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Abstract: Extracellular vesicles (EVs), such as exosomes and microvesicles, have been identified as
mediators of a newly-discovered intercellular communication system. They are essential signaling
mediators in various physiological and pathophysiological processes. Depending on their origin,
they fulfill different functions. EVs of mesenchymal stem/stromal cells (MSCs) have been found
to promote comparable therapeutic activities as MSCs themselves. In a variety of in vivo models,
it has been observed that they suppress pro-inflammatory processes and reduce oxidative stress and
fibrosis. By switching pro-inflammatory into tolerogenic immune responses, MSC-EVs very likely
promote tissue regeneration by creating a pro-regenerative environment allowing endogenous stem
and progenitor cells to successfully repair affected tissues. Accordingly, MSC-EVs provide a novel,
very promising therapeutic agent, which has already been successfully applied to humans. However,
the MSC-EV production process has not been standardized, yet. Indeed, a collection of different
protocols has been used for the MSC-EV production, characterization and application. By focusing on
kidney, heart, liver and brain injuries, we have reviewed the major outcomes of published MSC-EV
in vivo studies.
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1. Mesenchymal Stem/Stromal Cells in Cell and Immune Therapies

Mesenchymal stem/stromal cells (MSCs) are fibroblastoid progenitor cells, which can be raised
from different tissues, e.g., bone marrow, adipose tissue and umbilical cord. Typically, in vitro, they are
expanded as plastic adherent cells. Propagated MSCs contain the ability to differentiate into various
cell types, such as cells of the adipogenic, chondrogenic and osteogenic lineages [1–3]. The discovery
that MSCs do not express Human Leuckocyte Antigen (HLA) class II encoded antigens led to
the assumption that MSCs confer only low immunogenicity if transplanted in an allogeneic setting [4–6].
Upon studying the MSCs’ interaction with non-related immune cells, it turned out that, in addition
to their low immunogenicity, MSCs are able to suppress the function of various immune effector
cell types and to promote regulatory immune functions [5,7,8]. According to these features, MSCs
became a very attractive cell source in regenerative medicine and immune therapy. So far, more than
800 clinical trials have been registered at the National Institute of Health (clinicaltrials.gov) aiming
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to use MSCs as novel therapeutic agents to treat an increasing number of different diseases. A large
percentage of the registered clinical trials is destined to treat pathological conditions resulting in tissue
loss, such as ischemic stroke and myocardial infarction, and to diseases caused by non-controllable
pro-inflammatory responses, such as the steroid refractory acute graft-versus-host disease (aGvHD) or
Morbus Crohn [9].

2. MSCs Exert Therapeutic Functions in a Paracrine Manner

Initially, MSCs were thought to exert their effects according to their multipotent differentiation
capacity and by direct intercellular interactions, mainly with immune cells [5,7,8]. However, recent
data imply that MSCs mediate their therapeutic functions in a paracrine rather than a cellular manner.
In several studies, it was observed that following systemic administration, the engraftment of MSCs in
damaged tissues was rather low; instead, most intravenously-applied MSCs were recovered in lungs
and liver of treated subjects [10,11].

To best of our knowledge, Gnecchi and colleagues were the first who showed in the example
of a rat ischemic heart model that the effects of MSCs were mediated in a paracrine manner [12].
Injection of conditioned media (CM) from MSCs overexpressing the gene Akt1 was sufficient to reduce
acute myocardial infarction (AMI) sizes and to improve ventricular functions [12,13]. Similarly,
in a porcine model for AMI, intravenous and intracoronary injections of MSC-CM significantly
improved the symptoms. Mechanistically, nuclear oxidative stress and apoptosis rates were reduced,
which correlated with a reduction of infarction sizes and marked improvements of systolic and
diastolic cardiac performances [14]. Pointing towards a cytokine mediated effect, Lee and colleagues
showed in a mouse model for AMI that intravenously administered bone marrow-derived MSCs
(BM-MSC) mainly got trapped in the lungs of treated animals [10]. Proposing a paracrine mode of
action, the authors have started to search for cytokines being involved in this process. As a candidate,
they identified the cytokine TSG-6, which in its recombinant form was able to resemble parts of
the MSCs’ therapeutic effects. Underlining the importance of TSG-6 in this model, the siRNA mediated
knockdown of TSG-6 expression was found to abrogate the therapeutic potential of corresponding
MSCs completely [10].

In the example of an acute kidney injury (AKI) model, Tögel and colleagues showed that, although
injected BM-MSCs transiently engrafted into damaged renal tissue, their beneficial effects on renal
function and tubular damage were mediated by anti-apoptotic, promitogenic and vasculotropic factors.
Notably, fibroblasts, which were applied as the control, failed to improve the symptoms [15,16].
Supporting the notion that MSCs mainly act in a paracrine manner as in AMI models, CM from
BM-MSC were able to improve the kidney function in AKI rats [17]. The observation that CM from
MSCs, but not that from mouse lung fibroblasts, can suppress hypoxia-induced pulmonary injury in
mice indicates the existence of MSC-specific paracrine components. Since application of MSC-CM
specifically blocked the invasion of macrophages in the injured lungs, a link to the immunomodulatory
activities of MSC-CM was provided [18]. The observation that encapsulated BM-MSCs increased
the survival rates and clinical score of GvHD mice to the same extent as systemically-administered
MSCs provided further evidence that MSCs exert at least parts of their therapeutic functions by
the release of immunomodulatory factors [19].

3. MSCs Exert Their Therapeutic Effects via Microvesicles and Exosomes

Becoming aware that MSCs act in a paracrine rather than a cellular manner, several groups started
to search for the therapeutically-active components. Within the two landmark studies in the field,
MSC-CM were fractioned by applying different protocols. Bruno and colleagues fractioned MSC-CM
by ultracentrifugation and recovered the MSCs’ activity that suppressed murine acute tubular injury
within the 100,000× g pellet. Upon characterizing the pellet, vesicular structures with sizes between
80 nm and 1 µm (mean value of 135 nm) were discovered, which were deciphered as microvesicles [20].
Similar to the in vivo observed effects of MSCs, the microvesicle fraction suppressed apoptosis rates
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and increased the proliferation of tubular epithelial cells in vitro to a similar extent as the MSCs
themselves. Lai and colleagues used an HPLC-driven size-exclusion method and enriched a fraction
containing particles with a hydrodynamic radius of 55–65 nm [21]. Due to the presence of the exosomal
marker proteins such as CD9, CD81 and Alix, the authors used the term exosomes for the recovered
particles. Upon testing the obtained exosome fraction in a murine model for AMI, a reduction of
the infarction size was observed, which resembled the effects the group had already observed for
MSCs and MSC-CM in a previous study [14].

4. Extracellular Vesicles

Cells can release a number of different membrane-surrounded vesicles of sizes ranging from a few
nanometers to several microns into their extracellular environment. Collectively, these vesicles are
named extracellular vesicles [22,23]. Historically, the term exosomes was initially used in the vesicle
field for intraluminal vesicles (ILVs), which were found to be released into the extracellular environment
upon fusion of late endosomes, the multivesicular bodies (MVBs), with the plasma membrane [24].
Due to the controlled assembly of the ILVs by the endosomal sorting complex required for transport
(ESCRT) machinery, ILVs are comparable in size [25]. Depending on the techniques used, the sizes
of the ILVs, which are released into the extracellular environment, vary between 70–100 nm (when
analyzed by Transmission Electron Microscopy, TEM) and 120–150 nm (when analyzed by Nanoparticle
Tracking Analysis, NTA) [26]. Although excreted ILVs can be enriched by different methods [27],
the resulting fractions regularly also contain vesicles of similar sizes, which do not derive from
the endosomal compartment. Initially, all nanosized extracellular vesicles (EVs) were named exosomes;
however, to be more precise, members of the International Society of Extracellular Vesicles (ISEV)
agreed to specifically use the term exosomes for ILV-corresponding vesicles. Nowadays, vesicles that
bud off the plasma membrane are named microvesicles; they can be larger than exosomes and typically
have said sizes of 100–1000 nm. A third class of very prominent vesicles arises when apoptotic cells
get fragmented. According to the literature, apoptotic cells form apoptotic bodies with said sizes of
500 nm to several microns [22,23]. However, as commonly not mentioned in the literature, apoptotic
cells also form vesicles in the same size range as exosomes and microvesicles. In addition, there are
plenty of other sources of membrane-surrounded vesicles with a huge collection of different names,
e.g., ectosomes, oncosomes, microparticles, etc. [28]. Due to the fact that no specific exosome and
microvesicle markers have been identified yet and, for now, vesicles can only be fractioned according to
their sizes and/or densities, but not regarding their origin, representatives of ISEV agreed on naming
all experimentally-obtained vesicles as extracellular vesicles (EVs) [22,23,29].

As initially there were no agreed methods to characterize prepared EV fractions, the ISEV
published a position paper defining some minimal criteria recommended for the characterization of
purified EVs [30]. This includes semi-quantitative analysis of the EVs’ protein composition, commonly
Western blots (WBs) for typical EV marker proteins, such as CD9, CD63, CD81, Alix or TSG101,
size analysis by NTA, dynamic light scattering (DLS) or recessive pulse sensing (RPS) and analysis of
their morphology regularly by TEM [30].

Starting with the discovery in 1996 that EVs released by B cells can promote T cell responses [31],
it became evident that EVs constitute essential components of a newly-discovered intercellular
communication system. [32]. Meanwhile, EVs have been harvested from all body fluids and were
found to essentially take part in many physiological and pathophysiological processes [33]. Depending
on their origin, EVs exert different functions. Maybe based on the landmark paper of Raposo and
colleagues [31], the EV-mediated communication has best been investigated between tumor and
immune cells and among different immune cell types. For example, mature dendritic cells have been
found to release EVs promoting pro-inflammatory functions [34], while many tumor cells release
EVs with anti-inflammatory and tolerance-inducing functions [32]. At the molecular level, the EVs’
functional properties are reflected to the presence of specific combinations of molecules, typically
mirroring unique characteristics of their cells of origin. According to these characteristics, EVs have
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been recognized as a novel class of biomarkers for a variety of different diseases, which can often be
detected in liquid biopsies from early disease stages on [35]. In this context, especially the discovery that
EVs carry RNAs, which can effectively modulate gene expression in the EVs’ target cells, has promoted
the field intensively [36–38].

5. MSC-EVs Exert Therapeutic Functions in Different Disease Models

Since the original description of the therapeutic potential of MSC-EVs in the AKI and MI models
in 2009 and 2010 [20,21], respectively, approximately 80 original manuscripts have been published
addressing the therapeutic functions of MSC-EVs in animal models. Up to now, the most addressed
topics were heart, kidney, liver and brain injuries. Within the following part, this review gives
a global overview of studies that have applied MSC-EVs to any of these injury models and have
investigated the impacts of the applied MSC-EVs on immunobiological processes in vivo. Although
our intention was to include all publications fulfilling these criteria, we would like to apologize in case
we have missed any publication of relevance. Before discussing the MSC-EVs’ therapeutic properties,
some basic features of the studies should be compared.

6. MSC-EV Production Strategies

Comparable to the MSC field, the MSCs for the EV production were obtained from different tissues
and raised under different culture conditions. Some groups used serum- or human platelet lysate
(PL)-supplemented media, while others used serum-free media (Table 1). Moreover, the preparation
of the CM for the EV isolation was also different. Most of the groups used special EV-depleted
media, while others used normal expansion media (Table 1). A high variability is also reflected by
the EV-isolation methods, which had been used to isolate the EVs for the functional studies, ranging
from ultracentrifugation- to chromatography-based methods (Table 1). Furthermore, the obtained EVs
had been characterized in variable manners. It is not our intention to discuss the different parameters,
here; however, to highlight the high variability in the MSC-EV production and characterization,
we have included the information in Table 1.

7. Application of MSC-EVs in Animal Models

Comparable to the MSC-EV production strategies and besides the fact that different animal species
and strains were used as model systems, the way the in vivo studies were designed varies tremendously
(Table 2). Most groups applied the MSC-EVs intravenously or intraperitoneally. However, also other
application strategies were used, e.g., directly into injured tissues. Some groups applied the MSC-EVs
once; while others used varying numbers of repetitive applications (up to five times; Table 2). Moreover,
most of the publications deciphered the amount of the applied MSC-EVs regarding their protein
concentration, which was very variable between studies. A few groups used particle numbers or
cell equivalent doses to decipher their applied MSC-EV amounts. As diversely as the studies had
been designed were the methods with which biological effects were characterized. A few studies
searched for individual molecules that contributed to the observed effects. Several studies identified
specific RNAs (mRNA and/or miRNA) as essential functional components of their applied MSC-EV
fractions. However, no specific RNA or any other molecule was identified in several studies (Table 2).
Remarkably, despite the high variability in the study designs, all studies observed improvements of
the investigated disease/injury symptoms (Figure 1).

With respect to kidney diseases, mainly the effects of MSC-EVs on AKI were investigated.
MSC-EV treatment was found to improve kidney function in these AKI models [39,40]. Specifically,
MSC-EV administration was repetitively found to decrease AKI-induced oxidative stress, apoptosis
and fibrosis [17,20,39–44]. Instead, MSC-EV treatment promotes angiogenesis and expansion of
endogenous renal cells [17,20,41–43,45]. At the immunobiological level, MSC-EV treatment led to
a reduction of pro-inflammatory and an increase of anti-inflammatory cytokines [17,44,46]. Related to
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this, AKI-induced invasion of macrophages and lymphocytes was suppressed in MSC-EV-treated AKI
animals [39,43,47].
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Regarding the heart, the MSC-EV therapeutic impacts were mainly studied in AMI models.
Several studies observed that MSC-EV treatment in AMI models led to a reduction of infarction
sizes and improvement of general heart functions [21,29,48–54]. Comparable to the AKI models,
MSC-EV treatment reduced fibrosis and apoptosis, but promoted angiogenesis instead [29,48–51,53,54].
Furthermore, MSC-EV treatment was found to reduce the invasion of macrophages and eventually
other immune cells into the affected heart regions [49,50].

The MSC-EVs’ impact on liver diseases was studied in models for acute liver injury (ALI),
hepatic failure and hepatic ischemia/reperfusion injury. MSC-EV treatment improved liver functions
in all models and induced anti-apoptotic effects [55–59]. Like in the previous models, MSC-EV
administration resulted in a decline of pro-inflammatory reactions including immune cell invasion
and oxidative stress [55–57,59,60].

Regarding the brain, impacts of MSC-EV treatment were mainly studied in models for ischemic
stroke and traumatic brain injury (TBI) [61–71]. In addition, we studied the therapeutic effects of
MSC-EVs in a rat model for inflammation-induced preterm and a sheep model for hypoxia-induced
fetal brain injury [72,73]. Almost all studies that used naive MSC-EVs showed an MSC-EV-mediated
improvement of cognitive deficits or function, respectively [62,68,69,71–73]. Coupled to the functional
recovery, more neural cells were generated in MSC-EV-treated than in control animals [62,63,68].
Comparable to the other organ systems discussed before, MSC-EV treatment reduced apoptosis rates
in affected brains, but promoted angiogenesis and neurogenesis instead [63,66,70,71,73,74]. Both,
systemic pro-inflammatory and neuro-inflammatory cues were reduced following MSC-EV treatment.
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Amongst others, the number of invading macrophages into the affected brain areas was found to be
reduced [62–64,68,70,72,73].

8. MSC-EVs in the Clinics

So far, two studies have been published in which MSC-EVs were applied to human patients.
In the first study [75], MSC-EVs were administered in an allogeneic setting to a patient suffering
from steroid refractory graft-versus-host disease (GvHD). Upon applying MSC-EVs in escalating
doses, GvHD symptoms declined long term, and steroid doses could be reduced. Upon analyzing
the immunomodulatory activity of the applied MSC-EV fraction in a mixed lymphocyte reaction
(MLR) assay before MSC-EV treatment, MSC-EVs were able to suppress the number patient-derived
peripheral blood cells, which secreted the pro-inflammatory cytokines IL-1β, TNFα and IFNγ.
During the course of the treatment and in the absence of any additionally in vitro applied MSC-EVs,
the number of patient-derived peripheral blood cells, which secreted IL-1β, TNFα and IFNγ,
within the MLR assays declined over time. Since these data reflected the clinical GvHD symptoms,
the data suggest that MSC-EVs can modulate the status of the patients’ immune cells in a sustained
manner. The applied MSC-EV fraction was shown to contain the anti-inflammatory cytokines
TGF-β, IL-10 and HLA-G. Notably, by comparing the concentration of these cytokines in four
independent MSC-EV fractions, higher levels were found in the MSC-EV fraction that was applied
to the patient than in the three remaining ones. To this end, it has not been investigated whether
the other MSC-EV fractions have lower immunomodulatory capabilities than the applied MSC-EV
fraction. It remains an open question whether the MSC-EVs’ anti-inflammatory capabilities were
associated with their relatively high TGF-β, IL-10 and HLA-G levels, or whether other EV components
controlled the improvement of the GvHD symptoms. However, for a time interval of more than four
months, the MSC-EV therapy resulted in significant improvement of clinical GvHD symptoms of
the treated patient [75].

The second study addressed the therapeutic impact of MSC-EVs in patients with chronic kidney
disease (CKD) [76]. Forty patients were included in this study. Half of them were placebo treated,
the other half with MSC-EVs. MSC-EVs were applied twice, for the first treatment intravenously and,
for the second treatment, one week later, intra-arterial. Without showing any side effects and in contrast
to the control group, the MSC-EV-treated group showed significant improvements of the kidney
function as measured by a variety of different markers, i.e., the estimated glomerular filtration rates
(eGFR), the urinary albumin to creatinine ratio and the blood urea and serum creatinine levels.
Impacts on the immune system were studied by analyzing TGF-β, IL-10 and TNFα concentration in
the peripheral blood. TGF-β and IL-10 concentrations were increased massively in MSC-EV-treated
patients short term (12 weeks) and were even detected in elevated levels one year after MSC-EV
treatment. In contrast, the pro-inflammatory cytokine TNFα was decreased in the MSC-EV-treated
group shortly after MSC-EV administration and remained low during the following year of observation.
Upon taking biopsies from the patients’ kidneys, an increased number of CD133/Ki67 tubular cells
(putative cycling renal progenitor cells) was discovered in the biopsies of the MSC-EV-treated patients,
but not in those of the control groups, suggesting that the MSC-EV therapy triggered the regeneration
within the affected kidneys [76].

9. MSC-EVs as a Novel Therapeutic Agent

Despite the variability in the MSC-EV production and application, the results of the different
animal models and the two clinical applications demonstrate positive therapeutic effects of MSC-EVs.
So far, no side effects have been reported, implying that MSC-EVs application can in principle,
be considered as safe. According to their therapeutic potential and a number of advantages over
cellular therapeutics [77], several groups have started with efforts to translate MSC-EVs into the clinics.
In this respect, a number of guidelines need to be fulfilled. As EVs are novel therapeutic agents, these
guidelines have not been defined yet, but might at least partially be adopted from other guidelines for
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cellular therapeutics. A comprehensive overview about potential guidelines and recommendations
for the production, quality assurance and application of EV-based therapeutics have recently been
provided in an ISEV and European Network on Microvesicles and Exosomes in Health and Disease
(ME-HaD) position paper [77].

10. Conclusions and Perspectives

Although MSC-EVs seem to exert positive impacts on tissue specific stem cells, promote
angiogenesis and suppress oxidative stress and fibrosis (Figure 1), according to our understanding,
their most important impact is to suppress pro-inflammatory responses in all disease models discussed.
Supported by the findings in our ischemic stroke model that in an untreated situation, neural
progenitors are not able to effectively create mature neural cells [63], we would like to speculate
that pro-inflammatory environments are not permissive for endogenous stem and progenitor cells to
initiate regenerative processes. To our understanding, endogenous stem and progenitor cells require
a tolerogenic environment to survive and to successfully promote regeneration. Indeed, at the cellular
level, it was shown, in vitro, that MSC-EVs are able to convert M1 into M2 macrophages and that
EVs released by M2 macrophages can subsequently promote regulatory T-cell formation [78]. Thus,
by switching pro-inflammatory into tolerogenic environments, MSC-EV administration might promote
regenerative processes.

Coupled to the lack of standardization and the high variability in MSC expansion and
EV purification protocols, it appears very likely that differences in experimental strategies to
prepare MSC-EVs for the therapeutic setting will result in MSC-EV fractions showing different
immunomodulatory properties. Furthermore, in our past and on-going work, we have experienced
that, maybe attributed to the different presence of certain cytokines, MSC-EV preparations vary in
their immunomodulatory activities, eventually in a donor-dependent manner [75]. Accordingly, it has
to be considered that not all MSC-EV fractions provide sufficient therapeutic activities to improve
the clinical symptoms of the disease to be treated. To identify MSC-EV fractions with the highest
therapeutic potential, appropriate potency assays need be set up. However, to set up optimal potency
assays, the mode of action of the MSC-EVs needs to be unraveled. Furthermore, it will be required to
compare the in vitro activities of different MSC-EV fractions with their therapeutic potential in vivo.
Considering that their effect is mainly mediated by tolerance-inducing activities, it will be interesting
to learn whether MSC-EV fractions with high therapeutic potentials in one disease model will also
have high therapeutic potentials in other diseases models or whether each disease model requires its
own optimal MSC-EV fraction.
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Table 1. Experimental parameters of the MSC expansion and EV harvesting and characterization strategies reported for MSC-EV in vivo studies.

Ref. EV Harvesting
Conditioning

Disease MSC
Origin

Tissue
Source

MSC
Isolation Supplement Media Time EV Isolation Pre-Processing Filter Final

Purification Step Characterization Tested EV-Marker

NTA/DLS Protein TEM FLOW Other CD9 CD63 CD81 TSG101 Other

[41] AKI Human UC unfractionated 10% serum free 48 h UF + sucrose
+ UC

1000× g,
2000× g,

10,000× g

100 kDa,
0.22 µm

100,000× g,
60 min

[20] AKI Human BM Ficoll 10% FBS 0.5% BSA o.n. UC 2000× g 100,000× g,
2 × 60 min

[40] AKI Human BM commercial serum free 0.5% BSA o.n. UC 10,000× g 100,000× g,
60 min

[17] AKI Rat BM unfractionated 20% FCS EV
depletion 48 h UC 800× g,

2000× g, 0.1 µm 100,000× g,
2 × 60 min

[42] I/R AKI Human UC unfractionated 10% FBS 0.5% BSA o.n. UC 2000× g 100,000× g,
60 min

[43] I/R AKI Human WJ unfractionated 10% FBS 0.5% BSA o.n. UC 2000× g 100,000× g,
60 min

[79] I/R AKI Human UC Ficoll 10% FBS serum free 24 h/48 h UC 2000× g 100,000× g,
60–120 min

[45] I/R AKI Human BC unfractionated n.d. serum free o.n. UC +
Optiprep 3000× g,

100,000× g,
120 min

350.000× g,
60 min

100.000× g,
60 min

[44] I/R AKI Rat AT unfractionated 10% FBS EV
depletion 96 h UC 4500 rpm 0.22 µm 120,000× g,

90 min

[47] I/R renal
injury Mouse BM commercial 10% FBS EV

depletion 48 h UC 0.22 µm n.d.

[39] Renal Injury Mouse BM unfractionated 10% FBS n.d. n.d. UC 2000× g, 100,000× g,
2 × 60 min

[52] Retinal Injury Human UC unfractionated 10% FBS serum free n.d. UC
200× g,

2000× g,
10,000× g

110,000× g,
120 min

[46] Renal
Allograft Rat BM unfractionated 20% FBS EV

depletion 16 h UC 2000× g,
12,000× g

100,000× g,
70 min

[76] CKD Human UC n.d. serum free 0.5% HSA o.n. UC 2000× g 100,000× g,
60 min

[29] AMI Human BM Ficoll 10% FCS EV
depletion n.d. UC 1500× g 100,000× g,

60 min

[48] AMI Human UC unfractionated 10% FBS EV
depletion, 48 h UC+ sucrose

300× g,
2000× g,

10,000× g,
100 kDa 100,000× g,

120 min

[49] AMI Rat BM unfractionated 10% FBS EV
depletion 48 h Precipitation

(kit) 2000× g, 10,000× g, 60 min
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Table 1. Cont.

Ref. EV Harvesting
Conditioning

Disease MSC
Origin

Tissue
Source

MSC
Isolation Supplement Media Time EV Isolation Pre-Processing Filter Final

Purification Step Characterization Tested EV-Marker

NTA/DLS Protein TEM FLOW Other CD9 CD63 CD81 TSG101 Other

[50] AMI Rat BM n.d. n.d. EV
depletion 48 h Exoquick 1500× g, 30 min

[51] AMI Human UC unfractionated 10% FBS EV
depletion 48 h UF + sucrose

+ UC

300× g,
2000× g,

10,000× g,
100 kDa, 100,000× g,

120 min

[54] AMI Rat BM unfractionated 15% FBS EV
depletion 48 h Exoquick 3000× g 100 kDa 1500× g, 30 min

[21] AMI Human ESC sorting of
CD105+ 10% FCS n.d. n.d. TFF + filter

steps

10, 1000,
500, 300

kDa
100 kDa

[53] AMI Mouse BM unfractionated serum free serum free n.d. Exoquick 3000× g 0.3 µm 1500× g, 30 min

[80] AMI Human UC unfractionated 10% FBS EV
depletion 48 h UF + sucrose

+ UC

300× g,
2000× g,

10,000× g,
100 kDa 100,000× g,

120 min

[81] I/R injury Human ESC sorting of
CD105 + n.d. serum free 72 h TFF + HPLC 500× g 0.22 µm,

100 kDa Chromatography

[58] ALiI Human ESC sorting of
CD105+ 10% FCS serum free 72 h TFF+HPLC 100 kDa Chromatography

[59] ALiI Human UC unfractionated 10% FCS EV
depletion 48 h UC + Sucrose

+UF 2.000× g, 100 kDa,
0.22 µm

100,000× g,
60 min

[55] Hepatic
failure Human MB Ficoll 20% FBS 20 % FBS 24 h Exoquick 2000× g, 0.22 µm,

30 kDa 1500× g, 30 min

[56] Hepatic
failure

Mouse
Human BM commercial

unfractionated FBS EV
depletion 48 h UC

300× g,
2000× g,

10,000× g,

100,000× g,
70 min

[60] Liver fibrosis Human UC unfractionated 10% FBS EV
depletion 24 h UF + Sucrose

+ UC

1000× g,
2000× g,

10,000× g

100,000× g,
60 min

[57] I/R injury Human iPSC iPS derived 10% FBS serum free 48 h UF
300× g,

2000× g,
4000× g,

0.22 µm Amicon Ultra 15

[66] Stroke Rat BM unfractionated 20% FBS EV
depletion 24 h UC 10,000× g 0.22 µm 100,000× g,

180 min

[67] Stroke Rat BM unfractionated 20% FBS EV
depletion 24 h UC + Sucrose 100,000× g 0.22 µm 100.000× g,

180 min

[69] Stroke Rat BM unfractionated 20% FBS EV
depletion 24 h UC 3000× g,

10,000× g 0.22 µm 100,000× g,
120 min

[65] Stroke Rat BM unfractionated 20% FCS EV
depletion 24 h UC 3000× g,

10,000× g 0.22 µm 100,000× g,
120 min

[63] Stroke Human BM Ficoll 5% PL 5% PL 48 h PEG + UC 0.22 µm 110,000× g, 2 h

[64] Stroke mini-pigs AT unfractionated 10% FBS EV
depletion 96 h UC 4500 rpm 0.22 µm 120,000× g,

90 min

[62] TBI Human BM Ficoll 20% FBS EV
depletion 48 h Exoquick 1500× g, 30 min

[61] TBI Human BM unfractionated 17% FBS serum free 6-48 h UC 2565× g 100,000× g,
60–720 min
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Table 1. Cont.

Ref. EV Harvesting
Conditioning

Disease MSC
Origin

Tissue
Source

MSC
Isolation Supplement Media Time EV Isolation Pre-Processing Filter Final

Purification Step Characterization Tested EV-Marker

NTA/DLS Protein TEM FLOW Other CD9 CD63 CD81 TSG101 Other

[68] TBI Rat BM unfractionated 20% FBS EV
depletion 48 h Exoquick 1500× g, 30 min

[73] Brain injury Human BM Ficoll 10% PL 10% PL 48 h PEG + UC 10,000× g 0.22 µm 110,000× g, 2 h
[72] Brain injury Human BM unfractionated 10% PL 10% PL 48 h PEG 10,000× g 0.22 µm 1500× g, 30 min

[70] Cerebral
apoplexy Human BM Ficoll 5% PL culture

media 48 h PEG 0.22 µm n.d.

[71] SCI Rat AT digestion n.d. EV
depletion 24 h Kit

(miRCURY) 3200× g, 30 min

[75] GvHD Human BM unfractionated 5% PL culture
media 48 h PEG + UC 0.22 µm 100,000× g,

120 min

[82] GvHD Human UC unfractionated serum free serum free 48 h UC 2000× g 100,000× g,
2 × 120 min

[83] Enterocolitis Mouse BM unfractionated 10% FBS serum free 48 h Kit (P100
Pure Exo)

[84] Diabetes Rat BM unfractionated 15% FBS EV
depletion 24 h Precipitation

(Kit) 10,000× g, 60 min

[85] Radiation
damage Human BM commercial 15% FBS EV

depletion 7 days UC
300× g,

2000× g,
10,000× g,

100,000× g,
60 min

[86] Wound
healing Human UC unfractionated serum free serum free 48 h UC + sucrose

1000× g,
2000× g,

10,000× g

100 kDa,
0.22 µm

100,000× g,
60 min

[87] Wound
healing Human UC unfractionated 10% FBS n.d. 24 h UC 10,000× g 0.22 µm 100,000× g,

180 min

[88] ALuI Human BM n.d. n.d. 0.5% HSA 48 h UC 3000× g 100,000× g,
60 min

[89] ALuI Human BM commercial 10% FCS 0.5% HSA 48 h UC 10,000× g 100,000× g,
60 min

[90] Airway
inflammation Human BM n.d. 20% FBS serum free 48 h UC 3000× g 100,000× g,

2 × 60 min

[78] Graft
rejection Human ESC differentiation serum free serum free 72 h TFF + HPLC 100 kDa Chromatography

[91] Sepsis Mouse BM unfractionated 15% FBS EV
depletion 24 h UC 3000× g,

13,000× g 0.22 µm 36,000 rpm,
180 min

[92] Colitis Rat BM unfractionated 10% FBS serum free 48 h UC 2000× g 100,000× g,
2 × 60 min

EV, extracellular vesicle; AKI, acute kidney injury; I/R, ischemia/reperfusion; AMI, acute myocardial injury; ALiI, acute liver injury; TBI, traumatic brain injury; SCI, subortical Stroke;
GvHD, graft-versus-host-disease; ALuI, acute lung injury; UC, umbilical cord; BM, bone marrow; WJ, Wharton jelly; BC, bowman’s capsule; AT, adipose tissue; ESC, embryonic stem cells;
MB, menstrual blood; iPSC, induced pluripotent cells; n.d., not defined; FBS, fetal bovine serum; FCS, fetal calf serum; PL, platelet lysate; BSA, bovine serum albumin; HSA, human serum
albumin; h, hours; o.n., over night; UF, ultrafiltration; TFF, tangential flow filtration; UC, Ultracentrifugation; HPLC, high-performance liquid chromatography; PEG, Polyethylene glycol;
g, g-force; kDa, kilo Dalton; µm, micrometre; min, minutes; rpm, rounds per minute; NTA, nanoparticle tracking analysis; DLS, dynamic light scattering; TEM, transmission electron
microscopy; FLOW, Flow cytometry; CD, cluster of differentiation.
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Table 2. Application and analyses schemes of MSC-EV in vivo studies.

Organ Reference Disease Animal Xenogenic
Application

Functional
Testing In Vitro Application EV Dose No. of

Injections Factors Immunomodulatory
Effects

Described Effects After MSC-EV
Application

Species Strain Gender

Kidney

[41] AKI Rat SD f y Renal capsule 200 µg 1 Bcl-2, Bax Reduced apoptosis
Increased cell proliferation

[20] AKI Mouse SCID m y EV uptake i.v. 15 µg 1 mRNA dependent
RNA shuttled in MV

associated with immune
regulation

Morphological recovery
Reduced apoptosis

Increased cell proliferation

[40] AKI Mouse SCID m y Apoptosis assay i.v. 100 µg
100 µg + 50 µg 1 or 5 RNA dependent, ACTB,

POLR2E SUMO-1

Improved survival
Single injection: increased renal function,

morphology and survival (although
negative impact in the long-term)

Multiple injections: decreased mortality
(no impact in the long-term)

[17] AKI Rat Wistar f n i.v. 100 µg/mL 1 mRNA dependent

Infiltrated lymphocytes T-B
cell count higher, NK

reduced TNFα transcripts
reduced

Increased cell proliferation
No necrosis

[42] I/R AKI Rat n.d. m y i.v. 100 µg 1 RNA dependent, VEGF,
HIF-1α

Reduced fibrosis
Increased vessel density

Reduced apoptosis
Increased cell proliferation

[43] I/R AKI Rat SD m y i.v. 100 µg 1 miR16, miR15b, miR15a Reduced infiltration of
macrophages (CD68 +)

Reduced apoptosis
Increased cell proliferation

[79] I/R AKI Rat SD m y
T-reg induction

T-cell
proliferation

i.a. n.d. 1 Apolipoprotein,
galectins CD73, CD90

No necrosis
No tubular dilation
No cast formation

[45] I/R AKI Mouse SCID m y i.v. 1 × 105 CE 1 RNA dependent Increased tubular cell proliferation

[44] I/R AKI Rat SD m n i.v. 100 µg 1 NFkB, IL-1ß, MIF, PAI-1,
COX-2 re

Reduced inflammatory
reaction reduced TNFα

Reduced oxidative stress
Reduced mitochondrial damage

[47] I/R renal
injury Mouse Balb/C n.d. n Renal capsule 200 µg 1 CCR-2

Inhibition effect on
recruitment of Monocytes

and Macrophages

CCR2 enriched in Evs→ binding to
extracellular CCL-2

[39] Renal injury Mouse C57BL/6 n.d. n i.v. 30 µg 3 Lymphocyte infiltration
Improved renal function

Decreased injury
Prevented fibrosis

[46] Renal
allograft Rat Lewis m n n.d. n.d. 1

Infiltrated lymphocytes T-
and B-cell count higher, NK

cells reduced TNFα
transcripts reduced

no difference in kidney function
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Table 2. Cont.

Organ Reference Disease Animal Xenogenic
Application

Functional
Testing In Vitro Application EV Dose No. of

Injections Factors Immunomodulatory
Effects

Described Effects After MSC-EV
Application

Species Strain Gender

Heart

[29] AMI Rat Wistar m y Border zone
heart 20 µL 4 Formation of new blood vessels

Reduced infarct size

[48] AMI Rat SD n.d. y Apoptosis assay i.v. 400 µg 1 AKT overexpression,
PDGF-D

Formation of new blood vessels
Improved cardiac function

[49] AMI Rat SD m n Infarct border 20 µg 1

miR29, miR24
upregulated

miR34, miR130, miR378
downregulated

Reduced inflammation

No fibrosis
Improved cardiac function

Increased cell proliferation and
migration

[50] AMI Rat SD m n

T-cell
proliferation

Tube formation
EV uptake

Infarct border 80 µg 1 Decreased proliferation of
inflammatory cells

Formation of new blood vessels
Improved cardiac function

[51] AMI Rat SD m y Tube formation
EV uptake i.v. 400 µg 1 Bcl2

Improved cardiac function
Reduced fibrosis

Increased cardiomyocyte proliferation

[54] AMI Rat SD f n Intramyocardial 4 × 106 CE 1 miR22, miR19, PTEN
Improved cardiac function

Reduced infarct size
Reduced apoptosis

[21] AMI Mouse n.d. n.d. y i.v. 0.4 µg 1 Independent of immune
cells Reduced infarct size

[53] AMI Mouse C57BL/6 n.d. n Infarct border 1 µg 1 miR122
Reduced apoptosis

Reduced fibrosis
Improved cardiac function

Liver

[58] Acute liver
injury Mouse C57BL/6 m y i.s. 0.4 µg 1

HGF, HGFR protein,
IL6ST/gp130,

TNFRSF1A/TNFR1,
CXCL2/MIP-2 protein,

iNOS, NO, COX2,
MIP-2

Decreased apoptosis
Decreased liver injury

Induced hepatocyte proliferation

[59] Acute liver
injury Mouse BALB/c n.d. y i.v. or oral 8/16/32

mg/kg BW 1 GPX1, Bcl2, ROS, MDA Reduced serum levels of
pro-inflammatory cytokines

Rescued liver failure
Increased viability

Decreased oxidative stress

[55] Hepatic
failure Mouse C57BL/6 m y EV uptake

Apoptosis assay i.v. 1 µg/µL 1 Caspase-3, TNF-α, IL-6,
IL-1ß

Inhibitory
immunomodulation of

activated MNCs decreased
NK-cells

Reduced apoptosis
Improved liver function

[56] Hepatic
failure Mouse C57BL/6 m Y * i.p./i.v. 2 ×108 to 2 ×

1010 EVs
1

Y-RNA-1, MIP2, IL-6,
IL-1 alpha, MIP-3 beta,
IP-10, MCP-1, MCP-3

No apoptosis
Reduced hepatic injury

Improved survival

[57] Hepatic I/R
injury Rat SD m y i.v. 600 µg 1 TNF-α, IL-6, HMGB-1

Reduced inflammatory
markers Reduced

infiltration of inflammatory
cells

Reduced necrosis/ apoptosis
Decreased liver injury

Decreased oxidative stress
Induced hepatocyte proliferation



Int. J. Mol. Sci. 2017, 18, 1450 13 of 19

Table 2. Cont.

Organ Reference Disease Animal Xenogenic
Application

Functional
Testing In Vitro Application EV Dose No. of

Injections Factors Immunomodulatory
Effects

Described Effects After MSC-EV
Application

Species Strain Gender

Brain

[66] Stroke Rat Wistar m n i.v. 100 µg 1 Improved neurological function
Neurovascular remodeling

[69] Stroke Rat Wistar m n n.d. 100 µg 1 miR-133 Improved functional recovery

[65] Stroke Rat Wistar m n i.v. 100 µg 1 miR17-92 Cluster
PTEN

Improved neurological function
Increased neural remodeling

[63] Stroke Mouse C57BL/6 m y i.v. 2 × 106 CE 3
Reduced T-call activation

B-cell, NK-cell, T-cell
lymphopenia

Long-term neuroprotection
Increased angioneogenesis

[64] Stroke Rat n.d. m y i.v. 100 µg 1

MMP-9, IL-1ß, TNFα,
RANTES, PAI-1, NF-KB,
iNOS, NOX-1, NOX-2,

c-casp3, c-PARP
p-SMAD3, TGF-ß,
SMAD1/5, BMP-2

Reduced infiltration of
CD11+ and CD68+cells

Decreased oxidative stress
Increased angiogenesis

[62] TBI Rat Wistar m y i.v. 100 µg 1
Reduced

neuroinflammation reduced
CD68+ cells at infarct zone

Improved functional recovery
Increased cell proliferation

Reduced neuroinflammation

[68] TBI Rat Wistar m n i.v. 100 µg 1
Reduced

neuroinflammation reduced
CD68+ cells at infarct zone

Improved functional recovery
Increased cell proliferation

Reduced neuroinflammation

[61] TBI Mouse C57BL/6 m y i.v. 30 µg 1 Suppressing
Neuroinflammation Rescue cognitive impairments

[73] Brain injury Rat Wistar n.d. y i.p. 1 × 108 CE/kg
BW

1 Modulated inflammatory
responses

Improved cognitive function
Reduced cellular degeneration

[72] Preterm
brain injury Sheep Texel n.d. y i.v. 2 × 107 CE 2 IBA-1 Increased immunoreactivity

Decreased structural injury
Functional neuroprotective effects

Improved function

[70] Cerebral
apoplexy Rat n.d. n.d. y i.v. 2.4 × 104 EVs 3

Reduced quantity of B-cells,
NK cells, and T-cells all

increased;
neuroinflammation (fewer
CD68+ cells in infarct zone)

attenuated
immunosuppression
(reduced numbers of

activated T-cells)

Identical effect of MSCs and MSC-EVs
Increased neuron survival

[71] SCI Rat SD male n i.v. 100 µg 1
OPC
A2B5

CNP-ase

Improved functional recovery
Increased angiogenesis

AKI, acute kidney injury; I/R, ischemia/reperfusion; AMI, acute myocardial injury; TBI, traumatic brain injury; SIC, subcortical ischemic stroke; n.d., not defined; SD, Sprague Dawley;
SCID, severe combined immunodeficiency; f, female; m, male; y, yes; n, no; EV, extracellular vesicles; i.v., intravenously; i.a., intraabdominal; i.p., intraperitoneal; i.s., intrasplenic; µg,
microgram; CE, cell equivalent; ml, milliliter; MV, microvesicle; CD, cluster of differentiation; IL, Interleukin.
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