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With the development of nanotechnology, silver nanoparticles (Ag-NPs) have become one of the most in-
demand nanoparticles owing to their exponential number of uses in various sectors. The increased use of
Ag-NPs-enhanced products may result in an increased level of toxicity affecting both the environment
and living organisms. Several studies have used different model cell lines to exhibit the cytotoxicity of
Ag-NPs, and their underlying molecular mechanisms. This review aimed to elucidate different properties
of Ag-NPs that are responsible for the induction of cellular toxicity along with the critical mechanism of
action and subsequent defense mechanisms observed in vitro. Our results show that the properties of Ag-
NPs largely vary based on the diversified synthesis processes. The physiochemical properties of Ag-NPs
(e.g., size, shape, concentration, agglomeration, or aggregation interaction with a biological system)
can cause impairment of mitochondrial function prior to their penetration and accumulation in the mito-
chondrial membrane. Thus, Ag-NPs exhibit properties that play a central role in their use as biocides
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along with their applicability in environmental cleaning. We herein report a current review of the syn-
thesis, applicability, and toxicity of Ag-NPs in relation to their detailed characteristics.
� 2017 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Nanomaterials (NPs) have been considered one of the most
forefront materials in recent decades. They have been reported to
be the ‘‘material of the 21st century” because of their unique
designs and property combinations compared with conventional
materials [1]. There is a wide range of applications of NPs such
as in human health appliances, industrial fields, medical applica-
tions, biomedical fields, engineering, electronics, and environmen-
tal studies [2]. Recently, enormous attention has been focused on
the use of nanoparticles (NPs) such as nanotubes, nanowires, full-
erene derivatives, and quantum dots to create new types of analyt-
ical tools in the fields of life science and biotechnology [3]. Among
all of the nanomaterials, Ag-NPs are the most widely used and may
be considered one of the most important. They have become a
high-demand material for consumer products [4]. Ag-NPs are used
in medicine, medicinal devices, pharmacology, biotechnology,
electronics, engineering, energy, magnetic fields, and also in envi-
ronmental remediation [5]. Moreover, because of their highly
effective antibacterial activity both in solution and in components,
Ag-NPs have gained popularity in industrial sectors including tex-
tiles, food, consumer products, medicine, etc.[6]. Currently, Ag-NPs
are extensively used in healthcare products, women’s hygiene
products, the food industry, paints, cosmetics, medical devices,
sunscreen, bio-sensors, clothing, and electronics [4].

Their unique physical and chemical characteristics along with
their antimicrobial ability, differing largely from bulk materials,
make Ag-NPs a high-demand material in different sectors. For
example, the high surface area-to-volume ratio enhances the sur-
face properties of Ag-NPs, thereby increasing the interaction with
serum, saliva, mucus, and fluid components of the lung lining com-
pared with bulk particles [7]. However, the strong oxidative activ-
ity of Ag-NPs releases silver ions, which results in several negative
effects on biological systems by inducing cytotoxicity, genotoxic-
ity, immunological responses, and even cell death [8–11]. Unfortu-
nately, the use of Ag-NPs carries a series of unpredictable concerns
regarding their interaction with biological systems [7,12]. There-
fore, the enormous applications of Ag-NPs raise concerns about
human exposure, because they can easily pass through the blood
brain barrier (BBB) by transcytosis of capillary endothelial cells
or into other critical areas or tissues [13]. According to Aueviriyavit
et al., Ag products in colloidal form for medicinal or other purposes
have activated Ag+, which might have a direct effect on human
health [14]. In addition, because of the increased use of Ag-NPs,
concentrations of Ag+ are increasing in soil and water, which were
measured to be 22.7 ppm and 0.76 ppm, respectively [14,15].
Moreover, it is hypothesized that Ag+ possesses an enhanced toxi-
city potential than elemental Ag and Ag-NPs [11]. However, an
increasing number of recent occurrences of diseases due to micro-
bial infections has been prevented by the noble metal, with Ag-NPs
having a well-documented antimicrobial and disinfectant activity.
Very recently, antibacterial activity of green-synthesized Ag-NPs
against Bacillus subtilis and Escherichia coli was revealed [16]. The
role of Ag-NPs as an environmental disinfectant and the safe syn-
thesis of Ag-NPs are areas that remain to be explored. Little is
known about the diversified mechanisms of action of the cytotox-
icity of Ag-NPs, as well as their short- or long-term exposure out-
comes, on human physiology [17,18]. The interaction processes of
nanomaterials with biological systems are unknown and conse-
quently might be of great concern [12,19]. The toxicity of other
NPs in different organisms has been reported in various studies
whereas the toxicity of Ag-NPs has not been extensively explored.
For example, titanium dioxide (TiO2) NPs induce reactive oxygen
species (ROS), which further initiate lipid peroxidation, protein
dysfunction, and DNA degradation, finally triggering oxidative
damage in the mouse brain [20].

It can also be assumed from several studies that the physio-
chemical characteristics of Ag-NPs solely control the toxicity path-
ways that they induce. Therefore, the aim of this review was to
present and discuss different physicochemical properties (e.g., par-
ticle size, dose of NPs, agglomeration of Ag-NPs) that play a vital
role in inducing toxicity in different cell lines. Next, toxicology con-
siderations and toxicity initiation pathways are also discussed to
outline the Ag-NPs-induced toxicity mechanism.

Synthesis and properties of Ag-NPs

Particles less than 100 nm in at least one dimension are consid-
ered NPs [21]. Ag-NPs differ from bulk and micron size silver
because of their size, shape, and stability. Currently, Ag-NPs are
being fabricated on an industrial scale utilizing physio-chemical
techniques such as chemical reduction [8], gamma ray radiation
[9], micro emulsion [10], electrochemical methods [11], laser abla-
tion [12], autoclaving [16], microwaving [15], and photochemical
reduction [16]. These methods are all effective but suffer from
several limitations such as the use of toxic ingredients, high
operational cost, and energy needs.

Large amounts of Ag-NPs can be produced using silver nitrate
and the reducing agent ethylene glycol along with
polyvinylpyrrolidone (PVP) [22]. However, the oleylamine-liquid
paraffin system has been used to prepare almost monodisperse
Ag-NPs from silver nitrate using oleylamine and paraffin [23,24].
The reduction in different silver salts also results in a colloidal
solution of Ag particles, which is followed by both nucleation
and subsequent growth. Usually, through the optimization of dif-
ferent parameters such as temperature, pH, precursors, reducing
agents, and other experimental conditions, the silver nanocube
can be given a definite size [24,25]. Using atmospheric pressure,
Ag-NPs can be synthesized by evaporation-condensation, thermal
decomposition, the arc discharge method, and the metal sputtering
method into the powder form [26–29]. The Ag-NPs can also be pro-
duced by photo-induced synthetic strategies, which involve photo-
reduction of AgNO3 using sodium citrate (NaCit) and light sources
such as UV, white, blue, cyan, green, and orange light at room tem-
perature [30].

A recent discovery of a methodology for synthesizing green Ag-
NPs involves the utilization of bacteria, fungi, yeasts [2], algae, or
plant extracts [17] as reducing and/or stabilizing compounds to
work on silver salts, which addresses the drawbacks of physio-
chemical methods [31]. Shewanella oneidensis, Trichoderma viride
(T. viride), Bacillus species, Lactobacillus species, and some vegeta-
tive parts of plants are now being used to produce environmentally
friendly Ag-NPs. The association of nanotechnology with green
chemistry is thus allowing for the emergence of biologically and
cytologically compatible metallic NPs [19,32]. Table 1 shows the
size variability of the green-synthesized Ag-NPs from plant and
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Table 1
Few works of recent green synthesis of Ag-NPs.

Sl.
no.

Author Reducing agent Particle characteristics Remarks

1 Kathiraven et al.
[33]

Filtered aqueous extract of Caulerpa
racemosa marine algae

Size—5–25 nm Shape—sph, tri.
Structure—FCC

Antibacterial action against P. mirabilis and S. aureus

2 John De Britto et al.
[34]

Aqueous filtrate of Pteris argyraea,
Pteris confuse, and Pteris biaurita

– Antibacterial action against Shigella boydii, Shigella
dysenteriae, S. aureus, Klebsiella vulgaris, and Salmonella
typhi

3 Sant et al. [35] Aqueous filtrate of Adiantum
philippense L.

Size—10–18 nm Shape—anisotropic
Structure—FCC Nature—MD

Ag-NPs from medicinally important plants opens
spectrum of medical applications

4 Bhor et al. [36] Aqueous filtrate of Nephrolepis exaltata
L. fern

Size—avg 24.76 nm Shape—sph.
Structure—FCC

Antibacterial against many human and plant pathogens

5 Ajitha et al. [37] Filtered aqueous extract of Tephrosia
purpurea leaf powder

Size—�20 nm Shape—sph.
Structure—FCC

Antimicrobial agents against Pseudomonas spp. and
Penicillium spp.

6 Rahimi-Nasrabadi
et al. [38]

Methanolic extract and essential oil of
Eucalyptus leucoxylon leaf

Size—�50 nm Shape—sph.
Structure—FCC

Ag-NPs with biomedical potential

7 Bagherzade et al.
[39]

Aqueous extract of saffron (Crocus
sativus L.)

Size—12–20 nm Inhibiting activity against Escherichia coli, Pseudomonas
aeruginosa, Klebsiella pneumonia, Shigella flexneri, and
Bacillus subtilis

8 Ashokkumar et al.
[40]

Filtered aqueous extract of Abutilon
indicum leaf

Size—7–17 nm Shape—sph.
Structure—FCC

Antimicrobial action against S. typhi, E. coli, S. aureus, B.
subtilis

9 Tagad et al. [41] Locust bean gum polysaccharide. Size—18–51 nm Stability: 7 months, Ag-NPs served in development of
H2O2 sensor

10 Yasin et al. [42] Filtered aqueous extract of Bamboo leaf Size—13 ± 3.5 nm Shape—nearly sph.
Structure—cryst

Antibacterial to E. coli and S. aureus

11 Sadeghi and
Gholamhoseinpoor
[43]

Methanol extracted aqueous filtrate of
Ziziphora tenuior leaf

Size—8–40 nm. Shape—sph.
Structure—FCC

Stability: 6–12 pH range

12 Chen et al. [44] Chitosan biopolymer Size—�218.4 nm Shape—oval and
sph. Nature—Ag/chitosan nano
hybrids

Antimicrobial to E. coli, S. choleraesuis, S. aureus, and B.
subtilis

13 Mondal et al. [45] Saline washed, filtered aqueous extract
of Parthenium hysterophorus root

Shape—spherical Potential larvicidal for Culex quinquefasciatus

14 Nalwade et al. [46] Aqueous filtrate of Cheilanthes forinosa
Forsk leaf

Size—�26.58 nm Shape—sph.
Structure—FCC

Antibacterial action against S. aureus and Proteus
morgani

15 Singh et al. [47] Lantana camara 48.1 nm Antimicrobial to E coli and S. aureus. Leakage due to cell
wall rupturing

16 Vimala et al. [48] Leaf and fruit of Couroupita guianensis Cubic size 10–45 nm 5–15 nm Water soluble phenolic compounds as reducing and
stabilizing agent larvicidal to Aedes aegypti extensive
mortality rate (LC90 � 5.65 ppm)

17 Cheng et al. [49] Chondroitin sulfate Size—20 nmShape—sph Stable for 2 months, Served as nano carrier for drug
delivery

18 Sadeghi et al. [50] Filtered aqueous-methanol extract of
Pistacia atlantica seed powder

Size—10–50 nm Shape—sph.
Structure—FCC

Stability: 7–11 pH range. Antibacterial affect against S.
aureus.

19 Zhang et al. [51] Lactobacillus fermentum. LMG 8900
cells

Size—�6 nm Shape—sph. Structure—
FCC

Stable for 3 months. Resist growth of E. coli, S. aureus and
P. aeruginosa Act as promising anti-biofouling agent

20 Das et al. [52] Mycelia of Rhizopus oryzae Size—�15 nm Shape—sph.
Structure—FCC

Stable for 3 months, Antimicrobial to E. coli and B.
subtilis, Used for treating contaminated water and
adsorption of pesticides

21 El-Rafie et al. [53] Crude hot water soluble polysaccharide
extracted from different marine algae

Size—7–20 nm Shape—sph Stability: 6 months,Ag-NPs treated cotton fibers
antibacterial to E. coli and S. aureus

22 Suresh et al. [54] Filtered aqueous extract of Delphinium
denudatum root powder

Size—85 nm
Shape—sph. Structure—FCC Nature—
PD

Anti-bacterial against S. aureus, B. cereus, E. coli and P.
aeruginos Larvicidal to A. aegypti

23 Zuas et al. [55] Filtered aqueous extract of Myrmecodia
pendan plant

Size—10–20 nm Shape—sph.
Structure—FCC

Promising therapeutic value

24 Vijaykumar et al.
[56]

Aqueous extract of Boerhaavia diffusa
plant powder.

Size—�25 nm Shape—sph.
Structure—FCC, Cub

Antibacterial to fish pathogens A. hydrophila, F.
branchiophilum, P. fluorescens

25 Elumalai et al. [57] Filtered coconut water Size—70–80 nm Structure—FCC
Nature—PD

Metabolites and proteins served as capping agents

Note: PD—Polydispersed,MD—Monodispersed,WD—Well Dispersed, Cryst—Crystalline. FCC—Face centered cubic; Tri—Triangular; Sph—Spherical; cryst—crystalline; Cub—cubic.
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microbial origins. It is evident from Table 1 that the size of synthe-
sized Ag-NPs ranges from 50 to 100 nm in most of the listed stud-
ies. In general, Ag-NPs synthesized using biological reducing and
capping agents have shown wide variations in shape and size.
The researchers also reported low toxicity levels of these green-
synthesized Ag-NPs in comparison to chemically synthesized syn-
thetic Ag-NPs.

The synthesized Ag-NPs vary in size, shape, surface electric
charge, and in other physiological characteristics. Nanosized parti-
cles are several times more catalytic, have electromagnetic capabil-
ity, and thus are capable of being more reactive. ROS generation
capability could make them more toxic than their bulk counter-
parts [58–60]. Thus, variation in size plays a vital role on nanopar-
ticle activity. NPs agglomeration and concentration range are also
two important factors affecting toxicity induction.

Effects of Ag-NP physicochemical properties on cytotoxicity

Effects of particle size variability

The cytotoxicity of Ag-NPs is influenced by the variation in par-
ticle size [61]. Ag-NPs showed a vital effect on cell viability, lactate
dehydrogenase (LDH) activity [61], and ROS generation [12] in a
size-dependent manner in different cell lines. It is evident that
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surface area, volume ratio, and surface reactivity can be changed
with particle size [12,24,34]. Moreover, sedimentation velocity,
mass diffusivity, attachment efficiency, and deposition velocity of
NPs over the biological or solid surfaces are considerably influ-
enced by particle size [62–66]. Particle size can also influence the
mammalian cell interaction [17]. Several studies have been carried
out to determine the particle size effect of Ag-NPs on different cell
lines. Table 2 shows some size-dependent studies of Ag-NPs on dif-
ferent cell lines. The studies reported in Table 2 reflect the hypoth-
esis that smaller particles can induce greater toxicity. In support of
this statement, Carlson et al. worked with 15 nm and 55 nm
hydrocarbon-coated Ag-NPs, and found that the 15 nm Ag-NPs
can generate more ROS compared with 55 nm Ag-NPs in a macro-
phage cell line [12]. Using four cell lines (A549, HepG2, MCF-7,
SGC-7901), Liu et al., found that 5 nm Ag-NPs were more toxic than
20 and 50 nm Ag-NPs [66].

Recently, Wang et al., found that 20 nm citrate-coated Ag-NPs
showed more cytotoxicity than 110 nm Ag-NPs and further gener-
ated acute neutrophilic inflammation in the lungs of mice com-
pared with larger Ag-NPs [67]. However, Kaba et al. reported that
smaller Ag-NPs do not play a key role in the viability of tumor cells
(HeLa and U937 cells) [68]. This might be due to the fact that the
interactions of Ag-NPs vary depending on the type of organism.
The examination of the toxicity threshold (TT) of different-sized
particles showed evidence of size dependency in specific cell types.
TT refers to the minimum dose of any substance in which toxicity
is first encountered. Doses below the TT dose, referred to as sub-
threshold doses, do not induce any toxicity. The TT value does
not always depend on particle size (Table 3). Table 3 shows that
in the same cell line, the TT value varied. For example, in the
A431 cell line, the TT value varied between 1.51 mg/mL and more
than 50 mg/mL [76], and in the A549 cell line, the TT value varied
from 0.5 mg/mL [77] to 50 mg/mL [76]. This difference in the TT is
hardly due to a single factor such as the particle size of Ag-NPs.
Thus, the notion that smaller particles show higher biological
activity in comparison with the larger ones requires more well
established evidence to be accepted. A study reported that for
the same cell line, the TT is higher (60 mg/mL) in case of small par-
ticle size (2–5 nm Ag-NPs) than in case of the larger ones (TT 20 mg/
mL for 10–100 nm Ag-NPs) [78]. Thus, the TT value does not
always depend on the particle size.

Different synthesis processes result diverse types of Ag-NPs e.g.
spherical, triangular, square, cubic, rectangular, rod, oval and
flower (Fig. 1). From the nano-toxicological point of view, it is
unknown whether particle shape has any significant effect on the
biological system. This might depend on multiple factors rather
than a single one. For instance, alveolar epithelial cells (A549)
exposed to different shapes of Ag-NPs and Ag+ showed agglomera-
tion in the cytoplasm [82,83].

The shape of the Ag-NPs might influence the cellular uptake
mechanism, which in turn modulates the cytotoxicity. The shape
Table 2
Size dependent effects of Ag-NPs on different cell lines.

Particle sizes (nm) Cell type Findings

15, 30, 55 Rat Alveolar macrophages Ag NPs induced size depe
10, 50, 100 HepG2 Ag NPs induced size depe

inflammasome activation
5, 20, 50 A549, SGC-7901, HepG2 and MCF-7 EC50 values were size dep
13 ± 4.7 HeLa and U937 Ag NPs induced cytotoxic
10 HepG2 Cytotoxicity induced thro
20, 80, 113 RAW 264.7 & L929 Ag NPs induced cytotoxic
5–10 HepG2 Ag NPs induced Oxidativ
30–50 A431A549 Ag NP’s toxicity depends
1–10 HIV virus Interaction of Ag NPs wit
7–20 A431HT-1080 Apoptosis induced in bot
15, 30, 55 Alveolar macrophages cells ROS and LDH generated i
of nanoparticles has been reported to show a significant effect on
cytotoxic parameters. For example, spherical particles did not
show adverse effects on cytotoxic parameters in A549 cells
whereas wires induced negative outcomes [82]. The study on dif-
ferent cell lines such as macrophages (RAW 264.7, J774.1), A549,
A498, HepG2, and neurons (Neuro 2A) with 5–43 nm Ag-NPs of
2.0 mg/L concentration showed unique results to each cell line,
with macrophages exhibiting the highest sensitivity [84]. The
internalization of Ag-NPs into macrophages was revealed to occur
via the scavenger receptor pathway, and then cytotoxicity is
induced in the cytoplasm by employing the release of Ag+ [84].
Both Ag-NPs and AgNO3 are potent, have smaller (average 10
nm) diameters, and are cytotoxic in human lung cells [61]. The sol-
ubility of Ag-NPs is another critical toxicity factor in lung epithelial
cells. For instance, 20–110 nm Ag-NPs in acidic phagolysosomes
exhibited toxicity [85]. Ag-NPs (20 nm) exposed to HepG2 and
Caco2 cells caused dose-dependent toxicity, DNA damage, mito-
chondrial injury, and oxidative stress. Two different-sized Ag-NPs
(10 and 100 nm) exposed to HepG2 cells induced the proliferation
of cells, activation of mitogen-activated protein kinase (MAPK),
and upregulation of c-Jun and c-Fos mRNA [86]. Other cell lines
including A2780, MCF-7, and MDA-MB 231 showed differential
toxicity when exposed to Ag-NPs (40 nm) at a concentration of
10 mg/mL. The degree of sensitivity to Ag-NPs was as follows: ovar-
ian cancer cells (A2780) > breast cancer cells (MDA-MB 231) > M
CF-7 cells. U937 cells showed the highest susceptibility after treat-
ment with 4-nm particles, exhibiting a reduction in cell growth,
increase in oxidative stress, and increase in IL-8 p. Upon treatment
with greater-sized NPs, U937 cells showed less sensitivity. Treat-
ment with silver-polyvinyl pyrrolidone (Ag-PVP) NPs with sizes
of 10, 20, and 80 nm of mouse macrophages resulted in anti-
inflammatory effects against Chlamydia trachomatis, a very com-
mon sexually transmittable infection [87].

Biologically synthesized spherical Ag-NPs that are 50 nm in size
and at a 500-nM concentration inhibited cell survival, VEGF-
induced cell viability, cell proliferation, and migration through
the activation of caspase-3 and suppression of Akt phosphorylation
in bovine retinal endothelial cells (BRECs) [88,89]. The exposure of
rat brain microvessel endothelial cells to Ag-NPs (25, 40, or 80 nm)
resulted in significant BBB inflammation and permeability, sug-
gesting that Ag-NP toxicity may be characterized by the particle
size, surface area, dose, and exposure time for the particular cell
model [90].

Because of the ability of Ag-NPs to cross the tight junction of the
BBB, they are considered a potential neurotoxin. Studies reported
BBB inflammation, increased BBB permeability in rat brain
microvessel endothelial cells [91], and BBB dysfunction and astro-
cyte swelling causing neuronal degeneration [92]. The neurotoxic-
ity induced by Ag-NPs has been confirmed by several in vivo and
in vitro studies. Adult male C57BL/6N mice exposed to Ag-NPs
showed oxidative stress-induced neurotoxicity in three brain
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Table 3
Effects of AgNPs on cell viability upon 24 h incubation, adopted from Kaba et al. [68].

Ag NP preparation technique Particle sizes, nm Cell type Cytotoxicity assay Toxicity threshold, lg/mL Reference

Chemical reduction 30–50 A431
A549

MTT assay >50 [76]

Unknown (commercial product) >70 (PVP-coated) A549 MTT assay 0.5 (Ag NPs) 1 (Ag+) [77]
Unknown (commercial product) 10

50
100

HeLa CCK-8 (WST-based assay) 10
20
20

[78]

Unknown (patented preparation) 7–20 A431
HT-1080

XTT assay 1.56
6.25

[79]

Unknown (commercial product) <10 HepG2 MTT assay Alamar blue assay 0.5 (Ag NPs)
0.1 (Ag+)
0.7 (Ag NPs)
0.7 (Ag+)

[80]

Unknown (commercial product) 5–10 HepG2 MTT assay 2.0 [80,81]

Fig. 1. Transmission electron microscopy (TEM) images of synthesized Ag-NPs with various sizes and shapes (A–F). Spherical, oval, rod and flower shaped Ag-NPs can be
obtained from green synthesis. Spherical shaped Ag-NPs mostly obtained by chemical synthesis. The size variability is independent to the synthesis process. Ag-NPs change
color as they change their size (color not shown). Scale bars are 100 nm. Modified and redrawn from Stoehr et al. [82] and nanoComposix.com [83].
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regions including the caudate nucleus, frontal cortex, and hip-
pocampus [93]. Furthermore, synaptic degeneration, neuronal
degeneration, and astrocyte swelling were reported in the rat brain
due to a low dose of Ag-NP exposure via oral and intragastric
administration [94,95]. The exposure of PC12 cells to 15 nm NPs
at a concentration of 10 mg/mL for 24 h exhibited the involvement
of silver in both induction of oxidative stress and enzymatic dys-
functions that play a crucial role in the depletion of dopamine
[96]. The cytotoxicity of Ag-NPs was further confirmed in cerebel-
lum granule cells (CGCs). The toxicity was dose-dependent and
occurred via induction of caspase-3 activation, oxidative stress,
reduction of anti-oxidants, and intracellular calcium levels; how-
ever, it did not damage the cell membrane [97].

Furthermore, Ag-NPs exhibited increased toxicity in stem cells.
For instance, murine spermatogonial stem cells had less cell viabil-
ity, LDH leakage, and prolonged apoptosis after Ag-NPs exposure
[98] The biocompatibility of Ag-NPs (100 nm) in humanmesenchy-
mal stem cells (hMSCs) was examined and there was a dose-
dependent effect on cytotoxicity [69]. In addition, male somatic
Leydig (TM3) cells, Sertoli (TM4) cells, and spermatogonial stem
cells (SSCs) showed similar effects using Ag-NPs of varied sizes.
Ag-NPs therefore, exert a significant amount of negative effects
on neurogenesis.

Effects of concentration

The concentration of NPs is another important factor affecting
toxicity. It is critical to determine the minimum concentration
level of NPs that induces toxicity and its variation in different sub-
jects. Mostly, Ag-NPs showed cytotoxicity in a concentration-
dependent manner. In RAW 264.7 cells, 0.2 ppm Ag-NPs reduced
cell viability by 20%, whereas 1.6 ppm of Ag-NPs reduced viability
by 40% [70]. The same trend was also observed in human Chang
liver cells, where cell viability decreased in a concentration- and
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dose-dependent manner [60]. In a rat liver cell line (BRL 3A), 25
ppm of Ag-NPs was reported to be the most toxic concentration,
with toxicity observed at concentrations ranging from 1 to 25
ppm. Depending on the cell type, Ag-NPs cytotoxicity varies signif-
icantly, and this should be taken into consideration for their appli-
cation in consumer products and in examining environmental
effects.

Induction of toxicity varies with different concentrations of Ag-
NPs in different cell lines. Thus, the TT for Ag-NPs is dependent on
the tested cell line. In HeLa and U937 cells, the TT of Ag-NPs was
measured as 2.0 ppm for both types of cells after 4 h of treatment.
The TT value was same for HeLa cells after 24 h of treatment,
whereas for the U937 cell line the TT value was 0.05 ppm. Cell via-
bility started to decrease at concentrations of 2.0 ppm and 0.05
ppm [68]. However, in HepG2 cells, no toxicity was found at con-
centrations from 0.01 ppm to 5 ppm at any exposure time [18].
In addition, Ag-NPs showed complete cytotoxicity against E. coli
at a concentration of 8 mg/mL [12,99].

The concentration range of NPs that can induce toxicity
depends on the particle size, type of medium, temperature, surface
functionalization, particle crystallinity, etc. [100]. For example, Ag
nano prisms and spherical Ag-NPs at a concentration of 100 ppm
were not cytotoxic to HaCaT keratinocytes after 48 h [101]. While
exposing a normal human lung bronchial epithelial cell line (BEAS-
2B) to Ag-NPs at a range of concentrations (0.01–10 mg/mL for 24
h), endocytic vesicles-induced genotoxic effects were observed via
ROS induction, micronuclei formation, and DNA damage [102].

Ag-NPs exhibited increased toxicity under a hypoxic environ-
ment at exposure levels 3 and 50 mg/mL in A549 cells, normal lung
epithelial cells (L132), human ovarian cancer cells (A2780), and
human breast cancer cells (MCF-7 and MDA-MB 231) [103]. Pre-
exposure to hypoxic conditions could induce hypoxia-inducible
factor (HIF)-1a, which eventually neutralizes the Ag-NP-induced
oxidative stress in cells to protect them. However, prolonged expo-
sure to hypoxia may induce cell death [104,105]. Ag-NPs (10–75
lg/mL) caused survival inhibition. A 10-fold increase in oxidative
stress levels corroborated this inhibition. Macrophages exposed
to water-dispersible Ag-NPs (50–500 mg/mL) exhibited vesicle
expansion, membranolytic action, and inflammatory outcomes
[106]. At higher NP doses, NM300K cells exhibited an altered cell
shape, and the production of vacuoles was induced along with
enhanced cytokine and ROS induction, with DNA damage and cell
apoptosis. This is due to the fact that Ag+ released from NPs by dis-
solution might be the initial factor for toxicity induction [107].

Human umbilical vein endothelial cells (HUVECs) treated with
biologically synthesized Ag-NPs showed no toxicity response com-
pared to chemically synthesized Ag-NPs [108]. The latter inhibited
the proliferation of the cell cycle, disruption of the cell membrane,
cellular apoptosis, and upregulation of cytokines, adhesion mole-
Table 4
Effects of Ag-NPs of different ranges of concentration on different cell lines.

Concentration range Effects of Ag-NPs in different ranges

25–75 lg/mL In rat alveolar macrophage cell line, cytotoxicity increase i
5, 15, 40, 125 lg/mL Cytotoxicity occurred through mitochondrial depolarization
10–50 g/mL Induce cytotoxicity in BRL 3A rat liver cell through ROS ge

potentiality
20 lg/mL Induce mitochondrial swelling in HSCs cell line after giving
20–250 lg/mL Apoptosis and necrosis induced in HSCs cell line
40–80 lg/mL 40 lg/mL was considered as IC50 value for MCF-7 cell line a

80 lg/mL induce necrosis when percentage of apoptosis be
10–25 lg/mL In MDA-MB- 231 cell line, DNA damage occur in presence
50 lg/mL Antioxidant capacity increased in Caco-2 cells
1, 2, 4 lg/mL Cell viability decreased in a concentration dependent mann
10–50 mg/mL In THP-1-derived human macrophages cell line cell viabilit
5 mg/mL Promote epigenetic dysregulation in HT22 cells through ce
0.4 and 0.8 mg/mL Arrest G1 phase in cell cycle in RAW 264.7 cell line
cules, and chemokines in HUVECs via NF-KB pathways [109]. Iden-
tical effects were observed in primary NHEK cells treated with Ag-
NPs [110].

Examining the effect of Ag+ and Ag-NPs on human dermal
fibroblasts (NHDF) and NHEKs revealed that silver ions were signif-
icantly more toxic than Ag-NPs to both cell types. Likewise, the
neurotoxicity is also furnished by Ag+ more than Ag-NPs [61]. Dur-
ing the exposure of rat cortical cells to various concentrations of
Ag-NPs (1–50 lg/mL), the inhibition of neurite outgrowth and
the cell survival of premature neurons and glial cells was lowered
via mitochondrial dysfunction and loss of cytoskeleton proteins
including b-tubulin and filamentous actin (F-actin). Similarly, neu-
ral stem cells (NSCs) showed an increase in cell death, leakage of
LDH, induction of ROS, upregulation of pro-apoptotic Bax protein,
and increased in apoptosis when exposed to various concentra-
tions of Ag-NPs [111]. Table 4 shows the effects of Ag-NPs at differ-
ent concentration ranges on different cell lines.

Taken together, it can be concluded that cytotoxicity of Ag-NPs
varies from cell to cell. Moreover, the cell type, particle size, and
exposure time also play vital roles in cytotoxicity. However, the
minimum or highest concentration of Ag-NPs needed to induce
toxicity is not fixed and might vary based on the organism.
Effects of coatings

To prevent aggregation of Ag-NPs, coating is a way to produce
electrostatic as well as electrosteric repulsions between particles,
which further helps to stabilize the NPs. Uncoated Ag-NPs signifi-
cantly decreased cell viability in a time-and dose-dependent man-
ner, and coating is used to provide protection against cytotoxicity.
The type of coating depends on the capping agent properties such
as organic capping agents (polysaccharides, citrates, polymers, pro-
teins, NOM, etc.) and inorganic capping agents (sulfide, chloride,
borate, and carbonate). Since the capping material plays a role in
maintaining the surface chemistry of Ag-NPs by stabilizing, giving
a definite shape, and reducing Ag+, the potentiality of modulating
the bioactivity of coated Ag-NPs is significant. In this section, we
discuss the possible effects of Ag-NP coatings on their toxicological
phenomena. Ag-NPs-induced cytotoxicity may vary depending on
several factors including the type of coating materials. Usually
the processes involved in toxicity induction involve ROS genera-
tion, depletion of antioxidant defense systems, and loss of mito-
chondrial membrane potential. Surface coating of Ag-NPs can
affect shape, aggregation, and dissolution ratio. However, the
method and extent of Ag-NPs toxicity varies based on the coating
materials. For example, chitosan-derived polysaccharide-coated
Ag-NPs showed antimicrobial activity with no toxicity to eukary-
otic cells [115].
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Polystyrene-coated Ag-NPs caused fewer changes in genetic
induction and repression compared to Ag-NPs and AgCO3 in HepG2
cells [116]. Furthermore, citrate- and polyvinylpyrrolidone (PVP)-
coated Ag-NPs were tested to compare their toxicity with uncoated
Ag-NPs using J774A.1 macrophages and HT29 epithelial cells [117].
Both citrate and PVP-coated Ag-NPs proved to be less cytotoxic
than uncoated ones in tested cell lines. Cytokine expression as well
as oxidative stress pathway analysis corroborates the possible
mechanism of toxicity induction in epithelial cells and macro-
phages. Citrate coatings can improve the stability of colloidal Ag-
NPs and decrease their toxicity. In contrast, PVP-modified Ag-NPs
maintain good stability and cause negligible toxic effects in human
skin HaCaT keratinocytes. However, no significant changes were
observed between uncoated and PVP- and oleic acid-coated Ag-
NPs in terms of bioaccumulation and toxicity in earthworms (Eise-
nia fetida) [118]. In contrast, polysaccharide-coated Ag-NPs
resulted in greater DNA damage than uncoated Ag-NPs by increas-
ing the likelihood of entering into the mitochondria and the
nucleus [119]. The stability of thiol-coated Ag-NPs reported by
Andrieux et al. [120] was due to their corrosive properties and
affinity for the cell membrane proteins [120]. It is evident from
the above discussion that coating materials and their characteris-
tics play a vital role in Ag-NPs induced cytotoxicity.

Effects of agglomeration

NPs have high potential to aggregate or agglomerate in solution
and in ambient air. The interaction potentiality of NPs with cells is
dependent on diffusion, gravitation, and convection forces
[121,122]. The agglomeration process might be affected by the
pH, electrolyte or salt content, and protein composition in the cul-
ture medium [123]. Several studies showed that the binding capac-
ity of NPs with protein is different based on the composition of
both the NPs and protein [124–126]. Agglomeration states of Ag-
NPs in medium depend on treatment preparation. A study by Lank-
off et al. revealed that 20 nm and 200 nm-sized Ag-NPs aggregated
in culture medium, and the aggregation range changed depending
on the NPs suspension preparation. Depending on the suspension
preparation, the hydrodynamic diameter of Ag-NPs could be larger
than the nominal size of the particles [71]. Finally, more aggre-
gated particles showed fewer effects on the cellular level [71].

Cellular localization of NPs may depend on the agglomeration
states of the NPs [71]. For example, under the same conditions,
Ag-NPs seem to aggregate very loosely compared with TiO2 NPs.
Therefore, Ag-NPs were observed in the cytoplasm, nucleus, and
mitochondria with a slight agglomeration whereas clusters of
agglomerated TiO2 were mainly distributed in the vacuole [71].
This occurs because intracellular localization of Ag-NPs and TiO2

NPs depends on the interaction of the particles with protein and
DNA inside the cell, which also initiates toxicity [127].

Ag-NPs have a high agglomeration tendency in culture medium
because of their high surface area [128]. This agglomeration may
induce toxicity rather than the ionic metal-induced toxicity. Some-
times, aggregation plays a role in the various types of intracellular
responses. Hence, from the point of view of toxicological interest, it
is very important to know how agglomeration or aggregation
states of NPs affect different biological responses [71,129].

Like other NPs, agglomeration is a common phenomenon
observed for Ag-NPs. As agglomeration and aggregation are barri-
ers to cytotoxicity measurement, usually a different surface coat-
ing is used on the NP surface. However, the surface coating
materials, such as organic (citrate, PVP) and inorganic coatings
(sulfide, chloride), potentially interfere with cytotoxicity measure-
ments [68]. In addition, easy penetration of agglomerated Ag-NPs
into mesenchymal stem cells and the nuclei was made evident
by several studies [130,131].
Effects of surface corona, charge, and hydrophobicity/hydrophilicity

Nanomaterials have the potential to be utilized in biological
systems for different purposes such as in biomedical applications.
It is generally agreed that the mixing of nanomaterials with biolog-
ical entities may exert detrimental effects on biological systems as
a result of nano-bio interfacial interactions. In this interaction,
DNA, proteins, membranes, cells, and organelles usually play the
vital role of providing access to the nanomaterials through their
natural boundaries fueled by colloidal forces. Every biological
entity eventually forms a surface corona in the nano-bio boundary
region which is adverse in nature. Among all surface coronas, the
protein corona is considered as an emerging entity in
nanobiointerface.

Ag-NPs also have received an immense amount of attention
owing to their complicated interaction with proteins [132]. Imple-
mentation of AgNPs in different sectors such as medical, biological,
chemical, and electronical make them potential agents for inducing
adverse human health effect, especially cardiovascular, central ner-
vous system, malfunction, neurotoxicity, or immunotoxicity
[133,134]. The process of corona formation depends on the capa-
bility of the protein to get adsorbed onto the surface of NPs and
therefore, the presence of a protein corona could greatly influence
biological activity. Many in vitro and in vivo experiments were con-
ducted worldwide to understand the interactions between NPs and
biological fluids. Almost all experiments show that the surface
between cellular systems and the nanoparticles establishes the
corona formation.

The corona significantly affects the biological response. Particle
size [87], particle shape [97], particle surface properties [98], and
biological fluid properties and composition affect the corona com-
position and thus the adverse effects on human health and the
environment [135,136]. Based on the surface affinity and exchange
rate, the corona can be divided into two forms: hard corona and
soft corona. The soft corona proteins are ’vehicles’ for the silver
ions whereas the hard coronas are rigid for the trespass into the
cellular system. Various investigations have been conducted on
various types of corona effects, examining the interactions of struc-
ture based (cube, sphere, wire, and triangle) silver nanoparticle
with fetal calf and bovine serum (FBS), bovine serum albumin
(BSA), human blood plasma, human serum albumin (HSA), tubulin,
ubiquitin (cytoskeletal protein), and hyaluronan-binding protein
in situ. This research aimed to measure and understand protein
enrichment on the surface of different silver NPs. More than 500
proteins were identified and isolated that were directly related to
the corona formation among which 50% would be found on the
NPs regardless of their surface coating or size. The studies with
BSA indicated that NPs could be strongly affected by the presence
of polymer coatings and the surface charge of the nanoparticles. In
some cases, BSA exhibits a relatively low affinity for the electro-
statically stabilized NPs, demonstrating the importance of interac-
tions between electrostatic and hydrophobic elements in the
protein corona formation. This affinity and electrostatic stabiliza-
tion mainly controls the toxicological aspects of nanoparticles
and thus the corona itself. In addition, uncoated and surfactant-
free Ag-NPs promoted a maximum protein (BSA) coating due to
increased changes in entropy and a lower affinity for electrostati-
cally stabilized NPs due to the constrained entropy changes. The
studies with FBS indicated that, in a protein-free solution, hard
protein corona could be sustained in their final form for a long
time, undergoing a stabilization process. A typical nanoparticle
protein corona consisting of HSA, immunoglobulins, fibrinogen,
apolipoproteins, transferrin, complement proteins, and hemoglo-
bin causes certain illnesses to develop and progress. In an HSA
study, it was found that the interaction of protein coronas with
lipid vesicles could enhance their fluidity. Usually, cellular uptake
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is reduced by the incubation of silver with albumin, which signifi-
cantly alters the association of the particle with the membrane.
The biological activities of the surface corona were also studied
to understand their antibacterial activity and cytotoxicity. It is evi-
dent from the literature that the antibacterial activity of Ag-NPs
mostly depends on the capping agents and the route of administra-
tion into the organism e.g., orally or intravenously. The toxicity of
the protein corona is controlled in most cases by particle coatings
and is induced by oxidative stress through cell surface receptors.
The corona may affect the ability of the NPs to dissolve into silver
cations (Ag+), which impacts the toxic effect.

Different functional groups present on the particle surface along
with the protein charges regulate the cytotoxic properties of the
corona. The functional groups play a key role in the formation of
the nanoparticle-protein corona. Positively and negatively charged
Ag-NPs showed the highest and lowest bactericidal activity,
respectively. In both cases, surface charge plays an important role
in bactericidal activity of Ag-NPs against both gram-positive and
gram-negative bacteria [137].

The affinity for water is another key factor impacting Ag-NP
effectiveness and toxicity that has gained serious attention from
researchers worldwide. To protect against viral-mediated diseases,
Ag-NPs act as anti-viral agents which will eventually be utilized in
antiviral therapy. The antiviral activity of Ag-NPs is largely con-
trolled and regulated by increased membrane hydrophilicity [19].
Nanosilver incorporation also increased membrane hydrophilicity,
reducing the potential for other types of membrane fouling. In
addition, Katherine et al. indicated that the decrease in hydropho-
bicity can be potentially beneficial for preventing chemical fouling
[138].

Huge efforts were made to convert hydrophilic Ag-NPs to
hydrophobic Ag-NPs [139]. Both hierarchical surface structures
(micro/nano-scale roughness) and a low surface energy layer are
required for the conversion of a hydrophilic surface into a
hydrophobic surface. Hydrophilic Ag-NPs (5–30 nm) in the pres-
ence of cationic surfactant could be transferred to an organic phase
by solvent exchange induced by inorganic salts with a high transfer
efficiency (>95%). The hydrophobic Ag-NPs are stable and suitable
for long-term storage without loss of their original particle integ-
rity [140].

Effects of Ag-NPs on degradation of non-biodegradable dyes

Silver in the nanoparticle form is extremely valuable for indus-
trial, electrical, mechanical, and biomedical uses, because of its
antimicrobial and catalytic properties. Non-biodegradable dyes
are currently a great environmental health and pollution concern.
UV-light degradation, carbon sorption, flocculation, and redox
treatments are the most widely practiced methods for the removal
of dyes. However, they are mostly ineffective and a better approach
is needed. Nevertheless, it is difficult to remove these dyes from
water because of their aromatic structural stability. Ag-NPs show
catalytic properties in the field of dye detoxification and its
removal from textile and paper industry effluent. Biosynthesized
Ag-NPs are highly effective in comparison to the synthetic Ag-
NPs as catalysts in the process of degradation of hazardous dyes
in a cost-effective manner. The degradation efficiency of Ag-NPs
is greater because of their very high surface area, high migration
rate of electrons to the surface of the NPs, accelerated kinetics,
independency of size and shape, etc. This makes them compatible,
efficient, economic, and eco-friendly for dye removal from indus-
trial effluent [141].

Different researchers have focused on the photocatalytic activ-
ity of the Ag-NPs for the detoxification of Safranin O (SO), Methyl
red (MR), Methyl orange, Congo red (CR), and Methylene blue
(MB), etc. under sunlight for a particular period of time. MB, an aro-
matic cationic dye, is present in contaminated wastewater and
might lead to eye, gastrointestinal tract, and skin irritation
[142,143]. Generally, the maximum absorption band of MB in
aqueous solution is observed at 665 nm owing to the n-p⁄ transi-
tion of the MB [62,144]. The photocatalytic degradation of the
MB solution could be determined by the decreasing intensity of
the absorption band with respect to time while exposed to sun-
light. The surface plasmon resonance (SPR) property of the Ag-
NPs could be responsible for the decrease in MB in solution at
about 6–72 h [145]. CR, a secondary diazo anionic dye, is a carcino-
genic metabolite that can cause bladder cancer and undergoes
photocatalytic degradation spectrophotometrically within 20 min
by Ag-NPs [146].

SO is a derivative of phenazine that affects aquatic biodiversity
and can be successfully catalyzed using photocatalysts like Ag-NPs.
It has a high surface-to-volume ratio, non-toxicity, cost effective-
ness, and provides a novel way of treating several dye pollutants
[147]. Jyoti et al. showed that catalytic activity can be strongly
dependent on the crystal structure, morphology, and size of the
particles. Methyl red and Methyl Orange can also be photochemi-
cally degraded in the presence of Ag-NPs as photocatalysts [141].
Some NPs are known to induce endoplasmic reticulum (ER) stress,
leading to cell death. Jean et al. reported that Ag-NPs target and
induce ATF-6 degradation, leading to activation of the NLRP-3
inflammasome and pyroptosis, which provides a new link between
ER stress and activation of the NLRP-3 inflammasome. Kalantari
et al. fabricated Ag-NPs by treated alkaline tapioca starch, which
showed good catalytic activity in the degradation of 4-NP by
sodium borohydride within a short time [148]. They also reported
the antioxidant activity of Ag-NPs for the treatment of some dis-
eases caused by oxidative stress, which lead to them being labeled
as green particles and making them a biocompatible and low-cost
candidate for commercial and biomedical applications.
Biocidal applications of Ag-NPs based on physical properties

The physicochemical properties of Ag-NPs (e.g., size, shape, con-
centration, and electrochemistry) largely direct the Ag-NP applica-
tions in industrial, medicinal, and environmental sectors. Both
gram-negative and gram-positive pathogenic bacterial strains can
be destroyed by Ag-NPs. The particle sizes along with the surface
stability of Ag-NPs are the major factors regulating the effective-
ness of Ag-NPs as a biocide. Evidently, the Ag-NPs damaged and
destroyed bacterial cells by penetrating and accumulating in the
bacterial membrane. The penetration of Ag-NPs largely depends
on the size of the particles, for example, 1–100 nm Ag-NPs can
easily penetrate into gram-negative bacteria and 10–15 nm-sized
Ag-NPs can inhibit non-resistant and drug-resistant bacteria
[131]. In addition, a low concentration of Ag-NPs (3.3–33 nM)
can completely inhibit E. coli and S. aureus [149]. Other than the
size, shape and surface modifications also impact the effectiveness
of Ag-NPs as biocides. For example, the truncated triangular Ag-
NPs exhibit stronger biocidal activity than the rod-shaped and
spherical shaped NPs, and ionic silver [150]. The surface modifica-
tion of Ag-NPs with sodium dodecyl sulfate-SDS, polyoxyethylene
sorbitan monooleate-Tween 80, and polyvinylpyrrolidone-PVP
360 significantly raised the antibacterial activity of the Ag-NPs
against E. coli, P. aeruginosa, E. faecalis, S. aureus, P. aeruginosa,
methicillin-susceptible S. epidermidis, methicillin-resistant S. epider-
midis, methicillin-resistant S. aureus, vancomycin-resistant E. faecium,
and K. pneumonia [72,151]. This characteristic of Ag-NPs along with
the identification of the exact particle size distribution for estab-
lishing Ag-NPs as an antibacterial agent led to its use as an air dis-
infectant in air filters, preventing bacteria from colonizing filters.
The presence of Ag-NPs in the air filters prevented the colonization
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of bacteria such asMicrococcus luteus, Micrococcus roseus, B. subtilis,
and Pseudomonas luteola. The presence of E. coli and other patho-
genic microbes in the drinking water is another health and social
concern worldwide, especially in poor countries. Ag-NPs function-
alized with polyurethane (PU) can contribute a ACOOA carboxylic
functional group which in turn exhibits effective anti-infection
activity against two types of gram-negative bacteria (E. coli and
P. aeruginosa) and two types of gram-positive bacteria (B. subtilis
and S. aureus). The release of Ag+ into water is considered the
key component needed to kill pathogens. Thus, the contamination
of water with ionic Ag may trigger other health concerns, which
should be addressed in future research [152].

Ag-NPs also have anti-fungal properties against Trichophyton
rubrum, Trichophyton mentagrophytes, and Candida albicans at dif-
ferent sizes and concentrations. Ag-NPs work best against fungal
strains at a size of �100 nm, with the IC80 value ranging from 1
to 7 lg mL�1 [16,153,154]. The most recent discovery of Ag-NPs
as biocides involves its potency as an antiviral agent against viral
infectious diseases such as SARS-Cov, influenza A/H5N1, influenza
A/H1N1, Dengue virus, HIV, HBV, and new encephalitis viruses. Ag-
NPs ranging in size from 1 to 10 nm inhibit HIV-1, whereas 10–80
nm particles can inhibit other viral strains by binding to the outer
proteins of the viral particles. The exact mechanism of Ag-NPs as
an antiviral agent has not been elucidated. Further research into
this mechanism will help in the fight against harmful viruses in
the near future [73,155,156]. Ag-NPs are now used in the industrial
sector to form antimicrobial paints, functionalized plastics, medic-
inal gels, preservatives, packaging materials, fabrics, etc. The sus-
tainable functionality of effluent treatment plants in some major
industrial zones can be assured by intensive characterization and
modification of this novel nanoparticle.
Cytotoxicity of Ag-NPs

Mechanism of toxicity induced by Ag-NPs

Despite the wide applications of Ag-NPs, little research has been
conducted concerning their impact on human health and the envi-
ronment. The toxicological mechanism is still unclear. Regardless,
there is a number of publications available describing both
in vitro and in vivo NP toxicity experiments. Results showed that
the cytotoxic and genotoxic effect of Ag-NPs is dependent on their
concentration, size, exposure time, and environmental factors. In
addition, nanosilver surface-coating agents, such as citric acid,
amino acids, acetyl trimethyl ammonium bromide, and sodium
dodecyl sulfate are noncovalently attached to nanosilver particles
and can be released into the environmental and biological media
with or without interaction with biological macromolecules, and
inorganic and organic ions cause the NPs to be unstable in media
[157,158]. Additionally, particle aggregation, surface oxidation to
form silver oxide, and oxidation of silver oxide release both Ag+

and Ag0 into the media, which eventually results in accumulation
of ionic silver in the environmental media, biological media, and
inside the cell through diffusion or endocytosis, causing mitochon-
drial dysfunction [159]. Ag-NPs then interact with cell membrane
proteins and activate signaling pathways to generate reactive oxy-
gen species (ROS), leading to damage of proteins and nucleic acids
caused by the strong affinity of silver for sulfur and finally causing
apoptosis and inhibition of cell proliferation [160]. Most of the
research has pointed to the above-mentioned cytotoxicological
pathways of Ag-NPs.

Generally, in in vitro tests, Ag-NPs are highly toxic at concentra-
tions ranging from 5 to 10 lg mL�1 and sizes from 10 to 100 nm,
and they disrupt mitochondrial function [74,161]. It can be
assumed from several studies that Ag-NPs are transported across
cell membranes, especially into the mitochondria, but it is
unknown whether nanomaterials target the mitochondria directly
or enter the organelle secondary to oxidative damage [162]. Hasse
et al. reported that the cytotoxicity of Ag-NPs was mainly induced
through the mitochondrial pathway by reducing glutathione
(GSH), high lipid peroxidation, and ROS responsive genes causing
DNA damage, apoptosis, and necrosis [160]. On the other hand, a
few in vivo studies showed that Ag-NPs cause adverse effects on
reproduction, malformations, and morphological deformities in
different non-mammalian animal models, in addition to the
above-mentioned in vitro effects [163].

There is another debate regarding whether Ag-NPs or Ag+

induce toxicity in biological systems. Ag+ is released through the
surface oxidation and then reacts with biological molecules [5].
Though it is controversial, there is strong evidence supporting
the idea that it is Ag+ that is responsible for the Ag-NPs-
mediated toxicity and not the NP itself [164]. A recent study
revealed that cytotoxicity of Ag-NPs occurs due to the minimum
release of Ag+ [7,165–167]. Therefore, distinguishing the part of
the Ag-NPs that leads to toxicity is challenging.

Uptake mechanism of Ag-NPs

Uptake of Ag-NPs into cells may differ from cell to cell. Diffu-
sion, phagocytosis, and endocytosis are some potential methods
[168]. In humanmacrophages, Ag-NPs can enter cells in phagocytic
and non-phagocytic ways [112]. In medium, some Ag-NPs aggre-
gate and enter into the cells through phagocytosis, but other parti-
cles that are not in an aggregated form enter through alternate
ways. Sometimes, Ag-NPs are engulfed by mammalian cells, and
the uptake range of NPs depends on the particle size and type of
cell [169–171]. The membrane flip flop mechanism or direct pene-
tration via the ion channel is another possible route of Ag-NPs
uptake. In this case, active transport also exists with passive trans-
port [112]. Intracellular uptake of Ag-NPs was confirmed in the
HT22 cell line even 96 h after removal of Ag-NPs from the medium
[113].

ROS generation in Ag-NPs-induced toxicity

Most of the cellular and biochemical alterations in the cells are
caused by ROS-mediated toxicity, and this has been confirmed by
several in vitro models [172]. Oxidative stress is considered as
the probable mechanism of Ag-NPs-induced toxicity. Superoxide
radical (O2

�) and H2O2 can act as ROS, which are essential for main-
taining normal physiological processes. However, excessive ROS
can collapse the antioxidant defense system, leading to the damage
of DNA, proteins, and lipids [75]. Mitochondria mainly release ROS,
leading to oxidative stress, disruption of ATP synthesis, DNA dam-
age, and eventually apoptosis [173]. Likewise, Ag-NPs usually gen-
erate ROS after entering into the cell [172]. As ROS levels increase,
the GSH level decreases dramatically and at the same time LDH
increases in the medium, which ultimately induces apoptosis
[174]. Increased levels of ROS ensure oxidative stress that might
cause calcium dysregulation or neurodegeneration in neuronal cell
[96,175]. Oxidative stress resulting from Ag-NPs can damage the
antioxidant defense capacity of the cell, damage DNA, and finally
lead to apoptosis, especially in human cell lines [172,174,176–
179]. Intracellular oxidative stress causes MMP3to secret a specific
amount of MMP, an extracellular matrix (ECM) digester protease
[180,181]. Moreover, ROS generation also affects redox homeosta-
sis at the intracellular level, and as a result, lipid peroxidation and
protein carbonylation occurs. At the same time, the glutathione
level and antioxidant enzyme activity are decreased. Thus, glu-
tathione level, antioxidant enzyme activity, and protein bound
sulfhydryl group depletion promote apoptosis [182]. Therefore,



Fig. 3. A proposed pathway for Ag-NPs induced ROS generation and intracellular
GSH depletion, damage to cellular components, and apoptosis [60].
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the main cytotoxic effect of Ag-NPs is apoptosis-mediated cell
death [152].

Different toxicological pathways of Ag-NPs

Ag-NPs induce cytotoxicity following different pathways. Sev-
eral studies have shown that Ag-NPs induced toxicity is triggered
by the increase of ROS generation [183]. In vitro instillation of
Ag-NPs into the cell could generate overproduction of intracellular
ROS, which activates cell death-regulating pathways such as p53,
AKT, and MAPK signaling apoptotic pathways [184]. Over produc-
tion of ROS causes the down regulation of total AKT, which
increases the expression of proapoptotic kinase p38. Meanwhile,
decrease in PARP (poly ADP ribose polymerase) expression result-
ing significant increase of caspase-3, H2X, p-p53, and total p53
expressions [184]. Thus nanosilver can induce apoptosis following
p53 signaling pathway (Fig. 2).

Mitochondrion is an important centre of apoptosis signal. Effect
of Ag-NPs on mitochondrial membrane permeability could cause
loss of mitochondrial integrity, which may regulate JNK mediated
caspase dependent apoptosis [60]. Loss of mitochondrial mem-
brane potential (DW) regulate down-regulation of Bcl-2, up-
regulation of BAX and release of cytochrome c into the cytosol.
Down-regulation of Bcl-2 can be influenced by JNK (Jun amino –
terminal kinases). JNK is a member of MAPK family, which partic-
ipate in apoptosis via phosphorylation of Bcl-2, consequences inac-
tivation of Bcl-2. Release of cytochrome c into the cytosol initiates
a cascade that leads to the initiation of caspase 3 through apaf-1
and caspase 9 [185]. Thus Ag-NPs can induce apoptosis via mito-
chondria and caspase dependent pathway mediated by JNK
(Fig. 3). Epigenetic dysregulation can also be induced by Ag-NPs,
which may have long term effects on gene expression reprogram-
ming. [113]. Ag-NPs could have effect on the cell cycle and induc-
Fig. 2. Apoptosis inducing signaling pathway mediated by p53, AKT, MAPK
activation to suppress ROS generated by Ag-NPs [184].
tion of DNA hypermethylation following the p53 or p21 pathway,
which may have effect on epigenomic level [113].

Several studies have compared the toxicity mechanism of Ag-
NPs with the Trojan-horse-type molecular pathway [70] For
instance; Ag-NPs can be phagocytosed by RAW 265 cells, making
them available in the cytosol and culture medium of active cells,
but not in damaged cells. It is possible that NPs released from
the damaged cell into the culture medium promote a further bio-
logical response referred to as a ‘‘Trojan-horse-type” mechanism.
Disappearance of Ag-NPs inside the damaged cells suggests that
the NPs were ionized inside the cell resulted to cell damage. It is
also worth noting, phagocytosis of AgNPs can generate ROS which
stimulate inflammatory signaling TNF-a. The increase of TNF-a.
causes the damage of cell membrane and apoptosis. Thus it is spec-
ulated to be caused by ionization of AgNPs in the cell which is
expressed as Trojan-horse type mechanism [70].

Like other nanoparticles, Ag-NPs also provoke oxidative stress
into the cell through ROS generation [58]. Moreover in Ag-NPs
treated cells, generation of ROS can be decreased by pretreatment
of cells with NAC, suggesting involvement of intracellular antioxi-
dant defense system [60]. GSH is one of the major endogenous
antioxidant scavengers that able to bind to and reduce ROS. Thus
GSH mediated antioxidant scavenge system is considered as a crit-
ical defense system for cell survival [186]. GSH is formed in two
steps by c-GCL and GSS. First, c-GCL catalyses and produce glu-
tamylcysteine in the process of cellular GSH biosynthesis. Then
finally glutamylcysteine is catalyzed by GSS and adds a glycine
residue to form glutamyl cysteinyl glycine or glutathione [60].
Ag-NPs raised intracellular ROS by the reduction of GSH level
through the inhibition of GSH synthesizing enzyme [60]. However
superoxide dismutase and catalase is also intracellular antioxidant
defensive enzyme.

Nrf2 is another defensive pathway which plays an important
role in preventing cellular stress. Nrf2 can play a central role in
protecting the cell from oxidative, electrophilic, and nitrosative
stress, especially in the intestinal cell, through the induction of
antioxidant-responsive genes and genes of the phase II detoxifying
enzyme [187–190]. Oxidation of Keap-1 dissociates Nrf2 and it is
then translocated into the nucleus and ultimately activated
[191]. Thus, activation of Nrf2 influences the generation of cyto-
protectors such as HO-1. HO-1 is an enzyme of heme catabolism,
which counteracts cell death by producing equimolar quantities
of Fe2+, biliverdin, and carbon monoxide to neutralized ROS
[192,193].



Fig. 4. Possible uptake process and mechanism of cytotoxicity induced by Ag-NPs in different cell lines based on the metadata from several studies.
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In summary Ag-NPs can enter into the cell through the process
of diffusion, phagocytosis or endocytosis. Inside the cell, Ag-NPs
itself or ionized Ag+ generate ROS cause oxidative stress. Over pro-
duction of ROS can denature different antiapoptotic proteins and
initiate proapoptotic proteins expression. Thus expressions of
apoptotic proteins initiate apoptosis signaling pathway (Fig. 4).
Dosimetry in Ag-NPs-induced cytotoxicity

Growing evidence suggests that human exposure to engineered
nanomaterials (ENMs) can lead to adverse health effects, but the
underlying toxicity mechanisms are not currently well-
understood [190]. So, an efficient and cost-effective toxicological
screening method is needed for characterizing the relationships
between ENM physicochemical properties including size, mor-
phology, surface chemistry, and crystallinity, and their biological
effects on an organism in vitro [191]. Dosimetry is the measure-
ment of the absorbed dose delivered by ionizing radiation or
another source that is received by the human body. Dosimetry
of nanomaterials could be used for rapidly assessing nanomaterial
toxicity [192]. Nanomaterials exhibit a transition between bulk
materials and atomic or molecular structures where quantum
effects lead to the occurrence of specific physicochemical proper-
ties (e.g., malleability, electrical conduction, magnetism) and also
exhibit specific toxic effects. A prevailing view is that nanoparticle
surface area, gravitational settling, diffusion, sedimentation,
agglomeration, mobility, mass, particle size, shape, exposure time,
and dose are important determinants of toxicity and could be
examined to determine dose metrics [193]. Considering particle
migration, it was estimated that the active fraction of particles
might be extremely low or even negligible for particles with
nanoscale dimensions.

We did not find any concrete research describing an integrated
methodology for in vitro Ag-NPs dosimetry with accurate determi-
nation and reporting of delivered cell dose metrics. It is suggested
that researchers determine relevant doses to deliver into the cells
rather than relying on the typically reported administered doses of
particles in suspension. There is a need for more work to resolve
this issue and to determine the required doses. In addition, the
effects of particle size should be considered, specifically in differ-
ent cell lines. Consequently, nanotoxicologists should carefully
consider the nominal doses of nanomaterials for in vitro
experiments.
Conclusions and future perspectives

The physicochemical attributes of Ag-NPs mainly distribute and
categorize major toxicological concern, and establish the ladder of
toxicity framework while imposing into the biological system. Till
now, studies are not enough to get a concrete idea on the cytotox-
icity of Ag-NPs and also the mechanism behind the toxicity. But on
the basis of above discussion it is evident that cytotoxicity of Ag-
NPs can be considered as dependent on different kinds of proper-
ties such as nanoparticle size, shape, concentration, agglomeration
or aggregation. In this review, we provide some comprehensive
idea about particle size and toxicity, that is, less particle size is
responsible for high toxicity. Aggregation and sedimentation lead
to a decrease in the activity of biologically active particles. How-
ever, Ag-NPs can agglomerate frequently that’s why surface coat-
ing is used in toxicity measurement, which is also contradictory.
Moreover, aggregation of Ag-NPs cannot prevent penetration into
the stem cells in mesenchyma including its nucleus. That is sup-
posed to be another interesting contradiction. In addition, cytotox-
icity not only depends on NPs properties, but also organism’s
variation plays a vital role. All cell line does not show same types
of responses. Finally, Ag-NPs can induce cytotoxicity through
oxidative stress by the generation of ROS. ROS generation initiate
a pro-inflammatory protease, caspase-1 activation that regulates
apoptosis or cell death. For the better understanding of cytotoxicity
mechanism of Ag-NPs further studies are needed.



12 M. Akter et al. / Journal of Advanced Research 9 (2018) 1–16
Acknowledgments

We owe our gratitude to all those researchers who have made
this review possible. This research did not receive any specific
grant from funding agencies in the public, commercial, or not-
for-profit sectors.

Conflict of interest

The authors declare no conflict of interest.

Compliance with Ethics Requirements

This article does not contain any, studies with human or animal
subjects.

References

[1] Camargo PHC, Satyanarayana KG, Wyypych F. Nanocomposites: synthesis,
structure, properties and new application opportunities. Mater Res
2009;12:1–39.

[2] Hamzeh M, Sunahara GI. In vitro cytotoxicity and genotoxicity studies of a
titanium dioxide (TiO2) nanoparticles in Chinese hamster lung fibroblast cells.
Toxicol In vitro 2013;27:864–73.

[3] Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor
nanocrystals as fluorescent biological labels. Science 1988;281:2013–6.

[4] Edwards-Jones V. The benefits of silver in hygiene, personal care and
healthcare. Lett Appl Microbiol 2009;49:147–52.

[5] Yu S-J, Yin Y-G, Liu J-F. Silver nanoparticles in the environment. Environ Sci
Proc Impacts 2013;15:78–92.

[6] Naidu KB, Govender P, Adam JK. Biomedical applications and toxicity of
nanosilver: a review. Med Technol SA 2015;29:13–9.

[7] Beer C, Foldbjerga R, Hayashi Y, Sutherlandb DS, Autrupa H. Toxicity of silver
nanoparticles-nanoparticle or silver ion? Toxicol Lett 2012;208:286–92.

[8] Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and
metal. Angew Chem Int Ed Engl 2013;52:1636–53.

[9] Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application.
Toxicol Lett 2008;176:1–12.

[10] Simon-Deckers A, Gouget B, Mayne-L’hermite M, Herlin-Boime N, Reynaud C,
Carriere M. In vitro investigation of oxide nanoparticle and carbon nanotube
toxicity and intracellular accumulation in A549 human pneumocytes.
Toxicology 2008;253:137–46.

[11] Cho J-G, Kim K-T, Ryu T-K, Lee J-W, Kim J-E, Kim J, et al. Stepwise embryonic
toxicity of silver nanoparticles on Oryzias latipes. Bio Med Res Int
2013;2013:1–7.

[12] Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL,
et al. Unique cellular interaction of silver nanoparticles: size-dependent
generation of reactive oxygen species. J Phys Chem B 2008;112:13608–19.

[13] Tang J, Xiong L, Zjou G, Xi T. Silver nanoparticles crossing through and
distribution in the blood-brain barrier in vitro. J Nanosci Nanotechnol
2010;10. https://doi.org/10.1166/jnn.2010.2625.

[14] Aueviriyavit S, Phummiratch D, Maniratanachote R. Mechanistic study on the
biological effects of silver and gold nanoparticles in Caco-2 cells – induction
of the Nrf2/HO-1 pathway by high concentrations of silver nanoparticles.
Toxicol Lett 2014;224:73–83.

[15] Benn T, Cavanagh B, Histovski K, Posner JD, Westerhoff P. The release of
nanosilver from consumer products used in the home. J Environ Qual
2010;39:1875–82.

[16] Roe D, Karandikar B, Bonn SN, Gibbins B, Roullet JB. Antimicrobial surface
functionalization of plastic catheters by silver nanoparticles. J Antimicrob
Chemoth 2008;61:869–76.

[17] Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel.
Science 2006;311:622–7.

[18] Mishra AR, Zheng J, Tang X, Goering PL. Silver nanoparticle-induced
autophagic-lysosomal disruption and nlrp3-inflammasome activation in
HepG2 cells is size-dependent. Tox Sci 2016;150:473–87.

[19] Maynard AD, Warheit DB, Philbert MA. The new toxicology of sophisticated
materials: nanotoxicology and beyond. Toxicol Sci 2011;120:109–29.

[20] Ze Y, Zheng L, Zhao X, Gui S, Sang X, Su J, et al. Molecular mechanism of
titanium dioxide nanoparticles-induced oxidative injury in the brain of mice.
Chemosphere 2013;92:1183–9.

[21] Gajbyiye S, Sakharwade S. Silver nanoparticles in cosmetics. JCDSA
2016;6:48–53.

[22] Yugang S, Younan X. Shape-controlled synthesis of gold and silver
nanoparticles. Science 2002;298:2176–9.

[23] Chen M, Feng YG, Wang X, Li TC, Zhang JY, Qian DJ. Silver nanoparticles
capped by oleylamine: formation, growth, and self-organization. Langmuir
2007;23:5296–304.

[24] Chen SF, Zhang H. Aggregation kinetics of nanosilver in different water
conditions. Adv Nat Sci: Nanosci Nanotechnol 2012:4. 035006.
[25] Dang TMD, Le TTT, Blance EF, Dang MC. Influence of surfactant on the
preparation of silver nanoparticles by polyol method. Adv Nat Sci: Nanosci
Nanotechnol 2012;3:4. 035004.

[26] Lee DK, Kang YS. Synthesis of silver nanocrystallites by a new thermal
decomposition method and their characterization. ETRI J 2004;26:252–6.

[27] Jung JH, Cheol OH, Soo NH, Ji JH, Soo KS. Metal nanoparticle generation using
a small ceramic heater with a local heating area. J Aerosol Sci
2006;37:662–1670.

[28] Tien DC, Tseng KH, Liao CY, Huang JC, Tsung TT. Discovery of ionic silver in
silver nanoparticle suspension fabricated by arc discharge method. J Alloys
Compd 2008;463:408–11.

[29] Siegel J, Kvítek O, Ulbrich P, Kolská Z, Slepička P, Švorčík V. Progressive
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