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In a study comparing the effects of two treatments, the propensity score is the probability of assignment to one treatment
conditional on a subject’s measured baseline covariates. Propensity-score matching is increasingly being used to estimate
the effects of exposures using observational data. In the most common implementation of propensity-score matching, pairs
of treated and untreated subjects are formed whose propensity scores differ by at most a pre-specified amount (the caliper
width). There has been a little research into the optimal caliper width. We conducted an extensive series of Monte Carlo
simulations to determine the optimal caliper width for estimating differences in means (for continuous outcomes) and risk
differences (for binary outcomes). When estimating differences in means or risk differences, we recommend that
researchers match on the logit of the propensity score using calipers of width equal to 0.2 of the standard deviation of the
logit of the propensity score. When at least some of the covariates were continuous, then either this value, or one close to it,
minimized the mean square error of the resultant estimated treatment effect. It also eliminated at least 98% of the bias in
the crude estimator, and it resulted in confidence intervals with approximately the correct coverage rates. Furthermore, the
empirical type I error rate was approximately correct. When all of the covariates were binary, then the choice of caliper
width had a much smaller impact on the performance of estimation of risk differences and differences in means. Copyright
r 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Observational studies are increasingly being used to estimate
the effects of treatments and exposures on health outcomes. In
randomized controlled trials, randomization ensures that, in
expectation, the baseline characteristics of treated subjects do
not differ systematically from those of untreated subjects.
However, in observational studies, treated subjects often differ
systematically from untreated subjects in both measured and
unmeasured baseline characteristics. Therefore, statistical meth-
ods must be used to adjust for systematic differences between
treated and untreated subjects when estimating the effects of
treatment on outcomes using observational data.

Propensity-score methods are being used with increasing
frequency to account for treatment selection bias when
estimating causal treatment effects using observational data.
The propensity score is defined to be the probability of
exposure to the treatment conditional on a subject’s observed
baseline characteristics [1,2]. A popular approach to using the
propensity score is propensity-score matching [1,3,4]. In
propensity-score matching, matched sets of treated and
untreated subjects with similar values of the propensity score
are formed. The effect of treatment on outcomes is then
estimated in the matched sample consisting of all matched sets.

A common implementation of propensity-score matching is
pair-matching without replacement within a specified caliper
distance [5–7]. Using this approach, pairs of treated and
untreated subjects are formed such that the difference in
propensity scores between matched subjects differs by at most
a fixed distance (the caliper width). In matching without
replacement, each subject can be included in at most one
matched set. In the medical literature, there is no consistency in
the calipers that have been used for forming matched sets [5–7].
Intuitively, the choice of caliper should reflect the variance-bias
trade-off: using narrower calipers will result in the matching of
more similar subjects. This should reduce bias by reducing
systematic differences between matched treated and untreated
subjects. However, it may also result in a reduction in the
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number of matched subjects, thereby increasing the variance of
the estimated treatment effect. Using wider calipers should have
the opposite effect. To date, there is a paucity of research on the
optimal caliper width for estimating treatment effects when
using propensity-score matching.

The objective of this article was to determine the optimal
caliper width for propensity-score matching. The article is
structured as follows. In Section 2, we present requisite theory
and notation. In Section 3, we describe an extensive series of
Monte Carlo simulations to examine the performance of
different caliper widths for propensity-score matching when
estimating risk differences and differences in means. In Section
4, we present an empirical case study in which we examine the
impact of caliper width on estimates of the effect of b-blocker
therapy on survival using a large sample of patients hospitalized
with heart failure. Finally, in Section 5, we summarize our
findings.

2. THEORY AND NOTATION

Let X denote a vector of observed baseline covariates, and let Y
denote either a continuous or binary outcome variable (in the
binary context Y = 1 denotes success or the presence of a
condition and Y = 0 denotes failure or the absence of a
condition). Let Z denote a binary or dichotomous treatment
(Z = 1 denoting treated; Z = 0 denoting not treated). Then, the
propensity score is defined as:

eðX ¼ xÞ ¼ PrðZ ¼ 1jX ¼ xÞ

We now briefly describe the potential outcomes framework,
using the notation of Imbens [8]. Each subject in the sample has
a pair of potential outcomes: Yi(0) and Yi(1), the outcome under
the control treatment and the outcome under the active
treatment, respectively. However, for each subject, only one of
the potential outcomes is observed:

Yi � YiðZiÞ ¼
Yið0Þ if Zi ¼ 0

Yið1Þ if Zi ¼ 1

(

Two possible treatment effects are the average treatment effect
(ATE) and the average treatment effect for the treated (ATT).
These are defined as:

ATE ¼ E½Yð1Þ � Yð0Þ�

and

ATT ¼ E½Yð1Þ � Yð0ÞjZ ¼ 1�

Although both sample-average and population-average
estimates of treatment effect can be defined, we do not make
this distinction throughout the article. The ATE is the average
effect, at either the population or sample level, of moving the
entire population (sample) from untreated to treated. The ATT is
the ATE, at either the population or sample level, on the subjects
who were ultimately treated.

Imbens notes that propensity-score matching methods allow
for the estimation of the ATT, rather than the ATE [8]. The
treatment effect is then estimated as the average of the within-
pair differences of the outcome. Variance estimation must
account for the matched nature of the propensity-score
matched sample [8,9].

3. MONTE CARLO SIMULATIONS

In this section, we describe and report the results for a series of
Monte Carlo simulations used to examine the impact of caliper
width on the estimation of the treatment effect. We examined
the impact of caliper width on reduction in bias, mean squared
error (MSE), coverage of confidence intervals, and type I error
rates. We examined two different types of outcomes: dichot-
omous outcomes and continuous outcomes. Our primary focus
was on binary outcomes because they occur more frequently in
the medical literature than do continuous outcomes [10]. For
binary outcomes, our focus was on estimating risk differences
rather than odds ratios for two reasons. First, risk differences are
a more natural treatment effect for causal effects in the potential
outcomes framework. Second, several clinical commentators
have argued that the risk difference (and its reciprocal, the
number needed to treat) is more meaningful for clinical decision
making than are relative measures of effect, such as relative risks
or odds ratios [11–14]. Furthermore, propensity-score matching
has been shown to perform poorly for estimating odds ratios
[15,16]. Second, we examined scenarios in which the outcome
was continuous, and focused on difference in means as the
measure of treatment effect. This was to facilitate the
comparison of our findings with those of earlier studies whose
focus was on estimating difference in means.

3.1. Methods

We randomly generated data so that it would be similar to the
data considered in the case study in Section 4. In particular, we
simulated data so that approximately 25% of the sample was
exposed to the treatment. Our simulations were designed to
induce a specific ATT, the measure of effect that is estimated
when propensity-score matching is used.

3.1.1. Data generation – binary outcomes (risk differences)

We simulated data such that the probability of the outcome
would be approximately 0.29 if all subjects in the population
were not exposed (this was the marginal probability of the
outcome in the case study examined in Section 4). We then
examined scenarios in which the risk differences due to
treatment in treated subjects were 0, �0.02, �0.05, �0.10, and
�0.15 (i.e. absolute reductions in the probability of the outcome
due to treatment were 0, 0.02, 0.05, 0.10, and 0.15). The non-null
risk differences are equivalent to NNTs of 50, 20, 10, and 7,
respectively. Thus, we generated data so as to induce a
specified ATT.

It is difficult to use a conditional data-generating process to
generate binary outcomes and exposure such that treatment
causes a specific risk difference in the treated subjects. Our data-
generating process used the fact that the risk differences are
collapsible: the average subject-specific risk difference is equal
to the population or marginal risk difference [17]. Our data-
generating process has been described in greater detail
elsewhere [18], has been used in a similar study [19], and is a
modification of a data-generating process for inducing marginal
odds ratios of specific magnitudes that has been described
elsewhere [20]. We describe our method briefly.

First, we randomly generated 10 independent covariates
(X1–X10) from independent standard normal distributions for
each of 10,000 subjects. We then assumed that the following 1
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logistic regression model related the probability of treatment to
these 10 baseline covariates:

logitðpi;treatÞ ¼a0;treat1aLX1;i1aLX2;i1aLX3;i

1aMX4;i1aMX5;i1aMX6;i

1aHX7;i1aHX8;i1aHX9;i1aVHX10;i ð1Þ

We then generated a treatment status indicator (Zi) for each
subject from a Bernoulli distribution with subject-specific
probability equal to pi,treat. Those subjects with Zi = 1 denoted
the treated subjects in whom the ATT is defined. We assumed
that the following logistic regression model related the
probability of the outcome to these covariates and an indicator
variable (Z) denoting treatment:

logitðpi;outcomeÞ ¼a0;outcome1bZi1aLX1;i1aLX2;i1aLX3;i

1aMX4;i1aMX5;i1aMX6;i

1aHX7;i1aHX8;i1aHX9;i1aVHX10;i ð2Þ

In the above regression model, pi,outcome denotes the
probability of the outcome for the ith subject and b denotes
the log-odds ratio relating the treatment to the outcome. We
then generated subject-specific outcomes from a Bernoulli
distribution with probability pi,outcome. The regression coeffi-
cients for the baseline covariates in the above two regression
models were set as follows: aL = log(1.1), aM = log(1.25), aH =
log(1.5), and aVH = log(2). These are intended to reflect low,
medium, high, and very high effect sizes. We fixed the value of
a0,outcome = log(0.29/0.71) so that the probability of the event
occurring in the population if all the subjects were untreated
would be approximately 0.29 (to reflect the scenario observed in
the case study in Section 4). To induce a risk difference of 0, b
was set to be 0. For the risk differences of �0.02, �0.05, �0.10,
and �0.15, the required value of b equaled 0.9077272,
0.7836084, 0.6086645, and 0.4658031, respectively. The reader
is referred elsewhere for a more detailed explanation of how
these values of b were determined [18]. Note that as we are
estimating marginal or population-average risk differences, the
value of b selected will depend on the distribution of baseline
covariates in the population. Furthermore, because we are
estimating the ATT, the value of b will also depend on the
population of treated subjects.

3.1.2. Data generation – continuous outcomes

We modified the data-generating process described above to
generate a continuous outcome for each subject. We used
formula (1) to generate a treatment status for each subject. We
then modified formula (2) to generate a continuous outcome for
each subject:

Yi ¼a0;outcome1bZi1aLX1;i1aLX2;i1aLX3;i

1aMX4;i1aMX5;i1aMX6;i

1aHX7;i1aHX8;i1aHX9;i1aVHX10;i1ei ð3Þ

where ei � Nð0; s2Þ. As differences in means are collapsible and
there are no constraints on the response for each subject, we
used a conditional regression model to generate outcomes for
each subject. The regression coefficients for the baseline
covariates in the above regression model were set as follows:
aL = 1.1, aM = 1.25, aH = 1.5, and aVH = 2. These were intended to

reflect low, medium, high, and very high sizes. We fixed the value
of a0,outcome = 0. The value of s2 was set to 127.6056. This value
was selected because it would induce a model R2 of 0.13,
implying that the 10 measured baseline covariates explain 13% of
the variation in the outcome. This has been described by Cohen
as a medium effect size [21]. We considered five different values
of b in the outcomes-generating process: 0, 1.1, 1.25, 1.5, and 2.
Thus, exposure to the treatment increased the mean of the
response variable Y by 0, 1.1, 1.25, 1.5, and 2 units, respectively.

The above scenario assumed that the 10 covariates (X1–X10)
were all independently distributed standard normal random
variables. As a sensitivity analysis, we considered four additional
scenarios. In the second scenario, the 10 covariates were from a
multivariate normal distribution such that the mean and variance
of each random variable were equal to 0 and 1, respectively, while
the correlation between pairs of random variables was equal to
0.25. In the third scenario, the first five covariates (X1–X5) were
assumed to be independent Bernoulli random variables with
parameter 0.5, while the last five covariates (X6–X10) were assumed
to be independent standard normal random variables. In the
fourth scenario, the first nine covariates were assumed to be
independent Bernoulli random variables with parameter 0.5, while
the tenth covariate was a standard normal random variable. In the
fifth scenario, all 10 covariates (X1–X10) were independent Bernoulli
random variables with parameter 0.5. The value of a0,treat,a0,outcome,
and b were modified to preserve the proportion of treated
subjects, the marginal probability of the outcome, and the
required treatment effect. We refer to the five scenarios as the
independent normal covariates scenario, the correlated normal
covariates scenario, the first mixed covariates scenario, the second
mixed covariates, and the binary covariates scenario, respectively.

3.2. Statistical analyses

For each outcome (binary vs continuous) and each magnitude
of treatment effect, we randomly generated 1,000 data sets with
the required treatment effect (each randomly generated data
set consisted of 10,000 subjects as described above). Propensity-
score matching was used to construct a matched sample
consisting of pairs of treated and untreated subjects with
propensity scores that lay within the specified caliper width. We
matched subjects on the logit of the propensity score using a
caliper of width equal to g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2

11s2
2Þ=2

p
, where s2

i is the variance
of the logit of the propensity score in the ith group [4]. We
allowed g to range from 0.05 to 2.50 in increments of 0.05. Thus,
50 different propensity-score matched samples were formed
from each randomly generated data set. The rationale for
matching on the logit of the propensity score is that the logit of
the propensity score is more likely to be normally distributed
than the propensity score itself. Cochran and Rubin determined
the reduction in bias when matching on a normally distributed
continuous confounding variable using a caliper width that was
defined to be a proportion of the standard deviation of that
confounding variable [22]. Thus, there is greater rationale for
matching on a caliper that is a function of the variance of the
propensity score than on a fixed caliper width that is selected
independent of the distribution of the propensity score.

3.2.1. Statistical analyses – binary outcomes

Once a propensity-score matched sample had been formed, the
absolute risk reduction was estimated as the difference between1
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the proportion of treated subjects experiencing the outcome
and the proportion of untreated subjects experiencing the
outcome in the matched sample. The statistical significance of
the risk difference was tested using McNemar’s test for
correlated binomial proportions [23], because previous research
indicated that accounting for the matched nature of the sample
results in superior inference compared with ignoring the
matched nature of the sample [9]. Similarly, confidence intervals
for the difference in proportions were constructed using
methods that account for the matched nature of the sample
[23]. Assume that in the matched sample, there are a pairs in
which both the treated and untreated subjects experienced the
event; b pairs in which the treated subject experienced
the event while the untreated subject does not; c pairs in which
the untreated subject experienced the event while the treated
subject does not; and d pairs in which both the treated and
untreated subjects did not experience the event. The difference
in the probability of the event between treated and untreated
subjects is estimated by ðb� cÞ=n, where n is the number of
matched pairs. The variance of the difference in proportions is
estimated by ððb1cÞ � ðc� bÞ2=nÞ=n2[23]. We also estimated the
crude (unadjusted) risk difference in each simulated data set.

For each true risk difference and for a given value of g, we
calculated the mean estimated risk difference across the 1,000
simulated data sets. We determined the reduction in bias due to
matching on the propensity score. Reduction in bias was
defined to be equal to 100� ððBiascrude�BiasPSÞ=BiascrudeÞ,
where Biascrude denotes the bias in estimating the treatment
effect with the crude or unadjusted estimator in the full or
unmatched sample, while BiasPS denotes the bias in estimating
the treatment effect when using propensity-score matching. We
also calculated the proportion of estimated 95% confidence

intervals that contained the true risk difference. We computed
the MSE of the estimate. When the true risk difference was 0
(null treatment effect), we estimated the empirical type I error
rate as the proportion of simulated data sets in which the null
hypothesis that the risk difference was equal to zero was
rejected at a 0.05 significance level.

3.2.2. Statistical analyses – continuous outcomes

Within the propensity-score matched sample, let YT,i and YC,i

denote the outcome for the treated and untreated subjects in
the ith matched set, respectively. Then let di ¼ YC;i � YT ;i

denote the within-matched pair difference in outcome between
treated and untreated subject. Then the treatment effect was

estimated by D ¼ ð1=nÞ
Pn
i¼1

di , where n denotes the number of

matched pairs. A one-sample t-test was used to test the
hypothesis that D was equal to zero. The standard error of the
estimated difference in means was determined, along with a
95% confidence interval for D. Reduction in bias was determined,
as was the MSE of the estimated difference in means.

3.3. Results

We report our results for the two different metrics (risk
differences vs differences in means) separately.

3.3.1. Results – binary outcomes (risk differences)

The relationship between g and the percent reduction in bias,
MSE, and empirical coverage rates of 95% confidence intervals
are described in Figures 1–3, respectively. Within each figure,
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there is one panel for each of the five scenarios examined. The
relationship between g and type I error is described in the left
panel of Figure 4.

The relationship between g and the percentage reduction in
bias is described in Figure 1. In the independent standard normal
covariates scenario, the use of g equal to 0.05, 0.15, 0.15, 0.05,1
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and 0.05 maximized the reduction in bias when the true risk
difference was 0, �0.02, �0.05, �0.10, and �0.15, respectively.
For all the five risk differences, the reduction in bias was at least
98.9%, and in four of the cases was at least 99.9%. For the other
four covariate scenarios, the value of g that maximized reduction
in bias ranged from 0.05 to 0.30, depending on the true risk
reduction and the covariate scenario. In comparing the five
panels in Figure 1, one observes that the range in the reduction
of bias as g varied between 0.05 and 2.50 decreased as the
number of continuous covariates decreased and the number of
binary covariates increased. When all the covariates were binary,
the choice of g had a minimal impact on the reduction in bias.

The relationship between caliper width and the MSE of the
estimated risk difference is described in Figure 2 for the five
different covariate scenarios (one should note that the same scale
is used on the vertical axis of each of the five panels). In the
independent standard normal covariates scenario, the use of g
equal to 0.20 minimized MSE when the risk difference was equal
to 0, �0.02, �0.05, and �0.10. When the risk difference was equal
to �0.15, then MSE was minimized when g was equal to 0.10. For
the other four scenarios, the value of g that minimized MSE ranged
from 0.05 to 0.70. When at least one of the covariates was
continuous, the value of g that minimized MSE ranged from 0.05
to 0.30. In comparing the five panels of Figure 2, one notes that
the relative differences in the MSE of the estimated risk difference
across the range of g decreased as the number of binary covariates
increased. When only one of the covariates was normally
distributed or when all of the covariates followed a Bernoulli
distribution, then the choice of g had a minimal impact on MSE.

The relationship between caliper width and the empirical
coverage rates of 95% confidence intervals is described in
Figure 3 for the five different covariate scenarios. Given our use
of 1,000 simulated data sets, any empirical coverage rate that is
less than 0.9365 or that exceeds 0.9635 is statistically
significantly different from 0.95 using a statistical test based
on the conventional normal approximation to the binomial
distribution. Horizontal lines denoting coverage rates of 0.9365,

0.95, and 0.9635 have been added to each panel. The values of g
that resulted in empirical coverage rates that were not
statistically significantly different from 0.95 varied according to
the true risk difference and according to the covariate scenario.
However, one notes that using a value of g that was less than or
equal to 0.5 tended to result in 95% confidence intervals with
approximately correct coverage rates (coverage rates ranged
from 0.82 to 0.96, depending on the covariate scenario and the
true risk difference). When comparing the different panels of
Figure 3, one notes that in the independent normal, correlated
normal and the two mixed covariates scenarios, the relationship
between g and the empirical coverage rates is relatively flat for
values of g between 0.05 and 0.50. However, the empirical
coverage rates decreases as g increases beyond this interval.
Furthermore, a phenomenon similar to that described above
was observed: the relative differences in coverage rates across
the range of g were smaller as the number of continuous
covariates decreased.

The relationship between caliper width and the empirical
type I error rate is described in Figure 4. Owing to the use of
1,000 simulated data sets, any empirical type I error rate that is
less than 0.0365 or that exceeds 0.0635 is significantly different
from 0.05. Horizontal lines denoting type I error rates of 0.0365,
0.05, and 0.0635 are superimposed on the figure. In the
continuous and mixed covariate scenarios, the empirical type I
error rate increased with increasing g. When at least one
covariate was normally distributed, then selecting g to be at
most 0.25 resulted in the empirical type I error rates not being
significantly different from 0.05. In the binary covariate scenario,
all values of g resulted in approximately correct type I error rates.
Finally, one notes that the range of empirical type I error rates
decreased as the number of continuous covariates decreased.

3.3.2. Results – continuous outcomes

The relationship between g and the percent reduction in bias,
MSE, and empirical coverage rates of 95% confidence intervals 1
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are reported in Figures 5–7, respectively. The relationship
between g and type I error is described in the right panel of
Figure 4.

The relationship between g and the percentage reduction in
bias is described in Figure 5. In the independent normal
covariates scenario, the use of g equal to 0.15 maximized the
reduction in bias, regardless of the true difference in means. For
all the five true differences in means, the reduction in bias was
equal to 99.9%. The value of g that maximized bias reduction
varied from 0.05 to 0.35 across the other four covariate
scenarios. In all the five covariate scenarios, the reduction in
bias was at least 99.8% when g was equal to the value that
maximized bias reduction. In Figure 5, one observes a similar
phenomenon as in the case with the risk differences and binary
outcomes: the range in the percent reduction in bias across the
range of g decreased as the number of continuous covariates
decreased.

The relationship between caliper width and the MSE of the
estimated difference in means is described in Figure 6 for the
five different covariate scenarios. In the independent normal
covariates scenario, the use of g equal to 0.20 minimized MSE,
regardless of the true difference in means. In the correlated
normal covariates scenario, the use of g equal to 0.1 minimized
MSE. In the first mixed covariates scenario, the use of g equal to
0.35 minimized MSE, while in the second mixed covariates
scenario, the use of g equal to 0.55 minimized MSE, regardless of
the true risk difference. In the binary covariate scenario, the use
of g equal to 0.8 minimized MSE, regardless of the true
difference in means. In examining Figure 6, one observes a
similar phenomenon as with the risk differences and binary
outcomes: the range in MSE across the spectrum of g decreased
as the number of continuous covariates decreased. When there

were either one or no continuous covariates, the choice of g had
a negligible impact on the MSE.

The relationship between caliper width and the empirical
coverage rates of 95% confidence intervals is described in Figure
7 for the five different covariate scenarios. The values of g that
resulted in empirical coverage rates that were not statistically
significantly different from 0.95 varied according to the
covariate scenario. However, across all covariate scenarios, the
values of g that were at most 0.35 resulted in 95% confidence
intervals with approximately the correct coverage rates, regard-
less of the true difference in means. When at most one of the
covariates was normally distributed, the choice of g had minimal
impact on the empirical coverage rates of the 95% confidence
intervals. In comparing the different panels of Figure 7, one
observes a similar phenomenon as with the risk differences and
binary outcomes: the range in empirical coverage rates of 95%
confidence intervals across the spectrum of g decreased as the
number of continuous covariates decreased.

The relationship between caliper width and the empirical
type I error rate is described in the right panel of Figure 4. In the
two continuous covariate scenarios and the two mixed covariate
scenarios, the empirical type I error rate increased with
increasing g. In the independent normal covariates scenario,
the values of g between 0.05 and 0.55 resulted in type I error
rates that were approximately correct; when the covariates were
correlated normal random variables, then the values of g
between 0.05 and 0.35 resulted in type I error rates that were
approximately correct. In the first mixed covariate scenario,
selecting values of g between 0.05 and 0.70 resulted in empirical
type I error rates that were not significantly different from the
advertised rate. In the second mixed covariate scenario,
selecting values of g between 0.05 and 0.80 resulted in empirical1
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type I error rates that were not significantly different from the
advertised rate. In the binary covariate scenario, all the values of
g resulted in approximately correct type I error rates. Finally, as
with the risk differences for binary outcomes, one observes that
the range of the empirical type I error rates across the spectrum
of g decreased as the number of continuous covariates
decreased.

4. CASE STUDY

4.1. Data sources

Detailed clinical data were obtained by retrospective chart
review on a sample of 7,613 patients discharged alive with a
diagnosis of heart failure between 1 April 1999 and 31 March 31
2001 from 103 acute care hospitals in Ontario, Canada. Further

details of the data obtained were provided elsewhere [24].
These data were collected as part of the Enhanced Feedback for
Effective Cardiac Treatment (EFFECT) Study, an ongoing
initiative intended to improve the quality of care for patients
with cardiovascular disease in Ontario [25]. Data on patient
demographics, vital signs at presentation, results of physical
examination at presentation, medical history, and results of
laboratory tests were collected for this sample. Subjects with
missing data on key continuous baseline covariates were
excluded from this study. In this study, we examined receipt
of a prescription for a b-blocker at discharge as the exposure of
interest. The demographic and clinical characteristics of the
treated and untreated subjects are described in Table I.
Continuous and categorical variables were compared between
treated and untreated subjects using the Wilcoxon Rank Sum
test and the w2 test, respectively. Standardized differences are
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Table I. Baseline characteristics of b-blocker and non-b-blocker patients in the case study.

Median (25th percentile–75th percentile) or N (%)

Baseline characteristics
b-blocker:
No (N = 5535)

b-blocker:
Yes (N = 2078)

Standardized
difference P-value

Demographic characteristics
Age (years) 78 (70–84) 75 (67–82) 0.24 o0.001
Female 2809 (50.7%) 1011 (48.7%) 0.04 0.103

Vital signs on admission
Systolic blood pressure, mmHg 147 (127–170) 150 (130–176) 0.13 o0.001
Heart rate, beats per minute 94 (78–111) 88 (73–108) 0.14 o0.001
Respiratory rate, breaths per minute 24 (20–30) 24 (20–28) 0.09 o0.001

Presenting symptoms and physical exam
Neck vein distension 3002 (54.2%) 1200 (57.7%) 0.07 0.006
S3 518 (9.4%) 232 (11.2%) 0.06 0.018
S4 204 (3.7%) 89 (4.3%) 0.03 0.227
Rales 4 50% of lung field 560 (10.1%) 231 (11.1%) 0.03 0.203

Findings on chest X-ray
Pulmonary edema 2772 (50.1%) 1137 (54.7%) 0.09 o0.001
Cardiomegaly 2026 (36.6%) 711 (34.2%) 0.05 0.053

Past medical history
Diabetes 1871 (33.8%) 804 (38.7%) 0.1 o0.001
CVA/TIA 880 (15.9%) 340 (16.4%) 0.01 0.624
Previous MI 1815 (32.8%) 989 (47.6%) 0.31 o0.001
Atrial fibrillation 1675 (30.3%) 530 (25.5%) 0.1 o0.001
Peripheral vascular disease 684 (12.4%) 302 (14.5%) 0.06 0.012
Chronic obstructive pulmonary disease 1074 (19.4%) 191 (9.2%) 0.28 o0.001
Dementia 422 (7.6%) 91 (4.4%) 0.13 o0.001
Cirrhosis 48 (0.9%) 6 (0.3%) 0.07 0.007
Cancer 659 (11.9%) 195 (9.4%) 0.08 0.002

Electrocardiogram – First available within 48 h
Left bundle branch block 834 (15.1%) 293 (14.1%) 0.03 0.29

Laboratory tests
Hemoglobin, g/L 124 (110–138) 125 (111–139) 0.05 0.146
White blood count, 10E9/L 9 (7–12) 9 (7–11) 0.02 0.261
Sodium, mmol/L 139 (136–141) 139 (137–141) 0.08 0.001
Potassium, mmol/L 4 (4–5) 4 (4–5) 0.03 0.12
Glucose, mmol/L 7 (6–11) 8 (6–12) 0.09 o0.001
Blood urea nitrogen, mmol/L 8 (6–12) 8 (6–12) 0 0.522
Creatinine, mmol/L 104 (82–142) 107 (85–144) 0.08 0.002
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also reported for comparing the mean of variables between the
treatment groups [26]. Systematic differences in several
variables, including age, systolic blood pressure, heart rate,
history of previous myocardial infarction, history of chronic
obstructive pulmonary disease, and dementia, were observed
between the treatment groups. Overall, 27.3% of patients
received a prescription for a b-blocker at discharge. The
outcome of interest was death within 1 year of hospital
discharge. A total of 27.7% of the subjects died within 1 year
of hospital discharge.

4.2. Statistical analyses

An indicator variable denoting receipt of a b-blocker prescrip-
tion at hospital discharge was regressed on the 28 baseline
characteristics described in Table I using a logistic regression
model. The estimated propensity score was the predicted
probability of receiving a b-blocker prescription that was
derived from the fitted logistic regression model. Continuous
variables were not categorized, and were assumed to have a
linear relationship with the log-odds of b-blocker use.

Treated and untreated subjects were matched on the logit of
the estimated propensity score using calipers of width equal to g
of the standard deviation of the logit of the propensity score.
We allowed g to range from 0.05 to 2.50 in increments of 0.05.
We estimated the absolute reduction in mortality due to
b-blocker exposure at discharge, the standard error of the
estimated risk difference, and the associated 95% confidence
interval using methods described in Section 3.2.1.

4.3. Results

The results of the case study are described graphically in Figure
8. The relationship between g and the number of matched pairs
is described in the upper left panel of Figure 8. One observes
that initially, as g increased, the number of matched pairs

increased. However, the choice of g had a small impact on the
number of matched pairs. When g was equal to 0.05, 2054
matched pairs were formed. Once g exceeded 0.95, the number
of matched pairs remains constant at 2078.

The relationship between g and the estimated risk difference
and its associated 95% confidence interval are described in the
upper right panel of Figure 8. One observes that the choice of g
had a minimal impact on the estimated risk difference and its
associated 95% confidence interval. The estimated risk differ-
ences ranged from 0.047 to 0.048.

The relationship between g and the standard error of the
estimated risk difference is described in the lower left panel of
Figure 8. One notes that initially, the estimated standard error of
the risk difference decreases with increasing g. However, once g
exceeded 0.95, the standard error remains constant.

Finally, the relationship between g and the statistical
significance level of the estimated risk difference is described
in the lower right panel of Figure 8. One observes that the
choice of g had an inconsistent relationship on the statistical
significance of the risk difference. However, for all the values of
g, the estimated risk difference was statistically significantly
different from zero (Po0.0004).

5. DISCUSSION

We used Monte Carlo simulations to examine the relationship
between the caliper width used for propensity-score matching
and the performance of estimation of the risk differences and
differences in means. We begin by briefly synthesizing our
findings.

When estimating differences in means, we found that MSE
was minimized by using calipers that were equal to a width of
between 0.20 and 0.55 times the standard deviation of the logit
of the propensity score when at least one of the covariates were
continuous. Furthermore, the use of calipers of these widths
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tended to result in confidence intervals with approximately
correct coverage rates and significance tests with approximately
correct empirical type I error rates. When all of the covariates
were binary, then MSE was minimized when the calipers had a
width equal to 0.8 times the standard deviation of the logit of
the propensity score. However, it should be noted that the
choice of caliper width had a negligible impact on the
performance of estimation when all of the covariates were
binary.

When estimating the risk differences, we found that MSE was
minimized by using calipers that were equal to a width of
between 0.05 and 0.30 times the standard deviation of the logit
of the propensity score when at least one of the covariates was
continuous. Furthermore, the use of calipers of these widths
tended to result in confidence intervals with approximately
correct coverage rates and significance tests with approximately
correct empirical type I error rates. When all of the covariates
were binary, we found that wider calipers had to be used, and
that MSE was minimized when the calipers had a width equal to
0.3 to 0.7 times the standard deviation of the logit of the
propensity score. As in the case of estimating differences in
means, it should be noted that the choice of caliper width had a
negligible impact on the performance of estimation when all of
the covariates were binary.

In our case study using a large sample of patients hospitalized
with heart failure, we observed that the different choices for g
resulted in qualitatively similar estimates of the absolute
reduction in the probability of mortality within 1 year due to
receipt of a b-blocker prescription at hospital discharge.
Similarly, the choice of g had a minimal impact on the statistical
significance of the estimated risk difference.

Recent reviews of propensity-score matching in the medical
literature have documented that a wide choice of calipers have
been used in applied applications [5–7]. In most cases, the
choice of caliper appeared to have been ad hoc, and not based
on substantive theory. Indeed, there is a paucity of research into
the relative performance of different calipers for propensity-
score matching. Cochran and Rubin examined matching in the
setting in which a continuous response variable was linearly
related to both a dichotomous exposure and to a single
continuous confounding variable [22]. They examined the
reduction in bias when matching on the continuous confound-
ing variable using calipers of width equal to a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2

11s2
2Þ=2

p
,

where s2
i is the variance of the continuous confounding variable

in the ith group. When s2
1 ¼ s2

2, they found that using values of
a equal to 0.2, 0.4, 0.6, 0.8, and 1.0 eliminated 99%, 95%, 89%,
82%, and 74% of the bias due to the confounding variable,
respectively. In a subsequent article, Rosenbaum and Rubin
examined the construction of a control group using matching
on the propensity score [4]. They examined matching on the
logit of the propensity score using calipers that were equal to
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2

11s2
2Þ=2

p
, where s2

i is the variance of the logit of the
propensity score in the ith group. Rosenbaum and Rubin
suggest that matching on the logit of the propensity score using
a given value of a will remove the same degree of bias as will
matching on a single continuous confounding variable using the
same value of a. Thus, if the variance of the logit of the
propensity score was the same in both groups, using calipers of
width equal to 0.2 of the pooled standard deviation of the logit
of the propensity score would eliminate approximately 99% of
the bias due to measured confounding variables, while using
calipers of width equal to 0.6 of the pooled standard deviation

of the logit of the propensity score would eliminate approxi-
mately 89% of the bias due to measured confounding variables.
The first result is similar to our finding that, when estimating
differences in means, using calipers of width equal to 0.2 of the
pooled standard deviation of the logit of the propensity score
eliminated at least 99.3% of the bias in the crude estimator. The
second finding contrasts with our findings, in that we found that
using calipers of width equal to 0.6 of the pooled standard
deviation of the logit of the propensity score eliminated
between 95.2% and 99.6% of the bias in the crude estimator,
with the amount of bias reduction dependent on the covariate
scenario. Apart from these two articles, there is a dearth of
articles that provide guidance on the selection of calipers for use
with propensity-score matching. In a recent article, Austin
compared the performance of eight different methods for
propensity-score matching. Two methods were based on
matching on the logit of the propensity score (using calipers
of width equal to either 0.2 or 0.6 of the standard deviation of
the logit of the propensity score, one method based on 5! 1
digit matching, and five methods based on fixed caliper widths
on the propensity-score scale (0.005, 0.01, 0.02, 0.03, and 0.10)
[27]. These methods were selected because they were the ones
most frequently used in practice in the medical literature.
Matching on the logit of the propensity score using calipers of
width equal to 0.2 of the standard deviation of the logit of the
propensity score and calipers of width equal to 0.02 or 0.03
tended to have superior performance for estimating treatment
effects. However, apart from these studies, there is limited
information on how to select the appropriate caliper for use
with propensity-score matching.

Both Cochran and Rubin [22] and Rosenbaum and Rubin [4]
focused on the impact of caliper width on reduction in bias. In
this study, we have focused on reduction in bias, MSE, coverage
of confidence intervals, and type I error rates. MSE allows
researchers to quantify the trade-off between variance and bias.
As suggested in the Introduction, the choice of caliper width
reflects an implicit trade-off between variance and bias. Our focus
on MSE allows researchers to select a caliper width that optimizes
this implicity trade-off. Furthermore, our examination of type I
error rates allows researchers to select a caliper width that will
result in statistical tests with approximately correct rejection rates.

There are certain limitations to the current study. First, our
Monte Carlo simulations were limited to 1000 replications per
scenario. The implications of our use of 1000 iterations per
scenario was described above in terms of the ability to detect
coverage rates and type I error rates that were significantly
different from 0.95 and 0.05, respectively. However, more precise
results could be obtained with a larger number of iterations. The
number of iterations was restricted to 1000 for computational
reasons. In the independent normal covariate scenario, the use of
1,000 iterations required approximately 60 days of CPU time on a
unix server. Within each simulated data set, 50 propensity-score
matched samples were formed. Most of the computer time
involved forming the propensity-score matched samples. Given
that we examined five different scenarios, the use of additional
iterations was not feasible. For similar reasons, we were unable to
examine the robustness of our findings under a wider range of
scenarios. A second limitation was that we focused only on the
impact of caliper width on estimation. We did not focus on other
issues such the relationship between caliper width and balance
of measured baseline covariates between treated and untreated
subjects. An overview of balance diagnostics for use with1
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propensity-score matching is provided elsewhere [28], as is a
comparison of the relative ability of the different propensity-
score methods to balance measured covariates [29].

We now summarize recommendations for propensity-score
matching based on the current study. When estimating
differences in means or risk differences, we recommend that
researchers match on the logit of the propensity score using
calipers of width equal to 0.2 of the standard deviation of the
logit of the propensity score. When at least some of the
covariates were continuous, then either this value or one close
to it minimized the MSE of the resultant estimated treatment
effect. It also eliminated at least 98% of the bias in the crude
estimator and resulted in confidence intervals with approxi-
mately the correct coverage rates. Furthermore, the type I error
rate was approximately correct. When all of the covariates were
binary, then the choice of caliper width had a much smaller
impact on the performance of estimation of the risk differences
and differences in means.

Acknowledgements

This study was supported by the Institute for Clinical Evaluative
Sciences (ICES), which is funded by an annual grant from the
Ontario Ministry of Health and Long-Term Care (MOHLTC). The
opinions, results and conclusions reported in this article are
those of the authors and are independent from the funding
sources. No endorsement by ICES or the Ontario MOHLTC is
intended or should be inferred. Dr. Austin is supported in part
by a Career Investigator award from the Heart and Stroke
Foundation of Ontario. This study was supported in part by an
operating grant from the Canadian Institutes of Health Research
(CIHR) (Funding number: MOP 86508). The data used in this
study were obtained from the EFFECT study. The EFFECT study
was funded by a CIHR Team Grant in Cardiovascular Outcomes
Research. The study author had no conflicts of interest to report.

REFERENCES

[1] Rosenbaum PR, Rubin DB. The central role of the propensity score
in observational studies for causal effects. Biometrika 1983; 70:
41–55.

[2] Rosenbaum PR, Rubin DB. Reducing bias in observational studies
using subclassification on the propensity score. Journal of the
American Statistical Association 1984; 79:516–524.

[3] Austin PC, Mamdani MM. A comparison of propensity score
methods: a case-study estimating the effectiveness of post-AMI
statin use. Statistics in Medicine 2006; 25:2084–2106.

[4] Rosenbaum PR, Rubin DB. Constructing a control group using
multivariate matched sampling methods that incorporate the
propensity score. The American Statistician 1985; 39:33–38.

[5] Austin PC. A critical appraisal of propensity score matching in the
medical literature from 1996 to 2003. Statistics in Medicine 2008;
27:2037–2049.

[6] Austin PC. Propensity-score matching in the cardiovascular surgery
literature from 2004 to 2006: a systematic review and suggestions
for improvement. Journal of Thoracic and Cardiovascular Surgery
2007; 134:1128–1135.

[7] Austin PC. A report card on propensity-score matching in the
cardiology literature from 2004 to 2006: results of a systematic
review. Circulation: Cardiovascular Quality and Outcomes 2008;
1:62–67.

[8] Imbens GW. Nonparametric estimation of average treatment
effects under exogeneity: a review. The Review of Economics and
Statistics 2004; 86:4–29.

[9] Austin PC. Type I error rates, coverage of confidence intervals,
and variance estimation in propensity-score matched analyses.
The International Journal of Biostatistics 2009; 5(1). Article 13.
DOI: 10.2202/1557–4679.1146.

[10] Stürmer T, Joshi M, Glynn RJ, Avorn J, Rothman KJ, Schneeweiss S.
A review of the application of propensity score methods yielded
increasing use, advantages in specific settings, but not substan-
tially different estimates compared with conventional multivari-
able methods. Journal of Clinical Epidemiology 2006; 59:437–447.

[11] Schechtman E. Odds ratio, relative risk, absolute risk reduction,
and the number needed to treat – which of these should we use?
Value in Health 2002; 5:431–436.

[12] Cook RJ, Sackett DL. The number needed to treat: a clinically
useful measure of treatment effect. British Medical Journal 1995;
310:452–454.

[13] Jaeschke R, Guyatt G, Shannon H, Walter S, Cook D, Heddle N.
Basis statistics for clinicians 3: assessing the effects of treatment:
measures of association. Canadian Medical Association Journal
1995; 152:351–357.

[14] Sinclair JC, Bracken MB. Clinically useful measures of effect in
binary analyses of randomized trials. Journal of Clinical Epidemiol-
ogy 1994; 47:881–889.

[15] Austin PC, Grootendorst P, Normand SLT, Anderson GM.
Conditioning on the propensity score can result in biased
estimation of common measures of treatment effect: a Monte
Carlo study. Statistics in Medicine 2007; 26:754–768.

[16] Austin PC. The performance of different propensity score methods
for estimating marginal odds ratios. Statistics in Medicine. 2007;
26:3078–3094.

[17] Greenland S. Interpretation and choice of effect measures in
epidemiologic analyses. American Journal of Epidemiology 1987;
125:761–768.

[18] Austin PC. A data-generation process for data with specified risk
differences or numbers needed to treat. Communications in
Statistics – Simulation and Computation 2010; 39:563–577.

[19] Austin PC. The performance of different propensity score methods
for estimating difference in proportions (risk differences or
absolute risk reductions) in observational studies. Statistics in
Medicine 2010; DOI: 10.1002/sim.3854.

[20] Austin PC, Stafford J. The performance of two data-generation
processes for data with specified marginal treatment odds ratios.
Communications in Statistics– Simulation and Computation 2008;
37:1039–1051.

[21] Cohen J. Statistical Power Analysis for the Behavioral Sciences (2nd
edn). Lawrence Erlbaum Associates Publishers: Hillsdale NJ, 1988.

[22] Cochran WG, Rubin DB. Controlling bias in observational studies: a
review. Sankhya: The Indian Journal of Statistics 1973;35:416–466.

[23] Agresti A, Min Y. Effects and non-effects of paired identical
observations in comparing proportions with binary matched-pairs
data. Statistics in Medicine 2004; 23:65–75.

[24] Lee DS, Austin PC, Rouleau JL, Liu PP, Naimark D, Tu JV. Predicting
mortality among patients hospitalized for heart failure: derivation
and validation of a clinical model. Journal of the American Medical
Association 2003; 290:2581–2587.

[25] Tu JV, Donovan LR, Lee DS, Austin PC, Ko DT, Wang JT, Newman
AM. Quality of Cardiac Care in Ontario – Phase 1. Report 1. Institute
for Clinical Evaluative Sciences: Toronto, 2004.

[26] Flury BK, Riedwyl H. Standard distance in univariate and multi-
variate analysis. The American Statistician 1986; 40:249–251.

[27] Austin PC. Some methods of propensity-score matching had
superior performance to others: results of an empirical investiga-
tion and Monte Carlo simulations. Biometrical Journal 2009;
51:171–184. DOI: 10.1002/bimj.200810488.

[28] Austin PC. Balance diagnostics for comparing the distribution of
baseline covariates between treatment groups in propensity-score
matched samples. Statistics in Medicine 2009; 28:3083–3107.

[29] Austin PC. The relative ability of different propensity-score
methods to balance measured covariates between treated and
untreated subjects in observational studies. Medical Decision
Making 2009; 29:661–677.

1
6

1

P. C. Austin

Pharmaceut. Statist. 2011, 10 150–161 Copyright r 2010 John Wiley & Sons, Ltd.


