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A common feature in the Alzheimer’s disease (AD) brain is the presence of acetyl-
cholinesterase (AChE) which is commonly associated with β-amyloid plaques and neu-
rofibrillary tangles (NFT). Although our understanding of the relationship between AChE
and the pathological features of AD is incomplete, increasing evidence suggests that both
β-amyloid protein (Aβ) and abnormally hyperphosphorylated tau (P-tau) can influence AChE
expression. We also review recent findings which suggest the possible role of AChE in the
development of a vicious cycle of Aβ and P-tau dysregulation and discuss the limited and
temporary effect of therapeutic intervention with AChE inhibitors.
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INTRODUCTION
Alzheimer’s disease is the most common cause of dementia among
the elderly and is characterized by loss of memory and other cogni-
tive functions. The major pathological hallmarks include extensive
synaptic and neuronal loss, astrogliosis, and accumulation of pro-
teinaceous deposits. The AD brain is characterized by the presence
of β-amyloid plaques and neurofibrillary tangles (NFT), which are
the hallmark pathological features (for a review see Blennow et al.,
2006). β-amyloid plaques are extracellular deposits of which the
major component is the β-amyloid protein (Aβ), a small polypep-
tide generated by processing of a much larger transmembrane
β-amyloid precursor protein (APP; Masters et al., 1985; Kang
et al., 1987) through the successive action of proteolytic enzymes
known as secretases (for a recent review see Zhang et al., 2011).
The intracellular NFT are composed of paired helical filaments
of the microtubule-associated protein tau, which is abnormally
hyperphosphorylated (P-tau; Grundke-Iqbal et al., 1986). Today,
the focus on research has moved away from the proteinaceous
deposits toward studies on the role of the triggering effectors,
soluble oligomeric Aβ, and P-tau. Accordingly, much research is
devoted to understanding how Aβ and P-tau lead to the toxic events
associated with AD, how they cause changes in the expression of
other key brain proteins and ultimately how they cause neurode-
generation. However, it is also crucial to decipher how both Aβ

and P-tau interact in order to reach a better understanding of the
mechanism of neurotoxicity and to achieve an effective therapy.

As extensively reviewed in this special issue,acetylcholinesterase
(AChE) is a key enzyme in the cholinergic nervous system. During
the progression of AD, many different types of neurons deteri-
orate, although there is a profound loss of forebrain cholinergic
neurons, which is accompanied by a progressive decline in acetyl-
choline (Davies and Maloney, 1976; Perry et al., 1977). Both

the acetylcholine-synthesizing enzyme choline acetyltransferase
(ChAT), as well in the acetylcholine-hydrolyzing enzyme, AChE
are affected. Therapies designed to reverse the cholinergic deficit
are in large measure based on the importance of cholinergic func-
tion in cognition. In spite the overall decrease in the activity of
AChE in the AD brain, current AD therapy is mostly based on
inhibitors of AChE (AChE-I), which enhance cholinergic trans-
mission, but which have modest and transient therapeutic effects
(Giacobini, 2002; Kaduszkiewicz et al., 2005). As a consequence of
its role as a target for AD therapy, AChE is one of the most stud-
ied proteins in the Alzheimer’s field, with about 1500 manuscripts
indexed into the PubMed; the vast majority of reports in the field
relate with treatment strategies associated with the use of AChE-I.

It has been well known for almost 50 years that the distri-
bution of AChE molecular forms is particularly affected in the
AD brain, but the physiopathological significance and subsequent
implications of these intriguing changes in AChE species remain
unknown. An increase in AChE levels around amyloid plaques and
NFT is a common feature of AD neuropathology, and although the
significance of this increase remains to be determined. In another
way, up-regulation of AChE activity following long-term AChE-I
therapy has been reported in a number of studies during the last
decade. All these abnormalities in AChE expression patterns, as
well AChE up-regulation in reaction to chronic inhibition, may
are related with the limited efficiency and persistence of AChE-I.
In summary, after decades of study and hundreds of reports, AChE
remains of considerable interest into the AD field. The description
of changes in AChE levels and forms in the AD brain has merit
extensive revision (see for example Younkin et al., 1986; Mesulam
and Geula, 1990; Massoulié et al., 1993; Layer, 1995; Small et al.,
1996; Kása et al., 1997; Grisaru et al., 1999; Talesa, 2001; Rees and
Brimijoin, 2003; Ballard et al., 2005; Silman and Sussman, 2005;
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Greenfield et al., 2008; Inestrosa et al., 2008; and many others). The
purpose of this article is to review changes in AChE expression in
the AD brain, but with a particular emphasis on the role of these
changes in the pathophysiology of AD. In addition, we summarize
our recent findings about the cross-talk between AChE and Aβ,
and also between AChE and P-tau. The possibility that Aβ and
P-tau interact through AChE is considered.

ALTERED AChE MOLECULAR FORM PATTERN IN AD
Acetylcholinesterase can exist in several different molecular forms,
which have specific patterns of expression in different cell types
(for a review see Massoulié, 2002). Moreover, the specific subcellu-
lar distribution of each species of AChE probably reflects different
physiological functions for each form. Indeed, a large number of
studies suggest that AChE could have novel functions unrelated
to cholinergic neurotransmission (for review see Massoulié et al.,
1993; Layer, 1995; Small et al., 1996; Soreq and Seidman, 2001).
In this regard, it is important to note that AChE is present in both
cholinergic and non-cholinergic brain areas, where the functional
significance of non-cholinergic AChE remains unknown. We par-
ticularly refer to the work of Mesulam (2004) for a detailed view of
the distribution of AChE in the non-pathological and AD brain.
Even in cholinergic areas, it has been suggested that the reduction
of AChE activity in the AD brain is not due to cholinergic depletion
alone, as the density of AChE-rich (cholinergic) fibers decreased
in cortical areas of the AD patients but was not correlated with the
number of AChE-rich neurons (Heckers et al., 1992). Therefore,
it is important to note that an alteration in AChE levels may not
reflect a change in cholinergic neurotransmission.

Not all molecular forms of AChE are equally affected in the AD
brain. Studies using sucrose gradient centrifugation have revealed
two major forms of AChE in the mammal brain, tetrameric
and monomeric species (Figure 1; reviewed in Massoulié et al.,
1993). The major forms in the non-AD adult brain are tetramers
(G4) that are anchored in the cell membrane of neurons. These
tetramers probably constitute the true cholinergic species. Other
minor species are monomers (G1) and dimers (G2) that can-
not be completely separated from each other by sucrose gradient
centrifugation. Regional variations in the AChE molecular form
ratio G4/G1 usually been studied in relation to neurochemical and
neuroanatomical, particularly cholinergic, features of the brain
(Atack et al., 1986). However in the AD brain, there is a selec-
tive loss in the G4 form, while the lighter species are preserved
(Atack et al., 1983; Fishman et al., 1986) or even increased in
severely affected cases of AD (Figure 1; see also Arendt et al.,
1992; Sáez-Valero et al., 1999). Similarly, changes in AChE mol-
ecular forms in cerebrospinal fluid (CSF) reflect changes in the
brain (Sáez-Valero et al., 1999, 2000a). Light AChE species, which
represent the major forms in plasma, are also increased in the
AD plasma (García-Ayllón et al., 2010). In agreement with human
studies, AChE monomeric species are also increased in brain of the
APPC100 and Tg2576 transgenic mice which overproduce human
Aβ (Figure 2; see also Sberna et al., 1998; Fodero et al., 2002; Sil-
veyra et al., 2011a) and in rats given intracerebral Aβ (Sáez-Valero
et al., 2002). Different reports have corroborated the possibility
that Aβ might influence AChE (Sberna et al., 1997; Hu et al.,
2003; Melo et al., 2003). So far, the significance of this particular

FIGURE 1 |Tetrameric and monomeric AChE molecular forms are

differentially affected in the Alzheimer’s brain. Human frontal cortex
from non-demented individuals (ND; closed circles) and Alzheimer’s
patients (AD; open circles) were extracted in a Tris–saline buffer containing
proteinases inhibitors and 1% (w/v) Triton X-100. Molecular weight forms of
AChE were analyzed by ultracentrifugation at 150,000 × g in a continuous
sucrose gradient (5–20% w/v), containing 0.5% (w/v) Triton X-100, for 18 h
at 4˚C as previously described (Sáez-Valero et al., 1999). Tetramers (G4) and
monomers (G1) AChE forms were identified by their coefficient of
sedimentation. The proportion of G4 forms in AD is particularly depleted
whereas the minor G1 species are mostly preserved (no change; n.ch.) or
even slightly increased.

FIGURE 2 | Monomeric AChE molecular forms are increased in the

brain of a transgenic mouse model of Aβ over-expression. AChE is
expressed as several different species with various molecular weights
which can be identified by sucrose density gradient centrifugation (see
Figure 1). Cerebral cortices from an APPC100 transgenic mice which
express human Aβ (Tg APPC100; open circles) display higher levels of
monomeric G1 AChE forms compared to control samples of similar age
(closed circles; 3 months old), while levels of tetrameric G4 AChE species
were not different (no change; n.ch.). See also Sberna et al. (1998).

increase in monomeric AChE around plaques and in Aβ models is
unclear.

SIGNIFICANCE OF INCREASED MONOMERIC AChE IN AD
Light forms of AChE in the brain have been generally considered
as biosynthetic precursors of the G4 forms due to the fact that
oligomeric forms of AChE are assembled from monomeric pre-
cursors (Brockman et al., 1986) and that once assembled these
forms do not interconvert (Rotundo, 1988). Although it is also
possible that a pool of monomers represents a separate pool with
a different physiological role than that of the major cholinergic G4

form (Small et al., 1996; Grisaru et al., 1999). Because G1 species
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are precursors of higher molecular weight species, and as a con-
sequence G4 is always present in association with the G1 form,
it is difficult to identify a specific functional pool of G1 species
which is distinct from the precursor pool. Interestingly, in this
context, the prevalence of lighter AChE forms in AD brain resem-
bles an embryonic pattern of expression (Arendt et al., 1992).
In the human embryonic brain, the major form of AChE is a
monomeric species (Muller et al., 1985). Indeed, the expression
pattern of AChE forms within the embryonic brain depends on
the development stage (Zakut et al., 1985; Perry et al., 1986). The
G4 species increase during human brain maturation and become
the most abundant before 11 weeks of gestation (Muller et al.,
1985). In rodents, the situation is similar with light AChE being
the prevalent embryonic forms (Rieger and Vigny, 1976; Sung and
Ruff, 1983). However, there is a shift in the molecular forms that
occurs post-natally (Muller et al., 1985). The G1 AChE form is the
more abundant during all gestational periods (Figure 3). Interest-
ingly, the distribution in molecular form of the structurally related
enzyme butyrylcholinesterase (BuChE) does not change signif-
icantly either during fetal development or in AD (Atack et al.,
1987). The physiological significance of the early and sustained
expression of embryonic G1 AChE, where a role in neurotrans-
mission is not clear, is unknown. However, it has been suggested
that AChE has roles in development, such as neuronal differen-
tiation, regulation of cell growth, or cell adhesion. These novel
functions may depend on protein–protein interactions rather than
the enzyme’s catalytic activity (Brimijoin and Koenigsberger, 1999;
Paraoanu et al., 2006). On this basis, it has been suggested that the
AChE in AD may be similar to embryonic AChE, and that it may
reflect the activation of a neuronal repair in the AD brain (Layer,
1995).

Therefore, we can speculate that G1 AChE has a non-cholinergic
role during brain development, and that this role may be unre-
lated to the enzyme’s catalytic properties. In this context, it is
assumed that all AChE forms possessed similar catalytic prop-
erties, which is probably true when oligomeric and monomeric
precursors are compared. Nevertheless, it has been demonstrated
subtle differences in sensitivity to inhibitors and in kinetic prop-
erties exist between tetrameric and monomeric AChE species

(Ogane et al., 1992; Rakonczay, 2003). More interestingly, embry-
onic G4 AChE shares similar biochemical and kinetic proper-
ties with the adult enzyme, but embryonic G1 AChE differs
in its kinetic properties and in its affinity for several AChE-I
from the adult G1 form (Moreno et al., 1998). In this context,
AChE activity present in the AD brain associated with plaques
and NFT displays particular enzymatic properties and sensi-
tivity to inhibitors (Geula and Mesulam, 1989; Wright et al.,
1993).

Therefore, if we accept the possibility that embryonic AChE
may possess a function independent of its catalytic capacities, the
large pool of catalytically inactive AChE protein should be con-
sidered. The basis for the presence of an embryonic AChE species
different from that of the adult, is unknown, but several questions
arises regarding the use of AChE-I in AD therapy.

The existence of an unexpectedly large pool of inactive
AChE has been demonstrated in brain (Chatel et al., 1993)
and other tissues (Stieger et al., 1987; Rotundo, 1988; García-
Ayllón et al., 2006), and suggested in CSF (García-Ayllón et al.,
2007). This inactive pool may have non-classical functions, as
it has been demonstrated that transgenic over-expression of
enzymatically inactive AChE can influence neurodevelopment
(Dori et al., 2005). The inactive AChE fraction is proportion-
ally more abundant in embryonic than in adult tissues (Mas-
soulié et al., 1993). Because routinely AChE levels are estimated
enzymatically using various modifications of the Ellman et al.
(1961) method, and are not normally estimated immunochem-
ically, little information is available on this inactive pool of
AChE in pathological and non-pathological conditions. A signif-
icant decrease of both AChE activity and immunoreactivity has
been observed using enzyme-linked immunosorbent assay of AD
brain (Hammond and Brimijoin, 1988). However, after decades of
studying AChE in the AD brain further research is still necessary in
order to determine the AChE protein content and its relationship
with altered AChE activity levels. Whether non-catalytic AChE in
brain has physiological significance, and how it is affected during
pathology and treatment, are issues that warrant further study.

This complex scenario of multiple molecular forms is brought
about, at least in part, by the existence of alternative splicing of

FIGURE 3 | Monomeric AChE molecular forms are the

predominant species during embryonic brain development. AChE
activity was extracted from rat (Sprague-Dawley) cerebral cortex at
embryonic day 12 (E14), 14 (E14), 16 (E16), and 18 (E18) and at
3 months of age (Adult), and AChE forms were separated by sucrose
density gradient (see Figure 1). At early embryonic stage only light

monomeric G1 AChE is present and levels are maintained (no change;
n.ch.) until E15–16, an increase in G1 AChE parallels emergence of G4

AChE tetramers, the brain cholinergic species. The G4 species increase
in activity during brain maturation becoming the major molecular forms
during post-natal periods (N.B. difference of scales between
embryonic and adult stage).
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the single ACHE gene, generating different AChE variants, with
potential different gene regulation (Grisaru et al., 1999; see also
Figure 4). Alternative 3′ RNA splicing generates different polypep-
tide encoding transcripts called “tailed” or T, “hydrophobic” or H,
and “readthrough” or R-transcripts (Massoulié et al., 1993; Tay-
lor and Radic, 1994; Grisaru et al., 1999), with the same catalytic
domain and distinct C-terminal peptides that determine the abil-
ity of the molecule to form oligomers. In the mammalian brain,
the T-transcript is the major form and encodes subunits which
produce monomers, dimers, and tetrameric forms; whereas the
R-transcript, which is normally present at low levels (Kaufer et al.,
1998; Perrier et al., 2005), encodes a soluble monomeric form
(Sternfeld et al., 2000; Figure 4). In addition to the 3′ alterna-
tively spliced species of AChE, the 5′ end is also subject to intricate
regulation (Meshorer et al., 2004) generating AChE variants that
have extended N-termini; thus,within the brain N-AChE-T and N-
AChE-R variants may occur in parallel with AChE-T and AChE-R.
The AChE-T and AChE-R monomers or their N-extended variants
cannot be distinguished by molecular weight. Whether the increase
in monomeric AChE in the AD brain is related to increases in the
T or R variants is still an open question. Anyhow, in this con-
text has been suggested that the AChE-R can compete with the
main brain AChE-T protein and suppress the formation of insol-
uble Aβ oligomers (Berson et al., 2008; see below). An increased
N-AChE-T expression has been also postulated in the AD brain

FIGURE 4 | Diagram of the human AChE gene structure, its alternative

splicing and generation of variants and molecular forms of AChE in

brain. Gene structure showing the splicing pattern of the six major exons.
The catalytic core of human AChE is encoded by three exons and additional
exons encode the variant-specific carboxy-terminal sequences. In the
normal human brain, much more AChE-T than AChE-R mRNA is produced.
However, under stress AChE-R expression is increased. To date, no
expression of AChE-H has been described in the brain (see Grisaru et al.,
1999 for more details). The R-transcript encodes a soluble monomeric form,
while the T-transcript encodes a wide variety of monomeric (G1) and
oligomeric (G2 and G4) molecular forms (Massoulié et al., 1993). AChE
molecular forms can vary in their solubility characteristics (non-amphiphilic:
na; amphiphilic: a). The main amphiphilic G4 form in brain is anchored to the
membrane by a “proline-rich membrane anchor” PRiMA subunit (Perrier
et al., 2002). Additional complexity can be generated by additional 3′

alternatively splicing which can generate AChE variants with extended
N-termini (not shown in figure; see Meshorer et al., 2004).

associated with disease progression, including apoptotic cell death
(Toiber et al., 2008). In summary, Soreq and Seidman (2001)
have presented evidence that N- and C-terminally modified AChE
variants, all of which have similar enzymatic activities, can dis-
play distinct and in certain cases inverse functions (reviewed in
Greenberg et al., 2010). The use of AChE-I which does not dis-
tinguish between AChE variants should interfere in all processes
indiscriminately.

The central question is whether the changes in the distribution
of AChE molecular forms in the AD brain have any physiopatho-
logical consequences. As stated previously, gross sedimentation
analysis cannot distinguish between monomeric isoforms that are
synthesized to be assembled in oligomers, or arise as degrada-
tion products, and those specific monomeric species which may
have specific functions. Therefore, in previous studies we have fur-
ther characterized the increase in monomeric AChE associated to
Alzheimer’s and to Aβ by characterizing its glycosylation pattern
by lectin binding analysis, based on the assumption that different
functional pools of AChE may have different glycosylation pat-
terns. Correct glycosylation determines the adequate intracellular
trafficking, folding, assembly, and final localization of glycopro-
teins. Thus different forms (glycosylated variants or glycoforms)
of the same protein should differ in glycosylation in order to
achieve a different oligomerization state, subcellular localization,
protein–protein interaction affinity, or a different physiological
function. Indeed, for a particular glycoprotein, the abundance
of single glycoforms should closely correlate to each other and
be regulated within narrow limits. By exploiting the ability of
lectins to bind diverse carbohydrate moieties with high specificity
(Sharon and Lis, 2004), we have demonstrated that the glycosyla-
tion of AChE is altered in the AD brain, postmortem, and lumbar
CSF (Sáez-Valero et al., 1997, 1999, 2000a). Tetrameric G4 and
light G1 have different glycosylation patterns (Sáez-Valero et al.,
1999), thus depletion specific loss of the tetrameric form in the
AD brain may be responsible, in part, for this change. Changes in
AChE glycosylation were also characterized in Aβ transgenic mice
models displaying increases in monomeric AChE (Sberna et al.,
1998; Fodero et al., 2002). However, we further demonstrated that
when the light AChE species from AD and non-demented brain
are isolated, G1 species present in AD brain displayed different
affinities for lectins and for conformational anti-AChE antibod-
ies, compared with isoforms from control brains (Sáez-Valero
et al., 2000b). These changes indicate that the minor subset of
G1 AChE, whose contribution is increased in AD brain, corre-
spond to isoforms (glycoforms) either not present, or poorly
present in adult human brain in non-disease conditions. The
physiological relevance of the increase in this minor G1 form for
AD pathogenesis is unclear.

Alterations in the glycosylation state of other glycoproteins
have been reported in AD tissue (Guevara et al., 1998; Fodero
et al., 2001; Kanninen et al., 2004; Sihlbom et al., 2008). Patholog-
ical impairment in the broader protein glycosylation machinery
could significantly compromise the processing of many glycopro-
teins, thereby resulting in loss of physiological function of many
of these proteins. Abnormal incorporation of carbohydrate moi-
eties in AChE subunits can compromise its functional role and/or
oligomerization. In this context, altered AChE glycosylation has
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been also demonstrated in Creutzfeldt-Jakob disease (Silveyra
et al., 2006), a neurodegenerative process where impaired glyco-
sylation machinery is suspected (Rudd et al., 1999). Nonetheless,
unlike AD, in Creutzfeldt-Jakob disease, altered AChE glycosyla-
tion is not caused by changes in the proportion of any particular
molecular form (Silveyra et al., 2006). Therefore, we favor the
hypothesis that in Creutzfeldt-Jakob disease change in AChE glyco-
sylation is the consequence of perturbed glycosylation machinery,
whereas the altered glycosylation pattern of light AChE species
in AD reflects an imbalance of protein glycoforms resulting from
changes in AChE variants related or not to differentiation state.
This is an issue that requires further study.

P-TAU INCREASES AChE, DIFFERENCES FROM Aβ

It has been noted that abnormal AChE expression in the AD
brain occurs in association with the two hallmark features of the
AD pathology, the amyloid plaques and the NFT (Mesulam and
Morán, 1987; Ulrich et al., 1990). As mentioned previously, Aβ

peptides influence AChE levels, thus Aβ may be responsible for
increased AChE around plaques. However, the increase in AChE
associated with NFT has remained largely unexplored. Recently,
we showed for the first time that P-tau can trigger an increase in
AChE expression (Silveyra et al., 2011a). In vivo over-expression
of P-tau in transgenic mice (Tg VLW mice) expressing human
tau mutations causing frontotemporal dementia and parkinson-
ism linked to chromosome 17 (FTDP-17) led to an increase in
the activity of the T-transcript of AChE (Silveyra et al., 2011a).
The results suggest that the early increase in AChE expression that
occurs around NFT may be a consequence of disturbed tau phos-
phorylation. In contrast to Aβ transgenic models in which only
one specific molecular form of AChE increases, in the P-tau trans-
genic mice, all major molecular forms of AChE were increased,
including the tetrameric species (Figure 5). The explanation for
differences in the pattern of AChE expression between Aβ and
P-tau over-expressing mice remain unclear and will require fur-
ther research, as will the potential differing physiopathological
consequences of increases in tetrameric or monomeric AChE. In

FIGURE 5 | All molecular forms of AChE are increased in the brain of a

transgenic mice model of P-tau over-expression. In a transgenic mice
(Tg VLW; open circles) expressing human tau mutations causing
frontotemporal dementia and parkinsonism linked to chromosome 17
(FTDP-17), both the major cholinergic tetramers G4 AChE and light
monomeric forms G1 AChE activities were higher compared to
age-matched control-littermate mice (closed circles; 5 months old).

this context, it is necessary to consider the different subcellular
localization of tetramers and monomers. Light forms probably
localized internally whereas G4 forms are localized extracellularly
(Inestrosa et al., 1981). Therefore, the different localization of
these forms determines and limits potential interactions with other
protein partners. The recent finding that PRiMA (proline-rich
membrane anchor) directs a restricted localization of tetrameric
AChE not only to synapses but also to membrane microdomains
called rafts (Xie et al., 2010), suggests that there may be dif-
ferent functional interactions of AChE species with particular
partners.

DOWNSTREAM CONSEQUENCES OF CHANGES IN AChE
LEVELS IN AD BRAIN
Notwithstanding the overall loss of total AChE activity in the AD
brain, AChE is consistently increased in regions around amyloid
plaques and NFT at all stages of the disease, including some of
the earliest stages (Perry et al., 1980; Mesulam and Morán, 1987;
Ulrich et al., 1990). Extensive studies by Inestrosa et al. (1996)
suggest that AChE may directly interact with Aβ in a manner that
increases deposition of Aβ to form plaques. Studies using double
transgenic mice that over-express AChE and Aβ (Rees et al., 2003)
support these observations and they suggest that AChE may play
a role in pathogenesis of AD.

Our own recent work also indicate that AChE can modu-
late APP processing and Aβ production. Aβ is produced through
the successive action of two proteolytic enzymes, β-secretase and
γ-secretase on APP (Zhang et al., 2011). The active proteolytic
component of the γ-secretase complex is presenilin 1 (PS1; Suh
and Checler, 2002). Mutations in PS1 cause early-onset AD with an
accelerated rate of Aβ deposition (St George-Hyslop, 2000), thus
proteins that interact with PS1 are of major functional importance.
We have previously demonstrated an interaction between AChE
and PS1 by reciprocal co-immunoprecipitation (Silveyra et al.,
2008). Recently, we demonstrated that AChE can influence PS1
levels by showing that AChE over-expression increases PS1 levels,
while AChE knock-down with siRNA leads decrease PS1 in trans-
fected cells (Silveyra et al., 2011b). Perhaps the most significant
conclusion from our recent study is the potential participation
of AChE in a degenerative cycle that enhances amyloidogenic
APP processing. We can presume that several degenerative cycles,
participating as interactive systems within a larger vicious cycle,
accelerate the development of AD. Hence, in AD it is possible that
Aβ can induce a feedback loop leading to amyloidogenic APP pro-
cessing (Cribbs et al., 1995; White et al., 2003). A vicious cycle of Aβ

generation potentially could involve PS1; recent evidence indicates
that Aβ42 can induce an increase in PS1 levels in cultured neurons
creating a toxic loop (Matrone et al., 2008). Using different exper-
imental conditions, we have confirmed that both Aβ42 and P-tau
trigger an increase in AChE, which can in turn influence PS1 and
thereby modulate Aβ production (Figure 6). We have found that
Aβ42-induced PS1 increase can be prevented by pre-treatment
of SH-SY5Y cells with siRNA AChE (Silveyra et al., 2011b). The
possibility that different effects may be obtained with different
AChE species and variants (tetrameric versus monomeric molec-
ular form, or T-variant versus R-variant or N-extended variant),
requires further study. In this context, recent evidence indicates a
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FIGURE 6 | Schematic representation of the multiple relationships

between AChE and the Alzheimer’s effectors Aβ and P-tau. AChE is
proposed to interact with both Aβ and P-tau. P-tau can lead to an increase in
the activity of AChE (1) (Silveyra et al., 2011a), whereas over-expression of
N-terminally extended T-AChE variant activates the tau kinase GSK-3β

inducing tau hyperphosphorylation (3) (Toiber et al., 2008). In addition, Aβ

peptides can also increase AChE levels (2) (Sberna et al., 1997). In turn,
AChE can affect APP processing and Aβ production by modulating the
levels of the γ-secretase catalytic subunit PS1 (4) (Silveyra et al., 2011b).
Thus, increased AChE can affect both amyloidogenic and tau
hyperphosphorylation pathways.

specific role inducing GSK-3β activation and tau hyperphospho-
rylation for the alternative N-terminally extended T-AChE variant
(Toiber et al., 2008), variant up-regulated by stressors inducing
protein misfolding and calcium imbalances, both characteristic
of AD.

It appears likely, therefore, that several vicious cycles trigger
by Aβ and P-tau involve the potential participation of AChE. The
significance of these theoretical considerations to the clinical and
neuropathological course of AD remains to be demonstrated.

EFFECTS OF AChE-I
Therapies designed to reverse the cholinergic deficit are in large
measure based on the importance of cholinergic function in cog-
nition. Indeed, AChE-Is have proven to be modestly efficacious in
treating the cognitive and functional symptoms of AD. In addi-
tion disease-modifying effects of AChE inhibition has been also
considered (Giacobini, 2002). However, the modest clinical effi-
cacy of AChE-Is has not discouraged the development of new
AChE-Is, and particularly the so called dual binding site AChE-Is
(Muñoz-Torrero, 2008; Pepeu and Giovannini, 2009), which are
both inhibitors of AChE and also of amyloid plaque formation.
This latter effect is based on the fact that AChE-binding mole-
cules may, in addition to their effect on enzyme activity, block
the effect of AChE on Aβ fibrillogenesis by interaction throughout
the peripheral anionic site of the enzyme (Inestrosa et al., 1996).
Besides the design of new inhibitors with the capacity to block cat-
alytic and peripheral anionic sites of AChE, there is evidence that
inhibitors may also influence APP processing. AChE-Is have been
shown to alter APP expression and metabolism in cellular (Lahiri
et al., 1994; Pakaski et al., 2001; Peng et al., 2006) and animal
models (Mori et al., 1995; Zimmermann et al., 2004; Dong et al.,
2009), as well in AD-treated patients (Clarke et al., 2001; Basun
et al., 2002; Zimmermann et al., 2005). The modulatory effects of
AChE-I on APP metabolism have been attributed to their effect on
ADAM10/α-secretase (Zimmermann et al., 2004; Peng et al., 2006),
BACE1/β-secretase (Lahiri et al., 2007; Fu et al., 2008; Li et al.,

2010), and on PS1/γ-secretase (Silveyra et al., 2011b). The dis-
parity between the effects of AChE-Is and cholinergic agonists on
secretase activity would suggest that AChE is not exerting its mod-
ulatory action on PS1 via a cholinergic mechanism (Zimmermann
et al., 2004; Silveyra et al., 2011b). However, effects on APP process-
ing by cholinergic agonists have been also demonstrated (Nitsch
et al., 1992; Rossner et al., 1998; Davis et al., 2010). The mecha-
nisms by which AChE-Is influence APP processing remain unclear,
but it is suggested that regulation of APP processing by AChE-Is
may involve multiple mechanisms, including cholinergic and non-
cholinergic actions, some independent of their anti-cholinesterase
(catalytic) activities (Lahiri et al., 1997).

The therapeutic effect of current AChE-Is is both modest and
transient. Current AChE-I treatment results are disappointing
both because of their poor efficacy and tolerability. Interestingly,
these drugs have a limited duration of cognitive benefit. The effects
of these drugs on APP processing also fail to be maintained over
the long-term in Alzheimer’s patients (Basun et al., 2002).

The transience of the response to AChE-I could be associated
with AChE up-regulation in reaction to chronic inhibition (Chi-
appa et al., 1995; Kaufer et al., 1998). Indeed, increases in CSF
AChE have been reported after AChE-I treatment (Davidsson et al.,
2001; Darreh-Shori et al., 2006; García-Ayllón et al., 2007; Parnetti
et al., 2011). The varying responses of different AChE species to
AChE-I treatment, were the light AChE species seem not subject
to AChE-I induced up-regulation, suggest different modes of reg-
ulation and should be also considered (García-Ayllón et al., 2007).
Interestingly, we found that the effect of AChE-I treatment on PS1
levels was also not sustained, and that the lack of effect on PS1 was
associated with up-regulation of AChE (Silveyra et al., 2011b).
Our data suggest that sustained AChE inhibition cannot be effec-
tive when the expression of AChE is up-regulated and that this
undesired effect needs to be addressed to develop more effective
therapies based on AChE-I.

SUMMARY AND CONCLUSION
In summary, AChE species differ in their responses to disease and
their interactions with β-amyloid and P-tau. The important ques-
tion about the nature of the alternative functions of AChE, their
association with different AChE species and variants, and their
role in AD pathogenesis and therapy needs to be examined fur-
ther. Recent evidence also suggests the potential participation of
AChE in vicious cycles involving Aβ and P-tau. Elucidation of the
mechanisms involved in these changes will be useful for under-
standing the physiological and pathological relevance of altered
AChE expression in the AD brain and AChE-I pharmacologi-
cal intervention. The chronic increases in AChE activity during
AChE-I treatment may cause the therapeutic value of AChE-I to
be limited and temporary and needs to be addressed in order to
improve therapy.
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