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ABSTRACT
The purpose of this meta-analysis was to provide clinical evidence regarding 

relationship between ADC and cellularity in different tumors based on large patient 
data.

Medline library was screened for associations between ADC and cell count in 
different tumors up to September 2016. Only publications in English were extracted. 
The Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement 
(PRISMA) was used for the research.

Overall, 39 publications with 1530 patients were included into the analysis. The 
following data were extracted from the literature: authors, year of publication, number 
of patients, tumor type, and correlation coefficients. 

The pooled correlation coefficient for all studies was ρ = -0.56 (95 % CI = [−0.62; 
−0.50]),. Correlation coefficients ranged from ρ=−0.25 (95 % CI = [−0.63; 0.12]) 
in lymphoma to ρ=−0.66 (95 % CI = [−0.85; −0.47]) in glioma. Other coefficients 
were as follows: ovarian cancer, ρ = −0.64 (95% CI = [−0.76; −0.52]); lung cancer, 
ρ = −0.63 (95 % CI = [−0.78; −0.48]); uterine cervical cancer, ρ = −0.57 (95 % 
CI = [−0.80; −0.34]); prostatic cancer, ρ = −0.56 (95 % CI = [−0.69; −0.42]); renal 
cell carcinoma, ρ = −0.53 (95 % CI = [−0.93; −0.13]); head and neck squamous cell 
carcinoma, ρ = −0.53 (95 % CI = [-0.74; −0.32]); breast cancer, ρ = −0.48 (95 % 
CI = [−0.74; −0.23]); and meningioma, ρ = -0.45 (95 % CI = [−0.73; −0.17]).

INTRODUCTION

Diffusion weighted imaging (DWI) is a magnetic 
resonance imaging (MRI) technique based on measure of 
water diffusion in tissues [1]. Beside diagnostic potential, 
DWI 

can distinguish malignant from benign lesions [2, 3]. 
As reported previously, malignant tumors showed lower 
apparent diffusion coefficient (ADC) values in comparison 
to benign lesions [2, 3].

According to the literature, DWI can also provide 
additional information about tissue microstructure [1, 4–6].  
Experimental studies showed a strong association 
between ADC and cell count in vitro [4–6]. It has been 

shown that increase of cell density restricted water 
diffusion and decreased ADC [5, 6]. However, published 
data of clinical investigations were inconsistent. While 
some authors identified significant correlations between 
ADC and cellularity in different tumor, other did not 
[7–11]. Moreover, there was a wide spectrum of reported 
correlation coefficients ranging from 0.1 to -0.79 [7–12]. 
Furthermore, the number of investigated patients/tumors 
in most studies was up to 50 [7–12]. Only few reports 
analyzed relative large collectives ranging from 102 to 
138 patients [13–16]. Therefore, the reported data cannot 
be considered as evident. Overall, these facts question 
the possibility to use ADC as a surrogate biomarker for 
cellularity in clinical practice.

                                                                 Meta-Analysis
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The purpose of this meta-analysis was to provide 
clinical evidence regarding relationship between ADC and 
cellularity in different tumors based on large patient data.

RESULTS

Overall, the pooled correlation coefficient for all 
studies (Figure 1) was ρ = −0.56, (95 % CI = [−0.62; 
−0.50]), heterogeneity τ2 = 0.02, (p < 0.00001), I2 = 67 %, 
test for overall effect Z = 18.01 (p < 0.00001). 

On the next step, correlation coefficients for every 
tumor entities were calculated. For this analysis, only data 
for primary tumors were acquired (Figure 2). The calculated 
correlation coefficients ranged from ρ = −0.25 (95 % CI = 
[−0.63; 0.12]) in lymphoma to ρ = −0.66 (95 % CI = [−0.85; 

−0.47]) in glioma. Other coefficients were as follows: ovarian 
cancer, ρ = −0.64 (95% CI = [−0.76; −0.52]); lung cancer, 
ρ = −0.63 (95 % CI = [−0.78; −0.48]); uterine cervical cancer, 
ρ = −0.57 (95 % CI = [−0.80; −0.34]); prostatic cancer, 
ρ =  −0.56 (95 % CI = [−0.69; −0.42]); renal cell carcinoma, 
ρ = −0.53 (95 % CI = [−0.93; −0.13]); head and neck 
squamous cell carcinoma (HNSCC), ρ = −0.53 (95 % CI = 
[−0.74; −0.32]); breast cancer, ρ = −0.48 (95 % CI = [−0.74; 
−0.23]); meningioma, ρ = −0.45 (95 % CI = [−0.73; −0.17]).

DISCUSSION

The present analysis provides evidence  regarding 
correlation between ADC, in particular ADCmean, and 
cellularity in different tumors based on a large sample.

Figure 1: Forest plots of correlation coefficients between ADCmean and cellularity in patients from all involved 39 
studies.
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Previously, numerous studies investigated 
associations between ADC and cell density in several 
tumors [7-46]. Overall, most reports showed significant 
correlations between these parameters [7, 9, 15, 16, 21, 32, 
33, 41, 43]. So, Woodhams et al. found a strong inverse 
correlation ( ρ = −0.75, p = 0.001) between ADC and cell 
count in mucinous breast carcinoma [43]. Based on the 
reported data, it has been postulated that DWI, namely 
ADC is an imaging tool to estimate tumor cellularity [43]. 

However, there were also reports, in which no significant 
correlations between ADC values and cell count were 
found [11, 38]. For example, in different lymphomas, 
the correlation coefficient between cell count and ADC 
was ρ = 0.1 (p = 0.58) [10]. Similar negative results were 
published for head and neck carcinoma (ρ = −0.418, p = 
0.201) [39], meningioma ( ρ = −0.20, p = 0.164) [38], 
and breast cancer (ρ = 0.048, p = 0.812) [11]. Some 
previous reports attempted to explain their negative 
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findings by small number of patients [37, 39]. However, 
another cause of the controversial results in the literature 
is possible. Presumably, different tumors may have also 
different associations between ADC and tumor cell count. 
Our results confirmed this assumption. As seen, ADC 
showed a moderate inverse correlation with cellularity 
in the general collective. However, this finding did not 
apply for each tumor entity, and, therefore, cannot be used 
in clinical practice. We found that the correlation ADC 
vs cellularity ranged significantly in different tumors. 
It was weak in lymphomas, weak-to-moderate in breast 
cancer and meningiomas, moderate in most investigated 
epithelial tumors, and strong in gliomas, ovarian cancer, 
and lung cancer. It is still unclear, why ADC correlates 
well with cell count in some tumors, whereas in other 
does not. Presumably, not only cell count, but also 
other histopathological features, such as extracellular 

matrix, nucleic areas, ratio stroma/parenchyma, and /or 
microvessel density may play a role here. In fact, some 
studies found statistically significant associations between 
nucleic size and ADC in several lesions [46, 47]. Overall, 
our findings suggest that ADC does not reflect cellularity 
in all tumors. 

Our analysis also identified another problem. 
There are no reports regarding associations between 
ADC and cellularity in most gastrointestinal tumors: 
esophageal cancer, gastric cancer, colorectal carcinoma, 
gastrointestinal stromal tumors, hepatocellular carcinoma, 
pancreatic carcinomas, and gall bladder cancer. Also 
in malignancies of cutis, such as malignant melanoma, 
no reports about ADC/cell count could be identified. 
Except renal cell carcinoma and prostatic cancer, no data 
exist for urological malignancies. In addition, several 
tumors involved into the present meta-analysis, for 

Figure 2: Forest plots of correlation coefficients between ADCmean and cellularity in different primary tumors.  
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example, HNSCC, renal cell carcinoma, lung cancer, 
and lymphomas contained small number of patients. This 
relativizes the calculated results. Finally, for some tumors, 
such as pancreatic neuroendocrine carcinoma [41], soft 
tissue sarcomas [15], and thyroid cancer [37], only one 
report was published, respectively. Therefore, no evident 
data could be estimated for these entities. Clearly, further 
researches are needed to investigate possible associations 
between ADC and cellularity in these tumors. Thereafter, 
a similar meta-analysis is also needed to prove new data. 

In conclusion, different inverse correlations were 
identified between ADC and cell count in the analyzed 
tumors. ADC correlated strongly with cell count in 
gliomas, followed by ovarian cancer, and lung cancer. 
Therefore, in these tumors, ADC can be used as an 
imaging marker to estimate cellularity. Moderate inverse 
correlations were identified between ADC and cell count 
in prostatic cancer, renal cell carcinoma, uterine cervical 
cancer, and head/neck squamous cell carcinomas. 

Furthermore, weak-to-moderate correlations were 
found in breast cancer and meningioma. This finding 
relativizes the possibility of ADC use to predict cellularity 
in these tumors. Finally, weak correlation was identified 
in lymphomas. Therefore, ADC cannot be used as a 
cellularity biomarker in this entity. 

No evident data can be provided to date for other 
malignancies. 

MATERIALS AND METHODS

Data acquisition and proving

MEDLINE library was screened for associations 
between ADC and cell count in different tumors up to 
September 2016. The following search words were used: 
“DWI or diffusion weighted imaging or diffusion-weighted 

imaging or ADC or apparent diffusion coefficient AND 
cellularity or cell density or cell count or cell number”. 
Only publications in English were extracted. The Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
statement (PRISMA) was used for the research [48].

After exclusion of duplicates, a total of 494 
publications was identified. These reports were involved 
into the further analysis. For this work, only data regarding 
ADCmean derived from diffusion weighted imaging (DWI) 
were acquired. Papers which did not contain correlation 
coefficients between ADC and cell count were excluded. 
In addition, data retrieved from diffusion tensor imaging 
and other DWI parameters, such as D, ADCmax, and ADCmin 
were also excluded. Finally, we excluded experimental 
animals and in vitro studies. Overall, 455 publications 
were excluded. Therefore, the present analysis comprises 
39 publications with 1530 patients [7-46]. The following 
data were extracted from the literature: authors, year 
of publication, number of patients, tumor type, and 
correlation coefficients. Most frequently, different breast, 
followed by several brain tumors, uterine sarcomas, 
uterine cervical cancer, prostatic cancer,and ovarian cancer 
were reported (Table 1). Other tumors were rarer.

Meta-analysis

The methodological quality of the 39 included 
studies was independently checked by two observers (A.S. 
and H.J.M.) using the Quality Assessment of Diagnostic 
Studies (QUADAS) instrument according to previous 
descriptions [49, 50]. The results of QUADAS proving 
are shown in Table 2. 

Spearman’s correlation coefficient was used to 
analyze associations between ADCmean and cell count. 
The reported Pearson correlation coefficients in some 
publications were converted into Spearman correlation 
coefficients as reported previously [51].

Table 1: Patients involved into the study
Diagnosis n %
Different breast tumors 402 26.28
Different brain tumors 318 20.78
Uterine muscle sarcoma 134 8.76
Uterine cervical cancer 130 8.50
Prostatic cancer 119 7.78
Ovarian cancer 110 7.19
Lymphoma 71 4.64
Lung cancer 69 4.51
Renal cell carcinoma 59 3.86
HNSCC 48 3.14
Endometrial cancer 30 1.96
Pancreatic neuroendocrine tumor 18 1.18
Thyroid cancer 14 0.92
Spinal epidural tumors 8 0.52
Total 1530 100
HNSCC, head and neck squamous cell carcinoma
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The meta-analysis was undertaken by using 
RevMan 5.3. Heterogeneity was calculated by means of 
the inconsistency index I² [52, 53]. In a subgroup analysis 
studies were stratified by tumor type. Furthermore, 
DerSimonian and Laird random-effects models with 
inverse-variance weights were used without any further 
correction [54].
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