OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs

Article

Phylogenetic Identification of Fungi Isolated from the Marine Sponge *Tethya aurantium* and Identification of Their Secondary Metabolites

Jutta Wiese, Birgit Ohlendorf, Martina Blümel, Rolf Schmaljohann and Johannes F. Imhoff *

Kieler Wirkstoff-Zentrum (KiWiZ) at the IFM-GEOMAR (Leibniz-Institute of Marine Sciences), Am Kiel-Kanal, 44, 24106, Kiel, Germany; E-Mails: jwiese@ifm-geomar.de (J.W.); bohlendorf@ifm-geomar.de (B.O.); mbluemel@ifm-geomar.de (M.B.); rschmaljohann@ifm-geomar.de (R.S.)

* Author to whom correspondence should be addressed; E-Mail: jimhoff@ifm-geomar.de; Tel.: +49-431-600-4456; Fax: +49-431-600-4452.

Received: 17 February 2011; in revised form: 1 March 2011 / Accepted: 25 March 2011 / Published: 6 April 2011

Abstract: Fungi associated with the marine sponge Tethya aurantium were isolated and identified by morphological criteria and phylogenetic analyses based on internal transcribed spacer (ITS) regions. They were evaluated with regard to their secondary metabolite profiles. Among the 81 isolates which were characterized, members of 21 genera were identified. Some genera like Acremonium, Aspergillus, Fusarium, Penicillium, Phoma, and Trichoderma are quite common, but we also isolated strains belonging to genera like Botryosphaeria, Epicoccum, Parasphaeosphaeria, and Tritirachium which have rarely been reported from sponges. Members affiliated to the genera Bartalinia and Volutella as well as to a presumably new Phoma species were first isolated from a sponge in this study. On the basis of their classification, strains were selected for analysis of their ability to produce natural products. In addition to a number of known compounds, several new natural products were identified. The scopularides and sorbifuranones have been described elsewhere. We have isolated four additional substances which have not been described so far. The new metabolite cillifuranone (1) was isolated from Penicillium chrysogenum strain LF066. The structure of cillifuranone (1) was elucidated based on 1D and 2D NMR analysis and turned out to be a previously postulated intermediate in sorbifuranone biosynthesis. Only minor antibiotic bioactivities of this compound were found so far.

Keywords: *Tethya aurantium*; sponge-associated fungi; phylogenetic analysis; natural products; cillifuranone

1. Introduction

Natural products are of considerable importance in the discovery of new therapeutic agents [1]. Apart from plants, bacteria and fungi are the most important producers of such compounds [2]. For a long time neglected as a group of producers of natural products, marine microorganisms have more recently been isolated from a variety of marine habitats such as sea water, sediments, algae and different animals to discover new natural products [3,4]. In particular, sponges which are filter feeders and accumulate high numbers of microorganisms have attracted attention [5,6]. Though the focus of most of these investigations was concerned with the bacteria, a series of investigations identified marine sponges also as a good source of fungi [7–18]. Due to the accumulation of microorganisms, it is no surprise that sponges account for the majority of fungal species isolated from the marine realm [19]. However, the type of association and a presumable ecological function of accumulated fungi in sponges remain unclear and little evidence is available on fungi specifically adapted to live within sponges. One example is represented by fungi of the genus *Koralionastes*, which are known to form fruiting bodies only in close association with crustaceous sponges associated with corals [20].

Consistently, fungi isolated from sponges account for the highest number (28%) of novel compounds reported from marine isolates of fungi [19]. Marine isolates of fungi evidently are a rich source of chemically diverse natural products which has not been consequently exploited so far. Among a number of metabolites from sponge-associated fungi with promising biological activities are the cytotoxic gymnastatins and the $p56^{lck}$ tyrosine kinase inhibitor ulocladol [21,11]. In view of these exciting data and our own previous work on the bacterial community associated with *Tethya aurantium* [22], we have now isolated and identified a larger number of fungi from this sponge. In European waters, *Tethya aurantium* is commonly found in the Atlantic Ocean, the English Channel, the North Sea as well as the Mediterranean Sea, where our specimens originated from [23]. Except for a single report from Indriani [24], fungi associated with *Tethya* sp. have not been investigated so far. The formation of natural products by these fungi and their biotechnological potential has not been evaluated yet.

For the identification of the fungal isolates from *Tethya aurantium*, we combined morphological criteria and phylogenetic analyses based on the sequence of the internal transcribed spacer (ITS) regions 1 and 2. On the basis of their classification, strains were selected for analysis of their ability to produce natural products. In addition to a number of known compounds, the new cyclodepsipeptides scopularide A and B were produced by a *Scopulariopsis brevicaulis* isolate [25]. Because of their antiproliferative activities against several tumor cell lines, these peptides and their activities have been patented [26]. During the present study, we have isolated four so far undescribed substances. Structure and properties of the new cillifuranone, a secondary metabolite from *Penicillium chrysogenum* strain LF066 are reported here.

2. Results and Discussion

2.1. Identification of the Fungal Strains Isolated from T. aurantium

In most studies on fungi associated with sponges the taxonomic classification of the fungi was based exclusively on morphological characteristics and in many cases identification was possible only at the genus level [17]. This can be attributed to the fact that taxonomic identification of fungi at the species level is not always easy. It is impaired by the fact that under laboratory conditions many fungi do not express reproductive features like conidia or ascomata, which represent important traits for identification. These fungi are classified as "mycelia sterilia".

Therefore, morphological criteria as well as sequence information and the determination of phylogenetic relationships are considered to be necessary for the identification of fungi. Consequently, we have combined the morphological characterization with a PCR-based analysis using ITS1-5.8S-rRNA-ITS2 gene sequences to identify 81 fungi isolated from *Tethya aurantium*. Based on these criteria the strains could be identified to the species level (Figure 1, Table 1).

Figure 1. Scanning electron micrographs of *Fusarium* sp. strain LF236. (A) Multicellular, curved conidiospore; (B) Exudates in the surface layer of a liquid culture; (C) Intercalary chlamydospores in the mycelium.

Table 1. Identification of fungal strains isolated from *Tethya aurantium* samples based on morphological criteria as well as genetic analysis of the internal transcribed spacer (ITS) region. Closest relatives to fungal strains according to BLAST search are presented. In case BLAST search yielded a cultured but undesignated strain as closest relative, the closest cultured and the designated relative is given additionally.

Strain	Morphological	Seq. length	Next valated cultivated strain (DIAST)	Acc. No.	Similarity	Overlap
Stram	identification	(nt)	Next related cultivated strain (BLAST)	Acc. No.	(%)	(nt)
		402	Fungal sp. ARIZ AZ0920	HM123596.1	99	482
LF063 (<i>Ciaaosporium</i> sp.	485	Cladosporium sphaerospermum isolate KH00280	GU017501.1	99	482
	Scopulariopsis	172	Ascomycota sp. 840	GU934604.1	92	360
LF004	murina	475	Phialemonium obovatum strain CBS 279.76	AB278187.1	89	340
LF065	Penicillium sp.	546	Penicillium glabrum strain 4AC2K	GU372904.1	99	545
LF066	Penicillium sp.	551	Penicillium chrysogenum strain JCM 22826	AB479305.1	99	549

LF073	Aspergillus sp.	533	Aspergillus versicolor isolate UOA/HCPF 8709	FJ878627.1	100	532
LF177	Alternaria sp.	568	Lewia infectoria strain IA310	AY154718	99	561
L E170		170	Fungal endophyte sp. g6	HM537022.1	100	479
LF1/8	Cladosporium sp.	479	Cladosporium cladosporioides strain CC1	HM210839.1	100	479
L E170	Maraalia ataailia	550	Fungal endophyte isolate 9137	EF419991.1	100	555
LF1/9	Mycena sterina	559	Paraphaeosphaeria sp. LF6	GU985234.1	99	557
1 E102	Cladoan ouisses on	522	Dothideomycetes sp. 11366	GQ153254.1	99	522
LF185	Ciadosporium sp.	323	Cladosporium cladosporioides isolate SLP001	FJ932747.1	99	521
I E104	Cladoan ouisses on	175	Fungal endophyte sp. g6	HM537022.1	100	475
LF184	Ciadosporium sp.	473	Cladosporium cladosporioides strain CC1	HM210839.1	100	475
1 E226	Eus anium an	512	Fusarium sp. CPK3469	FJ827615.1	99	511
LF230	<i>r usarium</i> sp.	512	Gibberella intricans strain ATCC MYA-3861	GU291255.1	99	511
1 E227	Euganium en	503	Fusarium sp. CPK3337	FJ827616.1	100	503
LF237	<i>r usarium</i> sp.	303	Fusarium equiseti strain NRRL 36478	GQ505743.1	100	503
1 E220	Eus anium an	512	Fusarium sp. CPK3469	FJ827615.1	100	513
LF238	<i>Fusarium</i> sp.	515	Fusarium equiseti strain NRRL 36478	GQ505743.1	100	513
1 E220	Eus anium an	500	Fusarium sp. NRRL 45997	GQ505761.1	99	503
LF239	<i>Fusarium</i> sp.	509	Fusarium equiseti strain NRRL 36478	GQ505743.1	99	503
1 5240	Maraalia atauilia	529	<i>Lewia</i> sp. B32C	EF432279.1	99	525
LF240	Mycena sterina	528	Lewia infectoria strain IA241	AY154692.1	99	525
1 E2 4 1	Maraalia atauilia	512	Botryosphaeria sp. GU071005	AB472081.1	100	512
LF241	241 Mycelia sterilia	515	Sphaeropsis sapinea strain CBS109943	DQ458898.1	100	512
LF242	Penicillium sp.	538	Penicillium brevicompactum isolate H66s1	EF634441.1	99	537
LF243	Penicillium sp.	532	Penicillium virgatum strain IHB F 536	HM461858.1	100	530
1 E244	14 Cladomonium on	516	Fungal endophyte sp. g2	HM537019.1	99	516
LF244	Ciadosporium sp.	510	Davidiella tassiana strain BLE25	FN868485.1	99	516
1 E245	Fusarium sp		Fusarium sp. CPK3514	FJ840530.1	100	494
LF243	<i>r usarium</i> sp.	494	Fusarium equiseti strain NRRL 13402	GQ505681.1	100	494
LF246	Volutella sp.	548	Volutella ciliata strain BBA 70047	AJ301966.1	99	547
1 E247	Eus anium an	520	Fusarium sp. LD-135	EU336989.1	99	509
LF247	<i>Fusarium</i> sp.	320	Fusarium equiseti strain NRRL 13402	GQ505681.1	99	504
1 E249	Detentia an	504	Fungal endophyte sp. g18	HM537028.1	100	504
LF240	Boiryiis sp.	304	Botryotinia fuckeliana strain OnionBC-1	FJ169667.2	100	504
1 E240	D	550	Penicillium sp. BM	GU566211.1	99	551
LF249	Penicillium sp.	552	Penicillium commune isolate HF1	GU183165.1	99	551
LF250	Penicillium sp.	564	Penicillium chrysogenum strain ACBF 003-2	GQ241341.1	97	547
1 5251	D · · 11	550	Penicillium sp. F6	GU566250.1	100	550
LF251	<i>Penicillium</i> sp.	550	Penicillium chrysogenum strain ACBF 003-2	GQ241341.1	100	550
1 5252	. .	512	Fusarium sp. NRRL 45997	GQ505761.1	99	511
LF252	<i>Fusarium</i> sp.	513	Fusarium equiseti strain NRRL 36478	GQ505743.1	99	511
LF253	Trichoderma sp.	543	Hypocrea lixii strain OY3207	FJ571487.1	100	540
LF254	Clonostachys sp.	525	Bionectria ochroleuca strain G11	GU566253.1	100	524
1 5255	47.	510	Fungal endophyte sp. g76	HM537053.1	100	518
LF255	LF255 Alternaria sp.	518	Alternaria alternata strain 786949	GU594741.1	100	518

Table 1. Cont.

LF256 Botrytis sp. S35 Beauveria bassiana strain G61 GUS66276.1 99 S33 LF257 Cladosporium sp. 495 Darvidella taxiona strain G20 GUS66258.1 100 495 LF258 Phoma sp. nov. 538 Fungal sp. GRI 146 Atfo8980.1 93 470 LF259 Penicillium sp. 522 Penicillium brevicompactum strain: JCM 22849 Ab479306.1 100 522 LF260 Sphaeropsidales 508 Permochate a cava isolate ohrm63 A Y354263.1 100 469 LF249 Appergillus sp. 555 Permorkate a cava isolate ohrm63 GU933675.1 100 469 LF494 Exacrium sp. 469 Fusarium sp. Ch-3 GU045305.1 99 523 LF404 Mycelia strailia 531 Verricillum sp. FL2 GU045305.1 99 503 LF510 Appergillus sp. 516 Fusarium sp. FL2 FU64301.1 100 486 LF514 Trichoderma sp. TH2 HQ148160.1 100 486 LF514 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
LF257 Cladosporium sp. 495 Davidiella tassiana strain G20 GUS66258.1 100 495 LF258 Phoma sp. nov. 538 Fungul sp. CFI 146 AJ608980.1 9.3 470 LF259 Penicillium sp. 522 Penicillium brevicompactum strain: ICM 22849 AB479306.1 100 522 LF260 Sphacropsidales 508 Pyrenochaeta cava isolate olrin63 AV35426.1 100 508 LF491 Aspergillus sp. 555 Pernonyces alliaceaus isolate NRL 14181 Fef61556.1 90 555 LF494 Fusarium sp. CB-3 GU045305.1 90 514 LF496 Mycchia sterilia 514 Aspergillus granulosus isolate NRL 1932 EF652430.1 100 514 LF508 Not denified 516 Ploarium sp. V21 GU045305.1 99 503 LF514 Trichoderma sp. 546 Trichoderma sp. TM9 AB3636938.1 100 546 LF526 Eurotium sp. 520 Accromotium sp. 7HE-2010 HQ380788.1 100 522	LF256	Botrytis sp.	535	Beauveria bassiana strain G61	GU566276.1	99	533
LF258 Phoma sp. nov. 538 Fungal sp. GFI 146 Septoria arundiacea isolate BIDC06 AJ608980.1 93 470 LF259 Penicillium sp. 522 Penicillium revicompactum strain. ICM 22849 AB479360.1 100 522 LF269 Spheropsidales 508 Pyrenochatea cara isolate olrim63 AV354265.1 100 508 LF491 Aspergillus sp. 555 Petromyces alliaceasi isolate NRRL 4181 EF661556.1 99 555 LF494 Mycelia sterilla 514 Aspergillus granulosus isolate NRRL 1932 EF652430.1 100 514 LF500 Aspergillus sp. 514 Aspergillus granulosus isolate UASWS0396 HQ166355.1 99 503 LF510 Fusarium sp. 516 Fusarium sp. FL2 Dic isolate UASWS0396 HQ166355.1 99 536 LF510 Fusarium sp. 546 Trichoderma sp. TR HQ148160.1 100 486 LF510 Fusarium sp. 522 Alternaria sp. 7 HF-2010 HQ148160.1 100 486 LF530 Alternaria sp	LF257	Cladosporium sp.	495	Davidiella tassiana strain G20	GU566258.1	100	495
LF258 Phoma Sp. nov. 5.58 Septoria arundinacea isolate BJDC06 GU361965.1 91 460 LF259 Penicillium ps. 522 Penicillium brevicompactum strain. JCM 22849 Ab479306.1 100 522 LF260 Sphaeropsidales 508 Pyrenochaeta cava isolate Onim63 AY354263.1 100 508 LF494 Apergillus sp. 555 Petromyces alfaeces isolate NRRL 4181 Effe61556.1 99 555 LF494 Mycelia sterilia 531 Verricillium sp. CB-3 GU0932675.1 100 469 LF496 Mycelia sterilia 531 Verricillium sp. CB-3 GU045305.1 99 497 LF508 Not identified 501 Phoma sp. W21 GU045305.1 99 503 LF514 Trichoderma sp. 546 Trichoderma sp. TM9 AB369508.1 100 546 LF526 Eurotium sp. 520 Eurotium relevalieri isolate UPM A11 HM152566.1 100 486 LF534 Alternaria sp. 522 Eurotium relevalieri isolate VMS 44 <td>L F250</td> <td>DI</td> <td>520</td> <td>Fungal sp. GFI 146</td> <td>AJ608980.1</td> <td>93</td> <td>470</td>	L F250	DI	520	Fungal sp. GFI 146	AJ608980.1	93	470
IF259 Penicillium sp. 522 Penicillium brevicompactum strain: JCM 22849 AR479306.1 100 522 LF260 Sphaeropsidales 508 Pyrenocheate ava isolate ofim63 AY354263.1 100 508 LF491 Aspergillus sp. 555 Petromyces alliaccus isolate NRR.14181 EF661556.1 99 525 LF444 Fusarium sp. 469 Fusarium sp. CB-3 GU045305.1 99 529 LF446 Mycelia sterilia 531 Verticillium sp. TF17TTW EJ948142.1 99 529 LF508 Not identified 501 Phoma sp. W21 GU045305.1 99 503 LF510 Fusarium sp. 516 Fusarium sp. TL-2010 isolate UASWS0396 HQ148160.1 100 486 LF526 Eurotium sp. 546 Eurotium chevalieri isolate UPM A11 HM152566.1 100 486 LF533 Alternaria sp. 522 Alternaria sp. THE-2010 HQ380788.1 100 523 LF534 Penicillium rose Drugueum strain S26 DQ007047.1 9	LF258	<i>Phoma</i> sp. nov.	538	Septoria arundinacea isolate BJDC06	GU361965.1	91	460
LF260 Sphaeropsidales 508 Pyrenochaeta cava isolate olrim63 AY354263.1 100 508 LF491 Aspergillus sp. 555 Petromyces alliaceus isolate NRRL 4181 EF661556.1 99 555 LF494 <i>Fusarium</i> sp. 469 <i>Fusarium</i> sp. CB-3 GU932675.1 100 469 LF496 Mycelia sterilia 531 Verticilium sp. TE17TW FJ948142.1 99 529 LF501 Aspergillus sp. 514 Aspergillus granulosus isolate NRRL 1932 EF652430.1 100 514 LF500 Fusarium sp. 516 <i>Fusarium</i> sp. CPK3514 FU805031 99 503 LF510 <i>Fusarium</i> sp. 546 <i>Trichoderma</i> sp. TM9 AB369508.1 100 546 LF526 <i>Eurotium</i> sp. FZ HQ148160.1 100 486 LF533 Alternaria sp. 522 Alternaria sp. 7HP-2010 HQ380788.1 100 522 LF534 Penicillium roscopurpureum strain F2 GU566239.1 99 523 LF535 Acremonium sp. FSU2888 AY633563.1 99 523	LF259	Penicillium sp.	522	Penicillium brevicompactum strain: JCM 22849	AB479306.1	100	522
LF491 Appergillus sp. 555 Petromyces alliaceus isolate NRRL 4181 EF661556.1 99 555 LF494 Fusarium sp. 6469 Fusarium sp. CB-3 GU332675.1 100 469 LF496 Mycelia sterilia 531 Verticillium sp. TF17TW FJ948142.1 99 529 LF501 Aspergillus sp. 514 Aspergillus sp. and the sp. 201 GU045305.1 99 503 LF501 Fusarium sp. 516 Fusarium sp. CPK3514 E340530.1 99 503 LF510 Fusarium sp. 516 Fusarium sp. CPK3514 E340530.1 99 514 LF514 Trichoderma sp. 546 Trichoderma sp. TM9 AB369508.1 100 546 LF535 Atternaria sp. 522 Atternaria sp. THE-2010 HQ14810.0 100 486 LF534 Penicillium sp. 540 Penicillium roscopurpureum strain E2 GU5653.1 100 523 LF535 Acremonium sp. 532 Cladosporium sp. FSU2838 AY633563.1 99 513 LF540 Not identified 578 Hypcorea fixi	LF260	Sphaeropsidales	508	Pyrenochaeta cava isolate olrim63	AY354263.1	100	508
LF494 Fusarium sp. 469 Fusarium sp. CB-3 GU932675.1 100 469 LF496 Mycelia sterilia 531 Verticillium sp. TF17TW FJ948142.1 99 529 LF501 Aspergillus genulosus isolate NRRL 1932 EF652430.1 100 514 LF508 Not identified 504 Fusarium sp. CPK3514 FI840530.1 99 503 LF510 Fusarium sp. 516 Fusarium sp. CPK3514 FI840530.1 99 503 LF514 Trichoderma sp. TL-2010: isolate UASWS0396 HQ166353.1 99 516 LF526 Eurotium sp. 486 Eurotium chevalieri isolate UPM A11 H15256.1 100 486 LF530 Alternaria sp. 522 Alternaria sp. 7 HF-2010 H0380788.1 100 522 LF533 Acremonium sp. 525 Acremonium sp. TS12US28 Av633563.1 99 536 LF534 Acremonium sp. 525 Acremonium sp. TS12US28 H0259308.1 100 598 LF540 Not identified	LF491	Aspergillus sp.	555	Petromyces alliaceus isolate NRRL 4181	EF661556.1	99	555
LF496 Mycelia sterilia 531 Verticilium sp. TF17TTW FJ948142.1 99 529 LF501 Aspergillus sp. 514 Aspergillus granulosus isolate NRRL 1932 EF65240.1 100 514 LF508 Not identified 501 Phoma sp. W21 GU04530.1 99 503 LF510 Fusarium sp. 516 Fusarium sp. FL-2010c isolate UASWS0396 HQ166535.1 99 514 LF511 Trichoderma sp. 546 Trichoderma sp. FZ HQ148100.1 100 486 LF526 Eurotium sp. 546 Trichoderma sp. FZ HQ148100.1 100 486 LF530 Alternaria sp. FH-2010 HQ380788.1 100 522 LF534 Penicillium sp. 540 Penicillium roscopurpureum strain E2 GU566239.1 99 523 LF537 Acremonium sp. 525 Acremonium sp. FSU2858 AY63356.3 100 598 LF537 Kadosporium cyp. 503 Cladosporium cladosporionides strain F12 HQ380766.1 90 575	LF494	Fusarium sp.	469	Fusarium sp. CB-3	GU932675.1	100	469
LF501 Aspergillus sp. 514 Aspergillus granulosus isolate NRRL 1932 EF652430.1 100 514 LF508 Not identified 501 Phoma sp. W21 GU045305.1 99 497 LF509 Fusarium sp. 504 Fusarium sp. CPK3514 F1840530.1 99 503 LF510 Fusarium sp. 516 Fusarium sp. F14 H016535.1 99 514 LF510 Fusarium sp. 546 Trichoderma sp. TM9 AB369508.1 100 546 LF526 Eurotium sp. 524 Eurotium chevalieri isolate UPM A111 HM152506.1 100 486 LF534 Pericillium roscopurpureum strain E2 GU566239.1 99 526 LF534 Accemonium sp. 525 Accemonium sp. FSU2858 AY633563.1 90 530 LF535 Accemonium sp. 520 Claaosporium claaosporiodes strain F12 HQ380768.1 100 503 LF534 Micor hiemalis isolate VLASWS0442 HQ16553.1 100 522 LF540 <td< td=""><td>LF496</td><td>Mycelia sterilia</td><td>531</td><td>Verticillium sp. TF17TTW</td><td>FJ948142.1</td><td>99</td><td>529</td></td<>	LF496	Mycelia sterilia	531	Verticillium sp. TF17TTW	FJ948142.1	99	529
LF508 Not identified 501 Phoma sp. W21 GU045305.1 99 497 LF509 Fusarium sp. 504 Fusarium sp. CPK3514 F1840530.1 99 503 LF510 Fusarium sp. 516 Fusarium sp. FL-2010c isolate UASW80396 HQ16535.1 99 514 LF514 Trichoderma sp. 546 Trichoderma sp. FZ HQ148160.1 100 486 LF530 Alternaria sp. 522 Alternaria sp. 7 HF-2010 HQ380788.1 100 522 LF534 Penicillium sp. 540 Penicillium roscopurpureum strain E2 GU5633.1 99 523 LF537 Cladosporium sp. 525 Accemonium sp. FSU2858 AY633563.1 90 575 LF533 Mucor hiemalis 598 Mucor hiemalis isolate UASWS0442 HQ166533.1 100 598 LF542 Mycelia sterilia 458 Phoma pomorum var. pomorum strain CBS FJ427056.1 99 575 LF542 Mycelia sterilia 526 Aspergillus sp. tap. 42-3 AY147705.1	LF501	Aspergillus sp.	514	Aspergillus granulosus isolate NRRL 1932	EF652430.1	100	514
	LF508	Not identified	501	Phoma sp. W21	GU045305.1	99	497
	LF509	Fusarium sp.	504	Fusarium sp. CPK3514	FJ840530.1	99	503
	LF510	Fusarium sp.	516	Fusarium sp. FL-2010c isolate UASWS0396	HQ166535.1	99	514
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LF514	Trichoderma sp.	546	Trichoderma sp. TM9	AB369508.1	100	546
	1 5526	E	196	Eurotium sp. FZ	HQ148160.1	100	486
	LF526	<i>Eurotium</i> sp.	486	Eurotium chevalieri isolate UPM A11	HM152566.1	100	486
	LF530	Alternaria sp.	522	Alternaria sp. 7 HF-2010	HQ380788.1	100	522
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LF534	Penicillium sp.	540	Penicillium roseopurpureum strain E2	GU566239.1	99	536
LF33Acremonium sp.525Lecanicillium lecanii strain V56DQ007047.199510LF537Cladosporium sp.503Cladosporium cladosporioides strain F12HQ380766.1100503LF538Mucor hiernalis598Mucor hiemalis isolate UASWS0442HQ166553.1100598LF540Not identified578Hypocrea lixii isolate FZ1302HQ259308.199575LF542Mycelia sterilia458Peyronellaea glomerata isolate NMG_27 Phoma pomorum var. pomorum strain CBS 539.66HM776432 FJ427056.199457LF543Alternaria sp.522Alternaria citri strain 1A265AY154705.1100522LF547Aspergillus sp.539Aspergillus minutus isolate NRRL 4876EF652481.198529LF550Mycelia sterilia524Bartalinia robillardoides CBS:122686EU552102.199503LF552Epicoccum nigrum506Epicoccum nigrum strain GrS7FJ904918.199503LF554Aspergillus sp.528Aspergillus sp. Da91HM991178.1100525LF557Mycelia sterilia528Fusarium oxysporum strain TS08-137-1-1AB470850.1498LF552Trithrachium sp.504Tritirachium sp. F13EU497949.199498LF556Trichoderma sp.537Hypocrea lixii isolate DLEN2008014HQ149778.1100537LF558Not identified498Phoma sp. W21GU045305.1100498 <td< td=""><td>1 1 1 2 2 5</td><td>4</td><td>505</td><td colspan="2"> Acremonium sp. FSU2858</td><td>99</td><td>523</td></td<>	1 1 1 2 2 5	4	505	Acremonium sp. FSU2858		99	523
	LF333	Acremonium sp.	525	Lecanicillium lecanii strain V56	DQ007047.1	99	510
LF538 Mucor hiernalis 598 Mucor hiemalis isolate UASWS0442 HQ166553.1 100 598 LF540 Not identified 578 Hypocrea lixii isolate FZ1302 HQ259308.1 99 575 LF542 Mycelia sterilia 578 Hypocrea lixii isolate FZ1302 HQ259308.1 99 575 LF542 Mycelia sterilia 458 Peyronellaea glomerata isolate NMG_27 Phoma pomorum var. pomorum strain CBS 539.66 HM776432 99 457 LF543 Alternaria sp. 522 Alternaria citri strain IA265 AY154705.1 100 522 LF547 Aspergillus sp. 539 Aspergillus minutus isolate NRRL 4876 EF652481.1 98 529 LF550 Mycelia sterilia 524 Bartalinia robillardoides CBS:122686 EU552102.1 99 514 LF552 Epicoccum nigrum 506 Epicoccum nigrum strain GrS7 FJ904918.1 99 503 LF554 Aspergillus sp. 528 Aspergillus sp. Da91 HM991178.1 100 525 LF557 Mycelia sterilia 528 Fusarium oxysporum strain TS08-137-1-1 AB470850.1 5	LF537	Cladosporium sp.	503	Cladosporium cladosporioides strain F12 HQ		100	503
LF540Not identified 578 Hypocrea lixii isolate FZ1302HQ259308.1 99 575 LF542Mycelia sterilia 458 Peyronellaea glomerata isolate NMG_27 Phoma pomorum var. pomorum strain CBS 539.66 HM776432 FJ427056.1 99 457 LF543Alternaria sp. 522 Alternaria citri strain IA265AY154705.1 100 522 LF547Aspergillus sp. 539 Aspergillus minutus isolate NRRL 4876EF652481.1 98 529 LF550Mycelia sterilia 524 Bartalinia robillardoides CBS:122686EU552102.1 99 514 LF552Epicoccum nigrum 506 Epicoccum nigrum strain GrS7FJ904918.1 99 503 LF554Aspergillus sp. 528 Aspergillus sp. Da91HM991178.1 100 522 LF557Mycelia sterilia 528 Aspergillus sp. Da91HM991178.1 100 525 LF557Mycelia sterilia 528 Fusarium sp. FL-2010f Fusarium oxysporum strain TS08-137-1-1HQ166539.1 99 537 LF562Tritirachium sp. 504 Tritirachium sp. F13EU497949.1 99 498 LF563Clonostachys sp. 538 Penicilliu movie opacea CBS 113336EU552110.1 99 503 LF577Penicillium sp. 538 Penicillium brevicompactum isolate NMG_25HM776430.1 99 534 LF580*Scopulariopsis brevicaulis 916 Scopulariopsis brevicaulis strain NCPF 2177AY083220.1 99	LF538	Mucor hiernalis	598	Mucor hiemalis isolate UASWS0442 HQ166553.		100	598
LF542Mycelia sterilia458Peyronellaea glomerata isolate NMG_27 Phoma pomorum var. pomorum strain CBS 539.66HM776432 FJ427056.199457 457LF543Alternaria sp.522Alternaria citri strain IA265AY154705.1100522LF547Aspergillus sp.539Aspergillus minutus isolate NRL 4876EF652481.198529LF550Mycelia sterilia524Bartalinia robillardoides CBS:122686EU552102.199522LF552Épicoccum nigrum506Epicoccum nigrum strain GrS7FJ904918.199503LF553Aspergillus sp.528Aspergillus sp. Da91HM991178.1100522LF557Mycelia sterilia528Fusarium sp. FL-2010f Fusarium oxysporum strain TS08-137-1-1HQ166539.199522LF556Not identified498Phoma sp. W21GU045305.1100498LF562Tritirachium sp.504Tritirachium sp. F13EU497949.199503LF576Clonostachys sp.504Bionectria cf. ochroleuca CBS 113336EU552110.199503LF577Penicillium sp.538Penicillium brevicompactum isolate NMG_25HM776430.199503LF577Penicillium sp.538Penicillium brevicompactum isolate NMG_25HM776430.199503LF578*Scopulariopsis brevicaulis916Scopulariopsis brevicaulis strain NCPF 2177AY083220.199686LF581Fusarium sp.504 <t< td=""><td>LF540</td><td>Not identified</td><td>578</td><td>Hypocrea lixii isolate FZ1302</td><td>HQ259308.1</td><td>99</td><td>575</td></t<>	LF540	Not identified	578	Hypocrea lixii isolate FZ1302	HQ259308.1	99	575
LF542Mycelia sterilia458Phoma pomorum var. pomorum strain CBS 539.66HM17/0432 FJ427056.199457LF543Alternaria sp.522Alternaria citri strain IA265AY154705.1100522LF547Aspergillus sp.539Aspergillus minutus isolate NRRL 4876EF652481.198529LF550Mycelia sterilia524Bartalinia robillardoides CBS:122686EU552102.199522LF550mycelia sterilia524Bartalinia robillardoides CBS:122686EU552102.199524LF552Epicoccum nigrum506Epicoccum nigrum strain GrS7FJ904918.199503LF553Aspergillus sp.528Aspergillus sp. Da91HM991178.1100528LF554Aspergillus sp.525Aspergillus sp. Da91HM991178.1100525LF557Mycelia sterilia528Fusarium sp. FL-2010f Fusarium oxysporum strain TS08-137-1-1AB470850.199522LF562Tritirachium sp.504Tritirachium sp. F13EU497949.199498LF563Trichoderma sp.537Hypocrea lixii isolate DLEN2008014HQ149778.1100537LF576Clonostachys sp.504Bionectria cf. ochroleuca CBS 113336EU552110.199503LF577Penicillium sp.538Penicillium brevicompactum isolate NMG_25HM776430.199534LF580 *Scopulariopsis brevicaulis916Scopulariopsis brevicaulis strain NCPF 2177AY0				Peyronellaea glomerata isolate NMG_27	111/1776422	00	157
LF543Alternaria sp.522Alternaria citri strain IA265AY154705.1100522LF547Aspergillus sp.539Aspergillus minutus isolate NRRL 4876EF652481.198529LF550Mycelia sterilia nigrum 524 Bartalinia robillardoides CBS:122686EU552102.199522LF552Epicoccum nigrum506Epicoccum nigrum strain GrS7FJ904918.199503LF553Aspergillus sp.528Aspergillus sp. Da91HM991178.1100528LF554Aspergillus sp.525Aspergillus sp. Da91HM991178.1100525LF557Mycelia sterilia 528 528 Aspergillus sp. Da91HM991178.1100525LF557Mycelia sterilia 528 528 Fusarium sp. FL-2010f Fusarium oxysporum strain TS08-137-1-1AB470850.1498LF562Tritirachium sp.504Tritirachium sp. F13EU497949.199498LF563Trichoderma sp.537Hypocrea lixii isolate DLEN2008014HQ149778.1100537LF576Clonostachys sp.504Bionectria cf. ochroleuca CBS 113336EU52110.199503LF570 916 Scopulariopsis brevicaulis strain NCPF 2177AY083220.199686LF581Fusarium sp.504Fusarium sp. NRRL 45996GQ505760.199502	LF542	Mycelia sterilia	458	Phoma pomorum var. pomorum strain CBS	HM770432	99	457
LF543Alternaria sp.522Alternaria citri strain IA265AY154705.1100522LF547Aspergillus sp.539Aspergillus minutus isolate NRRL 4876EF652481.198529LF550Mycelia sterilia 524 Bartalinia robillardoides CBS:122686EU552102.199522LF552Epicoccum nigrum 506 Epicoccum nigrum strain GrS7FJ904918.199503LF553Aspergillus sp.528Aspergillus sp. Da91HM991178.1100525LF554Aspergillus sp.525Aspergillus sp. Da91HM991178.1100525LF557Mycelia sterilia528Fusarium sp. FL-2010f Fusarium oxysporum strain TS08-137-1-1HQ166539.1 AB470850.199522LF562Tritirachium sp.504Tritirachium sp. F13EU497749.199498LF563Trichoderma sp.537Hypocrea lixii isolate DLEN2008014HQ149778.1100537LF576Clonostachys sp.504Bionectria cf. ochroleuca CBS 113336EU552110.199503LF577Penicillium sp.538Penicillium brevicompactum isolate NMG_25HM776430.199503LF578 $scopulariopsis$ brevicaulis916Scopulariopsis brevicaulis strain NCPF 2177AY083220.199686LF581Fusarium sp.504Fusarium sp. NRRL 45996GQ505760.199502				539.66	FJ427030.1	99	437
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LF543	<i>Alternaria</i> sp.	522	Alternaria citri strain IA265	AY154705.1	100	522
LF550Mycelia sterilia 524 Bartalinia robillardoides CBS:122686EU552102.199 522 LF551Epicoccum nigrum 506 Epicoccum nigrum strain GrS7FJ904918.199 503 LF553Aspergillus sp. 528 Aspergillus sp. Da91HM991178.1100 528 LF554Aspergillus sp. 525 Aspergillus sp. Da91HM991178.1100 525 LF557Mycelia sterilia 528 Fusarium sp. FL-2010f Fusarium oxysporum strain TS08-137-1-1HQ166539.199 522 LF558Not identified498Phoma sp. W21GU045305.1100498LF562Tritirachium sp. 504 Tritirachium sp. F13EU497949.199498LF576Clonostachys sp. 504 Bionectria cf. ochroleuca CBS 113336EU552110.199 503 LF570Penicillium sp. 538 Penicillium brevicompactum isolate NMG_25HM776430.199 534 LF580 s Scopulariopsis brevicaulis916Scopulariopsis brevicaulis strain NCPF 2177AY083220.199 686 LF581Fusarium sp. 504 Fusarium sp. NRRL 45996GQ505760.199 502	LF547	Aspergillus sp.	539	Aspergillus minutus isolate NRRL 4876	EF652481.1	98	529
L1550Mycelia sterilia 524 Ellurema sp. $42-3$ AY148442.199514LF552 $Epicoccum$ nigrum 506 $Epicoccum$ nigrum strain GrS7 $FJ904918.1$ 99 503 LF553Aspergillus sp. 528 Aspergillus sp. Da91HM991178.1100 528 LF554Aspergillus sp. 525 Aspergillus sp. Da91HM991178.1100 525 LF557Mycelia sterilia 528 Fusarium sp. FL-2010f Fusarium oxysporum strain TS08-137-1-1HQ166539.199 522 LF558Not identified498Phoma sp. W21GU045305.1100498LF562Tritirachium sp. 504 Tritirachium sp. F13EU497949.199498LF576Clonostachys sp. 504 Bionectria cf. ochroleuca CBS 113336EU552110.199 503 LF577Penicillium sp. 538 Penicillium brevicompactum isolate NMG_25HM776430.199 534 LF580 *Scopulariopsis brevicaulis916Scopulariopsis brevicaulis strain NCPF 2177AY083220.199 686 LF581Fusarium sp. 504 Fusarium sp. NRRL 45996GQ505760.199 502	I E550	Mucalia starilia	524	Bartalinia robillardoides CBS:122686	EU552102.1	99	522
LF552 $Epicoccum$ $nigrum$ 506 $Epicoccum nigrum strain GrS7$ $FJ904918.1$ 99 503 LF553 $Aspergillus$ sp. 528 $Aspergillus$ sp. Da91HM991178.1 100 528 LF554 $Aspergillus$ sp. 525 $Aspergillus$ sp. Da91HM991178.1 100 525 LF554 $Aspergillus$ sp. 525 $Aspergillus$ sp. Da91HM991178.1 100 525 LF557 $Mycelia$ sterilia 528 $Fusarium$ sp. FL-2010fHQ166539.1 99 522 LF558Not identified 498 $Phoma$ sp. W21GU045305.1 100 498 LF562 $Tritirachium$ sp. 504 $Tritirachium$ sp. F13EU497949.1 99 498 LF563 $Trichoderma$ sp. 537 $Hypocrea lixii$ isolate DLEN2008014HQ149778.1 100 537 LF576 $Clonostachys$ sp. 504 $Bionectria$ cf. ochroleuca CBS 113336EU552110.1 99 503 LF577 $Penicillium$ sp. 538 $Penicillium brevicompactum$ isolate NMG_25HM776430.1 99 534 LF580 * $Scopulariopsis$ brevicaulis 916 $Scopulariopsis brevicaulis strain NCPF 2177$ $AY083220.1$ 99 686 LF581 $Fusarium$ sp. 504 $Fusarium$ sp. NRRL 45996 $GQ505760.1$ 99 502	LI 350	Wrycena sterma	524	<i>Ellurema</i> sp. 42-3	AY148442.1	99	514
LF553Aspergillus sp.528Aspergillus sp. Da91HM991178.1100528LF554Aspergillus sp.525Aspergillus sp. Da91HM991178.1100525LF557Mycelia sterilia528Fusarium sp. FL-2010f Fusarium oxysporum strain TS08-137-1-1HQ166539.199522LF558Not identified498Phoma sp. W21GU045305.1100498LF562Tritirachium sp.504Tritirachium sp. F13EU497949.199498LF563Trichoderma sp.537Hypocrea lixii isolate DLEN2008014HQ149778.1100537LF576Clonostachys sp.504Bionectria cf. ochroleuca CBS 113336EU552110.199503LF577Penicillium sp.538Penicillium brevicompactum isolate NMG_25HM776430.199534LF580 *Scopulariopsis brevicaulis916Scopulariopsis brevicaulis strain NCPF 2177AY083220.199686LF581Fusarium sp.504Fusarium sp. NRRL 45996GQ505760.199502	LF552	Epicoccum nigrum	506	Epicoccum nigrum strain GrS7	FJ904918.1	99	503
LF554Aspergillus sp.525Aspergillus sp. Da91HM991178.1100525LF557Mycelia sterilia 528 Fusarium sp. FL-2010f Fusarium oxysporum strain TS08-137-1-1HQ166539.1 AB470850.199522LF558Not identified498Phoma sp. W21GU045305.1100498LF562Tritirachium sp.504Tritirachium sp. F13EU497949.199498LF563Trichoderma sp.537Hypocrea lixii isolate DLEN2008014HQ149778.1100537LF576Clonostachys sp.504Bionectria cf. ochroleuca CBS 113336EU552110.199503LF577Penicillium sp.538Penicillium brevicompactum isolate NMG_25HM776430.199534LF580 *Scopulariopsis brevicaulis916Scopulariopsis brevicaulis strain NCPF 2177AY083220.199686LF581Fusarium sp.504Fusarium sp. NRRL 45996GQ505760.199502	LF553	Aspergillus sp.	528	Aspergillus sp. Da91	HM991178.1	100	528
LF557 Mycelia sterilia 528 Fusarium sp. FL-2010f Fusarium oxysporum strain TS08-137-1-1 HQ166539.1 AB470850.1 99 522 LF558 Not identified 498 Phoma sp. W21 GU045305.1 100 498 LF562 Tritirachium sp. 504 Tritirachium sp. F13 EU497949.1 99 498 LF563 Trichoderma sp. 537 Hypocrea lixii isolate DLEN2008014 HQ149778.1 100 537 LF576 Clonostachys sp. 504 Bionectria cf. ochroleuca CBS 113336 EU552110.1 99 503 LF577 Penicillium sp. 538 Penicillium brevicompactum isolate NMG_25 HM776430.1 99 534 LF580 * Scopulariopsis brevicaulis 916 Scopulariopsis brevicaulis strain NCPF 2177 AY083220.1 99 686 LF581 Fusarium sp. 504 Fusarium sp. NRRL 45996 GQ505760.1 99 502	LF554	Aspergillus sp.	525	Aspergillus sp. Da91	HM991178.1	100	525
LF557 Mycella sterilla 528 Fusarium oxysporum strain TS08-137-1-1 AB470850.1 LF558 Not identified 498 Phoma sp. W21 GU045305.1 100 498 LF562 Tritirachium sp. 504 Tritirachium sp. F13 EU497949.1 99 498 LF563 Trichoderma sp. 537 Hypocrea lixii isolate DLEN2008014 HQ149778.1 100 537 LF576 Clonostachys sp. 504 Bionectria cf. ochroleuca CBS 113336 EU552110.1 99 503 LF577 Penicillium sp. 538 Penicillium brevicompactum isolate NMG_25 HM776430.1 99 534 LF580 * Scopulariopsis brevicaulis 916 Scopulariopsis brevicaulis strain NCPF 2177 AY083220.1 99 686 LF581 Fusarium sp. 504 Fusarium sp. NRRL 45996 GQ505760.1 99 502	1 5667		50 0	Fusarium sp. FL-2010f	HQ166539.1	99	522
LF558 Not identified 498 Phoma sp. W21 GU045305.1 100 498 LF562 Tritirachium sp. 504 Tritirachium sp. F13 EU497949.1 99 498 LF563 Trichoderma sp. 537 Hypocrea lixii isolate DLEN2008014 HQ149778.1 100 537 LF576 Clonostachys sp. 504 Bionectria cf. ochroleuca CBS 113336 EU552110.1 99 503 LF577 Penicillium sp. 538 Penicillium brevicompactum isolate NMG_25 HM776430.1 99 534 LF580 * Scopulariopsis brevicaulis 916 Scopulariopsis brevicaulis strain NCPF 2177 AY083220.1 99 686 LF581 Fusarium sp. 504 Fusarium sp. NRRL 45996 GQ505760.1 99 502	LF557	Mycelia sterilia	528	Fusarium oxysporum strain TS08-137-1-1	AB470850.1		
LF562 Tritirachium sp. 504 Tritirachium sp. F13 EU497949.1 99 498 LF563 Trichoderma sp. 537 Hypocrea lixii isolate DLEN2008014 HQ149778.1 100 537 LF576 Clonostachys sp. 504 Bionectria cf. ochroleuca CBS 113336 EU552110.1 99 503 LF577 Penicillium sp. 538 Penicillium brevicompactum isolate NMG_25 HM776430.1 99 534 LF580 * Scopulariopsis brevicaulis 916 Scopulariopsis brevicaulis strain NCPF 2177 AY083220.1 99 686 LF581 Fusarium sp. 504 Fusarium sp. NRRL 45996 GQ505760.1 99 502	LF558	Not identified	498	Phoma sp. W21	GU045305.1	100	498
LF563 Trichoderma sp. 537 Hypocrea lixii isolate DLEN2008014 HQ149778.1 100 537 LF576 Clonostachys sp. 504 Bionectria cf. ochroleuca CBS 113336 EU552110.1 99 503 LF577 Penicillium sp. 538 Penicillium brevicompactum isolate NMG_25 HM776430.1 99 534 LF580 * Scopulariopsis brevicaulis 916 Scopulariopsis brevicaulis strain NCPF 2177 AY083220.1 99 686 LF581 Fusarium sp. 504 Fusarium sp. NRRL 45996 GQ505760.1 99 502	LF562	Tritirachium sp.	504	Tritirachium sp. F13	EU497949.1	99	498
LF576Clonostachys sp.504Bionectria cf. ochroleuca CBS 113336EU552110.199503LF577Penicillium sp.538Penicillium brevicompactum isolate NMG_25HM776430.199534LF580 *Scopulariopsis brevicaulis916Scopulariopsis brevicaulis strain NCPF 2177AY083220.199686LF581Fusarium sp.504Fusarium sp. NRRL 45996GQ505760.199502	LF563	Trichoderma sp.	537	Hypocrea lixii isolate DLEN2008014	HQ149778.1	100	537
LF577Penicillium sp.538Penicillium brevicompactum isolate NMG_25HM776430.199534LF580 *Scopulariopsis brevicaulis916Scopulariopsis brevicaulis strain NCPF 2177AY083220.199686LF581Fusarium sp.504Fusarium sp. NRRL 45996GQ505760.199502	LF576	Clonostachys sp.	504	Bionectria cf. ochroleuca CBS 113336	EU552110.1	99	503
LF580 *Scopulariopsis brevicaulis916Scopulariopsis brevicaulis strain NCPF 2177AY083220.199686LF581Fusarium sp.504Fusarium sp. NRRL 45996GQ505760.199502	LF577	Penicillium sp.	538	Penicillium brevicompactum isolate NMG_25	HM776430.1	99	534
LF581 Fusarium sp. 504 Fusarium sp. NRRL 45996 GQ505760.1 99 502	LF580 *	Scopulariopsis brevicaulis	916	Scopulariopsis brevicaulis strain NCPF 2177	AY083220.1	99	686
	LF581	Fusarium sp.	504	Fusarium sp. NRRL 45996	GQ505760.1	99	502

Table 1. Cont.

LF584	Aspergillus sp.	543	Aspergillus sp. N13	GQ169453.1	99	542
LF590	Penicillium sp.	522	Penicillium citreonigrum strain Gr155	FJ904848.1	100	522
1 5502	D 1/	544	Fungal endophyte sp. P1201A	EU977225.1	99	541
LF592	Paecilomyces sp.	544	Paecilomyces lilacinus strain CG 271	EU553303.1	98	516
1 5504	M	521	Fusarium sp. FL-2010c	HQ166535.1	99	527
LF594	Mycelia sterilia	531	Fusarium acuminatum strain NRRL 54217	HM068325.1	99	527
LESOC	D	Penicillium sp. FF24	Penicillium sp. FF24	FJ379805.1	100	529
LF596	Penicillium sp.	529	Penicillium canescens strain QLF83	FJ025212.1	100	529
L DCOZ	D	500	Penicillium sp. 17-M-1	EU076929.1	99	523
LF607	LF607 <i>Penicillium</i> sp.	532	Penicillium sclerotiorum strain SK6RN3M	EU807940.1	99	520
I ECOO	LF608 <i>Cladosporium</i> sp.	105	Fungal sp. mh2981.6	GQ996077.1	100	495
LF608		495	Cladosporium cladosporioides strain CC1	HM210839.1	100	495
1 5 6 1 0	610 <i>Clonostachys</i> sp.	529	Fungal sp. mh2053.3	GQ996069.1	99	524
LF610		stacnys sp. 528	Bionectria ochroleuca isolate Rd0801	HQ115728.1	99	524
LF626	Mycelia sterilia	588	Trichoderma cerinum isolate C.P.K. 3619	GU111565.1	99	586
LF627	Aspergillus sp.	509	Aspergillus sp. 4-1	HQ316558.1	100	509
LF629	Mycelia sterilia	510	Cladosporium cladosporioides strain F12	HQ380766.1	99	509
LF630	Penicillium sp.	518	Penicillium brevicompactum isolate H66s1	EF634441.1	100	518
LF631	Epicoccum nigrum	514	Epicoccum nigrum strain AZ-1	DQ981396.1	99	512
LF634	Aspergillus sp.	581	Aspergillus terreus isolate UOA/HCPF 10213	GQ461911.1	99	579
LF644	Clonostachys sp	528	Bionectria rossmaniae strain CBS 211.93	AF210665.1	99	521
LF646	Mycelia sterilia	510	Cladosporium cladosporioides strain F12	HQ380766.1	99	509

Table 1. Cont.

A = anamorph; T = teleomorph; Alternaria (A) = Lewia (T); Aspergillus (A) = Petromyces (T) and Eurotium (T); Beauveria (A) = Cordyceps (T); Botrytis (A) = Botryotinia (T); Cladosporium (A) = Davidiella (T); Fusarium (A) = Gibberella (T); Clonostachys (A) = Bionectria (T); Trichoderma (A) = Hypocrea (T); Phoma = Pleurophoma (synonym); nt = nucleotides; * phylogenetic data to LF580 are derived from the 18S rRNA gene sequence.

First of all, morphological criteria enabled the identification of most of the fungal isolates at the genus level (Table 1). However, under the culture conditions applied, 11 strains did not produce spores and were designed as "mycelia sterilia". A morphological classification of these strains was not possible. Despite the formation of spores, another four strains could not be classified on the basis of morphological characteristics.

In order to verify the results of the morphological examination and identify the strains at the species level, they were subjected to ITS1-5.8S-ITS2 gene sequence analysis. The results obtained from this sequence analysis corresponded well with those from the morphological identification (Table 1, Figure 2) and in addition allowed identification of those strains not identified microscopically. In most cases, the sequence data and the phylogenetic relationships allowed the identification at the species level. Results from BLAST search are depicted in Table 1. Taking together morphological and genetic characteristics, most isolates belong to the Ascomycotina with representatives of the fungal classes Dothideomycetes (24 isolates), Eurotiomycetes, (25 isolates), Sordariomycetes (30 isolates) and Leotiomycetes (1 isolate). Only a single isolate (strain LF538) was classified as belonging to the Mucoromycotina.

Figure 2. Phylogenetic consensus tree based on ITS1-5.8S-ITS2 gene sequences calculated by Bayesian inference assuming the general time reversible (GTR) model (6 substitution rate parameters, gamma-shaped rate variation, proportion of invariable sites). Isolates from *Tethya aurantium* obtained during this study are printed in bold. Numbers on nodes indicate Bayesian posterior probability values. nt = nucleotides.

Figure 2. Cont.

EUROTIOMYCETES EUROTIALES

Figure 2. Cont.

0.1

As shown in the phylogenetic tree (Figure 2), 10 isolates of the Dothideomycetes closely affiliated to fungal species of the order Capnodiales (*Cladosporium* spp. and its teleomorph *Davidiella*). Within the order Pleosporales (13 isolates) 5 isolates were closely related to *Alternaria* sp., including *Lewia infectoria* as teleomorph. From the same order we also isolated 2 strains of the species *Epicoccum nigrum* and 1 *Paraphaeosphaeria* strain. Furthermore, 5 isolates of the genus *Phoma* were found, of which one isolate (strain LF258) shows only 91% sequence similarity to *Septoria arundinacea* as next relative according to BLAST results (Table 1) and presumably represents a new species in the *Phoma* lineage. The low similarity of this isolate to known sequences is also reflected in the position in the phylogenetic tree, clustering distinct from other *Phoma* species. A single isolate (strain LF241) was assigned to *Sphaeropsis sapinea/Botryosphaeria* sp. within the order Botryosphaeriales in the class Dothideomycetes.

All 25 isolates assigned to the class Eurotiomycetes were affiliated to the order *Eurotiales* and are represented by 14 isolates closely affiliating to *Penicillium* species (*P. glabrum*, *P. virgatum*/ *P. brevicompactum*, *P. griseofulvum*/*P. commune*, *P. chrysogenum*, *P. sclerotiorum*/*P. citreonigrum*, *P. citreoviride*/*P. roseopurpureum*, *P. canescens*), 10 representatives of the genus *Aspergillus* (including 2 of its teleomorphs, *Petromyces alliaceus* and *Eurotium chevalieri*) and 1 isolate of *Paecilomyces*.

The 30 isolates affiliated to the class Sordariomycetes were grouped into the orders Hypocreales (26 isolates), Microascales (2 isolates) and Xylariales (1 isolate). Within the Hypocreales, one isolate each was closely related to *Beauveria bassiana* (strain LF256), *Tritirachium album* (strain LF562), *Verticillium* sp. (strain LF496), and *Volutella ciliata* (strain LF246). The most frequent genera within this order were *Fusarium* (13 isolates), *Trichoderma* (5 isolates, including *Hypocrea* teleomorphs) and *Clonostachys* (4 isolates, including teleomorphs of *Bionectria*). The Microascales were represented by two isolates of the genus *Scopulariopsis*. One of these (strain LF064), morphologically classified as *Scopulariopsis murina*, was distantly related to the next cultured relative (89% according to BLAST search) and appears as a sister group to the *Scopulariopsis* lineage in the phylogenetic tree. The order *Xylariales* was represented by only a single isolate (strain LF550), *Bartalinia robillardoides*. As the only representatives of the order Helotiales within the class Leotiomycetes strain LF248 was closely related to *Botryotinia fuckeliana*.

The combination of microscopic and genetic analyses has proven to be a reliable method for the identification of fungal isolates and results from both approaches corresponded quite well (Table 1, Figure 2). The reliable identification of isolates is a fundamental prerequisite in order to characterize the producers of marine natural products [3], to determine the occurrence of fungal species in different habitats, and to correlate distinct secondary metabolite patterns to fungal species. Therefore, we highly recommend that morphological identification of fungal isolates consequently should be verified by molecular means and thus raise the number of reliably identified species in public databases.

A number of investigations, mainly with the aim of finding novel natural products, showed that most marine sponges harbor a plethora of cultivable fungi within their tissue [10–15,18]. Despite the large number of fungi isolated from sponges, a selective accumulation of specific taxa within sponges and a truly marine nature of these fungi is doubted, which is why they are commonly referred to as "marine-derived" [27,28]. In fact, it could be shown that the phylogenetic diversity of fungi isolated from different sponges varies [17]. It has also been stated that the taxa frequently isolated from

sponges resemble those described from terrestrial habitats [11,16,28]. This is in good accordance with our results, showing representatives of *Acremonium*, *Aspergillus*, *Fusarium*, *Penicillium*, *Phoma*, and *Trichoderma* to be abundant in *Tethya aurantium* and with those of Wang (2006) demonstrating that they also are widely distributed among different sponges from various locations [29]. Although it appears that the marine environment indeed provides various habitats for fungi, this has rarely been demonstrated. Nonetheless, due to the accumulation of fungi within sponges a large number of strains can be isolated which increases the probability to find representatives of less common taxa which might produce unprecedented secondary metabolites. For example, fungi belonging to the genera *Beauveria*, *Botryosphaeria*, *Epicoccum*, *Tritirachium*, and *Paraphaeosphaeria* have rarely been obtained from marine sponges [11,18,24] and, to the best of our knowledge, we have isolated *Bartalinia* sp. and *Volutella* sp. from a marine sponge for the first time.

Although evidence is presented that some bacterial symbionts of sponges are the producers of metabolites originally assumed to be produced by the sponge [4], equivalent evidence for fungi is lacking. There is actually little evidence for sponge-specific fungal associations and the only reports on this matter deals with the above mentioned *Koralionastes* species and a yeast living in symbiosis with the sponge *Chondrilla* sp. [30]. In fact, most of the studies had the biotechnological potential of sponge-derived fungi in mind but not the ecological role. Our culture-dependent approach was not considered to approach the aspect of specificity of the association with the sponge and molecular-based studies would be more suited to identify specifically sponge-associated fungi.

2.2. Secondary Metabolite Analyses

With the cultivation-based approach used in this study, we obtained a variety of strains from a surprisingly broad range of phylogenetic groups of fungi. A selection of the isolated and identified fungi was subjected to analysis of their secondary metabolite profiles. Strains were selected in order to represent a wide spectrum of genera, representatives of a variety of different genera, some known to include strains and species known for the production of secondary metabolites others from less common taxa. Some of the strains selected according to systematic criteria did not produce detectable amounts of secondary metabolites under the applied culture conditions. Unraveling their potential of secondary metabolite production will require more intense studies. Those extracts which did contain at least one compound in significant amounts were analyzed by HPLC with DAD (UV)- and MS-detection and the metabolites which could be identified are listed in Table 2. A high percentage of the substances identified this way could be verified by ¹H NMR spectroscopy (see Table 2). The majority of these metabolites have been reported from fungi before. Two of our previous reports on metabolites from fungi isolated from *Tethya aurantium* deal with the antiproliferative scopularides A–B [25,26] and the sorbifuranones A–C [31].

Genus	Strain	Compound	Reported from ^a	Bioactivity ^{a,b}	Method of dereplication
		infectopyrone	Alternaria infectoria, Leptosphaeria maculans/Phoma lingum		UV, MS, NMR
Alternaria	LF177	phomenin A & B	Phoma tracheiphila, Leptosphaeria maculans/Phoma lingum, Ercolaria funera	phytotoxin	UV, MS, NMR
	I E627	sterigmatocystin	Aspergillus versicolor, Chaetomium	mycotoxin [32]	UV, MS
	LF027	notoamid D	Aspergillus sp.		UV, MS
		stephacidin A	Aspergillus ochraceus	cytotoxic	UV, MS, NMR
		cinereain	Botrytis cinerea	plant growth regulator, phytotoxin	UV, MS, NMR
Aspergillus	LF547	(2'E,4'E,6'E)-6-(1'- carboxyocta-2',4',6'- trien)-9-hydroxydrim-7- ene-11,12-olide	Aspergillus ustus		UV, MS, NMR
		(2'E,4'E,6'E)-6-(1'- carboxyocta-2',4',6'- trien)-9-hydroxydrim-7- ene-11-al	Aspergillus ustus		UV, MS, NMR
		compound A	hit in Scifinder [33], but no publication available		UV, MS, NMR
		compound B	no hit in database		UV, MS, NMR
	1 E552	sydonic acid	Aspergillus sydowii	weakly antibacterial [34]	UV, MS, NMR
	LI-555	hydroxysydonic acid	Aspergillus sydowii		UV, MS
	LF584	WIN-6 6306	Aspergillus flavipes	substance P antagonist, inhibition of HIV-1 integrase [35]	UV, MS
		aspochalasines	Aspergillus flavipes and other Aspergillus sp.	antibiotic, moderately cytotoxic [36]	UV, MS, NMR
		isokotanin A–C	Aspergillus alliaceus and Petromyces alliaceus	moderate antiinsectan activities [37]	UV, MS, NMR
Aspergillus/ Petromyces	LF491	14-(<i>N</i> , <i>N</i> -Dimethyl-L- leucinyloxy)paspalinine	Aspergillus alliaceus	potassium channel antagonist [38]	UV, MS, NMR
		nominine or a similar indoloditerpene	Aspergillus nomius, Aspergillus flavus, Petromyces alliaceus	insecticidal properties	UV, MS, NMR

Table 2. Secondary metabolites identified in extracts of fungi isolated from the sponge

 Tethya aurantium.

Bhoma	1 5259	monocerin	Helminthosporium monoceras, Fusarium larvarum, Dreschlera ravenelii, Exserohilum rostratum, Readeriella mirabilis	antifungal, insecticidal and phytotoxic properties	UV, MS
Pnoma	LF238	intermediate in the bio-synthesis of monocerin	Dreschlera ravenelii		UV, MS, NMR
		evernin- or isoeverninaldehyde	Guignardia laricina	weak phytotoxin	UV, MS, NMR
		epicoccamide	Epicoccum purparescens and other Epicoccum sp., Aurelia aurita		UV, MS
Epicoccum	LF552	orevactaene	Epicoccum nigrum	binding inhibitor of HIV-1 rev protein to Rev response element (RRE)	UV, MS
		echinulin	Eurotium repens, Aspergillus amstelodami, Aspergillus echinulatus, Aspergillus glaucus	experimentally hepatic and pulmonary effects	UV, MS
Eurotium	LF526	neoechinulines	Aspergillus amstelodami	antioxidative activity	UV, MS
		auroglaucines and flavoglaucine	Aspergillus and Eurotium spp.	mycotoxin, shows antineo-plastic properties [39]	UV, MS
	LF236	equisetin	Fusarium equiseti and Fusarium heterosporum	antibacterial activity, inhi-bition of HIV-1 integrase	UV, MS, NMR
Fusarium	LF238	equisetin	Fusarium equiseti and Fusarium heterosporum	antibacterial activity, inhi-bition of HIV-1 integrase	UV, MS, NMR
		fusarins	Fusarium moniliforme	mutagenic [40]	UV, MS
	LF594	enniatine	various <i>Fusarium</i> sp.	ionophore, insecticidal, ACAT inhibition, GABA receptor binding	UV, MS
Paecilomyces	LF592	leucinostatins	Paecilomyces lilacinus and other Paecilomyces sp.	active against Gram-positive bacteria and fungi	UV, MS

 Table 2. Cont.

	1					
		compound C	no hit in database		UV, MS, NMR	
			Penicillium			
			meleagrinum and	structurally similar to	IIV MS NMP	
		meleagim	Penicillium	tremorgenic mycotoxins		
			chrysogenum			
			Penicillium roquefortii			
		roquefortin C	and other	neurotoxin	UV, MS, NMR	
			Penicillium sp.			
		aarbifamanaa A. C	Penicillium		LIV MC NMD	
		sorbirurationes A–C	chrysogenum [31]		$\mathbf{U}\mathbf{v}$, $\mathbf{W}\mathbf{S}$, $\mathbf{W}\mathbf{W}\mathbf{K}$	
			Penicillium notatum,			
			Verticillium intertextum	weakly antibacterial [41]	UV, MS	
	LF066		Penicillium			
			chrysogenum,	β-1,6glucan biosynthesis		
			Verticillium intertextum,	inhibitor, antioxidative,		
		bisvertonolone	Acremonium strictum,	inducer of hyphal	UV, MS	
			Trichoderma	malformation in fungi		
			longibrachiatum			
			Aspergillus ochraceus,			
			Claviceps purpurea,			
D · · ·//·			Aspergillus aculeatus,			
Penicillium		ergochromes	Gliocladium sp.,	teratogenic effects	UV, MS	
			Penicillium oxalicum,	-		
			Phoma terrestris,			
			Pyrenochaeta terrestris			
				antineoplastig, antiviral		
			Penicillium	immunosuppressant		
	LF259	mycophenolic acid	brevicompactum and	properties, useful in	UV, MS	
			other Penicillium sp.	treating psoriasis and		
			-	leishmaniasis,		
			Penicillium citreoviride,			
			Penicillium toxicarium,			
		citreoviridins	Penicillium	neurotoxic	UV, MS, NMR	
	LF590		ochrosalmoneum,			
			Aspergillus terreus			
			Penicillium sp. and	inhibitor of		
		territrem B	Aspergillus terreus	acetylcholinesterase	UV, MS	
			Penicillium			
		sclerotiorin	sclerotiorum and	inhibits cholesterin ester	UV. MS	
	LF607		Penicillium multicolor	transfer protein activity		
		sclerotioramine			UV, MS, NMR	
		compound D	no hit in database		UV, MS, NMR	
				-		

 Table 2. Cont.

		griseofulvin	<i>Penicillium griseofulvum</i> and other <i>Penicillium</i> sp.	antifungal, possible human carcinogen	UV, MS, NMR
		tryptoquivalin	Aspergillus clavatus	tremorgenic toxin	UV, MS
Penicillium	LF596	nortryptoquivalin	Aspergillus clavatus and Aspergillus fumigatus	tremorgenic toxin	UV, MS
		fiscalins A and C	Neosartorya fischeri	substance P inhibitor, neurokinin binding inhibitor	UV, MS, NMR
Scopulariopsis	LF580	scopularide A and B	Scopulariopsis brevicaulis	antiproliferative [25,26]	UV, MS, NMR
		T-988B	Tilachlidium sp.	cytotoxic	UV, MS, NMR
Clonostachys	LF254	bionectin B	Bionectria byssicola	antibacterial (MRSA)	UV, MS, NMR
		verticillin C	Verticillium sp.	antibiotic	UV, MS

Table 2. Cont.

^a According to the Dictionary of Natural Products [42] if not stated otherwise; ^b blank cells indicate that no entry concerning bioactivity in the Dictionary of Natural Products was available and no report on bioactivity was found.

For four compounds, database searches [33,42–43] did not lead to a hit (B, C, D) or no publication was available (A). The structure elucidations of compounds A and B, metabolites with modified diketopiperazine substructures, and compound D, a new azaphilone derivative, are in progress. Compound C was identified as the new metabolite cillifuranone and its structure is described in the following.

Penicillium strain LF066, the producer of cillifuranone, was singled out for further investigations, because first surveys proved it to be a very potent producer of secondary metabolites. From the same strain, sorbifuranone B and C as well as 2',3'-dihydrosorbicillin have already been described by Bringmann *et al.* [31] and it was obvious that the full potential of the strain had not been exploited, yet. Further analysis led to the detection of xanthocillines and sorbifuranones and the isolation of sorbifuranone B, meleagrin, roquefortin C, a couple of ergochromes as well as the new cillifuranone (1) whose structure was elucidated based on 1D and 2D NMR experiments.

The ¹³C NMR spectrum of **1** displayed 10 clearly distinguishable carbon signals which was in good agreement with the molecular formula $C_{10}H_{12}O_4$, deduced from the result of a HRESI-MS measurement (calculated for $C_{10}H_{12}O_4$ Na 219.0628, measured 219.0627). The carbon signals included resonances belonging to three carbonyl or enol carbons (δ_C 170.9, 196.7 and 201.7), three sp³ hybridized methylene carbons (δ_C 20.9, 31.6 and 76.3), one methyl group (δ_C 14.0), two olefinic methines (δ_C 118.5 and 133.0) and finally one quaternary olefinic carbon (δ_C 112.6). The structure of the molecule could be delineated from 1D (¹H, ¹³C and DEPT) and 2D NMR (¹H-¹³C HSQC, ¹H-¹H COSY and ¹H-¹³C HMBC) spectra. From the ¹H-¹H COSY spectrum two separate spin systems could be identified. The first one consisted of the olefinic methine groups CH-9 (δ_C 133.0, δ_H 7.32) and CH-10 (δ_C 118.5, δ_H 6.83), forming an *E*-configured double bond as proven by their ³J coupling constant of 16 Hz. The corresponding protons H-9 and H-10 both showed ¹H-¹³C HMBC correlations to the carboxyl carbon C-11 (δ_C 170.9) as well as to the quarternary carbons of the furanone ring, C-3 (δ_C 201.7) to C-5 (δ_C 196.7). C-3 was the ketone carbonyl group included in the furanone substructure which was in accordance with its chemical shift. C-4 (δ_C 112.6) and C-5 were also part of the furanone and formed a tetrasubstituted double bond in which C-5 was located adjacent to an

oxygen atom. Compared to an unsubstituted enol, the resonance of C-5 was shifted further downfield due to the conjugation of the double bond $\Delta^{4,5}$ with the carbonyl carbon C-3. Apart from C-9 of the double bond $\Delta^{9,10}$, the carbonyl carbon C-3 and the oxygen atom of the furanone ring, $\Delta^{4,5}$ was also connected to C-6 of the second spin system consisting of the methylene groups CH₂-6 (δ_C 31.6, δ_H 2.76) and CH₂-7 (δ_C 20.9, δ_H 1.76) as well as the methyl-group CH₃-8 (δ_C 14.0, δ_H 1.03). Thus, the second spin system evidently was an n-propyl-chain. The furanone ring was completed with the methylene group CH₂-2 (δ_C 76.3, δ_H 4.67). Its ¹H and ¹³C shifts proved it to be linked to an oxyen atom, the ¹H-¹³C HMBC correlations to C-3 and C-5 secured its exact position. Thus, the structure of cillifuranone (1) could be unambiguously determined (Figure 3, Table 3).

Figure 3. Spin systems deduced from the ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectrum (bold) and selected ${}^{1}\text{H}{}^{-13}\text{C}$ HBMC correlations (arrows) relevant to the structure elucidation of cillifuranone (1).

 Table 3. NMR spectroscopic data of cillifuranone (1) in methanol-d4 (500 MHz).

Cillifuranone (1) was tested in a panel of bioassays evaluating the compound with respect to
cytotoxic, antimicrobial and enzyme inhibitory activity. Very low activity was only found against
Xanthomonas campestris (24% growth inhibition) and Septoria tritici (20% growth inhibition) at a
concentration of 100 μM.

Strain LF066 was identified as *Penicillium chrysogenum*, a species that in our experience often produces metabolites deriving from sorbicillinol as a biosynthetic precursor (sorbicillinoids). The detection of bisvertinolone and the sorbifuranones in culture extracts of the fungus was consistent with this experience. Furanone substructures are abundant in natural products and can be found in

metabolites from bacteria, fungi and plants [42] and presumably are products from different biosynthetic pathways [44-46]. From the genus *Penicillium* a number of furanone containing compounds has been described, including simple small molecules like penicillic acid, but also more complex ring structures such as the rotiorinols [47] or rugulovasines [48]. In most cases the furanone ring is a furan-2(5H)-one, whereas in cillifuranone (1) we have a furan-3(2H)-one. With that differentiation being made the number of related compounds gets fewer, furan-3(2H)-ones do not seem to be as ubiquituous as the furan-2(5H)-ones. From Penicillium strains, apart from the above mentioned sorbifuranones, berkelevamide D [49] and trachyspic acid [50], both spiro compounds like sorbifuranone C, are examples. The new cillifuranone represents a substructure of the sorbifuranones, albeit with a different configuration of the exocyclic double bond, and represents the substructure which makes the sorbifuranones unique in the compound class of the sorbicillinoids. Just recently Bringmann et al. [31] published the structures of the sorbifuranones and postulated 1 to be an intermediate in their biosynthesis (Figure 4) which makes the isolation of 1 a very interesting result. The only difference between the postulated intermediate and our structure is, as stated above, the configuration of the double bond. However, in the crude extract of the strain, we detected two isomers with the same molecular weight and a very similar UV-spectrum, so that we assume that both isomers were present, but after the isolation process only the E-isomer was obtained, so that it might be the favoured configuration under the applied conditions.

Figure 4. Biosynthesis of sorbifuranone A via Michael reaction of an isomer of cillifuranone (1) and sorbicillinol as postulated by Bringmann *et al.* (modified from [31]).

3. Experimental Section

3.1. Sampling Sites

The Limsky kanal (Canal di Lemme or Limsky channel) is a semi-closed fjord-like bay in the Adriatic Sea nearby Rovinj (Istrian Peninsula, Croatia). It is situated along an east-west axis, with an approximate length of 1 km and a maximum width of about 650 m and reaches a maximum depth of 32 m [51]. The sampling site was located at N45 7972' and E13 43,734'.

3.2. Sponge Collection

Several specimens (13) of the Mediterranean sponge *Tethya aurantium* were collected by scuba diving. They were obtained in April 2003, June 2004, May 2005 and August 2006 in a depth of 5-15 m. The sponges were collected into sterile plastic bags, cooled on ice and transported immediately to the laboratory, where they were washed three times with sterile filtered seawater (0.2 µm). The sponge tissue was then cut into small pieces of approximately 0.1 cm³ each, which were either placed directly onto GPY agar plates (LF236 to LF255) or homogenized and diluted with membrane-filtered seawater (all other isolates).

3.3. Isolation, Cultivation and Storage of Fungi

Fungi were isolated on a low nutrient GPY agar, based on natural seawater of 30 PSU, containing 0.1% glucose, 0.05% peptone, 0.01% yeast extract and 1.5% agar. Small pieces of sponge tissue or 50 μ L of the homogenate (undiluted or 1:10 or 1:100 diluted with sterile seawater) were used as inoculum. The agar plates were incubated for periods of 3 days to 4 weeks and were checked regularly for fungal colonies, which were then transferred to GPY agar plates. Pure cultures were used for morphological identification by light microscopy and for scanning electron microscopy. Fungal isolates were stored as agar slant cultures at 5 °C, and additionally were conserved at -80 °C using Cryobank vials (Mast Diagnostica).

3.4. Morphological Identification of Fungal Isolates

The morphology of GPY agar grown fungal isolates was studied using a stereo microscope $(10-80 \times \text{magnification})$ and a phase-contrast microscope $(300-500 \times \text{magnification})$. By this method, the majority of spore-producing isolates could be identified up to the generic level using the tables of Barnett and Hunter [52] and, for more detailed descriptions, the site of MycoBank [53]. Morphological identification of the selected pure cultures was supported by light microscopy and scanning electron microscopy.

3.5. Scanning Electron Microscopy

For electron microscopy, young GPY agar colonies were cut in 1 cm² samples, transferred through an ethanol series (30, 50, 70, 90, $3 \times 100\%$; each 15 min) and subsequently critical-point-dried in liquid carbon dioxide (Balzers CPD030). Samples were sputter-coated with gold-palladium (Balzers SCD004) and analyzed with a ZEISS DSM 940 scanning electron microscope. DNA-extraction was performed using the Precellys 24 system (Bertin Technologies). To one vial of a Precellys grinding kit with a glass beads matrix (diameter 0.5 mm, peqlab Biotechnologies GmbH) 400 μ L DNAse-free water (Fluka) were added. Cell material from the fungal culture was then transferred to this vial and homogenized two times for 45 s at a shaker frequency of 6500. The suspension was centrifuged at 6000 g for 10 min and 15 °C. The supernatant was stored at -20 °C until further use in PCR.

Fungal specific PCR by amplifying the ITS1-5.8S rRNA-ITS2 fragment was carried out using puReTaqTM Ready-To-GoTM PCR Beads (GE HEalthcare) with the ITS1 (5'-TCC GTA GGT GAA CCT GCG G-3') and ITS4 (5'-TCC TCC GCT TAT TGA TAT GC-3') primers according to White *et al.* [54]. PCR was conducted as follows: initial denaturation (2 min at 94 °C), 30 cycles of primer denaturation (40 s at 94 °C), annealing (40 s at 55 °C), and elongation (1 min at 72 °C) followed by a final elongation step (10 min at 72 °C). PCR products were checked for correct length (complete ITS1, 5.8S rRNA and ITS2 fragment length of *Penicillium brevicompactum* strain SCCM 10-I3 (EMBL-acc. No. EU587339 is 494 nucleotides), a 1% agarose gel in 1× TBE buffer (8.9 mM Tris, 8.9 mM borate, 0.2 mM EDTA).

PCR products were sequenced using the ABI PRISM[®] BigDyeTM Terminator Ready Reaction Kit (Applied Biosystems) on an ABI PRISM[®] 310 Genetic Analyzer (Perkin Elmer Applied Biosystems). The ITS1 primer was used for sequencing. Sequence data were edited with ChromasPro Version 1.15 (Technelysium Pty Ltd.). Sequences from fungal strains obtained during this study were submitted to the EMBL database and were assigned accession numbers (FR822769-FR822849). Closest relatives were identified by sequence comparison with the NCBI Genbank database using BLAST (Basic Local Alignment Search Tool) [55]. Sequences were aligned using the ClustalX version 2.0 software [56] and the alignment was refined manually using BioEdit (version 7.0.9.0) [57]. For alignment construction, ITS1-5.8S-ITS2 gene fragments from closest cultured relatives according to BLAST as well as type strains were used, whenever possible. However, not from all fungal species, ITS sequences from type strains were available in NCBI/Genbank. The ITS1-5.8S-ITS2 gene sequence of Saccharomyces boulardii strain UOA/HCPF EM10049 (acc. No. FJ433878) was used as outgroup sequence for phylogenetic calculations. Phylogenetic calculations were performed with all closest relatives according to BLAST results (data not shown). For clarity, not all of these sequences were included in Figure 2. Phylogeny was inferred using MrBayes version 3.1 [58,59], assuming the GTR (general time reversible) phylogenetic model with 6 substitution rate parameters, a gamma-shaped rate variation with a proportion of invariable sites and default priors of the program. 1,000,000 generations were calculated and sampled every 1000th generation. Burn-in frequency was set to 25% of the samples. The consensus tree was edited in Treeview 1.3 [60].

3.7. Fermentation and Production of Extracts

The fungi were inoculated in 2 L Erlenmeyer flasks containing 750 mL modified Wickerham-medium [61], which consisted of 1% glucose, 0.5% peptone, 0.3% yeast extract, 0.3% malt extract, 3% sodium chloride (pH = 6.8). After incubation for 11–20 days at 28 $^{\circ}$ C in the

dark as static cultures, extracts of the fungi were obtained. The mycelium was separated from the culture medium and extracted with ethanol (150 mL). The fermentation broth was extracted with ethyl acetate (400 mL). Both extracts were combined. Alternatively, cells and mycelium were not separated and the culture broth was extracted together with the cells of some cultures using ethyl acetate. After evaporation of the solvents, the powdery residue was reextracted with ethyl acetate (100 mL). The resulting residues were dissolved in 20 mL methanol and subjected to analytical HPLC-DAD-MS.

3.8. Chemical Analysis

UV-spectra of the identified metabolites were obtained on a NanoVue (GE Healthcare). NMR spectra were recorded on a Bruker DRX500 spectrometer (500 and 125 MHz for ¹H and ¹³C NMR, respectively), using the signals of the residual solvent protons and the solvent carbons as internal references (δ_H 3.31 ppm and δ_C 49.0 ppm for methanol-*d*4). High-resolution mass spectra were acquired on a benchtop time-of-flight spectrometer (MicrOTOF, Bruker Daltonics) with positive electrospray ionization. Analytical reversed phase HPLC-DAD-MS experiments were performed using a C₁₈ column (Phenomenex Onyx Monolithic C18, 100 × 3.00 mm) applying an H₂O (A)/MeCN (B) gradient with 0.1% HCOOH added to both solvents (gradient: 0 min 5% B, 4 min 60% B, 6 min 100% B; flow 2 mL/min) on a VWR Hitachi Elite LaChrom system coupled to an ESI-ion trap detector (Esquire 4000, Bruker Daltonics).

Preparative HPLC was carried out using a VWR system consisting of a P110 pump, a P311 UV detector, a smartline 3900 autosampler and a Phenomenex Gemini-NX C18 110A, 100×50 mm, column or a Merck Hitachi system consisting of an L-7150 pump, an L-2200 autosampler and an L-2450 diode array detector and a Phenomenex Gemini C18 110A AXIA, 100×21.20 mm, column.

For the preparation of cillifuranone (1), the same solvents were used as for the analytical HPLC, with a gradient from 10% B, increasing to 60% B in 17 min, to 100% B from 17 to 22 min. 1 eluted with a retention time of 6.8 min and the amount of 23.2 mg of 1 could be obtained from a culture volume of 10 L.

Properties of cillifuranone (1): pale yellow needles; UV (MeOH) λ_{max} (loge) 278 (4.36); for 1D and 2D NMR data see Table 3 and SI; HRESIMS *m*/*z* 219.0627 (calcd for C₁₀H₁₂O₄Na 219.0628).

3.9. Bioassays

Possible antimicrobial effects of cillifuranone (100 μ M) were tested against *Bacillus subtilis* (DSM 347), *Brevibacterium epidermidis* (DSM 20660), *Dermabacter hominis* (DSM 7083), *Erwinia amylovora* (DSM 50901), *Escherichia coli* K12 (DSM 498), *Pseudomonas fluorescens* (NCIMB 10586), *Propionibacterium acnes* (DSM 1897^T), *Pseudomonas aeruginosa* (DSM 50071), *Pseudomonas syringae* pv. *aptata* (DSM 50252), *Staphylococcus epidermidis* (DSM 20044), *Staphylococcus lentus* (DSM 6672), *Xanthomonas campestris* (DSM 2405), *Candida albicans* (DSM 1386), *Phytophthora infestans*, and *Septoria tritici* according to Schneemann *et al.* [62]. In addition, cytotoxic activity of cillifuranone (50 μ M) towards the human hepatocellular carcinoma cell line HepG2 and the human colon adenocarcinom cell line HT29 were performed according to Schneemann *et al.* [62]. Inhibitory activities of cillifuranone (10 μ M) against the enzymes

acetylcholinesterase, phosphodiesterase (PDE-4B2), glycogen synthase kinase 3β , protein tyrosin phosphatase 1B, and HIV-1 reverse transcriptase were tested according to Helaly *et al.* [63].

4. Conclusion

The marine sponge *T. aurantium* was found to be a valuable source of secondary metabolite producing fungi. In addition to a variety of known substances, several new natural products were found and it is likely that additional ones can be identified during further studies. The antiproliferative active scopularides [25,26] were the first new metabolites from a *Scopulariopsis* species isolated from *T. aurantium*. The new cillifuranone (1) is a second example of a natural product produced by a fungal isolate from *T. aurantium*. Additional compounds were detected of which the chemical structures are not yet described. The application of alternative cultivation methods, which have not been used so far, are expected to further increase the spectrum of produced metabolites of our isolates obtained from *T. aurantium*.

The combination of morphological criteria and the results of the ITS1-5.8S-ITS2 fragment sequencing have been proven to be a valuable tool for the identification of fungal isolates. Apart from representatives of genera, which are widely distributed in terrestrial samples and in addition also reported from different sponges, we also identified members of taxa which so far have not been described to be associated with sponges. These strains distantly affiliated to *Bartalinia* sp. and *Votutella* sp. and one strain most likely is a new *Phoma* species.

Acknowledgements

This study was supported by the BMBF (03F0414B) and by the Ministry of Science, Economic Affairs and Transport of the State of Schleswig-Holstein (Germany) in the frame of the "Future Program for Economy", which is co-financed by the European Union (EFRE). We are grateful to Rüdiger Stöhr and Tim Staufenberger for sampling the sponge specimens and to Arlette Erhard, Regine Koppe, Katja Kulke, Kerstin Nagel, Andrea Schneider, Susann Malien, and Regine Wicher for their technical assistance. We thank J.B. Speakman from BASF for providing the strains *P. infestans* and *S. tritici* as well as for the support in their cultivation. We are grateful to A.W.A.M. de Cock and N.R. de Wilde from the Centraalbureau voor Schimmelcultures (CBS, Utrecht, Netherlands) for the identification of strain LF064. We thank M.B. Schilhabel (Institute for Clinical Molecular Biology, University Hospital Schleswig-Holstein, Kiel, Germany) and his team for sequencing.

We thank G. Kohlmeyer-Yilmaz, M. Höftmann and F. Sönnichsen for running and processing NMR experiments at the Otto-Diels Institute of Organic Chemistry (Christian-Albrechts University of Kiel, Germany). We also thank U. Drieling (Otto-Diels Institute of Organic Chemistry (Christian-Albrechts University of Kiel, Germany) for giving us the opportunity and assisting us with the measurement of the optical rotation.

References

- 1. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. *J. Nat. Prod.* **2007**, *70*, 461–477.
- 2. Harvey, A.L. Natural products in drug discovery. *Drug Discov. Today* **2008**, *13*, 894–901.
- 3. Blunt, J.W.; Copp, B.R.; Hu, W.P.; Munro, M.H.; Northcote, P.T.; Prinsep, M.R. Marine natural products. *Nat. Prod. Rep.* **2009**, *26*, 170–244.
- 4. König, G.M.; Kehraus, S.; Seibert, S.F.; Abdel-Lateff, A.; Müller, D. Natural products from marine organisms and their associated microbes. *ChemBioChem* **2006**, *7*, 229–238.
- 5. Imhoff, J.F.; Stöhr, R. Sponge-associated bacteria: General overview and special aspects of bacteria associated with *Halichondria panicea*. *Prog. Mol. Subcell. Biol.* **2003**, *37*, 35–57.
- Gao, Z.; Li, B.; Zheng, C.; Wang, G. Molecular detection of fungal communities in the Hawaiian marine sponges *Suberites zeteki* and *Mycale armata*. *Appl. Environ. Microbiol.* 2008, 74, 6091–6101.
- 7. Siepmann, R.; Höhnk, W. Über Hefen und einige Pilze (Fungi imp., Hyphales) aus dem Nordatlantik. Ver öff. Inst. Meeresforsch. Bremerh. **1962**, *8*, 79–97.
- 8. Roth, F.J., Jr.; Ahearn, D.G.; Fell, J.W.; Meyers, S.P.; Meyer, S.A. Ecology and taxonomy of yeasts isolated from various marine substrates. *Limnol. Oceanogr.* **1962**, *7*, 178–185.
- 9. Höhnk, U.; Höhnk, W.; Ulken, U. Pilze aus marinen Schwämmen. Veröff. Inst. Meeresforsch. Bremerh. 1979, 17, 199–204.
- 10. Sponga, F.; Cavaletti, L.; Lazzaroni, A.; Borghi, A.; Ciciliato, I.; Losi, D.; Marinelli, F. Biodiversity and potentials of marine-derived microorganisms. *J. Biotechnol.* **1999**, *70*, 65–69.
- Höller, U.; Wright, A.D.; Matthée, G.F.; König, G.M.; Draeger, S.; Aust, H.J.; Schulz, B. Fungi from marine sponges: Diversity, biological activity and secondary metabolites. *Mycol. Res.* 2000, 104, 1354–1365.
- 12. Steffens, S. Prokaryoten und Mikrobielle Eukaryoten aus Marinen Schwämmen. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2003.
- 13. Namikoshi, M.; Akano, K.; Kobayashi, H.; Koike, Y.; Kitazawa, A.; Rondonuwu, A.B.; Pratasik, S.B. Distribution of marine filamentous fungi associated with marine sponges in coral reefs of Palau and Bunaken Island, Indonesia. *J. Tokyo Univ. Fish.* **2002**, *88*, 15–20.
- 14. Morrison-Gardiner, S. Dominant fungi from Australian coral reefs. *Fung. Divers.* 2002, 9, 105–121.
- 15. Pivkin, M.V.; Aleshko, S.A.; Krasokhin, V.B.; Khudyakova, Y.V. Fungal assemblages associated with sponges of the southern coast of Sakhalin Island. *Russ. J. Mar. Biol.* **2006**, *32*, 249–254.
- Proksch, P.; Ebel, R.; Edrada, R.A.; Riebe, F.; Liu, H.; Diesel, A.; Bayer, M.; Li, X.; Lin,W.H.; Grebenyuk, V.; Müller, W.E.G.; Draeger, S.; Zuccaro, A.; Schulz, B. Sponge-associated fungi and their bioactive compounds: The *Suberites* case. *Bot. Mar.* 2008, *51*, 209–218.
- 17. Wang, G.; Li, Q.; Zhu, P. Phylogenetic diversity of culturable fungi associated with the Hawaiian sponges *Suberites zeteki* and *Gelliodes fibrosa*. *Antonie Van Leeuwenhoek* **2008**, *93*, 163–174.
- Paz, Z.; Komon-Zelazowska, M.; Druzhinina, I.S.; Aveskamp, M.M.; Schnaiderman, A.; Aluma, A.; Carmeli, S.; Ilan, M.; Yarden, O. Diversity and potential antifungal properties of fungi associated with a Mediterranean sponge. *Fung. Divers.* 2010, 42, 17–26.

- 19. Bugni, T.S.; Ireland, C.M. Marine-derived fungi: A chemically and biologically diverse group of microorganisms. *Nat. Prod. Rep.* **2004**, *21*, 143–163.
- 20. Kohlmeyer, J.; Volkmann-Kohlmeyer, B. *Koralionastetaceae* fam. nov. (*Ascomycetes*) from coral rock. *Mycologia* **1987**, *79*, 764–778.
- 21. Amagata, T.; Minoura, K.; Numata, A. Gymnastatins F–H, cytostatic metabolites from the sponge-derived fungus *Gymnascella dankaliensis*. J. Nat. Prod. **2006**, 69, 1384–1388.
- 22. Thiel, V.; Neulinger, S.C.; Staufenberger, T.; Schmaljohann, R.; Imhoff, J.F. Spatial distribution of sponge-associated bacteria in the Mediterranean sponge *Tethya aurantium*. *FEMS Microbiol*. *Ecol.* **2007**, *59*, 47–63.
- 23. European Marine Life. Available online: http://www.european-marine-life.org/02/ tethya-aurantium.php (accessed on 15 December 2010).
- 24. Indriani, I.D. Biodiversity of Marine-Derived Fungi and Identification of their Metabolites. Ph.D. Thesis, University Düsseldorf, Düsseldorf, Germany, 2007.
- 25. Yu, Z.; Lang, G.; Kajahn, I.; Schmaljohann, R.; Imhoff, J.F. Scopularides A and B, cyclodepsipeptides from a marine sponge-derived fungus, *Scopulariopsis brevicaulis*. J. Nat. Prod. 2008, 71, 1052–1054.
- 26. Imhoff, J.F.; Yu, Z.; Lang, G.; Wiese, J.; Kalthoff, H.; Klose, S. Production and use of Antitumoral Cyclodepsipeptide. *Patent WO/2009/089810*, 23 July 2009.
- 27. Ebel, R. Secondary Metabolites from Marine-Derived Fungi. In *Frontiers in Marine Biotechnology*; Proksch, P., Müller, E.G., Eds.; Horizon Bioscience: Norfolk, UK, 2006; pp. 73–121.
- 28. Taylor, M.W.; Radax, R.; Steger, D.; Wagner, M. Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. *Microbiol. Mol. Biol. Rev.* **2007**, *71*, 295–347.
- 29. Wang, G. Diversity and biotechnological potential of the sponge-associated microbial consortia. *J. Ind. Microbiol. Biotechnol.* **2006**, *33*, 545–551.
- 30. Maldonado, M.; Cortadellas, N.; Trillas, M.I.; Rützler, K. Endosymbiotic yeast maternally transmitted in a marine sponge. *Biol. Bull.* **2005**, *209*, 94–106.
- Bringmann, G.; Lang, G.; Bruhn, T.; Schäffler, K.; Steffens, S.; Schmaljohann, R.; Wiese, J.; Imhoff, J.F. Sorbifuranones A–C, sorbicillinoid metabolites from *Penicillium* strains isolated from Mediterranean sponges. *Tetrahedron* 2010, *66*, 9894–9901.
- 32. Bünger, J.; Westphal, G.; Mönnich, A.; Hinnendahl, B.; Hallier, E.; Müller, M. Cytotoxicity of occupationally and environmentally relevant mycotoxins. *Toxicology* **2004**, *202*, 199–211.
- 33. SciFinder[®]. Available online: http://www.cas.org/products/scifindr/index.html (accessed on 13 December 2010).
- 34. Wei, M.Y.; Wang, C.Y.; Liu, Q.A.; Shao, C.L.; She, Z.G.; Lin, Y.C. Five sesquiterpenoids from a marine-derived fungus *Aspergillus* sp. isolated from a gorgonian *Dichotella gemmacea*. *Mar. Drugs* **2010**, *29*, 941–949.
- Rochfort, S.; Ford, J.; Ovenden, S.; Wan, S.S.; George, S.; Wildman, H.; Tait, R.M.; Meurer-Grimes, B.; Cox, S.; Coates, J.; Rhodes, D. A novel aspochalasin with HIV-1 integrase inhibitory activity from *Aspergillus flavipes*. J. Antibiot. 2005, 58, 279–283.
- 36. Zhou, G.X.; Wijeratne, E.M.; Bigelow, D.; Pierson, L.S., III; VanEtten, H.D.; Gunatilaka, A.A. Aspochalasins I, J, and K: Three new cytotoxic cytochalasans of *Aspergillus flavipes* from the rhizosphere of *Ericameria laricifolia* of the Sonoran Desert. *J. Nat. Prod.* **2004**, *67*, 328–332.

- 37. Laakso, J.A.; Narske, E.D.; Gloer, J.B.; Wicklow, D.T.; Dowd, P.F. Isokotanins A–C: New bicoumarins from the sclerotia of *Aspergillus alliaceus*. *J. Nat. Prod.* **1994**, *57*, 128–133.
- Junker, B.; Walker, A.; Connors, N.; Seeley, A.; Masurekar, P.; Hesse, M. Production of indole diterpenes by *Aspergillus alliaceus*. *Biotechnol. Bioeng.* 2006, 95, 919–937.
- Slack, G.J.; Puniani, E.; Frisvad, J.C.; Samson, R.A.; Miller, J.D. Secondary metabolites from *Eurotium* species, *Aspergillus calidoustus* and *A. insuetus* common in Canadian homes with a review of their chemistry and biological activities. *Mycol. Res.* 2009, 113, 480–490.
- 40. Wiebe, L.A.; Bjeldanes, F.F. Fusarin C, a mutagen from *Fusarium moniliforme* grown on corn. *J. Food Sci.* **1981**, *46*, 1424–1426.
- 41. Maskey, R.P.; Grün-Wollny, I.; Laatsch, H. Sorbicillin analogues and related dimeric compounds from *Penicillium notatum. J. Nat. Prod.* **2005**, *68*, 865–870.
- 42. Buckingham, J. Dictionary of Natural Products, Version 19.1; CRC Press: London, UK, 2010.
- 43. Blunt, J.W.; Munro, M.H.; Laatsch, H. AntiMarin Database; University of Canterbury: Christchurch, New Zealand, 2006.
- Niggemann, J.; Herrmann, M.; Gerth, K.; Irschik, H.; Reichenbach, H.; Höfle, G. Tuscolid and tuscoron A and B: Isolation, structural elucidation and studies on the biosynthesis of novel furan-3(2H)-one-containing metabolites from the myxobacterium *Sorangium cellulosum*. *Eur. J. Org. Chem.* 2004, 2004, 487–492.
- 45. Slaughter, C.J. The naturally occurring furanones: Formation and function from pheromone to food. *Biol. Rev. Camb. Philos. Soc.* **1999**, *74*, 259–276.
- White, S.; O'Callaghan, J.; Dobson, A.D. Cloning and molecular characterization of *Penicillium expansum* genes upregulated under conditions permissive for patulin biosynthesis. *FEMS Microbiol. Lett.* 2006, 255, 17–26.
- 47. Kanokmedhakul, S.; Kanokmedhakul, K.; Nasomjai, P.; Louangsysouphanh, S.; Soytong, K.; Isobe, M.; Kongsaeree, P.; Prabpai, S.; Suksamrarn, A. Antifungal azaphilones from the fungus *Chaetomium cupreum* CC3003. *J. Nat. Prod.* **2006**, *69*, 891–895.
- 48. Dorner, J.W.; Cole, R.J.; Hill, R.; Wicklow, D.; Cox, R.H. *Penicillium rubrum* and *Penicillium biforme*, new sources of rugulovasines A and B. *Appl. Environ. Microbiol.* **1980**, *40*, 685–687.
- 49. Stierle, A.A.; Stierle, D.B.; Patacini, B. The berkeleyamides; amides from the acid lake fungus *Penicillum rubrum. J. Nat. Prod.* **2008**, *71*, 856–860.
- Shiozawa, H.; Takahashi, M.; Takatsu, T.; Kinoshita, T.; Tanzawa, K.; Hosoya, T.; Furuya, K.; Takahashi, S.; Furihata, K.; Seto, H. Trachyspic acid, a new metabolite produced by *Talaromyces trachyspermus*, that inhibits tumor cell heparanase: Taxonomy of the producing strain, fermentation, isolation, structural elucidation, and biological activity. *J. Antibiot.* 1995, 48, 357–362.
- 51. Kuzmanović, N. Preliminarna Israživanja Dinamike Vodenih Masa LIMSKOG Kanala (Zavrsni Izvjestaj); Institut Ruder Boskovic: Rovinj, Croatia, 1985.
- 52. Barnett, H.L.; Hunter, B.B. *Illustrated Genera of Imperfect Fungi*, 4th ed.; APS Press: St. Paul, MN, USA, 1998.
- 53. Homepage of MycoBank. Available online: http://www.mycobank.com (accessed on 1 December 2010).

- 54. White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In *PCR Protocols: A Guide to Methods and Applications*; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322.
- 55. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410.
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; Thompson, J.D.; Gibson, T.J.; Higgins, D.G. ClustalW and ClustalX version 2.0. *Bioinformatics* 2007, 23, 2947–2948.
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucl. Acids Symp. Ser.* 1999, *41*, 95–98. Available online: http://www.mbio. ncsu.edu/BioEdit/bioedit.html (accessed on 15 April 2010).
- 58. Ronquist, F.; Huelsenbeck, J.P. MRBAYES 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* **2003**, *19*, 1572–1574.
- 59. Huelsenbeck, J.P.; Ronquist, F. Bayesian analysis of molecular evolution using MrBayes. In *Statistical Methods in Molecular Evolution*; Nielsen, R., Ed.; Springer-Verlag: New York, NY, USA, 2005; pp. 183–232.
- 60. Page, R.D.M. Treeview: An application to display phylogenetic trees on personal computers. *Comput. Appl. Biosci.* **1996**, *12*, 357–358.
- 61. Wickerham, L.J. Taxonomy of yeasts. U.S. Dep. Agr. Tech. Bull. 1951, 29, 1-6.
- 62. Schneemann, I.; Kajahn, I.; Ohlendorf, B.; Zinecker, H.; Erhard, A.; Nagel, K.; Wiese, J.; Imhoff, J.F. Mayamycin, a cytotoxic polyketide from a marine *Streptomyces* strain isolated from the marine sponge *Halichondria panicea*. J. Nat. Prod. **2010**, 73, 1309–1312.
- 63. Helaly, S.; Schneider, K.; Nachtigall, J.; Vikineswary, S.; Tan, G.Y.; Zinecker, H.; Imhoff, J.F.; Süssmuth, R.D.; Fiedler, H.P. Gombapyrones, new alpha-pyrone metabolites produced by *Streptomyces griseoruber* Acta 3662. *J. Antibiot.* **2009**, *62*, 445–452.

Samples Availability: Available from the authors.

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).