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Canada, 4Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada, 5The Jackson
Laboratory for Genomic Medicine, Farmington, Connecticut, USA and 6Department of Animal Science, McGill
University, Montreal, Quebec, Canada

Received March 09, 2021; Revised April 17, 2021; Editorial Decision April 26, 2021; Accepted April 27, 2021

ABSTRACT

Since its first release over a decade ago, the Metabo-
Analyst web-based platform has become widely used
for comprehensive metabolomics data analysis and
interpretation. Here we introduce MetaboAnalyst ver-
sion 5.0, aiming to narrow the gap from raw data to
functional insights for global metabolomics based on
high-resolution mass spectrometry (HRMS). Three
modules have been developed to help achieve this
goal, including: (i) a LC–MS Spectra Processing mod-
ule which offers an easy-to-use pipeline that can
perform automated parameter optimization and re-
sumable analysis to significantly lower the barri-
ers to LC-MS1 spectra processing; (ii) a Functional
Analysis module which expands the previous MS
Peaks to Pathways module to allow users to intu-
itively select any peak groups of interest and eval-
uate their enrichment of potential functions as de-
fined by metabolic pathways and metabolite sets; (iii)
a Functional Meta-Analysis module to combine mul-
tiple global metabolomics datasets obtained under
complementary conditions or from similar studies to
arrive at comprehensive functional insights. There
are many other new functions including weighted
joint-pathway analysis, data-driven network analy-
sis, batch effect correction, merging technical repli-
cates, improved compound name matching, etc. The
web interface, graphics and underlying codebase
have also been refactored to improve performance
and user experience. At the end of an analysis ses-
sion, users can now easily switch to other com-
patible modules for a more streamlined data anal-

ysis. MetaboAnalyst 5.0 is freely available at https:
//www.metaboanalyst.ca.

GRAPHICAL ABSTRACT

INTRODUCTION

Over the past two decades, metabolomics has contributed
significantly to our understanding of metabolism across
a broad spectrum of physiological and pathophysiological
conditions (1,2). It also plays a leading role in dissecting
host-environment interactions (3) and has become an essen-
tial component in deep phenotyping for precision medicine
(4–7). As with other omics technologies, bioinformatics
and analytics go hand-in-hand to enable high-throughput
metabolomics data processing, analysis and interpretation.
Among a wide array of bioinformatics tools developed
for metabolomics (8,9), MetaboAnalyst has been often
listed among the popular choices together with XCMS (10)
and SIMCA-P (Umetric) etc. The first version (v1.0) of
MetaboAnalyst was introduced over a decade ago, focus-
ing on data normalization and statistical analysis (11). Since
then, it has undergone continuous growth and co-evolves
with metabolomics, encapsulated as milestone releases ev-
ery three years. The v2.0 expanded to support functional
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analysis for targeted metabolomics (12). The v3.0 focused
on translational biomarker analysis (13) and addressed the
performance bottleneck by leveraging cloud computing and
modern web technologies (14). The v4.0 further improved
on integrative and reproducible analysis (15), and began to
support functional interpretation of global metabolomics
data (16). With these successive releases, MetaboAnalyst
has been steadily gaining and retaining users. According to
Google Analytics, this web-based platform has processed
over three million jobs submitted from >100 000 users
worldwide in the past 12 months alone. For advanced users,
the underlying functions have been released as the Metabo-
AnalystR package to permit more tailored data analysis
and batch processing (17–19).

A key limitation of MetaboAnalyst was its limited sup-
port for global metabolomics especially with regards to raw
data processing. With the consolidation of various proto-
cols and availability of commercial kits developed for tar-
geted metabolomics (20), global metabolomics based on
high-resolution mass spectrometry (HRMS) has received
growing attention (3,21,22). HRMS instruments such as
Orbitrap or time-of-flight (TOF) systems can simultane-
ously measure a vast number of endogenous and exoge-
nous compounds in a biological sample, providing unique
information on an individual’s metabolic phenotype, envi-
ronmental exposures and associated biological responses.
However, HRMS data processing is currently a labor-
intensive task involving significant user input, as many pa-
rameters need to be empirically tuned in order to obtain sat-
isfying results (23,24). To democratize the power of HRMS
to researchers beyond a few expert groups, we need to over-
come two major hurdles - developing a self-tuning algo-
rithm to enable automated parameter optimization and im-
plementing a high-performance computational platform to
deal with the big data challenges associated with raw data
processing.

For most researchers, the peak tables obtained from raw
data processing are not interpretable. The conventional
approaches such as pathway or enrichment analysis re-
quire peaks to be identified first to gain functional in-
sights (25). Therefore, it is necessary to enhance the sup-
port for functional analysis directly based on peak ta-
bles. With the availability of public metabolomics repos-
itories (26,27), there is a growing interest in data mining
and meta-analysis. However, the heterogeneity of global
metabolomics datasets due to differences in analytical plat-
forms and data processing parameters has posed significant
challenges for this purpose. Addressing this need will greatly
improve the value of global metabolomics datasets. Finally,
improved support for lipidomics data, better integration
with other ‘omics’ data, batch-effect correction, etc. have
been among the common requests from the MetaboAnalyst
users.

Here, we introduce MetaboAnalyst version 5.0, which
represents our three years of effort to narrow the gap be-
tween raw HRMS spectra and functional insights since the
release of the version 4.0. The key features of MetaboAna-
lyst v5.0 include:

1. A new module to support high-throughput, self-
optimized LC-MS1 spectral processing.

2. A new module to allow meta-analysis of multiple global
metabolomics datasets.

3. A weighted joint pathway analysis module for multi-
omics integration, and a new function for data-driven
network analysis (28).

4. Significantly updated and expanded underlying knowl-
edge bases (species-specific pathway libraries and
metabolite sets) for comprehensive functional analysis
of both targeted and untargeted metabolomics.

5. Completely upgraded interactive graphics, refactored
underlying codebase for improved performance and
streamlined data analysis across compatible modules.

6. Other new features including support for mzTab 2.0-
M (29) input format and importing data from the
Metabolomics Workbench (26), as well as utility func-
tions for automated batch correction and merging tech-
nical replicates.

The MetaboAnalyst v5.0 is freely available at https://
www.metaboanalyst.ca. To accommodate computational
demand, we have also set up two mirror sites hosted
on high-performance computers dedicated for raw data
processing. We have updated frequently asked questions
(FAQs) and added seven new tutorials, which are easily ac-
cessible from the home page. The key features of Metabo-
Analyst 5.0 are described below.

Overview of Metaboanalyst 5.0 workflow

In addition to supporting raw data processing for MS-based
global metabolomics, MetaboAnalyst version 5.0 harmo-
nizes workflows for both targeted and untargeted data anal-
ysis. As summarized in Figure 1, after proper data process-
ing, all main inputs can be handled consistently within the
framework of statistical analysis, functional analysis and
meta-analysis with coherent interface design and navigation
support. Altogether, these updates allow users to easily per-
form their analytical workflow and focus more on under-
standing their own data rather than how to operate the tool.

Raw data processing

Over the past 15 years, XCMS and MZmine have evolved
into the two most popular, open-source tools for HRMS
raw data processing (30,31). Both now use the CentWave al-
gorithm for chromatographic peak detection (32). However,
multiple parameters often need to be specified beforehand
in order to obtain good results, which has caused challenges
for its practical applications even for an experienced ana-
lyst. The XCMS Online platform has partially addressed
the issue by offering several pre-optimized platform-specific
parameters (10,33). However, more refined parameter opti-
mization is usually necessary, because chromatography can
vary greatly between laboratories, and the spectral data are
influenced by sample preparation and many configurations
or conditions of mass spectrometers.

We have recently developed a self-tuning parameter opti-
mization method for XCMS-based HRMS spectra process-
ing and benchmarked its performance against other well-
established approaches (17). The algorithm was initially de-
veloped as a component in MetaboAnalystR 3.0. Based on
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Figure 1. Overview of MetaboAnalyst v5.0 workflows. Steps for targeted metabolomics are indicated by boxes in green, steps for untargeted metabolomics
are in blue, and those in orange can be used for both. Experienced users can use various utility functions or install the corresponding R packages (yellow
boxes) to perform analysis beyond those pre-defined regular workflows.

user feedback, we recently extracted and optimized the al-
gorithm as an independent R package (OptiLCMS, https:
//github.com/xia-lab/OptiLCMS) to be embedded in other
pipelines. This pipeline is designed to automatically iden-
tify the optimal parameters for a user-provided dataset in
an efficient manner. Briefly, the ‘automated optimization’
pipeline will select multiple regions of interest (ROIs) across
the whole spectra as the training spectra. Then, a design-
of-experiment (DoE) optimization will be executed to find
out the combination of parameters with the most well-
behaved peak shape and stable peak groups to be applied
to whole dataset for peak detection. MetaboAnalyst v5.0
offers this pipeline via its user-friendly web interface to sup-
port both automated and manual parameters optimization
to accommodate both regular and expert users. We have
also developed a resumable workflow to accelerate data re-
analysis after parameter update. To accommodate a wide
range of spectral data qualities, we recently implemented a
function to detect and exclude common background noises
and experimental contaminants during the parameter op-
timization stage. Specifically, all m/z centroids from the
whole spectrum will be extracted first and those m/z fea-
tures appearing consecutively across half of the entire chro-
matogram will be excluded for parameters’ optimization.
Following peak detection and alignment, the annotation of
adducts and isotopes is based on the CAMERA R pack-
age (34). The pipeline is now available as the new LC–MS
Spectral Processing module in MetaboAnalyst v5.0.

Users can upload up to 200 data files in the supported
open data formats (mzML, mzXML, netCDF or mzData).
Since raw data processing is a time-consuming process,
users can create and save a bookmark link after job submis-
sion. The link is used to check their job status and to retrieve
the result. Alternatively, users can freely create accounts us-
ing their emails for better data management and communi-

cation. Registered users can create up to 10 projects, revisit
or re-analyze their data later. When raw spectral processing
is complete, users can visually inspect their results in an in-
teractive 3D PCA plot (Figure 2A), as well as view total ion
chromatogram (TIC) plots, base peak intensity (BPI) plots,
retention time correction results, etc. Furthermore, users
can click any feature of interest to view its corresponding
extracted ion chromatogram (EIC) plot. From the Results
Download page, users can download all the processed data
and peaks tables or start a new journey to other compatible
modules.

Functional analysis of MS peaks

It is now possible to directly translate a HRMS peak table
into biological insights after raw data processing. Metabo-
Analyst v4.0 first implemented the ‘MS Peaks to Path-
ways’ module based on the mummichog algorithm (16).
Briefly, the algorithm first performs putative annotation of
MS peaks considering different adducts and ion modes.
These putative compounds are then mapped onto user se-
lected pathway libraries for pathway activity prediction.
The previous version (mummichog version 1) only consid-
ered the m/z dimension. In MetaboAnalyst v5.0, we have
upgraded the algorithm to version 2 by integrating both
m/z and retention time dimensions to formulate empiri-
cal compounds, thereby further improving the accuracy of
functional interpretation (17). Both versions of the mummi-
chog algorithm are now available in MetaboAnalyst v5.0.
The new interface also allows advanced users to customize
the default adduct lists and currency metabolites - ubiqui-
tous compounds such as water, oxygen, carbon dioxide, etc.
(35).

The typical application of the mummichog algorithm is
to predict pathway activities based on a list of MS peaks

https://github.com/xia-lab/OptiLCMS
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Figure 2. Example outputs from several new features of MetaboAnalyst v5.0. (A) Interactive PCA scores and loadings plots generated from the Raw Data
Processing module. Users can click any samples or features to view their spectra; (B) Enrichment analysis of patterns detected in a peak table from the
Functional Analysis module. Users can drag-select any patterns and test their enriched functions for further exploratory analysis; (C) An example output
from the Joint-Pathway Analysis module. Users can click any data points to view the underlying pathways; (D) An example output from the DSPC network
analysis.

ranked based on t-tests. The concept can be generalized to
test enrichment of any predefined function (i.e. metabolite
sets) in any peak groups of interest (i.e. a cluster of similar
peaks instead of significant peaks). Herein, we have imple-
mented an interactive heatmap to allow users to perform
functional analysis on any manually selected region of in-
terest. In this case, the uploaded peak intensity table will
be first visualized as an interactive heatmap (36). Users can
perform cluster analysis with different methods, and then
specify (via drag-select) one or more patterns of interest.
The mummichog will be applied to predict enriched func-
tions for the selected peaks. From the result, users can click
any function name (i.e. pathway or metabolite set) to see the

corresponding features annotated beside the heatmap (Fig-
ure 2B).

Meta-analysis of global metabolomics data

It is notoriously challenging to integrate untargeted
metabolomics data across different studies, because differ-
ent extraction methods, chromatographic conditions and
mass spectrometry platforms all lead to heterogeneity of
HRMS data. This issue has precluded the use of untargeted
metabolomics datasets for large-scale meta-analysis using
conventional statistical methods (37). To address this gap,
we have developed a new module to enable researchers to
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perform functional meta-analysis of global metabolomics
datasets.

Users can submit multiple peak intensity tables obtained
from the same (or very similar) diseases or phenotypes of
interest. The meta-analysis can be performed by pathway-
level integration or by pooling peaks. If the studies are in-
dependent of each other (i.e. different samples) but interro-
gate more or less the same pathways, the integration should
be performed at the pathway level. In this case, the path-
way analysis will be first performed on each dataset and the
final significant pathways will be identified based on the in-
tegrated p-values. The results can be visually explored in
an interactive Venn diagram. In contrast, the peak pool-
ing strategy aims to improve the metabolome coverage by
combining complementary information obtained under dif-
ferent experimental conditions (i.e. compound extractions,
chromatographic conditions, ion modes, etc.) from the same
set of samples using the same or very similar MS instru-
ments. The results can be visually explored in a KEGG
metabolic network. The utility of the pathway-level integra-
tion has been demonstrated in our recent meta-analysis of
COVID-19 global metabolomics datasets (38).

Multi-omics integrative analysis

Integrating data from different omics layers can provide
greater resolutions to reveal mechanistic insights as com-
pared to using a single omics profile. Multi-omics integra-
tion can be either data-driven based on multivariate statis-
tics (39) or knowledge-driven based on known pathways or
molecular interaction networks (40). In practice, both data-
driven and knowledge-driven approaches can be further in-
tegrated to maximize information gain (41,42).

Integrated pathway analysis of genes and metabolites was
first launched as the ‘Joint Pathway Analysis’ module in
MetaboAnalyst v3.0 by directly concatenating genes and
metabolites into a single query (i.e. combining queries) fol-
lowed by over-representation analysis. However, the results
are often dominated by transcriptomics data which tends
to yield many more significant features than metabolomics.
To address this issue, we have added three new options for
combining P-values from different tests of the same hypoth-
esis (43), including one unweighted (Fisher’s method) and
two weighted approaches (Stouffer’s Z-score method). The
weights are the proportions of genes or metabolites within
the combined universe (overall) or within individual path-
ways (pathway-level) (Figure 2C). Four types of pathway
libraries are provided. Users can choose metabolic path-
ways or all pathways (including signaling pathways) for in-
tegrated analysis. The other two types - metabolic pathways
(metabolite only) and all pathways (gene only) allow users
to perform pathway analysis for individual omics data.

The integration of transcriptomics and metabolomics
data can also be explored using the Network Analysis mod-
ule. The knowledge-based network integration has been
established since MetaboAnalyst v4.0. However, such an
approach excludes the high volume of unannotated MS
features detected by HRMS. We added the support for
data-driven network analysis by implementing the well-
established debiased sparse partial correlation (DSPC) al-
gorithm (28). Briefly, networks are created using a graphi-

cal LASSO model to compute the partial correlation coeffi-
cients and P-values for every pair of features in the dataset
(44). The result can be visually explored as an interactive
network with node size corresponding to node degrees and
edge thickness based on the correlations between two con-
necting nodes (Figure 2D). The DSPC network is applicable
to both targeted and global metabolomics and can be ac-
cessed from either Network Analysis or Statistical Analysis
module.

Extended knowledge bases

The underlying knowledge bases within MetaboAnalyst
have undergone significant updates to ensure that users’ in-
puts can be identified correctly and accurately. These im-
provements are summarized as below.

Compound database. The compound databases, used by
the Enrichment, Pathway, Joint-Pathway and Network
Analysis modules have been enhanced by updating chem-
ical identifiers from HMDB (45), KEGG (46), PubChem
(47) and ChEBI (48). We have also expanded the database
by including an additional 197 854 lipids from RefMet (49)
and LIPID MAPS (50).

Metabolite sets. Metabolite sets, which are groups of
metabolites with shared biological functions or collective
behaviors, regulations or structures, are the backbone of
the Enrichment Analysis module. To enhance these sets,
we have added 44 metabolite sets related to disease sig-
natures found in fecal samples, as well as 1571 metabo-
lite sets identified by RefMet (49) and LIPID MAPS (50).
These metabolite sets have also been transformed into
appropriate libraries for Functional Analysis module for
global metabolomics. Users can now identify perturbations
in organism-specific metabolic pathways or metabolite sets
from raw spectra or peak lists.

Pathway libraries. Pathway libraries are used by the Path-
way, Joint Pathway and Network Analysis Modules. All
KEGG pathways libraries have been updated with the lat-
est information from KEGG using their API (46). Addi-
tionally, we have added five new species (Plasmodium vi-
vax, Chlorella variabilis, Klebsiella pneumoniae, Klebsiella
variicola and Streptococcus pyogenes) based upon users’ re-
quests. The global KEGG metabolic network has also been
updated to the latest version for the Network Analysis and
Functional Analysis modules.

Other features

Enhanced visualizations. We have systematically updated
the interactive plots across several modules (Enrichment,
Pathway, Statistical and Biomarker Meta-Analysis), includ-
ing synchronized 3D scatter plots for Principal Component
Analysis (PCA) and Partial Least Squares - Discriminant
Analysis (PLS-DA), as well as interactive volcano plots,
bar plots, pie charts, and 2D scatter plots using the pow-
erful Chart.js library (https://www.chartjs.org/). Further-
more, we have enhanced several publication quality graph-
ics in the Statistical Analysis module such as box plots, K-

https://www.chartjs.org/
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means and self-organizing map (SOM) overview plots. Fi-
nally, users can now customize the colors and shapes of
groups or samples in many important images.

Improved compound name matching. To provide better
support for lipidomics data, we have implemented a smart
name matching algorithm to improve the mapping from a
user uploaded list or table of lipid names with our inter-
nal compound database. This algorithm considers common
lipid abbreviations used by the LIPID MAPS classification
system (51) as well as variations in punctuation marks used
by different companies or databases. Compound synonyms
for all metabolites in our internal compound database have
been complemented from HMDB, PubChem and LIPID
MAPS. This algorithm is used in all compatible modules
within MetaboAnalyst v5.0.

Automated batch effect correction. The utility function for
batch effect and signal drift correction has been updated
with eight algorithms-EigenMS (52), QC-RLSC (53), AN-
COVA (54), RUV-random (55), RUV2 (56), RUVseq (57),
NOMIS (58) and CCMS (59) for correction based on ei-
ther the data itself, QC samples or internal standards. The
highlight for this update is the ‘automated’ design that can
automatically identify and perform the optimal correction
for the results (17). Users can upload the batches individu-
ally or as a merged table with all data together. All applica-
ble correction methods will be executed, and the best results
indicted by the distance among the batches will be returned.

Merging technical replicates. Technical replicates improve
the stability and reproducibility of global metabolomics
(43). However, averaging signals across the replicates may
not be the best approach. We developed a new utility func-
tion to handle technical replicates in MetaboAnalyst v5.0.
For a certain feature with multiple replicates, if the missing
proportion in the replicates is over 1/3, the coefficient of
variation (CV) of the feature in these replicates will be eval-
uated (60). If the CV is over 1.0, this feature will be consid-
ered ‘highly variant’ with an assigned value of zero. A kernel
density estimator is also available for users to smooth their
data.

Supporting new input formats. The mzTab-M is a stan-
dard quantitative metabolomics data format (29). The lat-
est version of this data format (version 2.0) is now sup-
ported by MetaboAnalyst v5.0. The Metabolomics Work-
bench is one of the most popular data repositories for
metabolomics (26). We have added support to allow users
to easily perform analyses on published datasets deposited
in the Metabolomics Workbench. Users simply need to in-
put the study ID of their preferred dataset. MetaboAnalyst
will then retrieve the deposited data table for further statis-
tics, functional enrichment, biomarker or network analysis.

Streamlined data analysis. A major effort in v5.0 is to
refactor the underlying software architecture to enhance
the modular structure and to improve the interoperability
among different modules. With this update, modules can
be developed and tested more independently, and users can
now switch to other compatible modules at the end of each
analysis, therefore creating their own custom pipelines.

Implementation

The web component of MetaboAnalyst v5.0 is implemented
using the PrimeFaces framework (https://www.primefaces.
org/). The core functions and graphics are executed us-
ing R (v4.0.2) and are freely available from the GitHub
repositories as MetaboAnalystR (https://github.com/xia-
lab/MetaboAnalystR) and OptiLCMS (https://github.com/
xia-lab/OptiLCMS). The main site of MetaboAnalyst is
hosted on a Google Cloud Server (with 64GB RAM and
eight virtual CPUs with 2.6 GHz for each) for general data
analysis except for the raw data processing module. To ac-
commodate the computing demand for raw data process-
ing, we have set up two additional computing nodes lo-
cated at the McGill Data Center and Compute Canada
through a collaboration with the GenAP project (genap.ca),
respectively, with 1TB RAM and 50TB of storage in to-
tal. These two websites are linked with the main site. Users
can choose whether to register an account to manage their
jobs. A maximum of 40GB data volume is allocated for
each project (at most 10 projects for each registered user).
The job submission and scheduling are based on the Simple
Linux Utility for Resource Management (SLURM) system.
During the upgrade to v5.0, we have made every possible ef-
fort to ensure backward compatibility with v4.0. For those
who still need to access MetaboAnalyst v4.0, we have made
it available as a Docker image (https://github.com/xia-lab/
MetaboAnalyst Docker).

Comparison with other web-based tools

Several web-based tools are available for metabolomics
data analysis. Here we compared MetaboAnalyst v5.0 with
these tools as well as the previous two versions (v4.0 and
v3.0). The main features and characteristics of different
tools are summarized in Table 1. Compared to the previ-
ous versions, the v5.0 has significantly enhanced many fea-
tures and is distinctive in raw data processing and func-
tional analysis for global metabolomics. Among other web-
based tools, XCMS Online is well-known for raw data
processing (10). MetaboAnalyst compares favorably with
XCMS Online in several aspects including optimized raw
data processing and downstream statistical and functional
analysis, while XCMS Online excels in compound anno-
tations based on the METLIN database (61). Among the
remaining tools, Workflow4Metabolomics (W4M) (62) is
a Galaxy-based workflow which uses the XCMS package
for raw LC–MS data processing. The default workflow
does not include a parameter optimization step, although
experienced users can customize the pipeline to include
IPO (63). In addition, W4M supports other types of raw
metabolomics data including GC–MS and NMR. The two
other tools - 3Omics (64) and NOREVA (65) mainly focus
on metabolomics data integration and normalization, re-
spectively. MetaboAnalyst v5.0 remains the most compre-
hensive web-based platform that enables user-friendly and
streamlined metabolomics data analysis and interpretation.

CONCLUSION

We have implemented a fully automated workflow to per-
form optimized peak detection, alignment and annotation
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Table 1. Comparison of MetaboAnalyst (versions 3.0–5.0) with other web-based tools. Symbols used for feature evaluations with ‘
√

’ for present, ‘-’ for
absent, and ‘+’ for a more quantitative assessment (more ‘+’ indicate better support)

MetaboAnalyst

Tools name 5.0 4.0 3.0 XCMS Online W4M 3Omics NOREVA

Raw spectral processing
Parameter optimization +++ − − + ++ − −
Supported algorithms +++ − − ++ ++ − −
Resumable analysis +++ − − − + − −
Compound annotation + + − +++ ++ − −
Statistical analysis
Univariate +++ ++ ++ + + − +
Multivariate +++ ++ + + +++ − ++
Clustering +++ +++ ++ + + − −
Power analysis

√ √ √ − − − −
Time-series analysis

√ √ √ − − − √
Biomarker analysis

√ √ √ − − − −
Biomarker meta-analysis

√ √ − − − − −
Functional analysis
Function analysis (MS peaks) +++ ++ − ++ − − −
Enrichment analysis (compounds) +++ + + − − ++ −
Pathway analysis +++ ++ + − − ++ −
Functional meta-analysis +++ − − ++ − − −
Integrative analysis
Unbiased joint pathway +++ + + − − +++ −
Knowledge-based Network ++ ++ − − − ++ −
Correlation-based Network ++ − − − − − −
Other features
Data normalization ++ + + − + − +++
Missing value estimation

√ √ √ − − − √
Technical Replicates Merging

√ − − − − − −

• XCMS online: https://xcmsonline.scripps.edu/.
• Workflow4Metabolomics (W4M): https://workflow4metabolomics.usegalaxy.fr/.
• 3Omics: https://3omics.cmdm.tw/.
• NOREVA: http://idrblab.cn/noreva/.

tasks for LC–MS1 data generated in global metabolomics.
The workflow can be easily accessed via the user-friendly
web interface of MetaboAnalyst v5.0 or can be installed
locally as an R package. We have also enhanced func-
tional analysis by allowing biological interpretation directly
from any peak groups or patterns of interest. The func-
tional meta-analysis module further enables users to inte-
grate heterogeneous global metabolomics datasets for im-
proved understanding. We have also updated the compound
databases and pathway libraries to enable comprehensive
functional analysis for a wide range of species. During the
process, we have consolidated the majority of modules in
terms of interface, graphics and code architecture to im-
prove user experience and performance. Overall, Metabo-
Analyst v5.0 has addressed important gaps in the current
metabolomics data processing and analysis pipeline. In the
future, we aim to support more vendor data formats for raw
spectral processing and to support spectral deconvolution
based on tandem MS data.
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