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1 Numerical estimation of the internal connection probability

The assessment of a cluster’s significance given the null (configuration) model relies on the estimation
of the probability described in Eq. 1 of the main text. This function has to be evaluated many times
along the execution of OSLOM in order to clean up each cluster and to evaluate the clusters at the
different hierarchical levels. We explain here how the values of the distribution function can be estimated
or approximated in a practical implementation of OSLOM.

For convenience, we rewrite the equation here

p(kini |i, C,G) = A
2−k

in
i

kouti ! kini ! (mout
C − kini )! (M∗/2)!

. (S1)

While estimating the value of the probability of Eq. S1 for a certain kini , the most computationally
expensive part is the evaluation of the normalization factor A. In fact, this would force us to evaluate
the rest of the formula for all the allowed values of kini and add up the result. A simple way out of
this problem is to approximate the distribution by another whose normalization factor is known. To
do so, we can think of a slightly different null model, in which the edges are still drawn at random
and the formation of self-loops is admitted. This is actually the null model on which the definition of
modularity is based [1]. In such model, the equivalent of Eq. S1 becomes an hypergeometric function
that is much easier to estimate (see [2]). Both distributions, that of Eq. S1 and the hypergeometric,
provide close numerical values for the same kini , except if the probability of generating self-loops in the
null model is high. The probability that reshuffling the connections at random a stub of vertex i connects
to another stub of the same vertex, is given by k2i /2M . In the software implementation of OSLOM, the
hypergeometric approximation for Eq. S1 is used as long as k2i /2M < 1. Otherwise, we directly measure
A from Eq. S1.

2 Extension of the method to weighted networks

In the main text, it is briefly discussed how to extend OSLOM to weighted graphs. We mention also
that some of the technical issues, such as combining both rw and rt, are not trivial. This procedure is
described here in further detail.

Remember that we start from an ansatz for the distribution of the weights in the null model. The
distribution of the probability of having a certain weight on the edge joining vertices i and j was assumed
to be

p(wij > x|ki, kj , si, sj) = exp(−x/〈wij〉). (S2)

The idea behind this expression is that the weight of an edge is proportional to the average weight of
its endvertices (〈wi =〉si/ki and 〈wj〉 = sj/kj). We proposed the harmonic average because it is more
sensitive to small values of 〈wi〉. Our goal is to define a fitness function r which has to be a uniform
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random variable on our randomized weighted network. And we want to combine the fitness function
depending on the topology with one depending on the weight distribution in order to detect meaningful
fluctuations in any of them.

Let us consider a vertex i which has l connections with a given subgraph C (not including i). For the
topological part, we have already computed the probability that i shares l or more edges with vertices
of C (Eq. S1). We call this number rt. Each of the l edges joining i with C carries a weight. We
consider the corresponding normalized weight ωs = ws/〈ws〉, where ws is the weight on the s-th edge,
with s = 1, 2, . . . , l. Since we want a single number taking into account all the weights in the set, we can
simply consider the sum of all the ωs:

Ω =

l∑
s=1

ωs (S3)

Ω is the sum of l exponentially distributed variables (with rate equal to one) and therefore it follows the
Erlang distribution [3]. Let us call rw the cumulative of Ω:

rw = p(Ω > x) = e−x
l−1∑
q=0

xq/q! (S4)

In this way, we managed to define two variables rt and rw which are both uniformly distributed in the null
model. Now, we would like to combine these two scores to have a final score for our vertex i. Unfortunately
this is not so simple. We remind that rw is defined only on the Nn neighbors of subgraph C while rt
is defined for all the N∗ = N − nC ≥ Nn vertices out of C, so the two variables are defined on samples
of different size, in general. A way to overcome this difficulty is to scale rt to an equivalent random
variable r′t defined on a smaller sample. This amounts to map each index i in the set 1, 2, ..., N∗ of the
old variable onto an index j in the set 1, 2, ..., Nn of the new variable. Given i, the natural solution is to
pick the index j such that the cumulative probability Ωt

q on the sample of N∗ vertices coincides (at least
with the approximation allowed by the specific numerics involved) with the cumulative probability Ωw

q on
the smaller sample of Nn vertices. It can be shown that this can be achieved with a good approximation
(in the limit of j close to Nn) with the following rescaling:

r′t = rt ·
N∗ + 1

Nn + 1
. (S5)

Once we computed r′t and rw we need to combine them in order to have a single score to rank the
vertices. We consider the product r′t · rw and the final score rtw = p(r′t · rw < x) = x(1− log x). The last
expression comes from the assumption that the two variables are both uniform and independent. The
set of variables {rtw} is then used to rank the vertices and to compute the cumulative probabilities Ωtw

q ,
with Nn instead of N∗.

3 Further tests on benchmark graphs

3.1 Girvan-Newman benchmark

The benchmark by Girvan and Newman [4] (GN benchmark) is a class of graphs with 128 vertices,
each, divided into four equal-sized groups. Every vertex has expected degree 16 (with a very peaked
distribution about 16). The (average) number of neighbors of a vertex within its group is kin, whereas
the (average) number of external neighbors is kout. By construction, kin + kout = 16. In the language
of the planted `-partition model [5], the probability that a vertex is linked to another vertex of its group
is p = kin/31, the probability that a vertex is linked to external vertices is q = kout/96. The condition
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p > q for the four groups to be communities is then equivalent to kout . 12 (this does not account for
random fluctuations, though [2, 6]).

Fig. S1 shows the Normalized Mutual Information (in the version devised in Ref. [7]) between the
planted partition of the GN benchmark and the partition found by the algorithm as a function of kout.
As a term of comparison we used again Infomap [8]. Fig. S1 shows that Infomap is more accurate for
low values of kout than OSLOM, but its performance drops rapidly for kout & 6, whereas OSLOM shows
a slower decay.

OSLOM is slightly worse than Infomap because it finds several homeless vertices, as we explained in
the main text (Section 3.1.1).

3.2 Weighted LFR benchmark

In Figs. S2 and S3 we report the comparative analysis of OSLOM and Infomap on weighted LFR graphs.
To build the weighted benchmark graphs [9] one needs two additional parameters: the exponent β of
the relation between the strength of a vertex and its degree (the strength of a vertex is the sum of the
weights of the edges incident on the vertex); the weighted mixing parameter µw, which is the natural
extension to weighted networks of the topological µ (that here we call µt), i.e. it is the ratio between
the sum of the weights on the edges joining a vertex to its neighbors in different communities and the
strength of the vertex. In the analysis, we fix the value of the topological mixing parameter µt and see
how the normalized mutual information varies as a function of µw. In Fig. S2 the benchmark graphs
consist of 5000 vertices, and we consider the usual two ranges of community sizes (S and B). In Fig. S3
the graphs consist of 50000 vertices, and we consider a single, but much wider, range of community sizes
(from 20 to 1000). When µt = 0.5 or µt = 0.6, we find that OSLOM detects the right clusters for any
value of µw, for N = 5000, which is truly remarkable, while Infomap is unable to find the partition for
µw & 0.6. OSLOM’s striking result comes from the fact that the score rtw of a vertex on weighted graphs
is given by the product of two numbers, the topological score r′t and the weight score rw (Section 2).
If µt is not too large, the topological term r′t is very low and brings down the whole score rtw, which
remains significant for any choice of the weighted mixing parameter µw. Basically, OSLOM is able to
recognize the right clusters from the topology alone. When µt = 0.5 or µt = 0.6 and N = 50000, OSLOM
maintains an excellent performance for the whole range of µw, while Infomap again fails for µw & 0.6. For
µt = 0.7 the performances of the two algorithms worsen and OSLOM is still superior, though the results
are essentially comparable for both network sizes. For µt = 0.8 Infomap is more accurate than OSLOM,
when N = 5000, while both methods are not very good when N = 50000. However, from Figs. S2 and
S3 it is apparent that OSLOM works the better, the larger the network size. So, on very large networks
(N � 50000) we expect that OSLOM has a comparable or superior performance than Infomap for every
pair of values (µt, µw). We also infer that the performance of both algorithms worsens if clusters are on
average larger.

3.3 Directed LFR benchmark

Figs. S4 and S5 show the results of the test on directed LFR graphs [9]. This time we have to distinguish
between in-degree (number of incoming edges) and out-degree (number of outgoing edges) of a vertex.
The in-degree distribution is taken to be a power law, with exponent τin, whereas the out-degree is the
same for all vertices, for simplicity. The mixing parameter µ expresses the ratio of the number of in-
neighbors of a vertex belonging to different clusters and the total number of in-neighbors of the vertex.
The in-neighbor of a vertex i is any vertex j connected to i by an edge going from j to i. Figs. S4 and S5
tell us that OSLOM outperforms Infomap, especially when communities span a broader range of sizes.
The performances of both algorithms slightly worsen on larger networks.
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4 Real-world systems

4.1 Zachary karate club

The famous karate club network of Zachary [10] is a standard benchmark in community detection. Vertices
are members of a karate club in the United States, who were monitored during a period of three years.
Edges connect members who had social interactions outside the club. After some time, a conflict between
the club president and the instructor caused the fission of the club in two separate groups, supporting the
instructor and the president, respectively. In Fig. S6 we see the community structure found by OSLOM.
It indeed finds two communities, plus a homeless vertex (12). Vertex 3 is shared between the two clusters,
as it has several neighbors in both groups. We shall illustrate overlapping and homeless vertices with
stars and triangles, respectively. The communities coincide with the ones observed by Zachary with the
exception of vertices 3 and 12, which Zachary put with the squares. However, vertex 3 is overlapping,
so it belongs to both clusters, which seems quite reasonable by looking at the figure. Also, vertex 12 is
homeless due to its loose relationship with its group (it has only one neighbor).

4.2 Dolphin social network

Fig. S7 presents OSLOM’s results for the network of bottlenose dolphins living in Doubtful Sound (New
Zealand). The network was compiled by Lusseau [11]. Vertices of the network are dolphins and two
dolphins are connected if they were seen together more often than expected by chance. The dolphins
separated in two groups after one of them left the place for some time. OSLOM finds two communities,
with five overlapping vertices (2, 8, 20, 29, 31), plus two homeless vertices (40, 61), which are very loosely
connected to the rest of the graph. All vertices which are uniquely assigned to the same group (indicated
by the same symbol, square or circle, in the figure) are classified in the same community by Lusseau as
well.

4.3 American college football

Another well known benchmark in community detection is the network of American college football
teams, compiled by Girvan and Newman [4]. It comprises 115 vertices, representing Division I-A colleges.
Edges correspond to games played by the teams against each other during the regular season of fall
2000. The teams are divided into 12 conferences. Games between teams in the same conference are
usually (but not always) more frequent than games between teams of different conferences, so there is a
organization in clusters where communities correspond to conferences. In Fig. S8 we see that OSLOM
finds three hierarchical levels. The lowest level consists of 11 clusters and 5 homeless vertices. There
are no overlapping vertices. Six clusters correspond exactly to the conferences, three others match the
conferences up to one vertex, one up to two vertices, the last cluster along with the homeless vertices
mostly mix teams of the conferences Sun Belt and Independents. The latter is not a proper conference,
whereas Sun Belt includes colleges which are geographically very spreadout, so they happen to play quite
often games with the other teams, resulting much more mixed with them than teams of other conferences.
Interestingly, in the second hierarchical level we find two large communities (plus four homeless teams),
corresponding quite well to a geographical separation of the colleges in East and West.

4.4 C. elegans metabolic network

Fig. S9 presents the community structure of the metabolic network of C. elegans. The network has been
compiled by Duch and Arenas [12] and it has been often used in applications of community detection
algorithms. Here vertices are metabolites and edges connect pairs of metabolites involved in at least one
biochemical reaction. OSLOM finds two hierarchical levels, the lower with 25 clusters, the higher with
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3 (but one of them is much smaller than the other two). The fraction of homeless vertices in the lower
level is larger than 20% (see Table 1 of main text) and the network appears therefore rather “noisy”.
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Figure S1. Test on the Girvan-Newman benchmark graphs. The variable kout is the average number
of external neighbors per vertex. The two curves refer to OSLOM (diamonds) and Infomap (circles).
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Figure S2. Test on weighted LFR benchmark graphs (undirected and without overlapping
communities). The parameters are: N = 5000, 〈k〉 = 20, kmax = 50, τ1 = 2, τ2 = 1, β = 1.5. Each panel
corresponds to a given value of the topological mixing parameter µt and of the community range (S or
B).
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Figure S3. Test on weighted LFR benchmark graphs (undirected and without overlapping
communities). The parameters are: N = 50000, 〈k〉 = 20, kmax = 200, τ1 = 2, τ2 = 1, β = 1.5. Each
panel corresponds to a given value of the topological mixing parameter µt. The range of community
sizes is [20, 1000].
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Figure S4. Test on directed LFR benchmark graphs (unweighted and without overlapping
communities). The parameters are: 〈k〉 = 20, kmax = 50, τin = 2, τ2 = 1. Each panel corresponds to a
given network size (N = 1000, 5000) and community range (S or B). The mixing parameter µ refers to
in-degree.
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Figure S5. Test on directed LFR benchmark graphs (unweighted and without overlapping
communities). The parameters are: 〈k〉 = 20, kmax = 200, τin = 2, τ2 = 1. We consider two large
network sizes: N = 50000 (left) and N = 100000 (right). The range of community sizes is [20, 1000].
The mixing parameter µ refers to in-degree.
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Figure S6. Application of OSLOM to real networks: Zachary’s karate club.
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Figure S7. Application of OSLOM to real networks: Lusseau’s social network of bottlenose dolphins.
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Figure S8. Application of OSLOM to real networks: American college football network.
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Figure S9. Application of OSLOM to real networks: metabolic network of C. elegans.
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