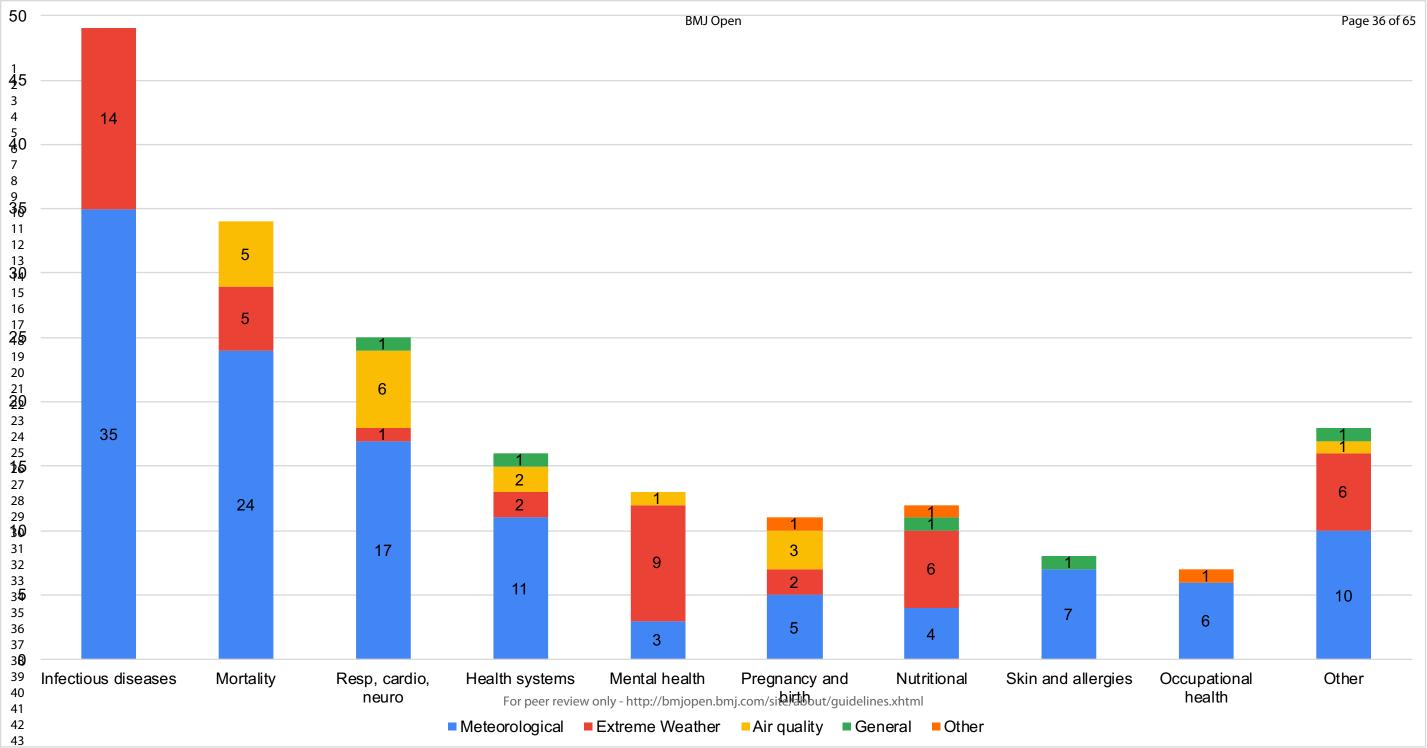



Figure 3. Number of publications according to geographic affiliation of the first author.

172x108mm (330 x 330 DPI)

Appendix 1. Search Strategy

Database: MEDLINE (OVID)

No database limit

Concepts	#	Search strategy
Global Warming	1	exp Climate Change/
	2	"Global warming".ti,ab,kw
	3	"Climate Change?".ti,ab,kw
Global Warming combined	4	or/1-3
Systematic review and meta-analysis	5	exp Meta-Analysis as Topic/
	6	"Meta-Analysis"/
	7	Meta-Analysis.ti,ab,kw
	8	"meta analy*".ti,ab,kw
	9	metaanaly*.ti,ab,kw
	10	"Systematic Review"/
	11	"Systematic Reviews as Topic"/
	12	(systematic adj2 review).ti,ab,kw
	13	(review adj1 ("selection criteria" OR "data extraction")).ti,ab
Systematic review and meta-analysis combined	14	or/5-13
Combination of concepts	15	4 AND 14

Database: Embase.com

No database limit

Concepts	#	Search strategy	
Global Warming	1	'climate change'/de	
	2	'greenhouse effect'/de	
	3	"Global warming":ti,ab,kw	
	4	"Climate Change*":ti,ab,kw	
Global Warming combined	5	#1 OR #2 OR #3 OR #4	
Systematic review and meta-analysis	6	'meta analysis'/exp	
	7	'meta analysis (topic)'/de	
	8	Meta-Analysis:ti,ab,kw	
	9	"meta analy*":ti,ab,kw	
	10	metaanaly*:ti,ab,kw	
	11	'systematic review'/de	
	12	(systematic NEAR/2 review):ti,ab,kw	
	13	(review NEAR/2 ("selection criteria" OR "data extraction")):ti,a	
Systematic review and meta-analysis combined	14	#7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14	

Combination of concepts	15	#14 AND #5
Embase database only	16	AND [embase]/lim NOT ([embase]/lim AND [medline]/lim)

Database: Web of Science

Limit to: Science Citation Index Expanded (SCI-EXPANDED) and Emerging Sources Citation Index (ESCI) index only

Concepts	#	Search strategy
Global Warming	10	TS=("Global warming" OR "Climate Change\$")
Systematic review and meta-analysis	2	TS=(Meta-Analysis)
	3	TS=("meta analy*")
	4	TS=(metaanaly*)
	5	TS=(systematic NEAR/2 review)
	6	TS=(review NEAR/1 ("selection criteria" OR "data extraction"))
Systematic review and meta-analysis combined	7	#6 OR #5 OR #4 OR #3 OR #2
Combination of concepts	8	#7 AND #1

Database: CINAHL

No database limit

Concepts	#	Search strategy			
Global Warming	1	MH "Climate Change"			

	2	MH "Greenhouse Effect"
	3	TI "Global warming"
	4	TI "Climate Change?"
	5	AB "Global warming"
	6	AB "Climate Change?"
Global Warming combined	7	S1 OR S2 OR S3 OR S4 OR S5 OR S6
Systematic review and meta-analysis	8	MH "Meta Analysis"
	9	TI "Meta-Analysis"
	10	AB "Meta-Analysis"
	11	TI "meta analy*"
	12	AB "meta analy*"
	13	TI metaanaly*
	14	AB metaanaly*
	15	MH "Systematic Review"
	16	TI (systematic N2 review)
	17	AB (systematic N2 review)
	18	TI (review N1 ("selection criteria" OR "data extraction"))
	19	AB (review N1 ("selection criteria" OR "data extraction"))

Systematic review and meta-analysis combined	20	S8 OR S9 OR S10 OR S11 OR S12 OR S13 OR S14 OR S15 OR S16 OR S17 OR S18 OR S19
Combination of concepts	21	S7 AND S20

Topic #	AMSTAR-2 Original Items	AMSTAR-2 Modifications
1	Did the research questions and inclusion criteria for the review include components of PICO? - Population - Intervention - Comparator group - Outcome - Timeframe for follow-up (optional)	"Population" became "Population and/or location". "Intervention" became "Exposure". The "Comparator group" category was ta out. A new section (#1.b)) was created, it incl "Definition of the exposure", "Definition or outcome" and "Timeframe for follow up".
2	Did the report of the review contain an explicit statement that the review methods were established prior to the conduct of the review and did the report justify any significant deviations from the protocol?	To score "yes", a protocol must have bee established before the review. There are criteria, you can only score yes or no.
3	Did the review authors explain their selection of the study designs for inclusion in the review?	If the study designs are specified, you sc "partial yes". They must be explained to s "yes". No specific study design is required
4	Did the review authors use a comprehensive literature search strategy?	The "searched trial/study registries" categories was taken out. Justified publication restrictions (e.g. langories) to (yes)
5	Did the review authors perform study selection in duplicate?	No modifications.
6	Did the review authors perform data extraction in duplicate?	No modifications.
7	Did the review authors provide a list of excluded studies and justify the exclusion?	The explanation of the inclusion and excl criteria is evaluated. If there is only one out of the two, you sco "partial yes". The two must be explained t "yes".
8	Did the review authors describe the included studies in adequate detail?	"Populations" became "Populations and/o locations". "Interventions" became "Exposures". "Comparator groups" became "Comparat groups (if applicable)". "Populations and/or locations", "Exposure "Outcomes" must be described in details score "yes"
9	Did the review authors use a satisfactory technique for assessing the risk of bias (RoB) in individual studies that were included in the review?	"RoB" became "limitations". Instead of as the RoB, the review authors must have us satisfactory technique for assessing the limitations in individual studies that were included in the review.

Appendix 2. Summary of AMSTAR-2 items and modified AMSTAR-2 items.

10	Did the review authors report on the sources	No modifications.
	of funding for the studies included in the review?	
11	If meta-analysis was performed did the review authors use appropriate methods for statistical combination of results?	No modifications.
12	If meta-analysis was performed, did the review authors assess the potential impact of RoBin individual studies on the results of the meta-analysis or other evidence synthesis	No modifications.
13	Did the review authors account for RoB in individual studies when interpreting/discussing the results of the review?	"RoB" became "limitations". Instead of accounting for RoB in individual studies, the review authors must have accounted for limitations when interpreting/ discussing the results of the review.
14	Did the review authors provide a satisfactory explanation for, and discussion of, any heterogeneity observed in the results of the review?	No modifications.
15	If they performed quantitative synthesis did the review authors carry out an adequate investigation of publication bias (small study bias) and discuss its likely impact on the results of the review?	No modifications.
16	Did the review authors report any potential sources of conflict of interest, including any funding they received for conducting the review?	No modifications.

Appendix 3. Overview of included studies (N=94) according to study characteristics and summary of climate impacts on health outcomes. Studies are presented in alphabetical order according to the first author's last name.

	First Author	Year	Country	Years of includ ed public ations	Years of the studies include d in the reviews	# of artic les	Meta- analys is	Specific Area of focus	Specific Population of interest	Climate Impact	Health Outcome	Summary of findings
1	Alderman	2012	Australi a	2004- 2011	1931- 2007	35	No	4		Extreme weather	Infectious diseases Mortality Health systems Mental health Pregnancy and birth Other	Floods are associated with infectious diseases (water- and vector-borne diseases), mortality (e.g., drowning), exacerbation of chronic illnesses, mental health issues (e.g., PTSD), hospital admissions, pregnancy outcomes and injuries.
2	Amegah	2016	Ghana	1995- 2014	1960- 2010	23	No	Sub- sahara n Africa	2:0	Meteorolo gical	Infectious diseases Mortality Respiratory, cardiovascular, and neurological outcomes Health systems Nutritional Skin diseases and allergies	Temperature and temperature variability are suggested to be associated with infectious diseases, such as Ebola, cardiovascular diseases, mortality, cholera outbreaks, meningitis, undernutrition in children, respiratory outcomes, such as asthma, and skin diseases.
3	An	2018	United States	2002- 2017	2002- 2016	50	No			General	Nutritional	Climate change is associated with obesity. This association can be explained in 4 ways, such that climate change may impact obesity, obesity may impact climate change, both factors may be associated with common causes, or both factors may influence each other.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4 5 6 7	
7 8 9	
9 10 11	
12 13	
14 15	
16 17	
18 19 20	
21	
22 23 24 25	
25 26 27	
28	
30 31	
32 33	
29 30 31 32 33 34 35 36 37	
37 38	
39 40	
41 42 43	
44 45	
46 47	

4	Augustin	2008	Germa	1996-	NS	320	No	Germa		Meteorolo	Skin diseases	Although skin and allergic diseases
			ny	2006				ny		gical	and allergies	are climate sensitive, there is not
												sufficient evidence to suggest a
												prediction concerning skin and
												allergic diseases linked to climate
												change in Germany.
5	Babaie	2018	Iran	2007-	1970-	14	No	Iran		Meteorolo	Infectious	Temperature, precipitation and
				2017	2015					gical	diseases	humidity are associated with the ris
												of transmission of Malaria.
6	Bai	2013	China	1995-	1951-	57	No	China		Meteorolo	Infectious	Variability in temperature,
				2011	2010					gical	diseases	precipitation and wind are
												associated with the risk of
										l		transmission of mosquito-borne
												diseases.
7	Benevolen	2019	United	2006-	2005-	13	No		Vulnerable	Extreme	Mental health	Extreme weather events are
	za		States	2017	2015			4	population	weather	Pregnancy and	associated with an exacerbation of
								6	S		birth	pre-existing chronic health
											Other	conditions, mental health issues
												(e.g., PTSD, isolation) and adverse
												birth outcomes.
8	Berhane	2016	Ethiopi	NS	NS	23	No	Ethiopi		Meteorolo	Infectious	Meteorological factors and extreme
			а					а		gical	diseases	weather events are associated with
										Extreme	Nutritional	under- and mal- nutrition and the
										weather		increased risk of climate sensitive
											6	infectious diseases (e.g., malaria,
9	Bernhardt	2019	Germa	1997-	NS	464	No			Meteorolo	Infectious	diarrhea, zoonotic infections, etc.).
9	Bernharut	2019		2017	IN S	404	INO					Rising temperatures are predicted to be associated with myiasis in the
			ny	2017						gical	diseases	future.
10	Binazzi	2019	Italy	NS	1994-	8	Yes		Workers	Meteorolo	Occupational	High temperatures are positively
10	DIIIdZZI	2013	Italy	C/I	2013	°	162		VVOI KEIS	gical	health and	associated with occupational
					2013					gical	injuries	injuries.
11	Bonafede	2016	Italy	2000-	1985-	8	No		Workers	Meteorolo	Occupational	Extreme temperature (particularly
тт	buildleue	2010	italy	2000-2014	2010	°	NU		VVUI KEIS	gical	health and	heat) is associated with occupationa
				2014	2010					Bical	injuries	injuries.
		l									injunes	injunes.

12	Brown	2013	United Kingdo	2004- 2012	1975- 2012	38	No	Europe		Extreme weather	Infectious diseases	Floods are associated with infectious diseases, including water-, rodent-
			m									and vector-borne diseases (from weeks to months after flooding).
13	Bunker	2016	Germa ny	1995- 2015	1974- 2013	61	Yes		Elderly	Meteorolo gical	Mortality Respiratory, cardiovascular, and neurological outcomes Other	Higher and lower temperatures are associated with cardiovascular and respiratory morbidity and mortality. Heat is also associated with diabetes and genitourinary infections.
14	Campbell	2018	Australi a	1964- 2017	NS	188	No			Meteorolo gical	Mortality Health systems	Most studies exploring the heat impacts on health focus on mortality outcomes, followed by hospital admissions and ambulance call outs.
15	Cann	2013	United Kingdo m	1973- 2010	NS	83	No	r h		Extreme weather	Infectious diseases	Extreme water-related events are associated with outbreaks of water-related infectious diseases.
16	Carolan- Olah	2014	Australi a	1997- 2012	1988- 2009	7	No	Ċ		Meteorolo gical	Pregnancy and birth	High temperatures are associated with preterm birth.
17	Cheng	2014	China	1990- 2013	1941- 2012	25	No		Adults, Elderly, Children	Meteorolo gical	Infectious diseases Mortality Respiratory, cardiovascular, and neurological outcomes Health systems Other	Diurnal temperature range is associated with mortality and cardiovascular and respiratory outcomes, hospital admissions, and Hand Foot Mouth disease in children and genitourinary outcomes among the elderly.
18	Coates	2019	Denma rk	2003- 2018	NS	72	No			Meteorolo gical	Infectious diseases	Some meteorological factors (temperature, humidity) are positively associated with Hand Foot Mouth disease (HFMD). Precipitation, wind speed and sunshine are not associated with HFMD.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4 5 6 7	
8 9 10 11 12 13 14	
15 16 17 18 19 20 21 22 23	
24 25 26 27 28 29	
30 31 32 33 34 35 36	
37 38 39 40 41 42 43	
44 45 46 47	

19	Cong	2017	China	1994- 2015	1982- 2013	26	Yes			Meteorolo gical	Respiratory, cardiovascular, and neurological	Temperature drop is associated with asthma.
20	Cunrui	2011	Australi	1997-	1961-	14	No			Meteorolo	outcomes Mortality	Higher temperature is associated
			а	2010	2100					gical		with heat-related mortality.
21	deSousa	2018	Brazil	1976- 2016	NS	106	No			Meteorolo gical	Infectious diseases Respiratory, cardiovascular, and neurological outcomes	Meteorological factors (e.g., temperature, precipitation) are associated with infectious diseases (e.g., dengue, malaria) and cardiovascular and respiratory outcomes.
22	Dhimal	2015	Nepal	1956- 2014	1948- 2098	50	No	Nepal		Meteorolo gical	Infectious diseases	Higher temperatures are associated with the distribution of vector-borned diseases.
23	Doocy	2013	United States	1975- 2011	1974- 2008	60	No	6		Extreme weather	Mortality Other	Cyclones are associated with mortality (e.g., drowning) and injuries.
24	Duan	2019	China	2010- 2018	2000- 2016	51	Yes	Southe ast and East Asia	0	Meteorolo gical	Infectious diseases	Some meteorological factors (mean maximum temperature, rainfall, humidity and sunshine) are positive associated with Hand Foot Mouth disease (HFMD), whereas air pressure is negatively associated with this disease and wind speed is not associated with HFMD.
25	Fan	2015	China	2004- 2013	1985- 2012	33	Yes			Meteorolo gical	Infectious diseases	Temperature is positively associated with transmission and incidence of Dengue.
26	Fernandez	2015	Australi a	1995- 2014	NS	83	No			Extreme weather	Mental health	Floods are associated with negative mental health outcomes (e.g., PTSD increased anxiety, depression, use of psychotropic medication). Conflictin evidence concerning suicide,

												tobacco, alcohol and substance abuse.
27	Flouris	2018	Greece	1954- 2018	NS	111	Yes		Workers	Meteorolo gical	Occupational health and injuries	High temperatures are positively associated with occupational heat strains, dehydration, kidney diseases and injuries.
28	Gao	2019	China	1994- 2018	1969- 2015	16	Yes			Meteorolo gical	Mental health	Temperature increase is associated with suicide. No association betwee sunlight duration and suicide.
29	Gao	2014	China	1996- 2012	1971- 2010	37	No		Children	Meteorolo gical	Infectious diseases Respiratory, cardiovascular, and neurological outcomes Skin diseases and allergies	Ambient humidity is associated with gastrointestinal, respiratory and allergic diseases in children.
30	Ghanizade h	2017	Iran	2009- 2016	1990- 2015	13	No	0	Vie	Meteorolo gical	Mortality Respiratory, cardiovascular, and neurological outcomes	Meteorological factors, such as temperature and humidity, are associated with cardiopulmonary health. Cold temperatures are also associated with mortality from hear diseases.
31	Ghazani	2018	Australi a	2006- 2017	1991- 2011	11	No			Meteorolo gical	Infectious diseases	Higher temperature is associated with bacterial gastrointestinal infections. Humidity and rainfall ma influence this association.
32	Gracia	2015	Swede n	2003- 2011	1959- 2008	9	No	Europe		Meteorolo gical	Infectious diseases	Temperature is positively associated with Human Puumala Hantavirus in some regions of Europe. Results concerning precipitation and humidity are contradictory or null.
33	Hajat	2010	United Kingdo m	1994- 2008	1973- 2003	11	No			Meteorolo gical	Mortality	Ambient heat is associated with mortality.

1 2 3 4 5 6 7	
8 9 10 11 12 13 14 15	<u>2</u> 3 4
16 17 18 19 20 21 22 23))
24 25 26 27 28 29	+ ; ; ; ; ;
30 31 32 33 34 35 36 37	<u>)</u> }
38 39 40 41 42 43	3)) <u>)</u>
44 45 46 47	5

34	Hedlund	2014	Swede n	1970- 2012	1750- 2009	29	No	Arctic, sub- Arctic	Vulnerable population s	Meteorolo gical Extreme weather	Infectious diseases	Higher temperatures and flooding are associated with food- and water- borne diseases. This association is weaker for vector- and rodent-borne diseases. Air temperature and
35	Hii	2016	Swede n	2007- 2015	2003- 2012	9	No	Malaysi a		Meteorolo gical	Infectious diseases	humidity seem to be associated with air-borne diseases. Some meteorological factors (temperature, rainfall and humidity) are associated with Dengue, although these associations are inconsistent at times.
36	Huang	2016	Taiwan	1990- 2014	1978- 2011	19	Yes			General	Skin diseases and allergies	Climate change, in general, may be associated with skin and soft-tissue infections.
37	Kampe	2016	United Kingdo m	1998- 2015	1971- 2010	13	No	High- income countri es		Meteorolo gical	Other	Higher temperature is associated with unintentional injuries.
38	Khader	2015	Jordan	2003- 2014	1991- 2012	78	No	Eastern Medite ranian	Vulnerable countries	Meteorolo gical Extreme weather Air quality	Infectious diseases Mortality Respiratory, cardiovascular, and neurological outcomes Health systems Mental health Pregnancy and birth Nutritional	High temperature is associated with mortality. Temperature, humidity and precipitation are associated with vector-, food- and water-borne diseases. Air pollution is associated with respiratory outcomes, although some findings are inconsistent. Higher temperature is associated with mental health outcomes and hospital admissions. Higher temperature may also be associated with adverse birth outcomes. Meteorological and extreme weathe events are associated with food insecurity.
39	Klinger	2014	United Kingdo m	2011- 2013	NS	20	No			Extreme weather	Health systems	Extreme weather events may lead to power outages which may pose challenges to healthcare quality.

40	Kuehn	2017	United States	2002- 2017	NS	28	No		Pregnant people	Meteorolo gical	Pregnancy and birth	Extreme heat exposure is associated with adverse birth outcomes (e.g. stillbirth, birth weight).
41	Lake	2017	United Kingdo m	NS	NS	66	No	Europe		General	Respiratory, cardiovascular, and neurological outcomes	Climate change may be associated with ragweed pollen allergy.
42	Lal	2019	Australi a	1982- 2011	NS	36	Yes		Children	Meteorolo gical	Infectious diseases	Rainfall is associated with childhood diarrhea, although this association differed according to season and latitude.
43	Lal	2015	Australi a	NS	NS	16	No	New Zealan d		Meteorolo gical	Infectious diseases	Temperature variability, higher temperature and rainfall are associated with enteric diseases.
44	Lawton	2019	Australi a	2000- 2015	NS	71	No	10		Meteorolo gical	Mortality Respiratory, cardiovascular, and neurological outcomes	Heat exposure is associated with heat stroke, long-term neurological outcomes (e.g., cerebellar injury) an heat-related mortality.
45	Levi	2018	Italy	2003- 2017	1977- 2014	184	No		Workers	Meteorolo gical	Occupational health and injuries	Heat exposure is associated with occupational injuries.
46	Levy	2016	United States	1972- 2013	1948- 2010	208	No			Meteorolo gical Extreme weather	Infectious diseases	Temperature is associated with bacterial diarrhea and drought is associated with all-cause diarrhea, although few studies explored the association between drought and diarrhea.
47	Leyva	2017	Asia	2009- 2017	NS	30	No		Elderly	Meteorolo gical Extreme weather Air quality	Infectious diseases Mortality Respiratory, cardiovascular, and	Meteorological factors, extreme weather events (e.g. typhoon, floods) and air pollution are associated with mortality and morbidity, especially cardiovascular and respiratory-specific. Higher temperature is associated with

											neurological outcomes Health systems Mental health	vector-borne diseases. Heat and cold temperatures are associated with hospital admissions. Flooding is associated with mental health outcomes (e.g. PTSD, depression).
48	Li	2018	China	1988- 2017	NS	81	No	China		Meteorolo gical Extreme weather	Infectious diseases	Meteorological factors (temperature, precipitation, humidity, air pressure) and extreme weather events (floods, typhoons) are associated with Dengue fever in China.
49	Lian	2015	China	2003- 2014	NS	20	Yes	4		Meteorolo gical	Mortality Respiratory, cardiovascular, and neurological outcomes	Higher and lower temperatures are associated with stroke-related mortality and low temperatures are also associated with stroke-related morbidities.
50	Liu	2015	United States	1990- 2014	NS	61	No		Vie.	Air quality	Mortality Respiratory, cardiovascular, and neurological outcomes Health systems Pregnancy and birth Other	Wildfire smoke exposure is associated with mortality, respiratory outcomes and hospital admissions. Wildfire smoke exposure could also be associated with cardiovascular, ophthalmic and pregnancy outcomes, although more research is needed.
51	Madaniyaz i	2015	Australi a	2004- 2013	1961- 2100	15	No			Air quality	Mortality	Air pollution is associated with future mortality.
52	Matysiak	2017	Puerto Rico	2001- 2005	NS	26	No	Puerto Rico (United -States)		Meteorolo gical Extreme weather	Infectious diseases	Meteorological factors (higher temperature and increased rainfall) are associated with vector-borne diseases, such as Dengue and Zika. Extreme weather events are less researched, but the few studies investigating this association suggest no association between hurricanes

												and floods and vector-borne diseases.
53	Moghada mnia	2017	Iran	2011- 2016	1979- 2013	26	Yes			Meteorolo gical	Mortality	Higher and lower temperature are associated with cardiovascular mortality.
54	Naish	2014	Australi a	NS	1931- 2010	16	No			Meteorolo gical	Infectious diseases	Meteorological factors (especially temperature, rainfall and humidity) are associated with Dengue.
55	Nichols	2009	United Kingdo m	1999- 2008	NS	36	No	540	Vi	Meteorolo gical Extreme weather Air quality	Infectious diseases Mortality Respiratory, cardiovascular, and neurological outcomes Mental health Nutritional Skin diseases and allergies Other	Meteorological factors (e.g., higher temperature) are associated with mortality and various infectious diseases. Increased UV exposure is associated with skin cancer and cataracts. Extreme weather events are associated with mortality, injur mental health outcomes, malnutrition, and food- and water- borne diseases. Air pollution is associated with cardio-respiratory outcomes.
56	Odame	2018	United States	2006- 2017	1893- 2013	14	Yes		Rural population s	Meteorolo gical	Mortality	Higher temperature is associated with all-cause mortality and cardiovascular specific mortality.
57	Park	2017	Korea	1920- 2015	1961- 2013	10	Yes			Meteorolo gical	Other	Higher temperature is associated with acute gouty arthritis.
58	Phalkey	2015	Germa ny	1989- 2012	1982- 2008	15	No	Low to middle- income countri es	Children	Meteorolo gical Extreme weather	Nutritional	Meteorological factors (rainfall, temperature) and extreme weather events are associated with childhoo undernutrition.
59	Philipsborn	2016	Georgi a	NS	1973- 2010	28	Yes			Meteorolo gical	Infectious diseases	Higher temperature is associated with Diarrheagenic Escherichia coli No significant relationship betweer rainfall and E. coli.
60	Phung	2015	Australi a	2004- 2013	NS	13	No	Southe ast Asia		Meteorolo gical	Infectious diseases	Meteorological factors (temperature humidity) and extreme weather

Page 5	3 of 65
--------	---------

										Extreme weather		events (flooding) are associated with vector- and water-borne infectious diseases.
61	Porpora	2019	Italy	1964- 2019	NS	78	No			Other	Pregnancy and birth	Environmental pollutants may be associated with preterm birth, however this association remains unclear due to conflicting evidence.
62	Poursafa	2015	Iran	2001- 2013	NS	15	No			Meteorolo gical	Pregnancy and birth	Meteorological factors (higher temperature, lower temperature, humidity, sunlight intensity) are associated with adverse birth outcomes (low birth weight, preterr birth, hypertension, eclampsia).
63	Racloz	2012	Australi a	NS	NS	63	No			Meteorolo gical	Infectious diseases	Higher temperature, increased precipitation and humidity are associated with Dengue.
64	Rataj	2016	Germa ny	1981- 2012	1978- 2008	17	No	Low to middle income countri es	L'	Extreme weather	Mental health Other	Extreme weather events are associated with mental health outcomes (e.g., PTSD, anxiety, depression) and injuries.
65	Reid	2016	United States	1990- 2015	NS	53	No		Susceptibl e population s	Air quality	Mortality Respiratory, cardiovascular, and neurological outcomes Mental health Pregnancy and birth	Wildfire smoke exposure is associated with respiratory outcomes (e.g., asthma) and mortality. Wildfire smoke exposure may be associated with cardiovascular, birth, and mental health outcomes, but more research is needed.
66	Rifkin	2018	United States	1995- 2017	1992- 2016	16	No			Meteorolo gical Extreme weather	Other	Temperature and extreme weather events (hurricanes) are associated with sleep quality.
67	Salve	2018	India	NS	NS	11	No	India		Meteorolo gical	Mortality Health systems Nutritional	Increase in temperature is associate with all-cause mortality, cause- specific mortality (e.g., myocardial

Page !	54 of	65
--------	-------	----

											infarctions, stroke, heart diseases), hospitalizations (e.g., heat-related admissions, neonatal intensive unit admissions), and food insecurity and malnutrition, via agricultural issues.
68	Sanderson	2017	United Kingdo m	1988- 2017	1900- 2101	63	No		Meteorolo gical	Mortality	Higher temperatures and heat waves are associated with mortality and heat-related mortality is likely to increase with increased temperatures.
69	Sawatzky	2018	Canada	2005- 2016	NS	85	No	Arctic and Subarct ic	General	Health systems	Climate change, in general, is associated with a strain in public health resources, via population health issues and surveillance systems may guide future adaptation to climate change.
70	Semenza	2012	Swede n	1998- 2009	1995- 2007	722	No	10	Meteorolo gical	Infectious diseases	Meteorological factors (temperature, rainfall) are associated with some food- and water-borne diseases.
71	Stanke	2013	United Kingdo m	1967- 2011	1876- 1879 and 1961- 2010	87	No	4	Extreme weather	Infectious diseases Mortality Respiratory, cardiovascular, and neurological outcomes Mental health Nutritional Other	Droughts are associated with malnutrition, mortality, infectious diseases, cardiovascular and respiratory outcomes, mental health (e.g., increased worry, anxiety), injuries, and cancer.
72	Stensgaard	2019	Denma rk	1995- 2017	NS	20	No		Meteorolo gical	Infectious diseases	Meteorological factors (temperature, precipitation, humidity) are associated with schistosomiasis and increasing temperatures are likely to affect the geographic range of this parasite.
73	Sun	2018	China	1999- 2017	1974- 2014	30(r evie	Yes		Meteorolo gical	Mortality	Heat and cold exposure are associated with myocardial

75

76

77

78

79

Swynghed

auw

Tall

Varghese

Veenema

Vilcins

Vins

2014

2018

2017

2018

2015

Australi

а

Australi

а

United

States

Australi

а

United

States

1946-

2009

1983-

2017

2006-

2016

NS

1995-

2005

1886-

2006

1922-

2017

NS

NS

NS

22

26

47

72

82

No

No

No

No

No

Australi

а

Workers

Children

Extreme

weather

Meteorolo

gical

Extreme

weather

Other

Extreme

weather

Infectious

Occupational

health and

Infectious

Mortality

Nutritional

Mental health

Mental health

diseases

injuries

diseases

						BMJ Open			
				w)2 3m eta- anal ysis				Respiratory, cardiovascular, and neurological outcomes Health systems	infarctions (MI) and hospitalization for MI. Heat exposure is associated with MI-specific mortality.
2009	France	NS	NS	NS	No		Meteorolo gical Extreme weather	Infectious diseases Mortality Skin diseases and allergies Other	Heat and cold exposure are associated with mortality and more specifically, respiratory- and cardiovascular-specific mortality. Exposure to UV is associated with skin cancer and cataracts. Higher temperatures are associated with infectious diseases (mosquito- and food-borne diseases) and extreme weather events are associated with

undernutrition and food-borne

There is no strong evidence for the

association between flooding and

injuries in many contexts of work

Extreme water-related weather

mortality, water- and vector-borne

infectious diseases, mental health issues (e.g., PTSD, depression,

Certain environmental risk factors (e.g., sanitation, cooking fuels),

climate change, may be associated

Drought is likely associated with

adverse mental health outcomes.

which could be aggravated by

with childhood stunting.

(e.g., agriculture, transport,

events are associated with

Heat is associated with occupational

the Ross River Virus.

construction, fishing).

diseases.

anxiety).

80	Waits	2018	Finland	1970-	NS	43	No	Arctic		Meteorolo	Infectious	Meteorological factors (especially
				2017						gical	diseases	higher temperature and
										8.001		precipitation) are associated with
												infectious diseases (e.g. tick borne
												diseases, tularemia) in the Arctic.
81	Wald	2019	United	2009-	NS	17	No	United		Meteorolo	Health systems	Higher temperature is associated
			States	2018				States		gical		with emergency department (heat-
										0		related visits) visits and costs for
												healthcare systems.
82	Welch	2019	United	NS	NS	91	No			Meteorolo	Infectious	Meteorological factors (temperature,
_			States			_	_			gical	diseases	precipitation) are associated with
										0		Salmonella.
83	Wimalawa	2016	United	NS	NS	NS	No	Tropica	Workers	Meteorolo	Occupational	Increasing temperatures and
	nsa		States					İ		gical	health and	environmental pollution (e.g., heavy
								Countri		Other	injuries	metals, fertilizers) are associated
								🖲 es				with occupational health outcomes,
												such as chronic kidney disease of
							· · · ·					multifactorial origin.
84	Witt	2015	Germa	NS	NS	33	Yes		Chronic	Meteorolo	Mortality	Heat is associated with lung disease
			ny						lung	gical	Respiratory,	outcomes and mortality in patients
									disease		cardiovascular,	with chronic lung diseases.
									patients		and	
											neurological	
											outcomes	
85	Xu	2018	Australi	2004-	1978-	19	No		Children	Meteorolo	Respiratory,	Heat and cold temperatures are
			а	2016	2013					gical	cardiovascular,	associated with childhood asthma.
											and	
											neurological	
											outcomes	
86	Xu	2012	Australi	2000-	1983-	33	No		Children	Meteorolo	Infectious	Heat and cold are associated with
			а	2012	2010					gical	diseases	hospital admissions and mortality in
											Mortality	children. Temperature is also
											Respiratory,	associated with various infectious
											cardiovascular,	diseases (e.g., HFMD, malaria),
											and	respiratory diseases (e.g., asthma)
											neurological	and skin outcomes (e.g, eczema). For
											outcomes	example, high temperature is
											Health systems	associated with Hand Foot Mouth

Page 57	of 65
---------	-------

											Skin diseases and allergies Other	Disease and renal diseases and low temperature is associated with eczema.
87	Xu	2016	Australi a	2001- 2015	NS	60	Yes			Meteorolo gical	Mortality	Heat waves are associated with mortality and it seems that the intensity of heatwaves is particularly important compared to length of heatwave.
88	Xu	2014	Australi a	1998- 2012	1983- 2009		No		Children	Meteorolo gical	Mortality Respiratory, cardiovascular, and neurological outcomes Health systems Other	Heat waves are associated with hospital admissions, respiratory diseases, renal diseases, fever and electrolyte imbalances. Evidence concerning the association between heatwaves and children mortality is inconsistent.
89	Youssouf	2014	France	1990- 2011	1987- 2008	94	No	16	Vie	Air quality	Mortality Respiratory, cardiovascular, and neurological outcomes Health systems Pregnancy and birth	Wildfire smoke exposure is associated with mortality, respiratory and cardiovascular outcomes, hospital admissions. Wildfire smoke exposure may also be associated with adverse birth outcomes (low birth weight).
90	Yu	2015	Australi a	1998- 2012	1961- 1990 et 2020- 2100	20	No			Meteorolo gical	Infectious diseases	Meteorological factors (temperature rainfall, humidity) may be associated with future malaria transmission, although findings are inconsistent, partly according to geographical focus.
91	Yu	2012	Australi a	1997- 2008	1973- 2006	15	Yes		Elderly	Meteorolo gical	Mortality	Heat and cold temperatures are associated with mortality for the elderly, although heat-related associations seem stronger than cold-related associations.

92	Zhang	2007	Australi a	NS	NS	NS	No		People with disabilities	General	Other	Climate change, in general, may be associated with disability-adjusted life years (DALY), and the cost of DALY could be particularly important in low to middle income countries.
93	Zhang	2017	China	1997- 2016	1981- 2012	36	No		Pregnant people	Meteorolo gical	Pregnancy and birth	High temperature is associated with adverse birth outcomes, such as preterm birth, low birth weight and stillbirth. Low temperature is also associated with some adverse birth outcomes, including preterm birth and low birth, although the evidence is stronger for high temperature than for low temperatures.
94	Zuo	2015	Australi a	NS	NS	173	No	-1-6	Vie	Meteorolo gical	Mortality Respiratory, cardiovascular, and neurological outcomes Health systems Mental health Skin diseases and allergies Other	Heat waves are associated with mortality, hospital admissions, sunburn, heat exhaustion, cardiovascular outcomes (e.g., heart attacks) and mental health outcomes.
*N	IS = non-spec	ified									NJ.	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 59 of 65

BMJ Open

1
2
2
4
5
5 6
0
8
8 9
9 10
11 12
13
14
15
16
17
18
19
20
20
21 22
23
24
25
26
27
28
20 29
30
31
32
33
34 35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
55 54
55
56
57
58
59
60

Appendix 4. Summary of quality assessment according to revised AMSTAR-2 items. (Y = yes,	,
PY = partial yes, N = no, NA = non-applicable).	

								Å	MST	AR-2	Item	s						
First author	Year	1	1b	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Alderman	2012	Y	Ν	Ν	PY	PY	Ν	Ν	PY	PY	Ν	Ν	NA	NA	Y	Ν	NA	Ν
Amegah	2016	Y	Ν	Ν	Y	PY	Ν	Ν	PY	Y	Y	Ν	NA	NA	Y	Y	NA	Y
An	2018	Ν	Y	Ν	Ν	PY	Y	Ν	Y	Ν	Υ	Ν	NA	NA	Y	Ν	NA	Y
Augustin	2008	Y	Y	N	Ν	PY	Ν	Ν	PY	Ν	ΡY	Ν	NA	NA	Y	Ν	NA	Y
Babaie	2018	Y	Y	Ν	Ν	PY	Y	Ν	Y	PY	Ν	Ν	NA	NA	Ν	Ν	NA	Ν
Bai	2013	Y	Y	Ν	PY	PY	Ν	Ν	PY	PY	Y	Ν	NA	NA	Y	Ν	NA	Y
Benevolenza	2019	Y	Y	Ν	PY	Ν	Ν	Ν	Y	PY	PY	Ν	NA	NA	Y	Ν	NA	Ν
Berhane	2016	Y	Ν	Y	N	Ν	Ν	Ν	Ν	PY	PY	Ν	NA	NA	Y	Ν	NA	Ν
Bernhardt	2019	Y	Ν	Ν	Ν	Ν	Ν	Ν	PY	PY	PY	Ν	NA	NA	PY	Ν	NA	Y
Binazzi	2019	Y	Y	Ν	Y	PY	Y	Ν	Y	Y	Y	Ν	Y	Y	Y	Y	Y	Y
Bonafede	2016	Y	Ν	Ν	PY	PY	Υ	N	Y	Y	Y	Ν	NA	NA	Y	Y	NA	Y
Brown	2013	Y	Y	N	PY	PY	N	N	Y	Y	PY	N	NA	NA	Y	Y	NA	Y
Bunker	2016	Y	Y	Ν	Y	Ν	Υ	PY	Y	Y	PY	Ν	Y	Y	Y	Y	Υ	Y
Campbell	2018	Y	Ν	Ν	Ν	PY	Ν	Ν	Y	ΡY	Ν	Ν	NA	NA	Y	PY	NA	Y
Cann	2013	Y	Y	Y	PY	PY	Ν	Ν	Y	PY	PY	Ν	NA	NA	Y	Y	NA	Y
Carolan-Olah	2014	Y	Y	Ν	Ν	PY	Ν	Ν	Y	PY	Υ	Ν	NA	NA	PY	PY	NA	N
Cheng	2014	Y	Ν	Ν	PY	PY	Ν	Ν	Y	Y	Y	N	NA	NA	Y	PY	NA	N
Coates	2019	Ν	Ν	Ν	Ν	Ν	Ν	Ν	PY	PY	Y	Ν	NA	NA	Y	PY	NA	N
Cong	2017	Ν	Y	Ν	Ν	PY	Ν	Y	Y	Y	Y	Ν	Y	N	Y	Y	Y	Y
Cunrui	2011	Y	Ν	N	PY	PY	Ν	Ν	Y	PY	Ν	N	NA	NA	Y	N	NA	Y
deSousa	2018	Y	Ν	Ν	PY	PY	Ν	Ν	Y	Ν	Ν	Ν	NA	NA	Y	Ν	NA	Y
Dhimal	2015	Y	Y	Ν	PY	PY	Ν	Ν	Y	Y	Ν	N	NA	NA	N	Ν	NA	Ν
Doocy	2013	Y	N	Ν	N	PY	Y	Ν	Y	Y	Ν	Ν	NA	NA	Y	PY	NA	Y
Duan	2019	Y	N	Ν	N	PY	Ν	Ν	Y	PY	Y	Ν	Y	Y	Y	Y	Y	Y
Fan	2015	Ν	Y	N	N	PY	Y	Y	PY	PY	Y	N	Y	Y	Y	Y	Y	Y
Fernandez	2015	Y	Y	N	PY	PY	Y	N	Y	PY	PY	N	NA	NA	Y	N	NA	N
Flouris	2018	Y	N	Y	PY	PY	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

	Gao	2019	Ν	Y	Ν	PY	PY	Y	Ν	Y	Y	Y	Ν	Y	Y	Y	Υ	Y
	Gao	2014	Υ	Ν	Ν	ΡY	PY	Ν	PY	Y	Y	Y	Ν	NA	NA	Y	Y	NA
	Ghanizadeh	2017	Ν	Y	Ν	PY	Ν	Y	PY	Y	PY	Y	Ν	NA	NA	Ν	Ν	NA
	Ghazani	2018	Ν	Ν	Ν	Ν	PY	Y	Ν	Y	Y	PY	Ν	NA	NA	Y	ΡY	NA
	Gracia	2015	Y	Y	Ν	PY	PY	Y	N	Y	PY	Y	Ν	NA	NA	Y	Ν	NA
	Hajat	2010	Y	Ν	Ν	Y	PY	Ν	N	Y	PY	N	Ν	NA	NA	Ν	ΡY	NA
	Hedlund	2014	Y	Ν	Ν	PY	Ν	Y	Y	Y	PY	Y	Ν	NA	NA	Y	Ν	NA
	Hii	2016	Y	Ν	N	PY	PY	Ν	N	PY	PY	N	Ν	NA	NA	Ν	Ν	NA
	Huang	2016	N	N	N	N	PY	Y	N	PY	Y	Y	Ν	Y	Y	Y	ΡY	Ν
	Kampe	2016	Y	N	N	PY	PY	Y	N	Y	Y	PY	Ν	NA	NA	Y	Ν	NA
	Khader	2015	Y	Ν	N	PY	PY	Y	N	Y	Y	N	Ν	NA	NA	Y	ΡY	NA
	Klinger	2014	N	N	Ν	N	PY	Y	N	Y	N	Y	N	NA	NA	Y	N	NA
-	Kuehn	2017	Y	N	N	N	PY	N	N	Y	Y	PY	N	NA	NA	Y	N	NA
	Lake	2017	Y	Y	N	N	PY	Y	Y	PY	PY	N	N	NA	NA	N	N	NA
	Lal	2019	Y	N	Y	N	PY	N	Y	Y	PY	Y	N	Y	Y	Y	Y	N
	Lal	2015	Y	Y	N	N	PY	N	N	Y	PY	PY	N	NA	NA	Y	PY	NA
	Lawton	2019	Y	N	N	PY	PY	N	N	Y	Y	 N	N	NA	NA	Y	 N	NA
	Levi	2018	Y	Y	N	PY	PY	Y	N	Y	Y	N	N	NA	NA	Y	PY	NA
-	Levy	2010	N	' N	N	PY	PY	Y	PY	Y	Y	Y	N	NA	NA	Y	Y	NA
	Leyva	2010	Y	Y	N	PY	PY	۱ N	N	۲ ۲	N	Y	N	NA	NA	۲ ۲	N	NA
	Leyva		r Y				PY			n N	PY						N	
	Lian	2018		N	N	N		N	N			N	N	NA	NA	N		NA
		2015	Y	N	N	PY	PY	Y	Y	Y	N	Y	N	Y	Y	Y	Y	Y
	Liu	2015	Y	Y	N	Y	PY	N	N	Y	Y	PY	N	NA	NA	Y	PY	NA
	Madaniyazi	2015	N	N	N	PY	PY	N	N	Y	PY	N	N	NA	NA	Y	N	NA
-	Matysiak	2017	Y	Y	N	PY	PY	Ν	N	Y	PY	Y	Ν	NA	NA	Y	Ν	NA
M	loghadamnia	2017	Y	N	N	PY	PY	Y	N	Y	Y	Y	Ν	Y	N	Y	Y	Ν
	Naish	2014	Y	Y	Ν	PY	PY	Ν	N	PY	PY	PY	Ν	NA	NA	Y	Ν	NA
	Nichols	2009	Y	Ν	Ν	PY	PY	Y	Y	Y	Y	N	Ν	NA	NA	Ν	Ν	NA
	Odame	2018	Y	Ν	Ν	PY	PY	Ν	Ν	PY	PY	Ν	Ν	Y	Ν	Y	Y	Y
	Park	2017	Y	Ν	Ν	Ν	PY	Y	Y	Ν	PY	Y	Ν	Y	PY	Y	Y	Ν
	Phalkey	2015	Y	Y	Ν	PY	ΡY	Y	Υ	Y	ΡY	ΡY	Ν	NA	NA	Y	Ν	NA

BMJ Open

Philips	oorn	2016	Y	Y	Ν	ΡY	Ν	Ν	Ν	Υ	ΡY	Ν	Ν	Υ	Υ	Ν	Y	Ν
Pł	nung	2015	Y	Y	Ν	N	PY	Ν	Ν	Y	Y	PY	Y	NA	NA	Ν	N	N
Por	oora	2019	Y	Y	Y	PY	PY	N	Ν	Y	PY	N	Ν	NA	NA	Ν	Y	N
Pour	safa	2015	Y	N	N	PY	PY	Y	Y	PY	Y	PY	Ν	NA	NA	Y	Y	N
Ra	cloz	2012	Y	Ν	Ν	N	PY	N	Ν	N	PY	N	Ν	NA	NA	Y	Y	N
F	Rataj	2016	Y	Y	Y	PY	PY	Y	Y	PY	PY	Y	Ν	NA	NA	Y	Y	N
	Reid	2016	Y	Ν	Ν	PY	PY	Ν	Ν	Ν	PY	PY	Ν	NA	NA	Y	PY	N
F	ifkin	2018	Y	Y	Y	PY	PY	Y	Y	Y	ΡY	Ν	Ν	NA	NA	Y	Ν	N
S	alve	2018	Y	Y	Ν	N	PY	Y	Y	PY	PY	N	Ν	NA	NA	Y	Ν	Ν
Sande	rson	2017	Y	Y	N	N	PY	Y	Ν	Y	PY	PY	Ν	NA	NA	Y	Ν	Ν
Sawa	tzky	2018	Y	Y	Ν	Ν	PY	Y	Ν	Y	Ν	N	Ν	NA	NA	Ν	Ν	Ν
Seme	enza	2012	Ν	Ν	Ν	N	Ν	N	Ν	N	Ν	Y	Ν	NA	NA	Ν	Ν	Ν
Sta	anke	2013	Y	Ν	Ν	PY	PY	Ν	Ν	Y	PY	Ν	Ν	NA	NA	Y	Ν	Ν
Stensg	aard	2019	Y	Y	Ν	Ν	PY	N	Y	Ν	PY	Ν	Ν	NA	NA	Ν	Ν	Ν
	Sun	2018	Y	Y	Ν	PY	PY	Ν	Y	Y	Υ	Y	Ν	Y	Y	Y	Y	`
Swynghed	auw	2009	Y	Y	Ν	Ν	Ν	N	Ν	N	Ν	Ν	Ν	NA	NA	Ν	Ν	N
	Tall	2014	Y	Ν	Ν	Ν	PY	Ν	Ν	Υ	Y	PY	Ν	NA	NA	Υ	Ν	Ν
Vargl	nese	2018	Y	Ν	Ν	Ν	PY	Ν	Ν	Y	Y	Ν	Ν	NA	NA	Y	Ν	Ν
Veen	ema	2017	Y	Ν	Υ	Ν	PY	Ν	Ν	Y	Ν	PY	Ν	NA	NA	Ν	Ν	Ν
Vi	cins	2018	Y	Ν	Y	Ν	PY	Ν	Ν	Y	Ν	Υ	Ν	NA	NA	Y	Ν	Ν
	Vins	2015	Y	Y	Ν	Ν	PY	Ν	Ν	Y	Ν	Ν	Ν	NA	NA	Y	PY	Ν
V	/aits	2018	Y	Y	Ν	Ν	PY	Ν	Ζ	Y	Ν	N	Z	NA	NA	Ν	Ν	Ζ
١	Vald	2019	Y	Ν	Ν	Ν	PY	Ν	Ζ	Y	Υ	Ν	Z	NA	NA	Y	Ν	Ζ
W	elch	2019	Y	Y	Ν	Ν	Ν	Ν	Ν	PY	PY	Ν	Z	NA	NA	Ν	Ν	Ν
Wimalawa	ansa	2016	Υ	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	NA	NA	Ν	Ν	Ν
	Witt	2015	Y	Ν	Ν	Ν	PY	Ν	Ν	Y	Ν	Ν	Ν	Ν	Y	Υ	Ν	١
	Xu	2018	Υ	Ν	Ν	PY	PY	Ν	Ν	PY	ΡY	Ν	Ν	NA	NA	Υ	Ν	Ν
	Xu	2012	Y	Ν	Ν	PY	PY	Ν	Ζ	PY	Υ	PY	Ν	NA	NA	Ν	Ν	~
	Xu	2016	Y	Ν	Ν	PY	PY	Ν	Ν	Y	Υ	Ν	Ν	Y	Ν	Υ	Y	1
	Xu	2014	Y	Y	Ν	Ν	PY	Ν	Ν	Y	Y	Ν	Ν	NA	NA	Ν	Y	Ν
Yous	souf	2014	Y	Y	Ν	PY	PY	Ν	Ν	Y	Υ	Ν	Ν	NA	NA	Υ	Ν	Ν

59 60

 BMJ Open

Appendix 5. Summary table of publications according to climate impact and health outcome according to frequencies and references. References with a * explore only this specific combination of climate impact and health outcome and therefore appear only once in this table. Number of studies and references (according to alphabetical order) for each combination of categories are presented in the cells. Empty cells in this Table indicate an absence of studies at this combination of categories.

		Climate Impact			
Health Outcome	Meteorological (71)	Extreme weather (24)	Air quality (7)	General (5)	Other (3)
Infectious diseases (41)	35 Amegah, Babaie*, Bai*, Berhane, Bernhardt*, Cheng, Coates*, de Sousa, Dhimal*, Duan*, Fan*, Gao 2014, Ghazani*, Gracia*, Hedlund, Hii*, Khader, Lal 2015*, Lal 2019*, Levy, Leyva, Li, Matysiak, Naish*, Nichols, Philipsborn*, Phung, Racloz*, Semenza*, Stensgaard, Swynghedau, Waits*, Welch*, Xu 2012, Yu 2015*	14 Alderman, Berhane, Brown*, Cann*, Hedlund, Levy, Li, Matysiak, Nichols, Phung, Stanke, Swynghedau, Tall*, Veenema			
Mortality (32)	24 Amegah, Bunker, Campbell, Cheng, Cunrui*, Ghanizadeh, Hajat*, Khader, Lawton, Leyva, Lian, Moghdamnia*, Nichols, Odame*, Salve, Sanderson*, Sun, Swynghedauw, Witt, Xu 2012, Xu 2014, Xu 2016*, Yu 2012*, Zuo	5 Alderman, Doocy, Leyva, Stanke, Veenema	5 Leyva, Liu, Madniyazi*, Reid, Youssouf		
Respiratory, cardiovascular, and neurological (23)	17 Amegah, Bunker, Cheng, Cong*, de Sousa, Gao 2014, Ghanizadeh, Lawton, Leyva, Lian, Nichols, Sun, Witt, Xu 2012, Xu 2014, Xu 2018*, Zuo	1 Stanke	6 Khader, Leyva, Liu, Nichols, Reid, Youssouf	1 Lake*	

Health systems (16)	11 Amegah, Campbell, Cheng, Khader, Leyva, Salve, Sun, Wald*, Xu 2012, Xu 2014, Zuo	2 Alderman, Klinger*	2 Liu, Youssouf	1 Sawatzky*	
Mental Health (13)	3 Gao 2019*, Khader, Zuo	9 Alderman, Benevolenza, Fernandez*, Leyva, Nichols, Rataj, Stanke, Veenema, Vins*	1 Reid		
Pregnancy and birth outcomes (11)	5 Carolan-Olah*, Kuehn*, Poursafa*, Khader, Zhang 2017*	2 Alderman, Benevolenza	3 Liu, Reid, Youssouf		1 Porpora*
Nutritional (9)	4 Amegah, Khader, Phalkey, Salve	6 Berhane, Khader, Nichols, Phalkey, Stanke, Swynghedauw		1 An*	1 Vilcins*
Skin diseases and allergies (8)	7 Amegah, Augustin*, Nichols, Gao 2014, Swynghedauw, Xu 2012, Zuo	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.	1 Huang*	
Occupational health and injuries (6)	6 Binazzi*, Bonafede*, Flouris*, Levi*, Varghese*, Wimalawans				1 Wimalawans
Other (17)	10 Bunker, Cheng, Kampe*, Nichols, Park*, Rifkin, Swynghedauw, Xu 2012, Xu 2014, Zuo	6 Alderman, Benevolenza, Doocy, Rataj, Rifkin, Stanke	1 Liu	1 Zhang 2007*	

PRISMA 2009 Checklist

4 5 6	Section/topic	#	Checklist item	Reported on page #	
7	TITLE				
8 9	Title	1	Identify the report as a systematic review, meta-analysis, or both.	1	
10	ABSTRACT				
1 12 13 14	Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	1	
15	INTRODUCTION				
17	Rationale	3	Describe the rationale for the review in the context of what is already known.	2	
18	Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	2	
20	METHODS				
22 23	Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	3	
24 25 26	Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	3	
27 28	3	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	3	
29 30 31	Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	31	
32 33	Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	3,4	
34 35 36	Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	4	
37	Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	4	
39 40	Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	5	
4 42	Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	4	
43 44 44	Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	4,5	

Page 1 of 2

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page		
Risk of bias across studies	bias across studies 15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).		5, 53-56		
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	NA		
RESULTS					
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	6		
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	6-8		
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	8		
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	38-52		
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	11-17		
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	8,53-56		
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	NA		
DISCUSSION					
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	17-18		
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	19		
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	19		
FUNDING					
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	21		

41 From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. 42 doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.

Page 2 of 2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml