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Abstract: ESA’s upcoming satellite Sentinel-2 will provide Earth images of high spatial, 

spectral and temporal resolution and aims to ensure continuity for Landsat and SPOT 

observations. In comparison to the latter sensors, Sentinel-2 incorporates three new spectral 

bands in the red-edge region, which are centered at 705, 740 and 783 nm. This study 

addresses the importance of these new bands for the retrieval and monitoring of two 

important biophysical parameters: green leaf area index (LAI) and chlorophyll content (Ch). 

With data from several ESA field campaigns over agricultural sites (SPARC, AgriSAR, 

CEFLES2) we have evaluated the efficacy of two empirical methods that specifically make 

use of the new Sentinel-2 bands. First, it was shown that LAI can be derived from a generic 

normalized difference index (NDI) using hyperspectral data, with 674 nm with 712 nm as 

best performing bands. These bands are positioned closely to the Sentinel-2 B4 (665 nm) 

and the new red-edge B5 (705 nm) band. The method has been applied to simulated 

Sentinel-2 data. The resulting green LAI map was validated against field data of various 

crop types, thereby spanning a LAI between 0 and 6, and yielded a RMSE of 0.6. Second, 

the recently developed ―Normalized Area Over reflectance Curve‖ (NAOC), an index that 

derives Ch from hyperspectral data, was studied on its compatibility with simulated 

Sentinel-2 data. This index integrates the reflectance curve between 643 and 795 nm, 

thereby including the new Sentinel-2 bands in the red-edge region. We found that these 

new bands significantly improve the accuracy of Ch estimation. Both methods emphasize 
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the importance of red-edge bands for operational estimation of biophysical parameters 

from Sentinel-2. 

Keywords: Sentinel-2; chlorophyll; LAI; NAOC; NDI; red-edge 

 

1. Introduction  

Global Monitoring for Environment and Security (GMES) is a joint initiative of the European 

Commission and the European Space Agency (ESA), designed to establish a European capacity for the 

provision and use of operational monitoring information for environment and security applications [1]. 

Given the fact that the current services are based on data from Landsat and SPOT sensors, a 

satisfactory service could be expected by continuing these mission programmes as a minimum 

scenario. However, with a view to demanded service improvements in the near future, an enhanced 

land surface monitoring system in terms of spectral, temporal and spatial coverage is required. The 

upcoming Sentinel-2 (S2) mission intends to provide such continuity to services, but with improved 

features compared to the later sensors [1]. 

S2 is a polar-orbiting, superspectral high-resolution imaging mission designed for GMES land 

monitoring. The mission is envisaged to fly a pair of satellites, with the first planned to be launched in 

2013. Each S2 satellite carries a Multi-Spectral Imager (MSI) with a swath of 290 km. It provides a 

versatile set of 13 spectral bands spanning from the visible and near infrared to the shortwave infrared, 

featuring four bands at 10 m, six bands at 20 m and three bands at 60 m spatial resolution [2]. 

Furthermore, S2 incorporates three new bands in the red-edge region, which are centered at 705, 740 

and 783 nm. In full operational phase, the pair of S2 satellites will deliver data taken over all land 

surfaces and coastal zones every five days under cloud-free conditions, and typically every 15–30 days 

considering the presence of clouds. To serve the objectives of GMES, S2 satellites will provide 

imagery for the generation of high-level operational products (Level 2b/3) such as land-cover maps, 

land-change detection maps, and plants geophysical variables, such as chlorophyll content per unit leaf 

area (Ch), leaf area index (LAI) and leaf water content [2]. 

Effectively, spatially-explicit knowledge of vegetation’s Ch and LAI is fundamental for the 

understanding of agricultural and forested ecosystems [3,4]. Ch can be considered as a bio-indicator of 

plants’ actual health status [5,6], and of vegetation gross primary productivity [7]. Further it is one of 

the main inputs in plant growth models. Also green LAI, defined as the total of one-sided area of green 

leaves per ground area [8] represent a key parameter, characterizing the structure and functioning of 

vegetation cover [9]. Due to its role as the interface between ecosystem and atmosphere and 

involvement in many processes, green LAI is a key variable in aboveground biomass estimation, 

vegetative evapotranspiration calculation and the energy-exchange evaluation of terrestrial  

vegetation [10-15]. 

Fundamentally, the retrieval of a biophysical variable such as Ch and LAI from earth observation 

data always implies the use of a model [16]. This model can be either empirical or physical. Empirical 

models directly link Earth observation (EO) data with the variables of interest, e.g., through statistical 

approaches. Physical models refer to the inversion of radiative transfer models (RTM) against EO data 
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to obtain the variables of interest [17-20]. Concerning physical models, experimental studies using 

RTMs have shown great flexibility in retrieving plant cover variables, because of being able to 

parameterize these models to a wide range of land cover situations and sensor configurations [21,22]. 

However, two main drawbacks limit the use of RTMs for operational applications. First, RTM 

approaches typically require auxiliary information per land cover type to parameterize the model, 

which may not always be available [23]. An additional problem hereby is that if uncertainties are 

introduced the likelihood increases that the model inversion will not lead to a unique solution (unified 

theorem of Hadamard well-posedness) and extra steps are required to overcome the ill-posed  

problem [24]. Second, regardless of the availability of auxiliary data, for the majority of the RTMs that 

are fast enough for operational applications there is the intrinsic risk of oversimplifying the 

architecture of plant cover [25,26]. For instance, a recent study concluded that a RTM approach using 

the SAIL model was unable to cope with the strong leaf clumping in row crops such as maize for 

simulated S2 data [27]. 

Alternatively, empirical models are more straightforward implementable in an operational data 

processing chain. Over the past four decades, a large number of spectral indices (e.g., vegetation 

indices) have been developed for the study of biophysical variables such as LAI or Ch [16,28-31]. 

While these spectral indicators do not rely on auxiliary data, their limitations rather lie in the nature of 

its empirical design. Empirical methods tend to impose uncertainties when applied to conditions other 

than those wherein the model was initially developed, such as other atmospheric conditions, sensor 

configurations, sun-target-sensor geometry, or when upscaled from leaf-to-canopy [32,33]. Conversely, 

with the advent of hyperspectral imaging, many novel algorithms have been developed over the last 

few years, which have shown to be more accurate and robust in estimating canopy parameters than 

traditional spectral indices. These novel algorithms typically make use of more or better band 

combinations on the one hand, or of a continuous spectral range on the other [34,35]. 

When it comes to the implementation of a candidate retrieval method into a S2 data processing 

chain, nevertheless, crucial is to invest in prediction models that are simple, robust and generally 

applicable. This implies that the dependency on ancillary data should be kept to the minimum. Novel 

empirical algorithms may therefore be preferred above physical models in an operational context, 

given that their robustness across various crop types is sufficiently tested. In this respect, we propose 

two simple yet accurate empirical algorithms that derive green LAI and Ch from simulated S2 data. 

Specifically, in this work it was of interest to test the efficacy of the proposed methods across various 

crop types, and to evaluate the importance of the new red-edge bands when applying these methods to 

S2 data. Given all the above, the objective of the present study was twofold: (i) to evaluate the 

capability of two novel empirical models assessing green LAI and Ch from simulated S2 data, and 

thereby (ii) to evaluate the added value of the spectral bands in the red-edge region. 

2. Methods 

2.1. Spectral Indices 

Vegetation indices are among the oldest and most widely used tools to estimate Ch and LAI  

(e.g., see reviews in Bannari et al. [36], He et al. [37], Haboudane et al. [38], Zheng and Moskal [21]). 
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Vegetation indices are simple numerical indicators that reduce multispectral (two or more spectral 

bands) data to a single variable for predicting and assessing vegetation characteristics. The best 

understood index is probably the Normalized Difference Vegetation Index (NDVI), originally 

proposed by Rouse et al. [39] as: 

670800

670800

RR

RR
     NDVI




    (1) 

where Ri is reflectance at the band centered at a given wavelength i (in nm). This index has been 

applied in numerous studies on, amongst others, plant development, Ch, green biomass, nitrogen 

content and LAI [40-42]. Apart from the NDVI, numerous alternative indices have been proposed 

showing sensitivity towards LAI [38,41,43-46]. Many of these indices use bands in the red-edge  

region [45,47-49]. For instance, Gitelson and Merzlyak [48] proposed an NDVI-like index using  

705 and 750 nm bands for assessing Ch. At the same time, while having more and more spectral bands 

available, eventually all two-band combinations can be calculated in the form of a generic Normalized 

Difference Index (NDI), defined as:  

ab
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        (2) 

and looking for those wavelengths a and b that provide the best correlation with LAI, Ch and some  

other biophysical parameters obtained from experimental data [34,42,50,51]. Specifically, Zhao et al. [50] 

demonstrated that for low LAI values an optimized NDI can be related with LAI by means of a linear 

regression. Although the index tends to become saturated for an LAI above 5 [52,53], commonly LAI 

of crops remain below this saturation threshold. Hence, this suggests that a well-chosen NDI would be 

a simple and successful method to predict LAI of crops. It is therefore of interest to find the optimal 

couple of bands for NDI that provide the maximum linear correlation with LAI given data from 

agricultural areas as has been demonstrated in associated work [54] where, by using hyperspectral 

CHRIS (Compact High Resolution Imaging Spectroscopy) data, it was found that LAI can be best 

estimated with bands centered at 712 and 674 nm for Rb and Ra, respectively. From 300 measurements 

obtained across seven different crop types and bare soils, with values of LAI between 0 and 7, it led to 

the following linear relationship [54]: 

















674712
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 6.753LAI     r = 0.908    (3) 

where r is the correlation coefficient. 

On the other hand, when having many (narrow) bands available it is also possible to derive 

vegetation characteristics using a more continuous approach instead of using only two bands. In this 

respect, recently the Normalized Area Over the reflectance Curve (NAOC) index was developed to 

estimate Ch, and is defined as [35]: 
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     (4) 

where λ is the wavelength, Rb is the maximum far-red reflectance, corresponding to reflectance at the 
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wavelength b, and a and b are the integration limits surrounding the Ch absorption centered  

at ~670 nm. In [35], best results from NAOC in estimating Ch were obtained with the integration 

limits from a = 643 nm to b = 795 nm, resulting in a final expression for NAOC given by: 

795

795 

643 

R 152

dλ R    
    1  NAOC


      (5)

 

In the same study, the relationship between NAOC and Ch was obtained:  

 

NAOC 101.94  3.8868-  Ch     r = 0.909  (6)

 
where Ch is in µg/cm

2
 [35]. 

NAOC proved to act as a reliable predictor of Ch; a recent study comparing the predictive power of 

NAOC against 32 established indices sensitive to Ch found that NAOC obtained an accuracy that 

ended in the top three [55]. 

This paper focussed on evaluating the compatibility of the aforementioned empirical methods with 

the envisaged S2 band configuration (see Table 1). Other characteristics of the S2 instrument such as 

spatial size and signal-to-noise have not been considered in the analysis. S2 band configuration 

provides three spectral bands in the red-edge region: bands B5 and B6 located at the sharp edge, and 

B7 that is located at the shoulder of the NIR plateau. These three bands and the B4 band lie right 

within the NAOC integration limits.  

Table 1. S2 spectral specifications and spatial resolution [56]. The bands written in bold 

are those that fit within the NAOC integration limits. 

Spectral 

band 
B1 B2 B3 B4 B5 B6 B7 B8 B8a B9 B10 B11 B12 

λ center 

(nm) 
443 490 560 665 705 740 783 842 865 945 1375 1610 2190 

Width band 

Δλ (nm) 
20 65 35 30 15 15 20 115 20 20 30 90 180 

Spatial 

resolution (m) 
60 10 10 10 20 20 20 10 20 60 60 20 20 

2.2. Experimental Data 

We used data from three recent ESA field campaigns: SPARC, AgriSAR and CEFLES2. Each of 

these campaigns was dedicated to an improved understanding of the interactions between solar 

radiation, plant cover and atmosphere through the use of novel EO instruments. During these 

campaigns images were acquired from various airborne and spaceborne sensors and a multitude of 

vegetation structural, functional and radiometric characteristics were measured. The purpose of the 

campaigns is briefly explained below, information about crop types, field measurements, sensors and 

preprocessing steps is listed in Table 2. 
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 The 2003 and 2004 Spectra Barrax Campaigns (SPARC) took place at Barrax (La Mancha 

region, Spain). These campaigns aimed to collect coincident field data over the Barrax site with 

CHRIS multi-angular and hyperspectral. An extensive data set was collected, covering soil, 

vegetation and atmospheric parameters. A large set of ground sampling points were identified. 

Each ground point is called elementary sample units (ESU). LAI and Ch were measured in a 

circle of radius 10 m with a size equivalent to a CHRIS pixel. LAI was derived from canopy 

measurements made with a LiCor LAI-2000 digital analyzer [57]. 

 The AgriSAR (Airborne SAR and Optics) campaign ran for four months, from the 18 April to 2 

August 2006 in Demmin (Germany), with a data collection of approximately every week. The 

AgriSAR project aimed to build a database for the investigation and validation of the retrieval 

of biophysical parameters and simulating Sentinel-1 and -2 image products over the land. In 

each ESU, LAI was derived from canopy measurements made with a LiCor LAI-2000 [58,59]. 

 CEFLES2 (CarboEurope, FLEX and S2) was located in the Les Landes region, southwest of 

France. During three measurement periods in April, June and September 2007 focus was on 

various landscape types, including urban, agricultural and forested areas. These periods span 

the beginning and peak of the vegetation growing cycle and post-harvest in order to broaden 

the availability of data from different crops and phenological states [60]. Chlorophyll a + b 

were measured with a calibrated [58] field chlorophyll meter (SPAD-502). The methodology 

applied to obtain in situ Ch data at each ESU consisted of measuring about 50 samples with the 

SPAD and then calculating its average. 

2.3. LAI and Ch Estimation from S2 Data 

The first focus was on the estimation of LAI. Data from the SPARC campaign was used as a 

reference dataset because of spanning a wide variety of crop types and LAI values [57,61]. Four 

hyperspectral CHRIS acquisition sets were obtained in the 2003 and 2004 campaigns; from them only 

the ones corresponding to nadir view were selected so that angular and atmospheric effects are 

minimized and that highest spatial resolution is preserved. 240 elementary sample units (ESUs) plots 

from crops and additional 60 samples from bare soils and the corresponding spectra were extracted. 

From the acquired CHRIS spectra, NDI values were calculated according to Equation 3 and plotted 

against the corresponding reference LAI values. Of specific interest here is to evaluate its compatibility 

with the S2 band settings. CHRIS is well suited for assessing the performance of the upcoming S2 

sensor given its spectral similarity in the visible and NIR. The sensor overlaps the S2 bands up to B9 

(945 nm), although there is some difference in bandwidth: CHRIS bandwidth ranges between  

1.3 nm and 11.3 nm while S2 bandwidth ranges between 15 nm and 180. Two S2 bands approach 

closely to the CHRIS bands centered at 674 and 712 nm, being B4 and B5 (Table 2). B4 centered at 

665 nm coincident with chlorophyll’s maximum absorption, and B5 centered at 705 nm in the red-edge 

region. B5 is one of the new bands incorporated in this mission aiming to improve vegetation 

monitoring [56]. In turn, when comparing the S2 band settings with those of CHRIS, two CHRIS 

bands in mode 1 are positioned approximately within the centre of those S2 bands, with similar yet 

slightly smaller bandwidth. It is therefore worthwhile to apply these bands as a substitute of S2 bands 

in an NDI and correlate again with LAI measurements.  
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Table 2. Specifications of the campaigns. Only the data used in this work is listed. 

 SPARC AgriSAR CEFLES2 

Date Summer 2003, 2004 April–August 2006 April, June, September 2007 

Location Barrax, Spain (39°3′N, 

2°6′W) 

Demmin, Germany  

(54°0′N, 13°16′E) 

Landes region, France 

Aim preparations for proposed 

SPECTRA sensor 

Monitoring vegetation 

growth, preparations for 

Sentinel-1 and S2. 

Preparations for CarboEurope, 

FLEX and S2 

Landscape Agricultural Agricultural Various landscape types: 

agricultural, forest, urban 

Crops Corn, barley, sunflower, 

alfalfa, wheat, onions and 

vegetables 

Corn, winter wheat, 

winter rape, winter barley, 

sugar beet 

Corn, bean, kiwi, sunflower 

Field data LAI LAI Ch 

Field 

instruments 

LI-COR LAI-2000 plant 

canopy analyzer 

LI-COR LAI-2000 plant 

canopy analyzer 

SPAD-502 chlorophyll meter 

Airborne data  CASI (288 bands in the 

VNIR range, i.e., from  

370 to 1050 nm, pixel 

size of 1.5 m) 

AHS (63 bands in the reflective 

part of the electromagnetic 

spectrum. More info at  

Fernández-Renau et al. [62]) 

Spaceborne 

data 

CHRIS Mode 1  

(62 bands, 34 m nominal 

spatial resolution) 

CHRIS Mode 1  

(62 bands, 34 m nominal 

spatial resolution) 

 

Preprocessing Images geometrically and 

atmospherically corrected 

(for details see [59]) 

Images geometrically and 

atmospherically corrected 

(for details see [58]) 

Image geometrically and 

atmospherically corrected (for 

details see [62]) 

The second focus was on the estimation of canopy chlorophyll, which in this work was derived 

from the NAOC index (Equation 5). NAOC has been earlier used with CHRIS data from the SPARC 

data set [35]. Here, the emphasis lied on assessing the robustness of the NAOC and its compatibility 

with S2 band settings. Leaf Ch and LAI measurements from the CEFLES2 project during the 

September 2007 campaign were used to establish a relationship between NAOC and canopy 

chlorophyll. Field data included four crop types: corn, bean, sunflower and kiwi trees. NAOC was 

calculated from an atmospherically corrected AHS (Airborne Hyperspectral System) image acquired 

over the Marmande test site (Landes region). Subsequently, the AHS imagery has been resampled to 

the S2 band settings. NAOC was again calculated in two different ways: with red-edge bands included 

(i.e., using B4, B5, B6 and B7) and without red-edge bands (i.e., using B4 and B7 bands only). Finally, 

both NAOC maps have been compared on their performances in canopy chlorophyll estimation.  

3. Results 

3.1. LAI Estimation 

LAI measurements from the SPARC campaign were plotted against the NDI calculated with the  

S2-like selected CHRIS bands centered at 664 and 706 nm in Figure 1. The resulting scatter plot was 
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fitted to the following linear equation: 

















664706

664706

RR

RR
 8.452LAI  r = 0.903     (7) 

which can be used to estimate green LAI from S2 bands B4 and B5. Because a wide range of crop 

types were included, this equation is applicable for estimating green LAI over multiple agricultural 

sites. Unfortunately no field data with LAI above 6 was available, leaving uncertainty about the 

validity of the relationship at high LAIs. Although a few crop types with appreciable leaf production 

may exceed this value for a short time period, such as corn prior to senescing, in fact the majority of 

crops types stay well below this value during the entire growing cycle [63], making this equation of 

interest for further evaluation. 

Figure 1. Measured LAI against NDI from 664 and 706 nm from CHRIS data. Central line 

corresponds to Equation 7 and the finest lines plus and minus twice the standard deviation. 

 

To validate the utility of the proposed equation for LAI retrievals from future S2 images, field data 

and spectral observations from a different campaign, the AgriSAR campaign, was used. During 

AgriSAR, airborne hyperspectral CASI (Compact Airborne Spectrographic Imager) images were 

acquired over agricultural areas. From the different flightlines available, the images that cover most 

ground sampling points were selected. 

A LAI map was produced by applying Equation 3 to the CASI image, shown in Figure 2(a). A 

similar map was calculated using Equation (7) with spectrally resampled data according the band 

settings of S2. This map is displayed in Figure 2(b). Comparing Figure 2(a,b), it can be observed that 

both maps provide very similar results. This is also apparent when comparing both maps in a scatter 

plot [Figure 2(c)]. Both maps consistently follow the one-to-one line until a LAI of about 4 is reached, 

then the S2-based map start to slightly overestimate the higher LAI values, though the values never 

exceeded a deviation of 0.4. The overall good relationship illustrates that the above-described method 

can be easily applied to S2 data.  
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Figure 2. (a) Green LAI map derived from CASI data using NDI on bands at 674 and  

712 nm; (b) Green LAI map from S2 bands B4 and B5. Numbers on the 2a map indicate 

the locations used for validation; (c) Scatter plot of the LAI maps derived from CASI and 

S2 data using NDI. 

  

(a)     (b)     (c) 

The proposed Equations (3) and (7) were validated using in-situ LAI measurements of the AgriSAR 

campaign on 4 July 2006. The ground area of Figure 2 covered three crop types: corn, wheat and rape. 

Six field measurements were collected and averaged for each crop type and also bare soil surface 

measurements were included (0 LAI). The measured values were compared with corresponding 

estimated LAI as extracted from the CASI-based and S2-based LAI maps. It led to a root mean square 

error (RMSE) of 0.53 and 0.57, respectively. Figure 3 depicts the correlation between in situ measured 

and calculated LAI values, showing a good agreement in magnitude, given the small number of 

samples per crop type. There were only marginal differences in the performance between the  

CASI-based NDI (Equation (3)) and the S2-based NDI (Equation (7)). The proposed NDI formulation 

with S2 bands B4 and B5 can therefore be considered as a useful estimator of green LAI from S2 data. 

Figure 3. Scatter plot of in situ measured versus estimated green LAI values according to 

Equation 3 and Equation 7 from AgriSAR data with corresponding error bars. 

 



Sensors 2011, 11                            

 

 

7072 

3.2. Canopy Chlorophyll Estimation 

3.2.1. Calibration 

The second focus of this study involved the estimation of canopy chlorophyll, and the role that  

red-edge bands can play herein. Measurements from the CEFLES2 campaign were plotted against 

corresponding values from the AHS-based calculated NAOC map [Figure 4(a)]. It can be observed that 

the relationship between Ch and NAOC agrees, even along various crop types. However, some 

measurements with highest Ch values seem to deviate from the general trend. They correspond to kiwi 

plants, which have very high chlorophyll at leaf level, but on the other hand, kiwi trees present a 

relatively thin crown, and the stands are several meters apart from each other. When viewed from an 

air- or space-borne platform, this consequently results in a low density of leaves per pixel. To correct 

for this, it is necessary to relate the canopy level Ch-index to canopy level chlorophyll instead of Ch.  

Figure 4. (a) Ch as a function of AHS derived NAOC. Some points that fall outside the 

general trend correspond to kiwi, with high Ch but low LAI; (b) Correlation of NAOC 

with leaf chlorophyll multiplied by LAI. Resulting canopy chlorophyll is expressed as 

gram chlorophyll per square soil meter. 

0

10

20

30

40

50

60

70

80

0.2 0.25 0.3 0.35 0.4 0.45 0.5

Corn
Bean
Kiwi
Sunflower

C
h
 (


g
/c

m
2
)

NAOC  

0

0.5

1

1.5

2

2.5

0.25 0.3 0.35 0.4 0.45

C
h
*L

A
I 

(g
/m

2
)

NAOC  

(a)       (b) 

Although Ch distribution in the plant is not necessarily uniform, taking into account that LAI 

represents the portion of green leaves per ground area, the product chlorophyll by LAI (Ch*LAI) 

provides an indication of the total chlorophyll content per unit ground area in the canopy [64,65]. This 

product was plotted against NAOC in Figure 4(b) and the resulting distribution has been fitted to an 

exponential equation: 

NAOC  10.02e 0.0219  LAI * Ch    r = 0.795  (8)

 

which serves as calibration for the index. With this exponential equation it is possible to derive a 

canopy chlorophyll map from the NAOC map. In the following section the performance of the 

equation is evaluated given spectrally resampled data according to the band configuration of S2. 
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3.2.2. Application to Simulated S2 Data & Effect of Red-Edge Bands in Chlorophyll Map 

The NAOC index was used to evaluate the importance of the S2 red-edge bands in assessing canopy 

chlorophyll. The S2 bands needed for calculating NAOC are B4 to B7, with B5 and B6 as red-edge 

bands. NAOC was first calculated from the AHS image (63 bands between 430 and 2500 nm) using all 

bands between 643 and 795 nm, which served as reference map. The AHS image was then spectrally 

resampled to two new images with the band settings of S2, but the second one without red-edge bands. 

Scatter plots of both S2-based NAOC maps (with red-edge bands, i.e., using B4, B5, B6 and B7 bands, 

and without red-edge bands i.e., using B4 and B7 bands only) against the reference AHS-based NAOC 

map show the degree of correlations. The S2-based NAOC map correlated closely with the AHS-based 

NAOC map [Figure 5(a)], indicating that the coarser spectral sampling of S2 does not substantially 

downgrade the results. Conversely, the S2-based NAOC map without the red-edge bands led to 

considerably poorer correlations [Figure 5(b)], especially at higher values, which are the ones related 

to more dense vegetation (green vegetation corresponds to NAOC values larger than 0.35). Canopy 

chlorophyll maps were subsequently derived from the NAOC data by using the above-proposed 

exponential relationship (Equation 8), and scatter plots were again created against the AHS reference 

data (Figure 5). Note that despite small effects of underestimation due to the coarser spectral sampling 

the S2 map obtained with red-edge bands holds a strong correlation [Figure 5(c)]. At the same time, in 

absence of red-edge bands, the exponential relationship between NAOC and canopy chlorophyll 

amplified the slight misfit in NAOC [Figure 5(b)], until a point where correlation is lost and saturation 

starts to appear [Figure 5(d)]. Hence, as the absence of red-edge bands in the proposed algorithm lead 

to systematic erroneous retrievals, these scatter plots underpin the relevance of these bands. 

Figure 5. Scatter plots. (a) S2-based NAOC against AHS-based NAOC; (b) S2-based 

NAOC calculated without red-edge bands against AHS-based NAOC; (c) S2-based 

Ch*LAI against AHS-based Ch*LAI; and (d) S2-based Ch*LAI calculated without  

red-edge bands against AHS-based Ch*LAI. The colour scale indicates pixel density.  
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Figure 5. Cont. 

 

Finally, canopy chlorophyll maps were obtained by applying the calibration function (Equation (8)) 

to the NAOC maps. The results displayed in Figure 6 show that estimated chlorophyll from S2 image 

[Figure 6(a)] is practically the same than the one estimated from the original AHS image [Figure 6(b)].  

In turn, the chlorophyll map derived from S2 without the red-edge bands shows clear differences. 

Discrepancies in the absence of red-edge bands are to be found over the various maize fields 

throughout the map [e.g., compare Figure 6(b) with Figure 6(c)].  

Figure 6. Canopy chlorophyll (Ch*LAI) maps, derived from: (a) simulated S2 data;  

(b) AHS data; and (c) simulated S2 data without red-edge bands. 

         

 (a) (b)    (c)  

4. Discussion 

To fulfill the monitoring needs of the GMES land services and research communities for years to 

come S2 aims to ensure continuity on the technology and the experience acquired by the SPOT and 

Landsat families, and to deliver improved operational high-level products [56]. These goals ultimately 

led to the design of a multi-spectral imager (MSI) that is not only configured with the same spectral 

bands as the latter sensors, but also incorporates two new bands that exploit the red-edge information. 

At the same time, this improved sensor configuration pursued the need for improved biophysical 

parameter retrieval algorithms [2]. In this work we assessed the importance of the S2 red-edge bands 
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with respect to the retrieval of green LAI and canopy chlorophyll content. Therefore, two algorithms 

that specifically make use of new bands in red-edge, being an optimized NDI and NAOC, were 

evaluated on its compatibility using spectrally resampled data given the proposed S2 band 

configuration. While the importance of red-edge bands has been addressed in earlier studies [49,66], in 

this work we found that the inclusion of these bands are important for S2 to enable the delivery of 

accurate green LAI and canopy chlorophyll products. NDI led to best correlations with green LAI 

through the use of a red-edge band B4 [54], and also NAOC needed the red-edge bands (B4 and B5) to 

achieve precise correlations with canopy chlorophyll. Through band-specific efficiency analysis 

techniques (e.g., [67]), the importance of the red-edge region in two forthcoming superspectral sensors 

(S2 and VENµS) was also stressed by Hermann et al. [68]. These results are encouraging for the 

upcoming S2 mission. We are assured that the inclusion of red-edge bands will advance the quality of 

high level products. 

Emphasis was put on validating the performance of the methods with data from various test sites. 

Regarding the LAI-optimized NDI, data from two ESA-led field campaigns were used: SPARC and 

AgriSAR. Validation over various crop types yielded satisfactory results; the S2 band setting led to a 

RMSE of 0.6. This is encouraging, taking into account that the validation was performed on sites other 

than those used for algorithm development. Although the robustness of the algorithms may benefit 

from additional testing in more extreme situations (e.g., in other atmospheric conditions, complex 

topography, other crops), the developed algorithms find their strength in their simplicity. In principle it 

can be run continuously in near-real time over large agricultural areas without having to rely on 

auxiliary data. This simplicity constitutes an important advantage over radiative transfer (RT) models. 

RT model inversion typically needs information about the crop architectural characteristics for the 

generation of matching crop- and phenology-specific synthetic spectra, which is not always directly 

available [27,69]. Given that calibration occurred across a broad range of crop types, obtained 

empirical relationships are expected to be sufficiently robust for precise LAI and chlorophyll 

estimations. Yet, one can always strive for more powerful retrieval algorithms. For instance it would 

be interesting to apply and evaluate advanced non-parametric statistical models to S2 data. Over the 

past decades many sophisticated regression methods have been proposed; successful ones a.o.  

include: stepwise multiple linear regression, principal component regression, partial least square  

regression [41,64,70]. Furthermore, recent advances in machine learning techniques such as neural 

networks, support vector regression and particularly Gaussian processes regression are also very 

promising [55,71-73], albeit it should not be forgotten that these non-parametric approaches are 

equally bound to input data to train the models. Given all the above, in view of delivering improved  

S2 products for environmental and agriculture monitoring applications further research is planned in the 

directions of: (i) validation of the proposed algorithms along a broader range of crops and environments, 

(ii) evaluation of more advanced empirical or statistical canopy parameter retrieval models. 

5. Conclusions 

ESA’s upcoming satellite Sentinel-2 (S2) aims to replace and improve the old generation of high 

resolution satellite sensors Landsat and SPOT, but with improved spectral capabilities. Of specific 

interest for remote sensing applications for agriculture monitoring are two new bands in the red edge 
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(B5 at 705 nm and B6 at 740 nm). In order to assess the full potential of these new bands, two 

empirical spectral methods that derive LAI and chlorophyll content from satellite observations have 

been evaluated given simulated S2 data.  

First, a generic normalized difference index (NDI) was applied to estimate green LAI over 

agricultural sites. This optimized NDVI-like index was calculated from spectral bands centering 

around 665 and 705 nm, which approach the S2 B4 and B5 bands. It was demonstrated that the 

relationship between this index and green LAI can be approximated by a linear regression for a green 

LAI range that spans between 0 and 6. Additionally, the LAI- NDI relationship has been applied to 

airborne hyperspectral data acquired during ESA’s AgriSAR campaign. From CASI-based simulated 

S2 data a green LAI map has been produced and was cross-validated with in situ measurements of 

different crops with a RMSE of 0.6.  

Second, the recently introduced hyperspectral index NAOC was evaluated on its capability to assess 

canopy level chlorophyll from airborne data of the CEFLES2 campaign, with satisfactory results. AHS 

airborne imagery was used and the index was calibrated with in situ measurements of different crops. 

A canopy chlorophyll map was produced based on NAOC values. At the same time, AHS data was 

spectrally resampled to the coarser S2 band settings and a NAOC was recalculated. Results were in 

close agreement with those calculated from the full spectrum AHS data. Finally, the impact of 

excluding the new S2 red-edge bands (B5 and B6) on the retrieval of crop chlorophyll was studied. It 

was found that without these bands NAOC loses its strength in accurately estimating canopy chlorophyll.  

Both NDI and NAOC open opportunities to be implemented into operational S2 data processing 

chains with the aim of delivering high level products such as green LAI and canopy chlorophyll. The 

methods have been successfully tested on their robustness thanks to the availability of multiple 

datasets acquired from different instruments and on different agricultural sites. 
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