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Abstract

Background: Microbiome studies often involve sequencing a marker gene to identify the microorganisms in
samples of interest. Sequence classification is a critical component of this process, whereby sequences are assigned
to a reference taxonomy containing known sequence representatives of many microbial groups. Previous studies
have shown that existing classification programs often assign sequences to reference groups even if they belong to
novel taxonomic groups that are absent from the reference taxonomy. This high rate of “over classification” is
particularly detrimental in microbiome studies because reference taxonomies are far from comprehensive.

Results: Here, we introduce IDTAXA, a novel approach to taxonomic classification that employs principles from
machine learning to reduce over classification errors. Using multiple reference taxonomies, we demonstrate that
IDTAXA has higher accuracy than popular classifiers such as BLAST, MAPSeq, QIIME, SINTAX, SPINGO, and the RDP
Classifier. Similarly, IDTAXA yields far fewer over classifications on Illumina mock microbial community data when
the expected taxa are absent from the training set. Furthermore, IDTAXA offers many practical advantages over
other classifiers, such as maintaining low error rates across varying input sequence lengths and withholding
classifications from input sequences composed of random nucleotides or repeats.

Conclusions: IDTAXA’s classifications may lead to different conclusions in microbiome studies because of the
substantially reduced number of taxa that are incorrectly identified through over classification. Although
misclassification error is relatively minor, we believe that many remaining misclassifications are likely caused by
errors in the reference taxonomy. We describe how IDTAXA is able to identify many putative mislabeling errors in
reference taxonomies, enabling training sets to be automatically corrected by eliminating spurious sequences.
IDTAXA is part of the DECIPHER package for the R programming language, available through the Bioconductor
repository or accessible online (http://DECIPHER.codes).
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Background
It has become increasingly clear that the microbiome is
critically important to human and ecosystem health [1].
Microbiome studies frequently involve sequencing a
taxonomic marker, such as the 16S ribosomal RNA
(rRNA) gene or internal transcribed spacer (ITS), to
identify the microorganisms that are present in a sample

of interest. These sequences can then be classified into a
taxonomic group, which facilitates comparing across
studies and acquiring additional information about the
microorganisms. Classification relies on a training set
containing sequence representatives belonging to known
microbial taxa. Since only a fraction of microbial taxa
have been characterized, it is anticipated that a large
number of microorganisms from many environments
belong to taxonomic groups that are unrepresented in
the training set [2–4]. Thus, the objective of taxonomic
classification is to accurately assign query sequences to
their respective group in the reference taxonomy, while
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avoiding the assignment of sequences belonging to novel
groups that are absent from the training set.
A major challenge to classification is that there is no

standard definition of what constitutes a taxonomic group
(e.g., genus or species) of microorganisms. Although there
are many exceptions, strains belonging to the same genus
tend to have about 95% or greater similarity in 16S rRNA
gene sequence. Therefore, a common classification ap-
proach is simply to label a sequence based on its nearest
neighbor in a training set using a tool such as BLAST [5].
Sequences are left unlabeled, or assigned to a higher rank
(e.g., family), when they are not within a specified distance
(e.g., 5%) of any reference sequence. Nearest neighbor
methods are popular in part due to their simplicity and
clearly defined basis for taxonomic assignment, but fre-
quently fail where taxonomic groups do not conform to
standard distance cutoffs [6].
Phylogenetic-based approaches are similar to nearest

neighbor methods but use a phylogenetic framework for
determining neighbors. Unlike sequence identity, phyloge-
netics can account for variation in evolutionary rates
across sites and other details of sequence evolution. Capit-
alizing on the fact that taxa in reference taxonomies are
often delineated using a phylogenetic tree, a number of
different phylogenetic-based methods have been proposed
[7–9]. These methods use a variety of approaches for cal-
culating their confidence in taxonomic assignments, that
is, how to best determine whether a new leaf of the tree
belongs to any of the taxonomic groups that surround it
on the tree. As in the case of distance-based approaches,
it is often unclear whether a new leaf of the tree represents
a novel taxon or an extension of an existing group.
In principle, machine learning is highly amenable to

“learning” variable definitions of what constitutes a taxo-
nomic group across the tree of life. The most popular
machine learning approach for taxonomic classification
is the naïve Bayes method used by the RDP Classifier
[6], which has been implemented in popular microbiome
software such as mothur and QIIME. The RDP Classifier
is based on repeated random sampling (i.e., bootstrap-
ping) of the k-mers belonging to a query sequence, and
matching these k-mers to those from sequences in the
training set [10]. Rather than using a measure of se-
quence divergence, confidence is calculated as the frac-
tion of bootstrap replicates that were assigned to a given
label (e.g., genus). Variations on this method have been
proposed that claim to give higher accuracy, for example
SINTAX and SPINGO [11, 12].
Machine learning classifiers often fail in situations

where the correct label lies outside the scope of the
training data [13]. For example, it has been demon-
strated that the RDP Classifier has a relatively low mis-
classification rate on sequences that belong to groups in
the training set [10, 14], but a much higher over

classification rate on sequences belonging to novel
groups that are unrepresented in the training set [11].
Over classifications are particularly detrimental in
microbiome studies because many microorganisms are
not represented in reference taxonomies [2, 15]. Two
main approaches are currently employed to reduce over
classifications: use of environment-specific training sets
that decrease the number of unrepresented taxonomic
groups [15, 16] and setting prior probabilities that lower
the likelihood of assignment to an unexpected taxo-
nomic group [17]. Both of these approaches require con-
siderable prior knowledge about what microorganisms
are expected in a sampled environment and, therefore, a
more general solution to the problem of high over clas-
sification rates would be extremely useful.
Here, we introduce IDTAXA, a novel approach to taxo-

nomic classification that shares features from phylogen-
etic, machine learning, and distance-based approaches.
IDTAXA is able to lower over classification rates substan-
tially across a variety of standard reference training sets.
We compare IDTAXA to published classifiers that report
a confidence for taxonomic assignment and scale well to
large datasets. Impressively, IDTAXA achieves lower error
rates than other methods while classifying the same frac-
tion of classifiable sequences. Furthermore, we introduce
novel algorithmic features that improve the practical util-
ity of IDTAXA for classifying microbiome datasets, which
may vary widely in the length and quality of their se-
quences. Finally, we show the implications of these attri-
butes for the interpretation of human and environmental
microbiome sequence data.

Implementation
As with many other classifiers, the IDTAXA algorithm is
split into two discrete phases: learning from a training
set with the LearnTaxa function and classifying new
query sequences with the IdTaxa function. The learning
process only needs to occur once for each training set,
resulting in a trained classifier that can be repeatedly
used to classify as many sequences as desired with the
IdTaxa function. Both functions are part of the R [18]
package DECIPHER [19], which is distributed under the
GPLv3 license as part of Bioconductor [20]. The Learn-
Taxa and IdTaxa functions are written in a combination
of the C and R programming languages.

The learning phase of the IDTAXA algorithm
The purpose of the LearnTaxa function is to identify puta-
tive problem sequences and problem groups in the training
set and speedup the process of classifying new (query) se-
quences with the IdTaxa function. LearnTaxa takes a set of
reference sequences and their respective taxonomic assign-
ments (e.g., “Root; Bacteria; Proteobacteria; Gammaproteo-
bacteria; Enterobacteriales; Enterobacteriacea; Escherichia”)
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as input. Consistent with standard definitions, the reference
taxonomy is defined by a semicolon separated list of taxo-
nomic names beginning with “Root;”, which collectively
denote a multifurcating taxonomic tree. The root rank is
defined as a catch-all for assigning sequences that do not
fit into any lower taxonomic group, such as randomly
generated sequences of A, C, G, and T. The reference
taxonomy may contain as many rank levels as desired per
group, for example the standard seven ranks (i.e., root,
domain, phylum, class, order, family, and genus) or only a
single rank level under the root rank. Optionally, rank
level information (e.g., “genus” or “phylum”) for each
group can be provided in “taxid” table format, which has
been popularized by the RDP Classifier [6].
The LearnTaxa function decomposes each sequence

into a set of overlapping, unique, and unambiguous (i.e.,
A, C, G, or T/U only) k-mers (i.e., subsequences of length
k). By default, the value of k is chosen such that random
k-mer matches between two sequences are expected
roughly 1% of the time. For example, a training set con-
taining full-length 16S rRNA gene sequences (~ 1500 nu-
cleotides) would use a value of k = 8. Next, LearnTaxa
records the top 10% of k-mers that best distinguish among
the subgroups at each rank level, which we term the “deci-
sion k-mers.” For example, in the case of a 16S rRNA gene
training set, at the root rank, it would record ~ 6500
k-mers that collectively indicate whether a sequence be-
longs to the Bacteria or Archaea. The criterion for deter-
mining the top decision k-mers at each rank level is based
on the cross-entropy between a subgroup and its parent
group [21]:

cross-entropyi j ¼ −pi j � logðqiÞ

where pij is the frequency of k-mer i relative to other
k-mers in subgroup j and qi is the frequency of k-mer i
relative to other k-mers in its parent group. Therefore,
the cross-entropy is maximized for k-mers that are fre-
quent in their subgroup but rare in other subgroups,
providing a set of k-mers that distinguish among sub-
groups optimally at each node of the taxonomic tree.
Finally, the LearnTaxa function attempts to reclassify

each training sequence to its labeled taxonomic group
using a method that we term “tree descent,” which is
analogous to a decision tree commonly employed in ma-
chine learning algorithms (Additional file 1: Figure S1).
Beginning at the top (i.e., Root) of the taxonomic tree,
LearnTaxa samples a fraction (by default 6%) of the deci-
sion k-mers at each node (taxon) on the tree and
removes k-mers that are not found in the query se-
quence. The group with the highest remaining sum of pij
is recorded, and this process is repeated for 100 random
bootstrap replicates (i.e., samples with replacement) of
the decision k-mers. If a subgroup is selected in at least 80

bootstrap replicates, then the sequence descends the tree
to this subgroup’s node, unless the subgroup is a terminal
taxon. If the selected subgroup is incorrect for the refer-
ence sequence, or all subgroups are selected less than 80
(of 100) times, then the process terminates at the node.
During tree descent, the algorithm learns the optimal

sampling fraction for each node on the taxonomic tree. If
this fraction is too high (e.g., choosing all decision k-mers
every bootstrap replicate), then the choice among sub-
groups is deterministic and prone to failure. If the fraction
is too low (e.g., choosing one decision k-mer per bootstrap
replicate), then the choice is too stochastic and does not
adequately indicate which subgroup is most likely. There-
fore, the fraction is initialized at a moderate value (by de-
fault 6%) at each node and is lowered when a reference
sequence is assigned to an incorrect subgroup at a node.
This process is repeated until (i) all sequences in the train-
ing set are correctly reclassified to their respective taxo-
nomic group using tree descent, (ii) fraction decreases
below a minimum value (by default 1%) at a specific node,
or (iii) a maximum number of re-classification attempts
(by default 10) are made for a sequence. Note that the
value of fraction at a node is decreased with each failed at-
tempt, which allows the classification at that node to im-
prove in subsequent iterations.
Situation (ii) can occur when many reference sequences

are assigned to the wrong subgroup at a specific node.
Such taxonomic groups are recorded as putative “problem
groups” and reported to the user. Situation (iii) can occur
when the tree descent algorithm is confident that a refer-
ence sequence belongs in a certain subgroup, but this dif-
fers from its assigned taxonomy. The LearnTaxa function
records these as putative “problem sequences” that are re-
ported to the user. In practice, almost all reference se-
quences are correctly reclassified using tree descent, and
the few reported problem sequences and problem groups
correctly point to potential errors in the taxonomy (e.g.,
mislabeled sequences, groups placed into an incorrect
subtree, or taxonomic groups that are not monophyletic).
Ultimately, the tree descent process both serves the pur-
pose of identifying errors in the taxonomy and speeding
up the classification of query sequences with the IdTaxa
function, as described next.

The classification phase of the IDTAXA algorithm
The purpose of the IdTaxa function is to classify new
(query) sequences as accurately and efficiently as pos-
sible. IdTaxa takes as input the object returned by the
LearnTaxa function and a set of query sequences to clas-
sify. It returns a classification for each sequence in the
form of a taxonomic assignment with associated confi-
dences for each rank level (e.g., “Root [99%]; Bacteria
[98%]; Proteobacteria [93%]; Gammaproteobacteria
[89%]; Enterobacteriales [82%]; Enterobacteriaceae
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[80%]; Escherichia [32%]”). The classification is left un-
assigned below a user-specified confidence, by default
60%. For example, the above classification would end at
“unclassified Enterobacteriaceae” because the genus level
classification (Escherichia) falls below the default thresh-
old of 60%. In this case, we could be reasonably
confident that the microorganism belongs to the Entero-
bacteriaceae family, but we do not know the genus to
which it belongs.
The IdTaxa function begins by splitting the query se-

quences into overlapping, unique, and unambiguous
k-mers. Next, the tree descent process is commenced
using the same strategy described for LearnTaxa, but re-
quiring 98 (rather than 80) of 100 bootstrap replicates to
continue descending the tree. The set of candidate taxa
are determined according to the node where tree des-
cent terminated, and the subset of reference sequences
that are assigned to this taxon are used in subsequent
stages (Additional file 1: Figure S1). In this way, IdTaxa
only needs to consider classifying to a portion of the
taxonomic tree, greatly accelerating the classification
process for many query sequences.
The IdTaxa function now switches to subsampling

k-mers of the query sequence rather than the decision
k-mers. By default, IdTaxa samples S = l0.47 k-mers in
each bootstrap replicate, where l is the length of the
query sequence. If at most S unique k-mers exist in the
sequence, then it is automatically assigned to unclassi-
fied Root at 0% confidence. We employ a text mining
approach to weigh k-mer matches based on their inverse
document frequency (IDF) [22, 23]. A k-mer’s weight is
defined by the equation:

weighti ¼ log n= 1þ f ið Þð Þ

where n is the number of different taxa in the training
set and fi is the sum of the frequency of k-mer i across
taxa. In this manner, the weight of very frequent k-mers
approaches zero and the weight of very infrequent
k-mers approaches log(n). The use of different weights
for each k-mer is analogous to how different sites (i.e.,
columns) of an alignment can provide a variable amount
of information when constructing a phylogenetic tree.
Unlike other algorithms, IDTAXA only selects a single

representative sequence from each group in the training
set to use for bootstrapping. This representative is
chosen to be the sequence with the greatest total weight
of k-mers from each terminal taxon. Selecting one se-
quence per group helps to correct for imbalance in the
training set, where some groups have far more represen-
tatives than many other groups. For each bootstrap rep-
licate, a sum of weights is calculated for the sampled
k-mers that are found in each representative sequence,
and the group with the highest total weight is selected as

the “hit.” If multiple groups are tied for the maximum
weight, as is the case when classifying a conserved
sequence shared across several groups, then a random
hit is selected.
The IdTaxa function then computes a confidence from

the total weight of each group across bootstrap repli-
cates. Unlike other classification methods that assign a
confidence based on the number of bootstrap hits, the
confidence reported by IdTaxa is also based on the
weight of those hits. This modification makes the re-
ported confidence better reflect the similarity between
the query and its top hit in the training set. The formula
used to calculate confidence is:

confidence j ¼
XB

i¼1

di=davg
� �� hij=di

� � ¼
XB

i¼1

hij=davg

where hij is the summed weight of all k-mers found in
group j in bootstrap replicate i, di is the maximum pos-
sible summed weight in bootstrap replicate i, and davg is
the average of di across all bootstrap replicates (B, by de-
fault 100). In other words, confidence is the fraction of
the total possible weight assigned to a given group,
which incorporates both the number of bootstrap repli-
cates where it was the hit and how well it matched (i.e.,
its k-mer distance). In this way, it is possible for a group
to be the hit in all bootstrap replicates but still have a
low confidence. Finally, the highest confidence basal
group (e.g., genus) is selected, and confidences are recur-
sively summed to higher rank levels up the tree.

Programs used for benchmark comparisons
The IDTAXA algorithm is implemented in the R [18]
package DECIPHER [19] version 2.6.0. We focused on
benchmarking against the RDP Classifier (v2.12) because
it is widely used and has repeatedly been demonstrated to
be one of the best classification methods [6]. We also
compared against more recent programs that have been
shown to outperform the RDP Classifier: MAPSeq (v1.2.2)
[24, 25], QIIME 2 q2-feature-classifier (v2018.6.0) [17],
SPINGO (v1.3) [12], and SINTAX (v9.2.64) [11]. We
omitted other classification programs because they gener-
ated errors during benchmarking, were too slow to run
leave-one-out cross-validation, or were unpublished. As a
representative of nearest neighbor methods, we included
local and global percent identity as determined from the
top BLAST (v2.6.0) [26] hit with the excluded sequence as
the query and the remaining training set as the subject.
In some cases, we report classification results at a

program-specific confidence: BLAST (95% identity),
QIIME (70% confidence), IDTAXA (60% confidence),
MAPSeq (50% confidence), and SINTAX, SPINGO, and
the RDP Classifier (80% confidence). These thresholds
were selected because they are the programs’ default/
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recommendation or are commonly used for full-length 16S
rRNA gene sequences. We selected a default value of 60%
(very high confidence) for IDTAXA because it provided a
conservative classification with relatively minimal MC and
OC error rates. Less conservative thresholds, such as 50%
(high confidence) or 40% (moderate confidence), could be
specified if a user would prefer to have more sequences
classified at the expense of higher error rates. Note that
BLAST, QIIME, and SPINGO only provide a single confi-
dence value, so this confidence was propagated to every
rank level. For example, we considered a sequence with
90% confidence at the genus level to have 90% confidence
at every level up to, and including, the root rank.

Training sets used for classification benchmarking
Three reference datasets were used to evaluate the per-
formance of different classifiers with leave-one-out
cross-validation (Additional file 1: Figure S2). The most
popular of these is the 16S training set (version 16) pro-
vided by the Ribosomal Database Project (RDP), consist-
ing of 2472 genera [6]. The RDP training set is highly
imbalanced, with 1119 (45%) singleton genera having
only one sequence representative and, at the other ex-
treme, a single genus (Streptomyces) having 594 se-
quences. We also extracted the V4 region (Escherichia
coli positions 534–786) of the 16S rRNA gene from
these sequences to create a test set that reflected the
shorter lengths of reads obtained from current sequencing
technologies. As an alternative to the RDP training set, we
used the contax.trim (Contax) training set, which contains
38,781 full-length 16S rRNA gene sequences [27]. The
Contax training set consist of 1774 genera that have a
consensus taxonomy shared across multiple sequence
repositories, of which only 156 are singleton genera.
To investigate the broader applicability of each classi-

fier to other types of sequences, we compared perform-
ance on the Warcup (version 2) Fungal ITS training set
[28]. The internal transcribed spacer (ITS) is the region
between the small and large subunits of the ribosomal
RNA operon. The Warcup dataset was constructed by
clustering sequences at high similarity (> 97% identity),
manually correcting inconsistencies in labeling, and then
reclassifying the training sequences with the RDP Classi-
fier using the training sequences themselves as the train-
ing set. It contains 17,878 sequences assigned to 8551
species, of which 2262 are singleton species. Note that
both the 16S training set and Warcup use a taxonomy
with a varying number of rank levels. A standardized
taxonomy was used as input for MAPSeq and SINTAX
since both classifiers require a fixed set of rank levels.

Determining accuracy with leave-one-out cross-validation
To compare classifiers, leave-one-out cross-validation
was performed by removing one sequence at a time,

retraining the classifier with the remainder of the training
set, and reclassifying the excluded sequence. For each ex-
cluded sequence, we recorded its predicted taxonomic
classification and confidence at each rank level. This pre-
sents two possible types of error depending on whether
the excluded sequence was the only representative of its
group in the training set (i.e., a singleton) or other
sequence representatives from this group remained in
the training set. Misclassification errors occur when a
sequence is incorrectly reclassified at a confidence ≥
threshold, and the correct group was present in the
training set even after leaving out the sequence. Over
classification errors occur when a sequence is assigned
to any group at a confidence ≥ threshold, and the cor-
rect group did not exist in the training set after leaving
out the sequence (i.e., a singleton).
Importantly, confidences cannot be directly compared

across programs because a given confidence (e.g., 90%)
may not have equivalent meaning. Therefore, we recorded
the fraction of classifiable sequences that are classified,
also known as 1—the under-classification rate [29], at
each confidence level and compared misclassification
(MC) and over classification (OC) error rates at the same
fraction of classifiable sequences classified. Classifiable se-
quences are defined as those whose group remains even
after exclusion from the training set, that is, those that
have the potential to cause an MC error. Therefore, the
fraction of classifiable sequences classified is the fraction
of non-singleton sequences in the training set that were
classified above a given confidence threshold during
leave-one-out cross-validation. To have greater accuracy,
a program must have lower MC and/or OC error rates
while classifying the same fraction of classifiable se-
quences. Notably, this result is independent of the relative
scaling of confidence values across programs, and any
monotonic transformation (e.g., square root) of reported
confidences would yield the same result. Furthermore, we
weighed the sequences from each basal taxon (e.g., genus)
equally when calculating the MC error rate to prevent ex-
tremely over-represented groups (e.g., Streptomyces in the
RDP training set) from dominating the error rate during
leave-one-out cross-validation.
Note that we report the fraction of classifiable se-

quences classified rather than the fraction of total se-
quences classified. This is preferable because it prevents
us from penalizing when classifiers leave unclassifiable
sequences unclassified. For example, consider the case
where the OC error rate is lowered but the MC error
rate is held constant. This would result in fewer total se-
quences classified at a given confidence, which would
make a classifier appear both better (i.e., lower OC error
rate) and worse (i.e., fewer total sequences classified) in
different respects. However, the fraction of classifiable
sequences classified would remain unchanged when the
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MC error rate is held constant, and decreasing the OC
error rate would rightly appear as an improvement. This
adequately reflects the goal of classification, which is to
correctly assign as many sequences as possible while
withhold assignment of sequences belonging to groups
that are unrepresented in the training set.

Results
The IDTAXA algorithm exhibits lower over classification
error rates
We focused on the basal taxonomic rank (e.g., genus or
species) in each training set for benchmarking classifica-
tion accuracy because the basal rank is the most difficult
to predict. Setting the confidence threshold to zero pro-
vides a classification for all sequences, which results in
an over classification (OC) error rate of 100% and a
maximal misclassification (MC) error rate. At the other
end of the spectrum, setting the confidence threshold to
100% minimizes error rates but classifies the smallest

fraction of sequences. Figure 1 shows the MC and OC
error rates for different classifiers on the popular RDP
training set for 16S rRNA gene sequences. Better classi-
fiers yield lower error rates while classifying the same
fraction of classifiable sequences, resulting in curves that
are further toward the bottom-right corner of the plot.
It is apparent from Fig. 1a that IDTAXA has a sub-

stantially lower OC error rate than the other classifiers
across the entire range of confidence thresholds on the
RDP training set. The nearest neighbor (BLAST) ap-
proach provides lower OC error rates than the other
methods but higher MC error rates. The QIIME and
SPINGO algorithms yielded lower MC error rates than
the RDP Classifier, but similar OC error rates. The SIN-
TAX algorithm is nearly identical to the RDP Classifier
in MC error rate, but has slightly lower OC error rates.
SINTAX is described as having a substantially lower
error rate than the RDP Classifier [11], but this appears
to be due primarily to SINTAX classifying a lower

a b

c d

Fig. 1 The IDTAXA algorithm exhibits relatively low OC error rates. Plots showing error rates versus the fraction of classifiable sequences classified
as confidence is varied from 100% (left) to 0% (right). A better classifier will exhibit lower error rates during leave-one-out cross-validation while
classifying the same fraction of classifiable sequences, shifting its curves downward. Misclassification (MC) error rates (dashed lines) are much
lower than over classification (OC) error rates (solid lines) on three different training sets: the RDP training set of full-length 16S rRNA gene
sequences (a), the Contax training set (b), and the Warcup ITS training set (c). The IDTAXA algorithm consistently displays the lowest OC error
rates across different training sets. MC and OC error rates are higher when testing the shorter V4 region (~ 251 nucleotides) of the RDP training
set (d). Points indicate error rates at default/recommended confidence thresholds: ≥ 95% sequence identity for BLAST, ≥ 70% confidence for
QIIME, ≥ 60% confidence for IDTAXA, ≥ 50% confidence for MAPSeq, and ≥ 80% confidence for all others
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fraction of classifiable sequences at the same confidence
threshold as the RDP Classifier (i.e., 80%). Notably, we
observe the same pattern for all rank levels, although
error rates decrease at higher ranks as expected
(Additional file 1: Figure S3).
To determine whether IDTAXA’s improved perform-

ance was independent of the training data, we compared
our results across multiple training sets. Benchmarking on
the Contax training set generally resulted in lower error
rates (Fig. 1b), suggesting that this training set may harbor
fewer labeling errors than the RDP training set. The classi-
fiers’ performance ranking was similar with the exception
of BLAST, which performed far more poorly on Contax
than the RDP training set. Next, we compared the classi-
fiers on the Warcup (ITS) training set, which yielded a
similar result to the RDP training set (Fig. 1c). The biggest
difference from the RDP training set was for the RDP
Classifier, which had much higher MC error rates. Not-
ably, BLAST’s curve for OC error rate appears to have a
kink, which may be related to the fact that the Warcup
training set was partly constructed using BLAST [28].
Taken together, these results confirmed the high accuracy
of the IDTAXA algorithm for taxonomic classification
across multiple training sets.
Leave-one-out cross-validation has been criticized

because sequences may remain in the training set that
are closely related to the query sequence. Recently,
cross-validation by identity has been proposed as a vi-
able alternative, whereby the entire training set and test
set do not contain any sequences within a specified per-
cent similarity [29]. We used the TAXXI benchmark to
test whether IDTAXA offers superior accuracy to other
classifiers at its lowest rank level (species) and a corre-
sponding similarity cutoff (≤ 97%) that would ensure all
closely related sequences were absent from the training set.
On both the BLAST 16S and Warcup ITS benchmarks,
IDTAXA outperformed all other classifiers, with lower MC
and OC error rates across all under-classification rates
(Additional file 1: Figure S4). Therefore, the independent
TAXXI benchmark confirmed IDTAXA’s superior ability
to accurately classify microbiome sequences.
We wished to better understand why the IDTAXA al-

gorithm outperforms other classification algorithms.
Figure 2 shows that, for singleton sequences, IDTAXA
assigns confidences that are better correlated with the
distance between the sequence and the nearest sequence
in its assigned group. In particular, all other approaches
assigned some query sequences high confidence even
though they are greater than 10% distant from the
assigned sequence. Since IDTAXA combines both k-mer
distance and bootstrapping into its confidence measure, it
is able to avoid assigning a high confidence to sequences
even if they repeatedly are selected as the top hit
during bootstrapping. Moreover, unlike other algorithms,

IDTAXA down-weights conserved k-mers that provide
minimal power to resolve taxonomic groups.

IDTAXA maintains low error rates across varying input
sequence lengths
Having confirmed that the IDTAXA algorithm is accur-
ate on a training set of mostly full-length sequences, we
sought to understand performance on shorter sequences
that are common in microbiome sequence datasets. We
noted that the degree of stochasticity introduced during
bootstrapping is based on the relative number of samples
(S) drawn from the total set of l k-mers belonging to a se-
quence. The RDP Classifier draws one eighth of the k-mers
(S = l/8) in a sequence for each bootstrap replicate, whereas
the SINTAX algorithm always draws 32 k-mers independ-
ently of query sequence length (S = 32). Rather than arbi-
trarily choosing a function S(l) for drawing k-mers during
bootstrapping, we examined this function using subse-
quences of a simulated training set of 1000 sequences with
90,000 nucleotides each [30]. Full-length sequences were
clustered at ≥ 95% similarity, resulting in 607 groups.
Using this taxonomy as the training set, we calculated

OC error rates for varying bootstrap sample sizes (S) as
a function of subsequence length (l = 32 to 8192). When
the OC error rate is held constant, we observe that S(l)
follows an apparent power-law scaling with S(l) = lx,
where x is a positive constant greater than zero and less
than 1 (Additional file 1: Figure S5). We chose the fixed
point of 10% OC error rate at 1600 nucleotides to define x
as 0.47. While other values of x could be chosen, 0.47 was
selected because it results in sampling most of the k-mers
belonging to sequences of typical length (250–2000 nucle-
otides) across at least one of the 100 bootstrap replicates.
Notably, x has negligible bearing over the MC and OC
error curves in Fig. 1, although it does change where the
confidence threshold (e.g., 60%) is situated on the curve.
Even though the OC error rate is largely independent

of query sequence length, the MC error rate decreases
for longer sequences (Additional file 1: Figure S6). Simi-
larly, the fraction of classifiable sequences that are classi-
fied continues to improve with longer sequences. Thus,
it is preferable to use the longest sequences possible for
classification even though the OC error rate will prob-
ably not change significantly. While we expect this be-
havior to stay consistent across sequence types (e.g., 16S
or ITS), the actual error rates are dependent on the
training set and cannot be inferred from the simulated
sequences. Therefore, we did not compare the perform-
ance of the IDTAXA algorithm to any other classifiers
using the simulated training set. Nevertheless, it is worth
noting that the IdTaxa function allows users to specify
other forms of S(l) as desired (e.g., S(l) = 32 or S(l) = l/8).
We wished to know how the input sequence length af-

fected the accuracy of different algorithms on a real
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training set. To benchmark shorter length sequences, we
performed leave-one-out cross-validation on the RDP
training set while testing a ~ 251 bp subsequence corre-
sponding to the V4 region of the 16S rRNA gene ex-
tracted from the full-length RDP training set. This
variable region is frequently selected for sequencing and,
thus, represents a common test case for classifying short
sequences. As expected, the accuracy of all algorithms
diminished for shorter sequences, although the IDTAXA
algorithm continued to display lower OC error rates
than other programs (Fig. 1d). Importantly, the OC error
rate remained approximately the same on full-length
and shorter test sequences for IDTAXA, even though
the fraction of sequences classified decreased for the
same confidence threshold (60%). In contrast, OC error
rates changed considerably for all other programs at
their respective default thresholds (Fig. 1a, d). This pro-
vides a practical advantage for IDTAXA users because a
single threshold can be used for input sequences of dif-
ferent lengths with the reassurance that the primary
mode of classification error (OC errors) will not increase
dramatically for some sequences over others. In com-
parison, the RDP Classifier documentation suggests

adjusting the confidence threshold to 50% for sequences
shorter than 250 bp [31].

Performance on random and repeat sequences
It has been anecdotally reported that some programs re-
turn high confidence classifications for randomly gener-
ated sequences and sequences composed solely of repeats
(e.g., ACACAC...). To investigate this phenomenon, we
generated 1000 random sequences with a 25% probability
of each nucleotide and 1000 sequences with repeat period-
icity varying from 1 (e.g., AAA...) to 7. All sequences were
of length 1000 to reflect typical sequence lengths used for
classification. Figure 3 shows that the RDP Classifier and
SINTAX often assign high confidence to random se-
quences at the domain level when using the RDP training
set. In contrast, all other classifiers, including IDTAXA,
assign relatively low confidence to random sequences.
Furthermore, the RDP Classifier and SINTAX often assign
high (80–100%) confidence at the genus level to repeat se-
quences. This is because a small number of sequences in
the training data sometimes contain one or more of the
unique k-mers that comprise a repeat sequence. This re-
sults in a single taxonomic group appearing as the top hit

Fig. 2 Variability in sequence similarity at the same confidence level. During leave-one-out cross-validation with the RDP training set, for each singleton
sequence, we computed the distance to the nearest sequence in the group to which it was assigned. The IDTAXA algorithm only assigned a high
confidence to sequences that had a low distance to the query sequence being classified. In contrast, all other k-mer approaches assigned high
confidences even when all of the sequences in the group were distant to the query sequence. The curves indicate the cubic spline that best fits the data
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in nearly every bootstrap replicate. IDTAXA effectively
avoids this problem by assigning 0% confidence to se-
quences having at most S(l) unique k-mers, for which boot-
strapping (i.e., sampling with replacement) would result in
a high number of repeated k-mers per bootstrap replicate.

Mock community sequences recapitulate the
benchmarking results
Having demonstrated the merits of the IDTAXA algo-
rithm through leave-one-out cross-validation, we com-
pared the ability of classification programs to detect the
organisms present in a mock microbial community. We
focused on a mock microbiome (Microbial Community
C) provided by the Human Microbiome Project [32] that
had previously been Illumina sequenced (accession
SRR3225706) as part of a different study [33]. This mock
community is composed of strains belonging to 20 dif-
ferent bacterial genera, all of which are represented in
the RDP training set. The dataset set contains 14,072 se-
quences (median length 374 nucleotides) amplified with
V4-V5 primers after extraction with the QIAamp kit.
Results of classifying with each of the different classifica-

tion programs are summarized in Table 1. All classifiers
assigned between 93 and 98% of sequences to the genus
rank at their default/recommended confidence thresholds.
The BLAST and SPINGO algorithm both identified 17 of
the 20 expected genera, QIIME identified 16, the RDP
Classifier and MAPSeq identified 15, and both SINTAX
and IDTAXA identified 14. However, BLAST also identi-
fied 24 unexpected genera that were not present in the
sample, the RDP Classifier identified 7, MAPSeq and
QIIME identified 6, and SPINGO and SINTAX identified
3. IDTAXA only identified 2 unexpected genera, Prevotella
and Aquabacterium, both of which were also present in al-
most all other programs’ classifications. It also identified
one unexpected family, Comamonadaceae, that includes
the genus Aquabacterium. Interestingly, the sequences

corresponding to these unexpected groups were distant
from any of the known 16S rRNA gene sequences included
in the mock microbiome sample, suggesting that they were
likely artifacts of contamination [34, 35].
Since all of the expected genera were already present

in the RDP training set, the above approach could only
confirm the relatively high MC error rates of some clas-
sifiers. To investigate OC error rates, we removed the
sequences corresponding to the 20 expected genera from
the RDP training set and reclassified the mock commu-
nity sequences. The results (Table 1) further confirmed
that all programs other than IDTAXA suffer from con-
siderable over classifications when the correct group is
not present in the training data. IDTAXA only added a
single unexpected family, Planococcaceae, while all other
classification programs substantially increased their
number of over classifications at the genus rank to be-
tween 9 and 65. Impressively, without the expected
groups present in the training set, IDTAXA only classi-
fied 0.01% of sequences to the genus rank, in sharp con-
trast to the 3.8–26.7% of sequences classified to the
genus rank by the other classification programs. Taken
together, these results demonstrate that IDTAXA’s com-
parably low MC and OC error rates on benchmarks also
extend to mock community microbiome sequences.

IDTAXA’s classifications change the interpretation of
microbiome data
We next sought to determine whether IDTAXA’s im-
proved accuracy had a substantial effect on the inter-
pretation of human and environmental microbiome
samples. We decided to focus on comparing to the RDP
Classifier because it is currently the most popular classi-
fication approach. To this end, we selected full-length
16S rRNA gene sequences collected from the human gut
of an adult male and a compilation of different sediment
samples with high bacterial and archaeal diversity [2].

Fig. 3 Confidences assigned to random and repeat sequences. Using the RDP training set, the RDP Classifier and SINTAX assigned high confidences at
the domain level (i.e., Bacteria or Archaea) to 1000 query sequences composed of 1000 random nucleotides. Similarly, both the RDP Classifier and
SINTAX assigned high confidence at the genus level to 1000 sequences composed of repeats with periodicity varying from 1 (e.g., AAA...) to 7. In
contrast, the IDTAXA, MAPSeq, and SPINGO algorithms assigned low confidences to random and repeat sequences at all taxonomic levels
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The number of reads assigned to each group in the RDP
training set was compared at the default confidence
threshold recommended for IDTAXA (60%) and the RDP
Classifier (80%). Since the RDP Classifier is more permis-
sive than IDTAXA, we repeated the analysis using a max-
imal (100%) confidence threshold with the RDP Classifier.
Figure 4 illustrates the four major conclusions of this

comparison on human and environmental microbiome
data. First, both the RDP Classifier and IDTAXA agree
on the presence of many groups, and often assign a
similar number of reads to the same groups. Second, the
IDTAXA algorithm tends to leave sequences unclassified
at the root rank rather than classifying them to either
Bacteria or Archaea, as seems to be the preference of
the RDP Classifier. Third, there are an extremely high
number of groups assigned by the RDP Classifier that
the IDTAXA algorithm does not indicate are present.
Even with a 100% confidence threshold, the RDP Classi-
fier assigned sequences to 12 genera in the human gut
and 138 genera in the sediment sequences that IDTAXA
did not find present. In sharp contrast, IDTAXA classi-
fied zero genera in human gut sequences and only 22
genera in sediment sequences that the RDP Classifier
did not identify. Forth, IDTAXA assigned fewer se-
quences to low rank levels (e.g., genus) than the RDP
Classifier, as we had observed with the mock community
analysis. IDTAXA classified 5.3% of sequences from
sediment to the genus level and 19.9% of sequences from

the human gut. In contrast, RDP classified 17.7% (≥ 80%
confidence) and 9.5% (100% confidence) of the sediment
sequences, as well as 22.5% and 20.0% of the human gut
sequences, respectively.
Since these classifications were performed on human

and environmental microbiome samples, we do not
know the true community of microorganisms that were
present. However, based on the aforementioned analyses,
it is likely that most of the taxonomic groups that are
unique to the RDP Classifier are false positive classifica-
tions caused by the lack of the correct taxonomic group
in the training data. We also noted that many of these
unique groups had relatively high abundance. By com-
parison, groups that were uniquely assigned by IDTAXA
tended to have relatively low read counts (Fig. 4). High
abundance over classifications could easily lead to incor-
rectly interpreting the known diversity in microbiome
studies, as well as leading to incorrect conclusions about
the groups that are part of a microbiome. Furthermore,
based on the mock community analysis, it is likely that
the RDP Classifier is classifying sequences to lower rank
levels (e.g., genus) than feasible, resulting in incorrect
classifications.

IDTAXA exhibits sub-linear scalability with reference
training set size
As with other classifiers [17], DECIPHER scales linearly
in time with the number of unique query sequences

Table 1 Number of taxonomic groups identified by each classifier among Illumina 16S rRNA gene sequences (SRR3225706) from a
mock microbiome sample [33]. Counts are provided with and without including any sequences in the RDP training set that are
labeled as belonging to the 20 expected genera

Classified to genus
levelα (%)

Groups present in the mock community Absent from mock communityβ

Root Domain Phylum Class Order Family Genus Order Family Genus

Using the RDP training set BLAST 97.9 1 0 0 0 0 0 17 0 0 24

IDTAXA 94.2 1 0 1 1 2 5 14 0 1 2

MAPSeq 96.5 1 0 0 0 0 4 15 0 2 6

QIIME 95.4 1 0 0 0 0 0 16 0 0 7

RDP
Classifier

93.3 1 1 2 3 6 8 15 0 2 6

SINTAX 94.2 1 1 1 4 3 3 14 1 0 3

SPINGO 96.5 1 0 0 0 0 0 17 0 0 3

With expected genera
excluded from training data

BLAST 17.3 1 0 0 0 0 0 0 0 0 65

IDTAXA 0.01 1 1 1 2 3 4 0 0 2 2

MAPSeq 24.6 1 0 0 2 5 11 0 1 8 20

QIIME 13.5 1 0 0 0 0 0 0 0 0 16

RDP
Classifier

3.83 1 1 2 3 6 9 0 0 3 12

SINTAX 8.76 1 1 1 7 5 6 0 1 1 9

SPINGO 26.7 1 0 0 0 0 0 0 0 0 15
αPercent of total sequences from the mock community that were classified to the genus rank
βOther rank levels (root, domain, phylum, and class) all had counts of zero
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because input sequences are processed independently.
To evaluate performance, we measured runtimes on the
largest training set (Contax) with increasing numbers
(N) of reference sequences (Additional file 1: Figure S6)
while maintaining the number of query sequences at
1000. SINTAX was generally the fastest method
tested, except at the highest number of training se-
quence (N = 35,000) where RDP was the fastest.
BLAST was the slowest method, requiring seconds to
process each query sequence, and making it impractical to
use on large sequence sets. IDTAXA was about 10-fold
slower than SINTAX, requiring 0.05 to 0.3 s per query se-
quence depending on the size of the reference training set
(N). This was expected given that IDTAXA needs to per-
form more computations than many other k-mer match-
ing algorithms and there is a trade-off between speed and
accuracy. Notably, we parallelized the step of the IDTAXA
algorithm that requires comparison to reference se-
quences, allowing IDTAXA to achieve approximately
fourfold speedup when using eight processors.
To evaluate scalability, we fit a power-law function

(T~aNb) to the measured runtimes for each classifier
(Additional file 1: Figure S7). Runtimes scaled roughly
linearly for SINTAX (T∝N1.05) and greater than linearly
for MAPSEQ (T∝N1.61). IDTAXA displayed sub-linear
scalability when using one (T∝N0.87) or eight (T∝N0.67)
processors, which is the result of speedups achieved

during the tree descent phase of the algorithm that ex-
ploit hierarchical structure in the reference taxonomy.
IDTAXA’s scalability was similar to that of SPINGO
(T∝N0.89) and BLAST (T∝N0.72). The RDP Classi-
fier (T∝N0.13) and QIIME (T∝N0.09) had the best scalabil-
ity. In terms of maximum memory usage (M), IDTAXA
exhibited sub-linear scalability (M∝N0.5), requiring a max-
imum of about 1.5 GB on the largest reference set tested
(N = 35,000). IDTAXA’s primary usage of memory space is
for storing decision k-mers used during the tree descent
phase of the algorithm. The number of decision k-mers is
proportional to the number of reference groups, which
tends to scale sub-linearly with the number of reference
sequences.

Discussion
Throughout this work, we made the assumption that the
taxonomic assignments of training sequences were un-
equivocally correct. Yet, as demonstrated by the discrep-
ancy in accuracy between the Contax and RDP training
sets, it is highly likely that taxonomies contain errors. As
further proof, we observed that MC errors were often
much more similar to the group they were assigned than
they were to the nearest sequence in their “correct”
group (Fig. 5). However, we cannot rule out the fact that
the distance between 16S rRNA gene sequences is only a
proxy for taxonomic relatedness, and that taxonomic

Fig. 4 Comparison of classifications using human and environmental microbiome data. The number of sequences assigned to each taxonomic
group in the RDP training set is shown for full-length 16S rRNA gene sequences originating from two different environments [2]. The RDP
Classifier was far more permissive at its default (≥ 80%) confidence than IDTAXA at its default (≥ 60%) confidence. Even at a 100% confidence
threshold, the RDP Classifier assigned sequences to many more groups than the IDTAXA algorithm, possibly because of its substantially higher
OC error rate. Note that some points may be overlapping, particularly at low numbers of assigned sequences
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assignments are often based on many factors, such as
the core genome, that may disagree with the 16S rRNA
gene phylogeny. Furthermore, full-length 16S rRNA
gene sequences do not always offer sufficient resolution
to distinguish between taxonomic groups, as has repeat-
edly been shown to be the case for species-level taxo-
nomic assignments [36–40].
These discrepancies raise the important question of

which training set is best for classification. Training
sets differ considerably in their number of sequences,
scope, degree of imbalance, and accuracy of labels.
IDTAXA provides a means of differentiating among
training sets because it flags putative problem se-
quences and problem groups during its learning
phase. We have noted that the RDP training set, which
is one of the most popular, has many putative labeling
errors according to LearnTaxa, whereas the Contax
training set has fewer errors but narrower scope. We
favor the GTDB [41], which is a relatively new training
set based on a standardized taxonomy and has rela-
tively few putative errors flagged by LearnTaxa. Since
the GTDB taxonomy is based on genomes, its scope is
likely to continue to expand in the future.

Conclusions
Here, we have shown that IDTAXA substantially re-
duces false positive classifications of test sequences fall-
ing outside the scope of a training set. Over
classifications are particularly problematic in micro-
biome research as only a fraction of existing microbial
diversity is represented in even the largest training sets
such as the SILVA database [2]. IDTAXA mitigates OC
errors by taking a hybrid approach that combines fea-
tures of phylogenetic, distance-based, and machine
learning classification methods. This helps to circum-
vent the main weakness of purely machine learning ap-
proaches, which is that they are poor at identifying
when test data belongs to a novel label. The hybrid ap-
proach employed here may be applicable to other clas-
sification problems in biology where the training
dataset is incomplete.
The IDTAXA algorithm has been implemented in the

DECIPHER package for the R programming language
and is available from Bioconductor. The documentation
describes how to train the classifier on a new training
set, which can be composed of any type of sequence
(e.g., 16S, ITS, or other). A variety of pre-trained training

Fig. 5 Some misclassifications may be due to labeling errors. Many misclassifications (≥ 0% confidence) on the full-length RDP training set are to
groups containing a sequence that has greater sequence identity than any sequence in the correct group. Extreme cases to the left of the
vertical line are potentially due to labeling errors in the RDP training set

Murali et al. Microbiome  (2018) 6:140 Page 12 of 14



sets are available from the website http://DECIPHER.codes/.
We have also made available a webserver that will classify
sequences using any of these training sets. The code and
webserver are both able to generate plots (e.g., Fig. 6) that
allow users to visualize their sequences’ classifications, and
the classifications are exportable to standard tabular formats
so that users can integrate the results into their own
bioinformatics pipeline.

Availability and requirements
Project name: DECIPHER
Project home page: http://DECIPHER.codes
Operating system(s): Platform independent
Programming language: R and C
Other requirements: R 3.3 and higher
License: GNU GPL
Any restrictions to use by non-academics: None

Additional file

Additional file 1: Supplemental figures S1-S7. (PDF 764 kb)

Acknowledgements
This research was performed in part using compute resources provided by
the UW-Madison Center for High Throughput Computing (CHTC).

Funding
This study was funded by a start-up grant from the University of Pittsburgh.

Availability of data and materials
Mock microbial community 16S rRNA gene sequences are available from the
Short Read Archive under accession SRR3225706 [33]. Full-length 16S rRNA
gene sequences from human and environmental microbiome samples are
available from the European Nucleotide Archive under accession
OBRS01000000 [2].

Authors’ contributions
EW and AB designed the study. EW implemented the IDTAXA algorithm. AM
and EW acquired and analyzed the results. EW, AM, and AB wrote the
manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Computer Sciences, University of Wisconsin-Madison,
Madison, WI 53715, USA. 2Department of Electrical and Computer
Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA.
3Department of Biomedical Informatics, Pittsburgh Center for Evolutionary
Biology and Medicine, School of Medicine, University of Pittsburgh, 426
Bridgeside Point II, 450 Technology Dr, Pittsburgh, PA 15219, USA.

Received: 21 March 2018 Accepted: 25 July 2018

References
1. Nussinov R, Papin JA. How can computation advance microbiome research?

PLoS Comput Biol. 2017;13:e1005547.
2. Karst SM, Dueholm MS, McIlroy SJ, Kirkegaard RH, Nielsen PH, Albertsen M.

Retrieval of a million high-quality, full-length microbial 16S and 18S rRNA
gene sequences without primer bias. Nat Biotech. 2018;36(2):190–5.

3. Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN,
et al. Recovery of nearly 8,000 metagenome-assembled genomes
substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.

4. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, et al.
Insights into the phylogeny and coding potential of microbial dark matter.
Nature. 2013;499:431–7.

5. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al.
Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res. Oxford Univ Press. 1997;25:3389–402.

6. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid
assignment of rRNA sequences into the new bacterial taxonomy. Appl
Environ Microbiol. 2007;73:5261–7.

7. Nguyen N-P, Mirarab S, Liu B, Pop M, Warnow T. TIPP: taxonomic
identification and phylogenetic profiling. Bioinformatics. 2014;30:3548–55.

8. Golob JL, Margolis E, Hoffman NG, Fredricks DN. Evaluating the accuracy of
amplicon-based microbiome computational pipelines on simulated human
gut microbial communities. BMC Bioinformatics. 2017;18:283.

9. Zheng Q, Bartow-McKenney C, Meisel JS, Grice EA. HmmUFOtu: an HMM
and phylogenetic placement based ultra-fast taxonomic assignment and
OTU picking tool for microbiome amplicon sequencing studies. Genome
Biol. 2018;19:82.

10. Vinje H, Liland KH, Almøy T, Snipen L. Comparing K-mer based methods for
improved classification of 16S sequences. BMC Bioinformatics. 2015;16:205.

11. Edgar R. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS
sequences. bioRxiv; 2016;1:1–10.

Fig. 6 Result of classifying sequences with the IdTaxa function. The
outputs of the IdTaxa function can be plotted with the DECIPHER
package for the R programming language or exported for integration
into a separate bioinformatics pipeline. The pie chart shows the
distribution of IDTAXA classifications for 268,930 full-length 16S rRNA
gene sequences from a human gut sample [2]

Murali et al. Microbiome  (2018) 6:140 Page 13 of 14

http://decipher.codes/
http://decipher.codes
https://doi.org/10.1186/s40168-018-0521-5


12. Allard G, Ryan FJ, Jeffery IB, Claesson MJ. SPINGO: a rapid species-classifier
for microbial amplicon sequences. BMC Bioinformatics. 2015;16:324.

13. Dave RN. Characterization and detection of noise in clustering. Pattern
Recogn Lett. 1991;12:657–64.

14. Liu KL, Porras-Alfaro A, Kuske CR, Eichorst SA, Xie G. Accurate, rapid
taxonomic classification of fungal large-subunit rRNA genes. Appl Environ
Microbiol. 2012;78:1523–33.

15. Rohwer RR, Hamilton JJ, Newton RJ, McMahon KD. TaxAss: Leveraging
Custom Freshwater Database Achieves Fine-Scale Taxonomic Resolution.
bioRxiv. 2018;1:1–37.

16. Choi J, Yang F, Stepanauskas R, Cardenas E, Garoutte A, Williams R, et al.
Strategies to improve reference databases for soil microbiomes. The ISME
Journal. 2017;11:829–34.

17. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al.
Optimizing taxonomic classification of marker-gene amplicon sequences
with QIIME 2's q2-feature-classifier plugin. Microbiome. 2018;6:90.

18. R Core Team. R: a language and environment for statistical computing
[Internet]. 3rd ed. Vienna: R Foundation for Statistical Computing; 2018.
Available from: http://www.R-project.org

19. Wright ES. Using DECIPHER v2.0 to analyze big biological sequence data in
R. R Journ. 2016;8:352–9.

20. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al.
Bioconductor: open software development for computational biology and
bioinformatics. Genome Biol. 2004;5:R80.

21. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT Press;
2016. p. 51–77.

22. Jones KS. A statistical interpretation of term specificity and its application in
retrieval. J Doc. 1972;28:11–21.

23. Robertson S. Understanding inverse document frequency: on theoretical
arguments for IDF. J Doc. 2005;60:503–20.

24. Matias Rodrigues JF, Schmidt TSB, Tackmann J, Mering von C. MAPseq:
highly efficient k-mer search with confidence estimates, for rRNA sequence
analysis. Bioinformatics. 2017;33:3808–10.

25. Almeida A, Mitchell AL, Tarkowska A, Finn RD. Benchmarking taxonomic
assignments based on 16S rRNA gene profiling of the microbiota from
commonly sampled environments. Gigascience. 2018;7 https://doi.org/10.
1093/gigascience/giy054.

26. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment
search tool. J Mol Biol. 1990;215:403–10.

27. Liland KH, Vinje H, Snipen L. microclass: an R-package for 16S taxonomy
classification. BMC Bioinformatics. 2017;18:172.

28. Deshpande V, Wang Q, Greenfield P, Charleston M, Porras-Alfaro A, Kuske CR,
et al. Fungal identification using a Bayesian classifier and the Warcup training
set of internal transcribed spacer sequences. Mycologia. 2016;108:1–5.

29. Edgar RC. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS
sequences. PeerJ. 2018;6:e4652.

30. Sipos B, Massingham T, Jordan GE, Goldman N. PhyloSim -Monte Carlo
simulation of sequence evolution in the R statistical computing
environment. BMC Bioinformatics. BioMed Central Ltd. 2011;12:104.

31. Claesson MJ, O'Sullivan O, Wang Q, Nikkilä J, Marchesi JR, Smidt H, et al.
Comparative analysis of pyrosequencing and a phylogenetic microarray for
exploring microbial community structures in the human distal intestine.
Ahmed N, editor. PLoS One. 2009;4:e6669.

32. Consortium THMP. A framework for human microbiome research. Nature
Nature Publishing Group. 2012;486:215–21.

33. Fouhy F, Clooney AG, Stanton C, Claesson MJ, Cotter PD. 16S rRNA gene
sequencing of mock microbial populations- impact of DNA extraction method,
primer choice and sequencing platform. BMC Microbiol. 2016;16:123.

34. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al.
Reagent and laboratory contamination can critically impact sequence-based
microbiome analyses. BMC Biol. 2014;12:118.

35. de Goffau MC, Lager S, Salter SJ, Wagner J, Kronbichler A, Charnock-Jones DS,
et al. Recognizing the reagent microbiome. Nat Microbiol. 2018;3:851–3.

36. Hahn MW, Jezberová J, Koll U, Saueressig-Beck T, Schmidt J. Complete
ecological isolation and cryptic diversity in Polynucleobacter bacteria not
resolved by 16S rRNA gene sequences. ISME J. 2016;10:1642–55.

37. Antony-Babu S, Stien D, Eparvier V, Parrot D, Tomasi S, Suzuki MT. Multiple
Streptomyces species with distinct secondary metabolomes have identical
16S rRNA gene sequences. Sci Rep. 2017;7:11089.

38. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria
and Archaea. Syst Appl Microbiol. 2015;38:209–16.

39. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new
method for improved phylogenetic and taxonomic placement of microbes.
Nat Commun. 2013;4:2304.

40. Abby SS, Tannier E, Gouy M, Daubin V. Lateral gene transfer as a support for
the tree of life. Proc Natl Acad Sci U S A. 2012;109:4962–7.

41. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al.
A proposal for a standardized bacterial taxonomy based on genome phylogeny.
bioRxiv. 2018;1:1–20.

Murali et al. Microbiome  (2018) 6:140 Page 14 of 14

http://www.r-project.org
https://doi.org/10.1093/gigascience/giy054
https://doi.org/10.1093/gigascience/giy054

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	The learning phase of the IDTAXA algorithm
	The classification phase of the IDTAXA algorithm
	Programs used for benchmark comparisons
	Training sets used for classification benchmarking
	Determining accuracy with leave-one-out cross-validation

	Results
	The IDTAXA algorithm exhibits lower over classification error rates
	IDTAXA maintains low error rates across varying input sequence lengths
	Performance on random and repeat sequences
	Mock community sequences recapitulate the benchmarking results
	IDTAXA’s classifications change the interpretation of microbiome data
	IDTAXA exhibits sub-linear scalability with reference training set size

	Discussion
	Conclusions
	Availability and requirements
	Additional file
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

