
Supplementary appendix
This appendix formed part of the original submission and has been peer reviewed. 
We post it as supplied by the authors. 

Supplement to: Weiss DJ, Lucas TCD, Nguyen M, et al. Mapping the global prevalence, 
incidence, and mortality of Plasmodium falciparum, 2000–17: a spatial and temporal 
modelling study. Lancet 2019; published online June 19. http://dx.doi.org/10.1016/
S0140-6736(19)31097-9.



1 
 

 
Supplementary Material for “The global landscape of Plasmodium 

falciparum prevalence, incidence, and mortality 2000–2017” 

Weiss, D.J., Lucas, T.C.D, Nguyen, M., Nandi, A., Bisanzio, D., Battle, K.E., Cameron, 
E., Twohig, K., Pfeffer, D., Rozier, J., Gibson, H., Rao, P., Casey, D., Bertozzi-Villa, A. 
Collins, E., Dalrymple, U., Gray, N., Harris, J., Howes, R. Kang, S., Keddie, S., May, D., 
Rumisha, S. Thorn, M., Barber, R., Fullman, N., Huynh, C., Kulikoff, R., Kutz, M., 
Naghavi, M., Nguyen, G., Shackelford, K., Vos, T., Wang, H., Smith, D.L. Lim, S., 
Murray, C.J.L., Bhatt, S., Hay, S.I. and Gething, P.W. 

 
 
Contents 
 
1  Morbidity  2 

1.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
 1.1.1 Raster covariates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
 1.1.2 Population data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
 1.1.3 Pf PR data collection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 
 1.1.4 Treatment-seeking data assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
 1.1.5 Surveillance data collection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
 1.2.1 Prevalence to incidence conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
 1.2.2 Africa prevalence model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
 1.2.3 Treatment-seeking model   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
 1.2.4 API estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   9 
 1.2.5 Outside of Africa: time-series models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
 1.2.6 Outside of Africa: disaggregation regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 

1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 
 
2  Mortality  64 

2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   64 
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

 2.2.1 Mortality in Africa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 
 2.2.2 Mortality in surveillance countries . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65 
 
3  Schematic diagrams 69 
 
4  Extended figures and table 72 
  
5  GATHER compliance 76 

5.1  Checklist  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76 

References 78 
 
 
 
 
 
 
 
 
 
 
 



2 
 

1 Morbidity 
 
1.1 Data 
 
1.1.1 Raster covariates 
 
A number of rasterised environmental and anthropological covariates at 2.5 arcminute (approximately 5km × 5km) 
resolution were used. The covariates and their associated references and processing notes are given in the table 
below. 
 

Table S1: Covariates used. 
 

 Covariate Source Processing 
 

    
 

 IGBP Combined Forest MODIS MCD12Q11 Process 1 
 

 EVI Mean MODIS MCD43B42 Process 2 
 

 EVI SD MODIS MCD43B42 Process 2 
 

 LST Daytime Annual Mean MODIS MOD11A23 Process 2 
 

 LST Daytime Annual SD MODIS MOD11A23 Process 2 
 

 LST Night Annual Mean MODIS MOD11A23 Process 2 
 

 LST Night Annual SD MODIS MOD11A23 Process 2 
 

TCB Annual Mean MODIS MCD43B42 Process 2 
 

TCB Annual SD MODIS MCD43B42 Process 2 
 

 Precipitation WorldClim4 Overall local mean 
 

Accessibility Weiss et al.5 2.5 arcminute spatial 
 

   mean 
 

 Nighttime lights (2010 stable lights) DMSP F18 Satellite 2.5 arcminute spatial 
 

  
SRTM 3 arcsecond Digital Elevation Model6 

mean 
 

 Elevation 2.5 arcminute spatial 
 

  
Zomer et al.7 

mean 
 

 CGIAR-CSI Global PET Database 2.5 arcminute spatial 
 

   mean 
 

    
 

 
The processes referred to in the table above are: 
 

• Process 1: The MODIS MCD12Q11 data were downloaded for the closest available relevant year (2013: the 
data are not available for subsequent years) and the IGBP landcover band was extracted, reprojected, and 
merged to a global lat/lon GeoTIFF grid at 15 arcsecond (approximately 500m) resolution. The various IGBP 
classes representing types of forest (Evergreen Needleleaf forest, Evergreen Broadleaf forest, etc) were 
selected and reclassified to a single forest/not-forest grid. This grid was then aggregated by a factor of 10 to 
2.5 arcminute (approximately 5km) resolution, where the output cell value represents the percentage of the 
100 input cells that were classified as any forest.  

• Process 2: The MODIS MCD43B4 (BRDF reflectance)2 and MOD11A2 (land surface temperature)3 products 
are available at an 8-daily interval. These were downloaded for the entire period of data availability and were 
converted to GeoTIFFs for the relevant metric by extracting the relevant bands and performing the necessary 
calculations to convert to the required indices such as EVI, before reprojecting and merging to global lat/lon 
GeoTIFFs at 30 arcsecond resolution. All of these grids were then gapfilled using the algorithm published by 
Weiss et al8. These 8-daily 30 arcsecond grids were then aggregated to 8-daily 2.5 arcminute (taking the 
spatial mean value of the 25 source pixels) and then those were aggregated (temporally) to annual 
summaries (using the spatial mean and SD values derived from the 25 source pixels). 

 
1.1.2 Population data 
 
Population figures were provided by the Institute of Health Metrics and Evaluation (IHME), the University of 
Washington, Seattle. The IHME population figures are derived from the United Nations (UN) official estimates 
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of population. Figures were provided at national level for all countries and at administration level one for Kenya, 
Saudi Arabia, Brazil, India, China, Mexico, and Indonesia.  
Initial global raster surfaces of population were created using a hybrid of data from GPWv49 and WorldPop10, with 
the latter taking priority for those pixels where both had population data. A raster was created in this manner for 
each year in which GPWv4 and WorldPop data were available (2000, 2005, 2010, 2015). For the intervening years 
(i.e. 2001-2004, etc), initial population rasters were created by linear interpolation of the surrounding five-yearly 
rasters.  
For each model year, a raster of IHME population was then created by distributing the IHME population figures for 
country/administrative units across the pixels bounded by each country/administrative unit, in the same proportions 
as the corresponding pixels in the hybrid GPWv4 / WorldPop raster for the corresponding year. That is, for a given 
IHME administrative unit for which a population figure was available, we calculated the total of the pixels in the 
initial raster for that year, divided this by the corresponding IHME figure for that administrative unit / year, and then 
divided the value of all the pixels in that administrative unit by the resulting number to ensure that the total of the 
pixels matched the IHME figure. As IHME values were available for years prior to 2000 but initial population grids 
were not, for years prior to 2000 we used the 2000 grid as the initial value. This process produced rasters matching 
total administrative population values from IHME with the pixel-level population values determined by the 
proportions of the initial rasters.  
MAP has previously published a global limits layer outside which transmission of malaria is highly unlikely.11 This 
layer was based on environmental factors, travel guidelines, and statements by the countries regarding their 
malaria-endemic status in 2010.  
An amended version of this global limits layer was created excluding the malaria-endemic status of the country. 
This exclusion was necessary because the research project covered data extending back to 2000 during which 
time the status of many countries have changed.  
This new global limits layer was applied over the IHME-adjusted population rasters to set population values in 
pixels outside the limits of transmission to be zero, resulting in population-at-risk grids.  
Rasterized versions of GADM12 geometry files for both sub-national administrative units and national borders were 
then used to provide a set of pixels in the IHME raster to sum to produce the population-at-risk for those sub-
national units. Eritrea was an exception in that GAUL13 geometry files were used rather than GADM. 
 
1.1.3 Pf PR data collection 
 
Plasodium falciparum parasite rate (Pf PR) data came from geopositioned community-based survey 
measurements of PfPR identified available from surveys like those conducted by the Demographic and Health 
Survey (DHS) program and through periodic literature searches from published data sources and direct 
communication with malaria specialists for unpublished measurements of Pf PR. The resulting PfPR dataset (n = 
43,187) included data from 43 of 45 Pf endemic countries in Sub-Saharan Africa (Figure S1). Further details of the 
collation of this data can be found in previous publications.14,15 

 
1.1.4 Treatment-seeking data assembly 
 
Data on treatment-seeking behaviours in malaria endemic countries were gathered from DHS and Malaria Indicator 
Surveys (MIS) that were conducted from the year 1995 onwards. Treatment-seeking rates were determined from 
the number of children reported to have fever in the past two weeks for which treatment was sought. Response 
codes were manually classified into treatment at public points of care, such as government hospitals, clinics and 
community health workers; and any treatment, which included all public treatment as well as private and non-
governmental organization (NGO) facilities. Friends, family and traditional and homeopathic healers were not 
considered as treatment. Data downloading, extraction and processing was automated using Feature Manipulation 
Engine (FME), version 2017, by Safe Software, using data obtained from the DHS online platform 
(https://dhsprogram.com/).16 Sampling weights were extracted and applied at the individual level following DHS 
guidelines17 and the total number of children, fever cases and cases that sought treatment (public- and any-) were 
summarized nationally. Where data were extreme outliers, the value from the survey report was used instead as 
the extreme difference pointed to some error in the automation (e.g. Bolivia, 2008).  
Data were extracted from a total of 152 surveys from 56 countries. These spanned the six WHO regions with 95 
surveys in the African region (AFRO), two in the Eastern Mediterranean (EMRO), three in Europe (EURO), 27 in 
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Figure S1: Pf PR AFRO data summary. 
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the Americas (PAHO), 17 in the South-East Asian region (SEARO) and 8 in the Western Pacific (WPRO). For 
descriptive purposes, countries in the African region were separated into the sub-African regions reported in the 
World Malaria Report: West Africa (AFRO-W), Central Africa (AFRO-C), East Africa and high-transmission areas 
in Southern Africa (AFRO-E), and low-transmission Southern African countries (AFRO-S).18  
Treatment-seeking rates were reported as national mean values for the percentage of children under the age of 
five with fever occurring in the two weeks before the survey, that were taken for treatment at a public or any type 
of facility. Treatment-seeking rates for India were reported as subnational (ADMIN1) mean values. These were 
calculated from the weighted individual child records from each survey. Upper and lower confidence intervals (95% 
CIs) for the national rates were calculated using the “survey” package in R.19  
Socio-economic indicator data were obtained from the World Bank.20 The variables selected had been identified 
as strong indicators of treatment-seeking rates from a previous literature review and statistical analysis.21 These 
included indicators of wealth and health infrastructure: gross domestic product (GDP) growth, health expenditure 
(% of GDP) and out-of-pocket health expenditure (% of total expenditure on health). Accessibility of care shown by 
the proportions of pregnant women that sought prenatal care and children immunized for diphtheria pertussis and 
tetanus (DPT). Finally, overall level of education was represented from rates of primary education completion. 
Matching indicator data to treatment-seeking rates was also done using the FME tool. 
 
1.1.5 Surveillance data collection 
 
The suitability, availability and quality of Pf PR and routine case reporting data, as well as detailed intervention 
coverage information, differs markedly inside versus outside Africa that separate modelling strategies were 
developed for countries inside Africa versus those outside. The exceptions were Algeria, Egypt, Morocco, 
Comoros, Mauritius, Cape Verde, Sao Tome and Principe, Botswana, Namibia, Eritrea, Djibouti, and South Africa. 
The modelling strategy use for most of Africa does not work well for island nations. The other countries have data 
availability that made modelling them with non-African countries more appropriate.  
Malaria endemic countries outside Africa tend to have less Pf PR data than those inside, in part because 
prevalence is generally lower and thus Pf PR becomes an inefficient way to measure malaria risk. Conversely, 
routine surveillance systems outside Africa are generally stronger, meaning that reports of malaria cases from 
health systems are more reliable and provide some insight into the total malaria burden in the community. The 
protocol for collecting this surveillance data is detailed below. 
 
1.1.5.1 Data selection criteria 
 
Rules for data selection were developed to address conflicts arising between data sources for any given 
administrative unit in a country for a given year. Where there was consistency in the data reported between 
sources, it would be possible to apply a simple rule e.g. favouring, the most recently published source. However, 
it is justifiable to assign a greater preference to some sorts of data over others regardless of the publication date. 
For example, two different sources might report the following conflicting data for a given administrative unit and 
year:  

• Microscopy figures for explicitly stated indigenous species-specific cases  
• A figure for API, with no indication on how this figure was calculated and whether or not it included only 

indigenous cases  
In this example, the microscopy-based figures offer estimates that are more robust for that administrative unit for 
that year, even if the overall API figures were published more recently.  
In order to determine which figures should feed into the model in cases of conflict, data was assessed using up 
to three steps of processing with the following rules:  

1. Allocate all data for a given admin unit-year combination to a “band” according to its perceived usefulness 
and reliability. 

• If the highest-ranking band for which there are data contains data from only one source, that data is 
used.  

• If the highest-ranking band for which there are data contains conflicting data from multiple sources, 
these data are processed as per step 2 – all data from lower-ranking bands are discarded. 
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2. Each set of figures from the same band is allocated points, according to the points table applicable to that 
band. This avoids giving points for irrelevant data – the points are for figures that are relevant for computing 
API with the data from that band.  

• If a set of figures from one source has higher points than all other sources, then that set of figures is 
preferred. 

• If two or more sources have equally high points, then those are processed as per step 3 and the other 
lower-scoring sources for that band are discarded.  

3. For sets of figures from equally-scoring sources, the most recently published source is preferred. If the 
sources have the same publication date, one is chosen at random.  

We allocate all data for a given admin unit-year combination to a band according to its perceived usefulness and 
reliability. Table S2 details the variety of data reported ranked in descending order of perceived usefulness and 
reliability.  
A row in a higher band will always be preferred over a row in a lower band. 
 

Table S2: Data bands.  
 

Band Band name Band description   
1 Has indigenous microscopy or 

RDT confirmed cases by species  
2 Has non-explicitly indigenous microscopy 

or RDT by species but no imported cases 

 
3 Has non-explicitly indigenous microscopy 

or RDT by species and species specific 
imported cases 

 
 
 

4 Has non-explicitly indigenous microscopy 
or RDT by species and has non-species-
specific imported cases 

 
 
 
 
 
 

 
5 Has indigenous microscopy with no 

species breakdown 

 
6 Has non-explicitly indigenous microscopy 

or RDT with no species breakdown but no 
imported cases 

 
7 Has non-explicitly indigenous microscopy 

or RDT with no species breakdown and 
imported cases 

 
 

8 Has confirmed cases without diagnostic 
details by species and no imported 
cases 

  
Indigenous microscopy or RDT confirmed cases 
by species is always the most desirable data.  
The fact these microscopy and RDT results are not 
explicitly stated to be indigenous is not an issue 
where there are no imported cases, so these are 
second only to explicitly indigenous results.  
Microscopy or RDTs with species breakdowns but 
not explicitly stated to be indigenous are slightly less 
ideal if there are imported cases, even if these are 
by species, since it forces the assumption that these 
need to be taken off, when this may actually vary by 
source reporting practice.  
Microscopy or RDT results with species breakdowns 
but not explicitly stated to be indigenous are less 
ideal if there are imported cases, especially where 
these are not by species, since a) it forces the 
assumption the imported cases should be subtracted 
from the total cases identified by the test results â€“ 
i.e. we have to assume the test results include both 
indigenous and imported cases because it is not 
otherwise stated in the source b) these have to be 
taken off by species according to the ratio.  
Microscopy or RDT results are better than confirmed 
cases without justification as to how they were 
confirmed. The best of these are explicitly 
indigenous, since there are no worries about 
imported cases. Microscopy or RDT results which 
are not broken down by species or explicitly stated to 
be indigenous where there are no imported cases to 
take off anyway are the next best results.  
Microscopy or RDT results which are not broken 
down by species and are not explicitly stated to be 
indigenous where there are imported cases to 
remove, whether or not these imported cases are 
species specific.  
Confirmed cases by species are preferred less 
than data with microscopy or RDT, because their 
confirmation method is unspecified. Those without 
imported cases to take off are preferred. 
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Band Band name Band description  
   

9 Has unjustified confirmed cases by species Where there are imported cases to take off confirmed  
 and imported cases by species cases by species, it is better to know the species 
  breakdown of the imported cases than to have to 
  compute an estimate. 

10 Has unjustified confirmed cases by species Here there are confirmed cases by species, but the 
 and imported cases not broken down by imported cases must be taken off based on the 
 species proportion of Pf:Pv:Other as given in the report if 
  provided, or by a national estimate otherwise. 

11 Has unjustified confirmed cases not broken Confirmed cases without justification or species 
 down by species and no imported cases breakdown must be reallocated by species; there are no 
  imported cases to take off, though, which is preferred. 

12 Has unjustified confirmed cases not broken Confirmed cases without justification or species 
 down by species and imported cases breakdown must be reallocated by species, and the 
  imported cases taken off (and reallocated by species 
  where these are not reported by species). 

13 Has total cases explicitly stated to be local Where the only cases are unconfirmed, those explicitly 
 population stated to come from the local population take 
  precedence. 

14 Has explicit unconfirmed cases not stated to Where the only cases are unconfirmed, and this is not 
 be local, or total cases not stated to be local explicitly stated to come from the local population. 

15 Has reported API The lowest band is where only API is reported, and 
  must be transformed back into cases via the 
  administrative unit population taken from IHME (and 
  hence UN) figures. 
    

 
When there are competing sources within a single band, these are tie broken according to points system below.  

Table S3: Tie-break points. 

Bands Condition Points  
    

1,5 Has an accompanying figure for number of tests undertaken 1  

2–4, 6–7 Has microscopy confirmation 1000 
 Has RDT confirmation 100 
 Has microscopy results and an accompanying figure for number of microscopy tests 10  
 undertaken, plus unconfirmed or total cases (local pop or not) values   
 Has RDT results and an accompanying figure for number of RDT tests undertaken, plus 1  
 unconfirmed or total cases (local pop or not) values   

8–10 Has a figure for P. falciparum 10  
 Has a figure for P. vivax 1  

11–12 Has a reported percentage or proportion of P. falciparum or P. vivax 1  

13–15 Has a reported slide positivity rate (SPR) or test positivity rate (TPR) to allow 10  
 estimation of percentage confirmed cases   
 Has a reported percentage or proportion of P. falciparum or P. vivax 1  
    

 
In the event of all the above criteria being equal for two or more competing sets of values, one was chosen at 
random. 
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1.2 Methods 
 
1.2.1 Prevalence to incidence conversion 
 
In a number of contexts throughout the analysis we wish to convert data from prevalence (P. falciparum parasite 
rate in ages 2–10, in the interval [0, 1]) to incidence (per person per year, in the interval [0, ∞]. To do this we use 
a model that was published previously.22 This involves applying an emulator approach to three P. falciparum 
microsimulation models and a standardized calibration data set to obtain an ensemble model for the Pf PR-
incidence relationship. While the approach itself addresses model uncertainty, the random effect terms in the 
model account for uncertainty due to the limited and noisy data by allowing for local, data-driven variations in the 
relationship between prevalence and incidence.  After fitting, this model defines a function 
 

 

We call this function the prevalence-incidence relationship. By applying this function, we do not propagate the 
uncertainty in the relationship itself; however, by doing so at the realisation level, we propagate uncertainty from 
the PfPR model. The rationale for this decision is to make the conversion computationally tractable over so many 
pixels and realisations.   
We also use the inverse of this model to calculate national-level Pf PR from national incidence estimates from 
time-series modelling (see section “Outside of Africa: time-series models”). However, due to the non-linear nature 
of the relationship, converting national-level incidence to prevalence does not give the same answer as converting 
pixel incidence to prevalence and taking the population-weighted mean. The value calculated from national-level 
incidence are therefore only used as covariates in CODEm models and not as final results. Instead, final aggregate 
prevalence values are calculated as the population weighted mean of pixel prevalence.  
While the prevalence-incidence relationship is a function over all values of prevalence ([0, 1]), the simple inverse 
of the equation is neither a function nor defined over all possible values of incidence. Therefore, for the reverse 
relationship, we cap incidence at the maximum value given by the prevalence-incidence relationship, 

 

 
This corresponds to a maximum prevalence and a maximum incidence rate of  per 
person per year.  
This inverse relationship also has no simple analytical form, so is solved numerically in each instance. 
 
The incidence-prevalence function is therefore 

 

As with the prevalence-incidence function, we apply the incidence-prevalence function at the realisation level to 
propagate uncertainty from the time-series models. 
 
1.2.2 Africa prevalence model 
 
The large assembly of geolocated Pf PR surveys maintained by MAP was used in a Bayesian spatiotemporal 
geostatistical model to predict Pf PR for every pixel-year in sub-Saharan Africa, representing an update to earlier 
work.14,23 The model took into account (i) Pf PR survey participant age ranges and diagnostic type; (ii) coverage of 
ITNs, IRS and treatment with an effective antimalarial drug and how these metrics changed through time at each 
data and prediction location; (iii) environmental conditions at each data and prediction location (including density 
of vegetation, temperature, humidity, rainfall, elevation, proximity to populated areas). The outcome was a 
predicted space-time “1cube” of Pf PR, standardized to the 2–10 age range, for each year 2000–2016.  
The Pf PR cube was then converted into an equivalent cube of the predicted incidence rate of clinical malaria using 
the prevalence-incidence relationship. This cube was then stratified into three broad age bins (0–5; 5–14; >15) 
using age-splitting models fitted previously.22 
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1.2.3 Treatment-seeking model 
 
1.2.3.1 Gaussian process to gap-fill the World Bank indices 
 
In order to predict treatment-seeking rates for the period 2000–2016, it was necessary to build a gap-filled time-
series of the World Bank indices. The approach used to create this was based on Gaussian process regression 
(GPR).24 To keep each index independent, the GPR was performed using only time (year) as a covariate. This 
reduced the possibility of introducing circularity in the time-series which could have been created by using other 
World Bank indices as covariates for the regression process. A GPR, based on a Gaussian process (GP),25 is well-
suited for estimating missing data and making forecasts in of time-series. A detailed mathematical description of 
GP procedures and its implementation can be found in.24 The GP implemented to estimate missing data in each 
World Bank index had the following form: 

 

Where y is the missing point in the World Bank index,  is the non-linear effect of year and   is 
Gaussian noise. The GPR was performed using R26 package GPfit27 which performs GPR using algorithm 
described in.28 For countries with greater than 90% missing data for the World Bank indices time-series, 
information was borrowed from other countries belonging to the same WHO region. These were made by 
performing a GPR on the indices using the limited data available from said country and randomly selected points 
from countries of the same region. All GPR processes were performed 1000 times to calculate the uncertainty of 
the estimates. 
 
1.2.3.2 Model approach 
 
Generalized additive mixed models (GAMM)29 were applied to obtain estimates of treatment-seeking rates for 
malaria endemic countries for the years 2000 to 2016. To calculate the proportion of children under five with fever 
that sought treatment at any type of provider or at public/government points of care, two GAMMs were built using 
information from indicator variables described above following covariate selection as described previously.21 The 
GAMM for seeking treatment at any type of facility included the proportions of the population that completed primary 
education and pregnant women that received prenatal care as covariates. Treatment-seeking at public facilities 
were predicted using public health expenditure and proportion of pregnant women given prenatal care. To account 
for temporal and spatial autocorrelation, both models included the survey year as a non-linear effect and the WHO 
region. To calculate uncertainty of predicted treatment-seeking estimates, the models were run 1000 times. Each 
run sampled from the range of the 95% CIs of the observed treatment-seeking rates and indicator variable values 
as described above. 
 
1.2.4 API estimation 
 
1.2.4.1 AFI formulae 
 
Annual Plasmodium falciparum incidence per 1000 population per year (AFI), was calculated at the national level 
for all countries and at every available sub-national level for which record sets could be obtained. The formula 
used for calculating non-species-specific annual parasite incidence per 1000 population per year (API) for a given 
administrative unit and year is trivial:  

 

where M is the number of cases for that administrative unit and year. However, the data gathered only includes 
cases that have been captured by the healthcare reporting systems of the respective countries. For countries with 
poorly developed health management information systems (HMIS), this might represent an under-reporting of 
cases. To obtain an estimate closer to the true number of cases for a given area, the formulae published by 
Cibulskis et al30 were used (with some additional considerations noted for India in a subsequent section). This 
approach takes the number of cases to be the mean of higher and lower estimates that each use treatment-seeking 
and slide positivity rates to adjust the stated number of cases: 
 



10 
 

 

 

Where:       

 

 
And: 
 
C - Reported number of confirmed malaria cases in a year. 
 
U - Reported number of unconfirmed malaria cases in a year. 
 
s - Slide positivity rate 

r - Reporting completeness 
 
p - The proportion of the population with fever that seeks treatment from health facilities covered by the public  
reporting system.  
n - The proportion of the population with fever that does not seek treatment. 

a - The proportion of the population with fever that seeks treatment from any health facility (public and private). 

Regarding the variables p, n, and a, the occurrence of fever is taken as a proxy for malaria.30 
 
The source data gathered seldom provided the data in a format corresponding directly with the variables in the 
above formulae. In many cases, interpretation of the data with a predefined set of rules was required to determine 
appropriate values. These rules are set out in subsequent sections. 
 
1.2.4.2 Calculating the proportion of P. falciparum cases from raw data 
 
The above equations relate to non-species-specific API calculations. In order to calculate AFI, these equations 
need to be used with figures specific to P. falciparum. Wherever possible, figures from the primary sources were 
used to calculate the proportion of P. falciparum cases.  
However, in many cases, only non-species-specific figures were available. In some cases, the source provided a 
figure for the proportion of cases that were P. falciparum. Often they did not, so national level figures for species 
breakdowns from the World Health Organization’s annual World Malaria Reports for 2016, 2015 and 201318,31,32 
were obtained.  
These were used to derive the proportion of P. falciparum malaria in each country and allow the calculation of 
confirmed and unconfirmed cases of P. falciparum.  
The figures in these sets of World Malaria Report annexes list the number of P. falciparum, P. vivax, and other 
malaria cases, from which a proportion can be calculated. There were two issues:  

• The dates covered by the reports overlapped: the 2015 report covered the years 2000–2014 and the 2012 
report covered the years 1990–2011. For the period of overlap (2000–2011), the 2015 report figures had 
precedence. The figures for 2015 were taken from the 2016 report.  

• No country had a complete set of species breakdown figures for the entire period. 
 
In summary, if no species-specific case figures were available in the source, the P. falciparum cases were 
calculated by multiplying the total cases by the best available species-proportion figures as follows:  

• An explicitly stated proportion/percentage in the source.  
• If there was nothing in the source paper, the World Health Organization national species proportions from 

the annexes of the World Malaria Reports for the year of the source were used. 
• If the WHO does not have a national species proportion for the year of the source, the mean species 

proportion over all years for that country was used. 
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1.2.4.3 Reported testing regimes 
 
The principle testing regimes reported in sub-national data sources were microscopy tests and rapid diagnostic 
tests (RDT).  
Only one source reported polymerase chain reaction (PCR) figures as a subset of microscopy tests. Since there 
was a lack of additional PCR results from other sources, the PCR values were not used. The vast majority of 
reported tests were microscopy. 
 
In a minority of cases, different sources reported conflicting figures for a given admin unit/year combination via 
microscopy tests versus RDTs.  
In these cases, the values from the microscopy tests took precedence over the RDT results. 
 
 
1.2.4.4 Reported number of confirmed malaria cases in a year (C) 
 
Confirmed cases were identified from sources where available and fell into the following six categories, listed in 
descending order of perceived quality: 
 

Table S4: Confirmed cases fell into the following categories, 
listed in descending order of perceived quality. 

 
Category of data Derivation of P. falciparum confirmed cases  
  
Species-specific cases confirmed via a testing Confirmed cases were taken directly from the data provided.  
regime (microscopy, RDT, or a combination of   
both), with figures of the numbers of tests   
undertaken and species-specific results.   
Species-specific cases confirmed via a testing Confirmed cases were taken directly from the data provided. 
regime (microscopy, RDT, or a combination of   
both) but without providing figures of the   
total number of examinations.   
Non-species-specific cases confirmed via a If the proportion of P. falciparum cases is stated in the source, 
testing regime (microscopy, RDT, or a it was used to calculate the number of confirmed cases. If not, 
combination of both), with figures of the the national proportion of P. falciparum cases was used for the 
numbers of tests undertaken and year of the source. If no national proportion was available for 
species-specific results. the year, the mean proportion for those years available was 
 used. 
Non-species-specific cases confirmed via a If the proportion of P. falciparum cases is stated in the source, 
testing regime (microscopy, RDT, or a it was used to calculate the number of confirmed cases. If not, 
combination of both) but without providing the national proportion of P. falciparum cases was used for the 
the figures on the number of tests undertaken. year of the source. If no national proportion was available for  
 the year, the mean proportion for those years available was 
 used. Species-specific cases, without indicating a testing 
 regime or providing raw figures. 
Note that an indication of species implies that Confirmed cases were taken directly from the data provided. 
a test process must have occurred and so the   
cases are confirmed.   
Non-species-specific cases explicitly stated as If the proportion of P. falciparum cases is stated in the source, 
confirmed, without indicating a testing regime it was used to calculate the number of confirmed cases. If not, 
or providing raw figures. Note the the national proportion of P. falciparum cases was used. If no 
requirement for the figures to have been national proportion was available for the year, the mean 
explicitly stated as confirmed. This is distinct proportion for those years available was used. 
from the data described in the next section,   
where malaria case figures were provided   
without indicating they were confirmed.   
   

 
The number of confirmed cases was taken as follows: 
 

• If there were just microscopy figures, these were used as the number of confirmed cases.  
• If there were just RDT figures, these were used as the number of confirmed cases.  
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• If there was no indication of the method used, the figures stated as confirmed were taken as the number of 
confirmed cases.  

• If there were microscopy and RDT figures, the total number of confirmed cases was taken as the sum of 
the microscopy and RDT figures.  

The result of the above was a species-specific number of confirmed cases but consideration needed to be taken 
to exclude cases that were imported.   
This depended on the source: 
 

• If the number of cases by microscopy / RDT / unstated method were explicitly stated as being indigenous, 
they were taken as the final figure for the number of confirmed cases.  

• If the number of cases by microscopy / RDT / unstated method were not explicitly stated as being indigenous 
and the source paper included species-specific figures of imported cases, these imported cases were 
subtracted from the appropriate species-specific number of confirmed cases to give a final figure for the 
number of confirmed cases.  

• If the number of cases by microscopy / RDT / unstated method were not explicitly stated as being indigenous 
and the source paper included non-species-specific figures of imported cases, these imported cases were 
divided into species-specific figures by applying the same proportion of species indicated by the test results. 

 
1.2.4.5 Reported number of unconfirmed cases in a year (U) 
 
Many sources provided figures for malaria cases without explicitly stating these were confirmed cases. These 
figures might be provided in addition to figures for confirmed cases (such as microscopy tests or simply explicitly 
stated confirmed figures) and were likely cases treated following a presumptive diagnosis based on symptoms. 
Case figures not explicitly stated to be confirmed were assumed to be unconfirmed. Where additional confirmed 
cases were provided by a source, these were subtracted from the total case figures to provide a calculated number 
of unconfirmed cases. Consideration was given to figures for imported cases:  

• If the source included figures for confirmed cases, the imported cases were subtracted from those in 
accordance to the proportion of species in the confirmed cases. 

• If the source figures did not indicate any confirmed cases, the imported cases were subtracted from the 
unconfirmed cases to provide a calculated figure for unconfirmed cases.  

Once a figure for unconfirmed cases had been calculated, it was used to calculate an estimate of the number of 
unconfirmed cases that were P. falciparum. This was done using the proportions described earlier in this document. 

 
1.2.4.6 Reporting completeness (r) 
 
Reporting completeness represents the number of health facilities reporting relative to the number of reports 
expected. Sub-national figures for reporting completeness were rare in the government sources collected. Our 
search only managed to find publicly available sub-national figures for Nepal.  
The National Malaria Control Programme in Eritrea also provided figures on request and on condition of keeping 
these figures confidential.  
Sub-national reporting completeness figures are submitted by countries to the World Health Organization as part 
of the annual data collection exercise for the World Malaria Report. However, the World Health Organization does 
not have the permission of the countries donating the data to share these sub-national level reporting figures to 
the research community.  
For those countries where sub-national reporting completeness figures were not available, national reporting 
completeness values derived from the World Health Organizations’ 2015 World Malaria Reports were used.18  
Most countries only had figures for between three and eight years. These figures were not necessarily for 
consecutive years. To fill in the gaps between years, a mean value of all available years was used. To deal with 
the missing data prior to the earliest year for which a figure was available, the earliest reporting completeness 
available was assigned to one of the following bands:  
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• > 80%  
• 50%-80%  
• < 50% 

 
The values for the missing earlier years were then calculated using a linear progression back to the base of the 
reporting completeness band the figure fell into. For example, if the earliest year for which data was available 
was 2005 and this figure was 65% reporting completeness, the years 2000 to 2004 would be calculated by 
decreasing the reporting completeness by even steps from 65% to 50% for the years 2004 to 2000 (with each 
year 1·5% less than the previous one): The justification for this is the assumption that reporting completeness 
has improved over time. For the < 50% band, a floor of 10% reporting completeness was assumed. 
 
1.2.4.7 Slide Positivity Rate (s) 
 
Slide Positivity Rate is defined as the number of microscopy slides positive for malaria divided by the total number 
of slides examined. For the purposes of calculating AFI, the SPRPf was required (i.e. the number of slides positive 
for P. falciparum divided by the total number of microscopy examinations undertaken).  
Where figures were available in the source for the total number of examinations undertaken and the resultant slide-
positives for P. falciparum, these were used to calculate SPRPf. Where the number of examinations and slide-
positivity figures were available but did not specify a species, SPR was calculated and then multiplied by the best 
available figure for the proportion of P. falciparum.  
If the source did not have slide examinations and slide-positivity figures available, national figures were used 
instead.  
The national figures were derived from the slide figures in the appendices of the World Health Organization’s 
annual World Malaria Reports for 2016, 2015 and 201218,31,32 .  
Because the data in these reports overlaps, the data in the most recent report took precedence over the earlier 
ones. 
 
No country reported slide figures for the entire period under research, so a mean value was calculated for each 
country based on the years for which there were figures. This mean value was then used for the missing years for 
the country. 
 
1.2.4.8 Population figures 
 
Most of the sub-national case data collected from Ministry of Health reports had associated population figures. 
However, while these population figures were collected, they were disregarded in favour of figures provided by 
IHME because of the latter’s provenance to the UN. For the purposes of calculating AFI, the population-at-risk 
was used as the denominator (see above). 
 
1.2.4.9 Treatment-seeking figures (p, n, a) 
 
Treatment-seeking rates are estimated as the proportion of children under five with fever that were taken to 
treatment (see section “Treatment-seeking model”). These values were used as representative of the population 
as a whole. 21   
These figures provide an upper, lower, and mean figure for each of: 
 

• The proportion of children under five with fever seeking treatment from health facilities covered by the 
public reporting system. 

• The proportion of children under five with fever seeking treatment from any health facility (public and 
private). 

 
To reflect the uncertainty in the reliability of the data sources collected, the following assignments were made to 
the AFI calculations to reflect -the widest possible range of estimates.  
For the calculation of Mupper:  
p was set to the lower estimate of the proportion of children under five with fever seeking treatment from health 
facilities covered by the public reporting system. The formula for the upper cases estimate adjusts for cases being 
missed due to persons with fever who did not seek treatment from the public healthcare system: both those who 
sought treatment from the private sector, and those who sought no treatment. Using the lower estimate for this 
proportion amplifies the estimated number of fevers omitted from the public sector reporting and, accordingly, the 



14 
 

upper cases estimate by the largest amount. The upper cases estimate assumes the same slide positivity rate, s, 
among those who do and do not seek treatment.30 

 
For the calculation of Mlower:  
p was set to the upper estimate of the proportion of children under five with fever seeking treatment from health 
facilities covered by the public reporting system. a was set to the lower estimate of the proportion of children under 
five with fever seeking treatment from any health facility (public and private).  
The formula for the lower cases estimate adjusts for cases missed by persons with fever who did not seek 
treatment from the public healthcare system. The upper estimate for public treatment-seeking is used, since this 
provides the most optimistic view of treatment-seeking from the public healthcare system, and therefore of the 
completeness of the reported figures from the public sector. This reduces the number of fevers to be added to 
those from the public sector, and therefore the lower cases estimate. 
 
By the same logic, the lower estimate for any treatment-seeking is used since, in combination with the upper public 
treatment- seeking estimate, this minimises the number of persons with fever estimated to have sought treatment 
within the private sector. Multiplying the slide positivity rate (s) used to adjust the unconfirmed cases by the 
proportion of persons with fever who sought any treatment applies the assumption that only fever cases that sought 
treatment had malaria and those that did not seek treatment had no malaria (s = 0). 
 
1.2.4.10 Special considerations for India 
 
A large number of malaria cases in India are treated in the private sector and hence go unreported by the HMIS.33 
The figures for cases and microscopy examinations in the appendices of the World Health Organization’s World 
Malaria Reports are those reported in the public sector and are therefore not representative of the total case burden 
in the country. Furthermore, the World Malaria Report figures represent data from both passive case detection 
(PCD: i.e. people presenting at hospital with symptoms) and active case detection (ACD: i.e. public healthcare 
going and screening everyone in a village).33  
This means that although we can calculate a slide positivity rate (SPR) from the figures of slides positive/slides 
examined in the public sector (published in the World Malaria Reports), we have no way of knowing what the SPR 
is for ACD or PCD – it is just a combined figure. The SPR for PCD will be higher than that for ACD – people are 
detected by PCD when they go to a hospital because they are ill. The ACD rates are based on active screening of 
fevers in the community meaning the febrile denominator population is likely to be larger than the subset that may 
seek care.  
The World Malaria Reports include figures for the high, low, and mean case estimates for countries for selected 
years, based on the formulae discussed in section 2.1. The inputs for these estimates are the cases and number 
of slides reported in the appendices and unpublished treatment-seeking estimates calculated from Measure DHS 
(http://www.dhsprogram.com/) survey results.33  
However, because the World Malaria Report figures for India do not include the totals for the significant number 
of cases treated in the private care sector and it is impossible to determine an appropriate value for SPR because 
of the high levels of ACD in the public sector, a different approach is taken for India for the high, low, and mean 
estimates in the World Malaria Reports. 33 Estimates of the number of private sector cases and cases where no 
treatment was sought are calculated by scaling up the public cases figures by the ratio of private treatment-seeking 
rates to public treatment-seeking rates and non-treatment-seeking rates to public treatment-seeking rates 
respectively.  
Because all cases in the private sector are passively detected, the private figures have to be modified upwards 
again by a factor to reflect that the PCD SPR is unknown.  
This factor is also applied to the non-treatment-seeking cases. The World Health Organization do this using 
unpublished figures from the private sector that are not available publically.33  
In order to provide credible national case figures for India, we adopted the same approach as the World Health 
Organization, taking the following steps:  
 

• The low, high, and mean case estimates for India published in the 2015, 2016 and 2017 World Malaria 
Reports18,32,34 were taken as anchor points. The years for which there are estimates are 2000, 2005, 2010, 
2012, 2013, 2014, 2015 and 2016.  
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• The public sector case figures from the World Malaria Reports and treatment-seeking estimates (see section 
“Treatment-seeking model”) were used to estimate private sector cases and non-treatment-seeking cases 
for each of the above years.  

• The private and non-treatment-seeking cases were then scaled up by adjusting the SPR applied to them: 
the SPR was increased until the sum of reported public sector cases, estimated private sector cases, and 
estimated non-treatment-seeking cases approximated the point estimates published in the 2015, 2016 and 
2017 World Malaria Reports18,32,34.  
We could not use the actual SPR adjustments used by the World Health Organization in the World Malaria 
Reports because these are unpublished. 

• The final national figures used by MAP were therefore the sum of reported public sector cases, estimated 
private sector cases scaled up by a modified SPR, and estimated non-treatment-seeking cases scaled up 
by a modified SPR.  

 
1.2.4.11 Special Considerations for countries in Elimination Phase 
 
Countries classified by the World Health Organization as being in “Malaria Elimination Phase” (i.e. API < 0·001)  
had their data treated as follows for the years they were in elimination phase: 
 

• The reporting completeness was taken as 1 (i.e. 100% of cases reported), regardless of the reporting 
completeness reported by sources. 

• The treatment-seeking values were taken to be 1 (i.e. 100% of patients seek treatment via the public 
healthcare system), regardless of the modelled treatment-seeking rates 

• All reported case figures were treated as confirmed, regardless of whether the sources explicitly reported 
them as such.  

Countries classified by the World Health Organization as being in “Pre-Elimination Phase” (i.e. API < 0·005) 
received no additional treatment during the calculation of AFI. 

 
1.2.4.12 Outlier removal 
 
Outlier removal was performed by two processes. At the national level, data were examined and removed if they 
were considered unreliable. Unreliability was inferred by large changes year to year within a country and 
comparisons to other published estimates. The table of national data exclusions is given in Table S5. 
A further outlier rule was applied to subnational data. Data were removed if they either had an AFI of > 600; or had 
an AFI of > 100 and a population at risk of less than 10% of its population. Indian subnational units were exempt 
from this rule. Additionally, this exclusion pertains only to areas modelled using the surveillance method (i.e., 
generally lower burden). In practice this outlier exclusion, which was rarely used and only applied to low 
administrative levels (e.g., admin level 3), occurred when large case numbers were attributed to small 
administrative units with low populations. The most common interpretation for such instances was that a medical 
facility (at which cases were counted) was located within the admin unit, and this facility attracted cases from 
neighbouring areas (thus inflating the apparent APIs). Because high-resolution data on treatment seeking and 
migration behaviour did not exist we were unable to estimate catchments areas beyond the administrative unit 
boundaries. Truncated probability distributions could have been used in the likelihood to mitigate this issue without 
outliering the data, but that approach would also have required an arbitrary threshold for truncation while also 
introducing computational issues in implementation. As a result, we were limited to this practical restriction. 
 
1.2.4.13 Post-hoc masking 
 
This step creates a raster cube that indicates where pixels should be exactly zero. 
 
Any administrative unit, year pair with zero AFI is included in the mask (i.e. set to zero) unless: 
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Table S5: National level data exclusion years. 
 

Country Excluded year(s) 
  
Afghanistan 1994 
Bangladesh < 2000 
Belize 1990–1999 
Bolivia 1990–1999 
Botswana < 1990 
Brazil < 1990 
Bhutan < 1998 
Colombia < 1990 
Comoros < 2004 
Djibouti < 1990 
Algeria < 2000 
Eritrea < 1990 
French Guiana < 1990 
Guyana < 1990 
Haiti 1993, 1999, 2002, 2003 
Indonesia < 2000 
India All but 2000, 2005, 2010, 2012-2016 
Iran < 1990 
Kyrgyzstan < 1990 
Cambodia < 1990 
South Korea < 2000 
Laos < 1990 
Sri Lanka < 1990 
Mexico < 1990 
Myanmar < 1990 
Namibia < 2000 
Oman < 1991 
Pakistan < 2000 
Peru < 2000 
Papua New Guinea < 2000 
Paraguay < 1990 
Solomon Islands < 2008 
Sao Tome Principe 1982 
Suriname < 2000 
Swaziland < 2000 
Tajikistan < 2000 
East Timor 1998 
Tanzania 2016 
Vietnam < 2000 
Yemen < 2001 
South Africa < 2000 
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Figure S2: API data availability at different admin levels and years. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure S3: API data availability (2000-2017) at admin levels used for time series modelling. 

 
 
 
 
 
 
 



18 
 

• The zero is due to a population at risk value of zero.  
• A child administrative unit (i.e. a smaller administrative unit fully contained by the large unit) has a non-zero 

AFI value.  
Furthermore, if a unit is included in the mask and all later data in that unit is zero AFI or missing, the mask is 
extrapolated forward in time. This is particularly needed because many areas stop reporting malaria cases once 
they have reached elimination.  
For example: 
 
If Goa had a zero AFI in 2011 and 2014 and an AFI of 0.1 in 2015, then the algorithm would: 
 

• Do nothing. 
 
If Goa had a zero AFI in 2011 and 2014 and nothing for 2015, then the algorithm would: 
 

• Do nothing until 2011.  
• Add 2011 to the mask, since it is reported as zero cases.  
• Add 2012-2015 to the mask, since the most recent previous value was a zero, and there are no future values. 

 
If Goa had a zero AFI in 2011 and 2014 and a zero AFI for 2015, then the algorithm would: 
 

• Do nothing until 2011.  
• Add 2011 to the mask, since it is reported as zero cases.  
• Add 2012-2014 to the mask, since the most recent previous value was a zero, and the next reported value 

in 2015 was zero. 
• Add 2015 to the mask, since it is reported as zero cases. 

 
Finally, all administrative unit, year pairs that are included in the mask are combined with the environmental 
limits to create a raster cube mask. 
 
1.2.5 Outside of Africa: time-series models 
 
For estimating malaria incidence outside of Africa, we first fitted time-series models to national API data. These 
time-series estimates were then included as data in the subsequent disaggregation regression models. 
 
1.2.5.1 National time-series 
 
The basic model for a national time-series includes short term (ST) and long term (LT) moving average elements 
to capture short range and long range variation. In hierarchical Bayesian notation, the API for country i in year j is 
modelled as: 
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Here, and  denote the API mean and standard deviation from the API data. The latter is calculated using 
the upper and lower bounds of the API estimates.  

represents the  covariate for country  in year . The covariates considered are the gap-filled World 
Bank indices:  

1. Health expenditure, total (% of GDP).  
2. Immunization, DPT (% of children ages 12-23 months).  
3. GDP growth (annual %).  
4. Pregnant women receiving prenatal care (%).  
5. Primary completion rate, total (% of relevant age group).  
6. Health expenditure, public (% of GDP). 

 
The covariates are normalised before testing and only significant covariates with negative coefficients are used in 
the final model. 
The above model is used for countries with large amounts of data over the study period. For countries with many 
missing values, we borrow information from countries in the same region by setting the long-term moving average 
( ) as a shared regional trend. IHME superregions, which are based on epidemiological similarity and 
geographic closeness, were used as regions. If there are conflicting trends within the IHME superregions 
(e.g. increasing versus decreasing), countries with similar trends were grouped and treated as separate regions. 
Note that the basic model presented above cannot predict zero API values. To account for zeros especially in low 
API settings, we introduce a Tobit factor. If , where  is the smallest  value corresponding 
to a non-zero API value for that country, we set the API estimate to zero. 
The models were defined with the R package Template Model Builder (TMB)35 and optimised in R. Once a model 
has been fit, we generate 1000 realisations of the API time series using the posterior distributions of the estimated 
parameters. These enable us to create 95% credible intervals. 
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1.2.5.1.1 Special case: Sri Lanka 
 
For Sri Lanka, we replace the moving average terms in time-series model by an autoregressive model of order 
one (AR(1)). In the hierarchical Bayesian formulation, we have, in place of ,  and their parameters: 

 

and the correlation parameter . This AR(1) model gives a better fit for the Sri Lanka data than a regional 
model with other Southeast Asian countries, resulting in narrower credible intervals. 
 
1.2.5.2 Subnational time-series 
 
The models for subnational time-series modelling in subnational units of Brazil, China, Indonesia, India, Iran and 
Mexico are based on the regional time-series model. (Kenya and Ethiopia use the cartographic approach and 
aggregate administrative level API via the pixels.) Now, instead of countries in one region sharing a LT moving 
average, subnational units in one country share the LT moving average.  
The main difference between the national models and the subnational models is that for the latter, the modelled 
subnational (ADMIN1) counts need to add up to the national count where we have national API data. That is, for 
subnational unit  in year , we require that: 

 

 
Model variants involve the Tobit factor and omitting unit-specific ST moving averages. 
 
For units where we have sufficient years with both subnational and national data, we proportionally adjust the 
subnational API data so that the subnational counts add up to the national count so as to help the model 
convergence (“prop_adj” = “Yes”). 
Instead of the World Bank covariates, we use analogous IHME covariates which are available at the ADMIN1 level: 
 

1. Fraction of children born in a given country-year who have received 3 doses of DPT3.  
2. GDP per capita (with 2010 as the base year and in international dollars).  
3. Proportion of pregnant women receiving any antenatal care from a skilled provider.  
4. Proportion of pregnant women receiving 4 or more antenatal care visits including 1 or more from a skilled 

provider. 
5. Age standardized educational attainment for males.  
6. Age standardized educational attainment for females.  
7. Education in years per capita for males.  
8. Education in years per capita for females. 

 
As before, the covariates are normalised before testing and only significant covariates with negative coefficients 
are used in the final model.  
Additional covariates used are: 
 

9. Mean national modelled API.  
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10. Indicator for the time period after 2012.  
11. Indicator for the time period after 2013.  
12. Indicator for the time period before 2000. 

 
Note that we do not model subnational units without API data or which only have data zeros but set their API 
values to zeros since we do not have data to suggest otherwise (“zeros” = “Yes”).  
If the national trend aggregated from the subnational time series differs significantly from that suggested by the 
national model, we proportionally adjust the subnational model draws using the national model draws (“draws”  
= “Yes”). This approach can be seen as using the subnational models to model the changes in the subnational 
proportions intead. Alternatively, we considered using the means of the national API estimates from the national 
model as a covariate. Note that a sensible coefficient sign for this would be positive.  
The details for the final models for the national and subnational models can be found in Tables S6, S7. 
 
 
1.2.5.2.1 Special case: India 
 
The API data for Indian ADMIN1 units have different features (fluctuating, steady decrease, drops in different years) 
which are difficult to capture with one subnational model. Instead, we group the units according to these features 
and model these ‘clusters’ separately. Since the clusters also have different degree of API variability from year to 
year, we allow the bandwidth of the moving averages (“st_bw”) to vary between clusters. Since the subnational 
API data have been adjusted proportionally against the national API data, we can aggregate the subnational API 
estimates (via counts) to get the final India national API estimates (“aggr.” = “Yes”). 
To get the India urban and rural time series we split the state level time series based on population densities. For 
each admin unit, the population density of urban and rural portions are calculated from the gridded population 
raster and IHME shapefiles that define urban and rural boundaries. The population densities are then linked to 
incidence rate via an empirical relationship. These urban and rural incidence rates are subsequently scaled, taking 
population into account, such that they are consistent with incidence rate for the entire admin unit.  
 

Table S6: National time-series model variant descriptions. 
 

      
 

Model 
Long-term 
trend 

Short-term 
trend Covariates Tobit Comments  

 

pf Country- Country- No No 
Trends governed by moving 
averages of differing smoothness.  

 

 specific specific   (Original model since no significant 
 

     covariates upon fitting.) 
 

rt Region- Country- Yes No 
LT trend acts as averaging between 
countries but favours those with 

 

 shared specific   more data; ST trend accounts for 
 

nc Region- Country- No No 
remaining variability in country. 

 

  
 

 shared specific     
 

      
 

simple_tobit Region- Country- Yes Yes 
Treat the log(API) as a latent process 
and  set a cut-off based on the smallest  

 

 shared specific   positive value observed. Predictions 
 

     under cut-off are set to zero 
 

      
 

simple_tobit_nc Region- Country- No Yes   
 

 shared specific     
 

       
 

standalone_tobit Country- Country- No Yes   
 

 specific specific     
 

standalone_tobit_c   Country- Country- Yes Yes   
 

 specific specific     
 

pf_ar Country- Country- Yes No 
The moving average terms are replaced 
by an 

 

 specific specific   AR(1) series. 
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Table S7: National time-series model variants by country. 
 

country national_region model covariates 
    

Bolivia ALA nc NA  
Ecuador ALA nc NA 
Paraguay ALA nc NA 
Peru ALA nc NA 
Brazil AmLA nc NA 
Colombia AmLA nc NA 
French Guiana AmLA nc NA 
Guyana AmLA nc NA 
Suriname AmLA nc NA 
Argentina Bespoke standalone_tobit_c 2  
Sri Lanka Bespoke pf_ar 6  
Belize CCLA nc NA 
Costa Rica CCLA nc NA 
Guatemala CCLA nc NA 
Mexico CCLA nc NA 
Nicaragua CCLA nc NA 
Armenia CEECA simple_tobit_nc NA 
Azerbaijan CEECA simple_tobit_nc NA 
Georgia CEECA simple_tobit_nc NA 
Kyrgyzstan CEECA simple_tobit_nc NA 
Uzbekistan CEECA simple_tobit_nc NA 
China EAsia nc NA 
North Korea EAsia nc NA 
South Korea EAsia nc NA 
Tajikistan EAsia nc NA 
Djibouti ESA 1 rt 1, 4, 5, 6  
Eritrea ESA 1 rt 1, 4, 5, 6  
South Sudan ESA 1 rt 1, 4, 5, 6  
Yemen ESA 1 rt 1, 4, 5, 6  
Comoros MCM rt 3, 4, 6 
Madagascar MCM rt 3, 4, 6 
Mayotte MCM rt 3, 4, 6 
Algeria NAME rt 5 
Iran NAME rt 5 
Oman NAME rt 5 
Saudi Arabia NAME rt 5 
East Timor Oceania nc NA 
Vanuatu Oceania nc NA 
Bangladesh SA rt 4, 5 
Bhutan SA rt 4, 5 
India SA rt 4, 5 
Nepal SA rt 4, 5 
Pakistan SA rt 4, 5 
Cambodia SEAsia rt 1, 4, 5, 6 
Indonesia SEAsia rt 1, 4, 5, 6 
Laos SEAsia rt 1, 4, 5, 6 
Myanmar SEAsia rt 1, 4, 5, 6 
Papua New Guinea SEAsia rt 1, 4, 5, 6 
Solomon Islands SEAsia rt 1, 4, 5, 6 
Vietnam SEAsia rt 1, 4, 5, 6 
Botswana SSA rt 1, 4, 5 
Namibia SSA rt 1, 4, 5 
South Africa SSA rt 1, 4, 5 
Swaziland SSA rt 1, 4, 5 
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 country  national_region model covariates  
 

           
 

 Afghanistan  Standalone  pf  NA 
 

 Cape Verde  Standalone  pf  NA 
 

 Dominican Republic Standalone  pf  NA 
 

 El Salvador  Standalone  pf  NA 
 

 Haiti  Standalone  pf  NA 
 

 Honduras  Standalone  pf  NA 
 

 Malaysia  Standalone  pf  NA 
 

 Morocco  Standalone  pf  NA 
 

 Panama  Standalone  pf  NA 
 

 Philippines  Standalone  pf  NA 
 

 Syria  Standalone  pf  NA 
 

 Thailand  Standalone pf NA 
 

 Turkmenistan  Standalone pf NA 
 

 Venezuela  Standalone pf NA 
 

 Iraq  Standalone Tobit standalone_tobit NA 
 

 Turkey  Standalone Tobit standalone_tobit NA 
 

 Guinea WSA 1  rt  6   
 

 Guinea-Bissau WSA 1  rt  6   
 

 Liberia WSA 1  rt  6   
 

 Sao Tome and Principe WSA 1  rt  6   
 

 Sierra Leone WSA 1  rt  6   
 

   
 

 
 

 Table S8: Subnational time-series model variant descriptions. 
 

         
 

 Long-term   Short-term        
 

Model trend trend  CovariatesTobit Comments    
 

       
 

pf Country- ADMIN1- Yes No  ADMIN1 units are modelled as a region 
 

 shared specific     (that is the country) similar to rt of the 
 

       national models; the corresponding national 
 

       API is calculated from the sum of the 
 

       subnational counts.    
 

pf_nrt No ADMIN1- Yes No  ADMIN1 units are modelled as individual 
 

  specific     units whose count sum is used to calculate 
 

pf_nrt_nc No ADMIN1- No No 
 the national API.    

 

     
 

  specific         
 

pf_nsubt Country- No  Yes No      
 

 shared          
 

pf_nsubt_nc Country- No  No No      
 

 shared          
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 Long-term   Short-term    
 

Model trend trend CovariatesTobit Comments 
 

      
 

pf_onec Country- Yes 1 No  
 

 shared     
 

pf_nsubt_onec Country- No 1 No  
 

 shared     
 

pf_nc Country- ADMIN1- No No  
 

 shared specific    
 

pf_tobit Country- ADMIN1- Yes Yes ADMIN1 units are given a latent log(API) 
 

 shared specific   process and cut-off (based on the smallest 
 

     positive value) to be able to account for and 
 

pf_tobit_nc Country- ADMIN1- No Yes 
predict data zeros. 

 

 
 

 shared specific    
 

cluster_sep No ADMIN1- Yes No This model is the same as pf_nrt but allows 
 

  specific   the bandwidth of the moving averages to be 
 

     varied more easily. 
 

      
 

 
 

Table S9: Subnational time-series model variants by country. 
 

 country subnational_units prop_adj zeros model covs st_bw draws aggr. 
          

 Brazil All Yes No pf_nsubt 4, 5, 7 0.5 No No 
 China All Yes Yes pf_tobit_nc   NA 0.5 No No 
 Indonesia All No No pf_nrt_onec 9 0.5 Yes No 
 India Andhra Pradesh, Bihar, Yes No cluster_sep 4, 5 1.2 No Yes 
  Chhattisgarh, Gujarat,        
  Haryana, Jharkhand,        
  Meghalaya, Mizoram,        
  Odisha, Telangana, Tripura        
 India Arunachal Pradesh, Assam, Yes No cluster_sep 1, 2, 6 1 No Yes 
  Kerala, Madhya Pradesh,        
  Maharashtra, Manipur,        
  Nagaland, Sikkim, West        
  Bengal, The Six Minor        
  Territories        
 India Himachal Pradesh, Punjab, Yes No cluster_sep 6, 10 1.8 No Yes 
  Uttarakhand, NCT of Delhi        
 India Jammu and Kashmir, Tamil Yes No cluster_sep 6, 10 1.5 No Yes 
  Nadu, Uttar Pradesh,        
  Rajasthan, Goa, Karnataka        
 Iran All No No pf 2, 8 0.5 No No 
 Mexico All Yes Yes pf_tobit_nc  NA 0.5 Yes No 
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1.2.6 Outside of Africa: disaggregation regression 
 
1.2.6.1 Machine learning with PR points 
 
In order to incorporate information from parasite prevalence surveys, we fitted a number of machine learning 
models to PR survey data and environmental covariates. Models were fitted using the ‘caret’ package.36 We then 
predicted these models globally. The new predicted surfaces were then used as covariates in later models. 
We used all data in the MAP Pf PR database as described above. The prevalence proportion was converted to 
incidence rate using the prevalence-incidence model. 

1.2.6.1.1     Model validation 

5-fold cross validation was used to select hyperparameters and measure model accuracy. For each model, grid 
search was used to create candidate hyperparameter sets. That is, for each hyperparameter a number of values 
were chosen and then models were fitted with all possible combinations of these values. Root mean squared error 
was used as the metric of model accuracy. 

1.2.6.1.2     Models and hyperparameters 

We fitted a number of regression models to predict incidence from the set of covariates. The models fitted were 
elastic nets,37 random forests,38 k-nearest neighbour, robust linear models,39 gradient boosted tree40, and neural 
networks.39 As the predictions from these models are to be used as covariates by later models, models with 
uncorrelated predictions are the most useful. These models were selected as they cover a number of underlying 
model structures (tree-based methods, nearest neighbour methods, linear models, neural networks) which gives 
them the best chance at making uncorrelated predictions. Finally, we selected a 5 models by fitting an elastic net 
model using prevalence as the response variable and out-of-sample predictions from the models as covariates. 
The alpha parameter (fraction of LASSO penalty vs ridge penalty) was set to 0.05. As the ridge penalty is strong, 
this will penalise correlated covariates, while including the LASSO penalty allows the model to force coefficients to 
exactly zero and therefore perform covariate selection. 

1.2.6.2 Disaggregation regression 
 
 
1.2.6.2.1 Data 
 
The response data is malaria incidence rate (per person per year) for an associated spatial polygon. The data 
comes from two sources.  
The first set of data comes from time-series models fitted previously. These time-series models are fitted to data 
at the national level and to the ADMIN1 level for a select few countries (Brazil, China, India, Indonesia, Iran, Mexico, 
and South Africa). In the case of India, each state is split into two, a rural polygon and an urban polygon. These 
are the results published as part of the GBD2017 study.41 Therefore, the results here are required to exactly match 
these results. As the data are from a time-series model, they are complete and have associated uncertainty 
estimates. In the subsequent disaggregation modelling, these datapoints are considered equally whether they are 
at the national or subnational level and are referred to collectively as “ADMIN0”.  
The second set of data are any additional subnational incidence rate data (sub-ADMIN1 for Brazil, China, India, 
Indonesia, Iran, Mexico, and South Africa). These data have upper and lower bounds based on Mupper and Mlower 
as described in section “AFI formulae”. The mean of the upper and lower bound is used as the point estimate of 
incidence. The polygons associated with these data range from ADMIN1 to ADMIN3 levels. They form a 
hierarchy with each polygon being considered a child of the larger polygon that it is within.  
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Figure S4: PfPR global data summary. 
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Figure S5: Africa 2005 input data facetted by admin level.
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Figure S6: Africa 2005 input data overplotted such that lower admin level data is on top.
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Figure S7: Africa 2015 input data facetted by admin level. 
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Figure S8: Africa 2015 input data overplotted such that lower admin level data is on top. 
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Figure S9: Arabia 2005 input data facetted by admin level. 
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Figure S10: Arabia 2005 input data overplotted such that lower admin level data is on top. 
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Figure S11: Arabia 2015 input data facetted by admin level. 
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Figure S12: Arabia 2015 input data overplotted such that lower admin level data is on top. 
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Figure S13: Central America 2005 input data facetted by admin level. 
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Figure S14: Central America 2005 input data overplotted such that lower admin level data is on top. 
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Figure S15: Central America 2015 input data facetted by admin level. 
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Figure S16: Central America 2015 input data overplotted such that lower admin level data is on top. 
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Figure S17: East and South-East Asia 2005 input data facetted by admin level. 
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Figure S18: East and South-East Asia 2005 input overplotted such that lower admin level data is on top. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



41 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S19: East and South-East Asia 2015 input data facetted by admin level. 
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Figure S20: East and South-East Asia 2015 input data overplotted such that lower admin level data is on 
top. 
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Figure S21: Indo-Pacific 2005 input data facetted by admin level. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



44 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure S22: Indo-Pacific 2005 input overplotted such that lower admin level data is on top. 
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Figure S23: Indo-Pacific 2015 input data facetted by admin level. 
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Figure S24: Indo-Pacific 2015 input data overplotted such that lower admin level data is on top. 
 
 
 
 
1.2.6.2.2 Model definition 
 
We define a multi-level, disaggregation regression model inspired by Sturrock et al.42 This model uses polygon-
level incidence rate data with pixel-level covariates and a spatial random field. Throughout, we index polygon-level 
variables with  and pixel level variables with .  
We start by defining the linear predictor which contains an intercept ( ), covariates ( ), a spatial random field 
( ) and an iid random effect ( ) 

. 

Here,  is a vector of  regression slope parameters and  is a vector of  covariate values at pixel . The 
grouping for the iid random effect is the ADMIN0 polygon that each polygon is within. The one exception to this is 
India as dividing the states into rural and urban means polygons no longer fit into a clear hierarchy. Therefore in 
India there is one group per state and each group will contain two ADMIN0 polygons.  

The spatial random effect is a continuous random field. For tractability the random field is implemented as a 
Gaussian Markov Random Field approximation to the full continuous field using the SPDE approach.43 We used  
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Figure S25: South America 2005 input data facetted by admin level. 
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Figure S26: South America 2005 input data overplotted such that lower admin level data is on top. 
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Figure S27: South America 2015 input data facetted by admin level. 
 
 
 
 
 
 
 
 
 
 
 
 
 



50 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S28: South America 2015 input data overplotted such that lower admin level data is on top. 
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Figure S29: South Asia 2005 input data facetted by admin level. 
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Figure S30: South Asia 2005 input data overplotted such that lower admin level data is on top. 
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Figure S31: South Asia 2015 input data facetted by admin level. 
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Figure S32: South Asia 2015 input data overplotted such that lower admin level data is on top. 
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the Matern covariance function (as required by this approximation) and created triangular meshes for each 
separately modelled region. 
We then define the link-function between the linear predictor and . In order to consistently link incidence and 
prevalence, we choose a link function that passes through prevalence. Furthermore, as this model is only being 
applied in lower burden areas, we constrain the model to be defined between an incidence of  and  
as  is the maximum value given by the prevalence incidence relationship. This corresponds to a maximum 
prevalence . This constraint prevents many stability issues caused by the non-monotonic shape of 
Prev2Inc. 
We have pixel-level prevalence  given by 

 

where the exponent simply scales the linear predictor to help small incidences to be distinguishable. From here 
we have 

 

to transform to the incidence scale. We then define the relationship between polygon-level incidence, , and 
pixel-level incidence,  

. 

with  being the pixel-level population and the summations going over all pixels in polygon . 

1.2.6.2.3 Likelihood definition 
 

We use a pseudo-likelihood that captures the uncertainty in incidence values. For each incidence value we have 
an upper bound and lower bound,  and . For ADMIN0 data these bounds are given by the 95% uncertainty 
intervals from the time-series models. For subnational data the bounds are given by incidence rates calculated 
using  and  as described in section “AFI formulae”. We define the likelihood for each incidence value 
as 

 

 

 

For data with  we assign  as the smallest non-zero value of . 

1.2.6.2.4 Priors  

We set the priors on the fixed effects,  and  as 

 

and 
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The weakly informative, zero centred priors on the regression parameters help to regularise the model. This is 
particularly important due to the large number of covariates being used relative to the number of data points 
being included in each modelled region. To select this value we considered that one covariate alone should not 
be able to explain the full range of observed malaria incidence rates. The 95% quantiles of this prior, coupled 
with approximately normal covariates scaled to have a standard deviation of one, would allow a single covariate 
to explain a little less than the full range of observed malaria incidence. 

The spatial random field has a Gaussian process prior with hyperpriors 

 

and 

 

Finally, the iid random effect has prior 

 

Again, the zero-centred, weakly-informative prior helps to prevent overfitting. 

 
1.2.6.2.5 Weighting by admin level 
 
The polygon data has a hierarchical structure with ADMIN0 polygons and nested, subnational ADMIN1 and 
ADMIN2 polygons. The data within these levels is very imbalanced and varies from country to country. One country 
may have an ADMIN0 data value and thousands of subnational data values, while another may only have data for 
ADMIN0.  
To address this imbalance, we weight the data by admin level. We weight ADMIN0 data by 5, ADMIN1 by 1, 
ADMIN2 by 0·01 and ADMIN3 by 0·005. In the South America region, due to the very large number of ADMIN2 
datapoints, we instead weight ADMIN2 and ADMIN3 by 0.001. Given that only around 10 countries are included in 
each regional analysis, we could not weight ADMIN0 data by 1 and downweight all other data as this would give 
unreasonable weight to the priors. It was decided that ADMIN1 data are reliable enough to be weighted by 1 with 
ADMIN0 data upweighted accordingly so that the summed weight of ADMIN1 data for a country is rarely much 
greater than the weight of the ADMIN0 unit. Similarly, the downweighting values for ADMIN2 and ADMIN3 units 
are determined so that the summed weight of these data rarely outweigh the higher-level, more reliable, data they 
are below in the hierarchy. 
 
1.2.6.2.6 Computational model fitting 
 
To find the maximum a posteriori estimate for the model, we optimise a vector θ of all parameters and 
hyperparameters such that we find the values that minimise . As this is proportional to the true 
posterior, the parameter values that minimise this expression are also the mode of the posterior.  
The model was defined with the R package Template Model Builder (TMB)35 and optimised in R. 
 
 
1.2.6.2.7 Temporal Interpolation 
 
To allow the malaria surface to change through time we fit two models per region (2005 and 2015). After fitting, 
both these models are predicted globally and malaria surfaces for other year are calculated by linearly interpolating 
between them. However it is only the underlying surface that it interpolated linearly as the results from the time-
series models are raked over these surfaces.  
For the covariates other than precipitation, night-time lights, elevation, accessibility and PET, the appropriate 
year data are used for both model fitting and prediction.  
We then linearly interpolate between the two models. For an incidence value at pixel  and year  we have 
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where  is the 2015 weight and is given by 

 

 
1.2.6.2.8 Masking and population 
 
After the models have been predicted and interpolated, such that we have a full space-time cube of incidence, we 
use a mask (see section “Post-hoc masking”) to ensure that areas known to be malaria free are predicted as such. 
This is particularly required because the model cannot predict a true zero. For all region-year pair in the post-hoc 
mask table, we set all incidence and prevalence pixels in the appropriate polygons to zero.  
Pixels with zero population-at-risk are also set to incidence and prevalence of zero as these metrics are undefined 
with a denominator of zero. 

 
1.2.6.2.9 Raking 
 

In order that our final results exactly match the results given in the Global Burden of Disease 201740 we rake the 
published over the final predicted raster so that for a given polygon , the predicted cases, , equals 
the data value . However, given that we wish to keep incidence and prevalence consistently linked, this raking 
must be applied to both of these values together. Furthermore, the raking must obey . We increase 
or decrease the  values by a nonlinear factor governed by  so that . 

If  we simply chose  such that 

 

However, if  we have to make sure that  never goes above . Therefore we define 

 

and its inverse 

. 

Here  is a parameter that governs how fast small prevalence values increase relative to large prevalence 
values. This parameter is set to . This value was chosen as it avoided creating very large incidence 
values too readily. 

Again we chose  such that 

. 

Therefore, for a given ADMIN0 polygon, we increase prevalence by  in the transformed space between 0 and 
infinity. After the inverse transformation, all values of  are therefore still within . 

 
 
 
 
 



58 
 

1.2.6.2.10 Bootstrap uncertainty 
 
After finding the maximum a posteriori estimate of the posterior we need a method to draw 100 independent 
samples from the posterior. However, the Laplace approximations calculated by Template Model Builder failed to 
find estimates for a multivariate normal approximation to the posterior. We also attempted to use Hamiltonion 
Markov Chains (HMC) to draw samples from the posterior, but the chains mixed very poorly, and given the slow 
evaluation of , the expected runtime to get 100 independent samples was prohibitively high. 
Similarly, attempts at importance sampling and relative importance sample failed.  
Instead we used bootstrapping to obtain 100 samples that characterise the uncertainty in the model. In designing 
the bootstrap resampling scheme, care was taken to account for both the fact that the ADMIN0 data raked over 
predicted maps come from a separate time-series model and the hierarchical nature of the polygon data.  
For each bootstrap resample, the following scheme was used: 
 

1. For each ADMIN0 unit, sample the posterior of the time-series models.  
2. Select polygons with probability 0·05.  
3. Remove all data that are descendants of selected polygons (i.e. admin units below the selected polygons).  
4. Remove the selected polygons themselves unless the polygon is ADMIN0.  
5. Fit the model to the remaining data and rake the surface back to the resampled ADMIN0 values. 

 
Therefore, for each bootstrap, there is always complete ADMIN0 data. This is required as the model is raked to 
these values in each case. Given that the bootstrap is characterising the uncertainty in the spatial pattern of 
incidence within ADMIN0 units, this is reasonable.  
This sampling scheme also means that the amount of missing data per bootstrap iteration is highly variable: some 
ADMIN0 units have thousands of descendant polygons while some have none. Furthermore, as each polygon is 
selected independently, different bootstrap iterations will have different numbers of ADMIN0 polygons that have all 
their descendants removed. In fact there is no guarantee that any ADMIN0 polygons are selected.  
We also note that we did not run 100 separate bootstraps of the machine learning prevalence models. Given 
their role as fixed covariates, similar to the modelled and gap filled environmental covariates, we deemed this 
unnecessary. 

 
1.2.6.2.11 Age splitting 
 
Finally, incidence and Pf PR estimates were age-split into three bins (0–5; 5–14; >15) using previously published 
models.22 

 

1.3 Results 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure S33: Absolute PfPR decrease 2005-2017. 
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Figure S34: Relative PfPR decrease 2005-2017. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S35: Absolute incidence decrease 2005-2017. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S36: Relative incidence decrease 2005-2017. 
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Figure S37: Lower and upper credible intervals (CIs) as well as the range for PfPR2-10 in 2005.  
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Figure S38: Lower and upper credible intervals (CIs) as well as the range for PfPR2-10 in 2017.  
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Figure S39: Lower and upper credible intervals (CIs) as well as the range for Pf incidence in 2005.  
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Figure S40: Lower and upper credible intervals (CIs) as well as the range for Pf incidence in 2017.  
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2 Mortality 
 
2.1 Data 
 
Data for P. falciparum mortality models included vital registration, verbal autopsy, and surveillance data 
obtained from the IHME Cause of Death (CoD) Database.45 The CoD database provides cause-specific 
mortality information at both site and administration unit levels. Variability in the type and abundance of 
CoD and related data meant that two distinct approaches were developed to estimate malaria mortality due 
to P. falciparum inside Africa and P. falciparum outside Africa. 
 
2.2 Methods 
 
2.2.1 Mortality in Africa 
 
2.2.1.1 Effective treatment 
 
Effective treatment was estimated by estimating the usage of three antimalarial drugs: chloroquine (CQ), 
sulfadoxine-pyrimethamine (SP) and artemisinin combination therapy (ACT).  
This was combined with estimates of drug resistance to give a spatiotemporal cube of effective treatment 
rate. To disaggregate into GBD age-bins, we separately ran a traditional national-level CODEm model with 
covariates: prevalence of P. falciparum in 2–10 age group, P. falciparum incidence rate, years of education, 
access to effective antimalarial drugs, and health system access. The effective treatment rate was 
combined with the incidence rate cube to derive a third cube estimating the incidence of untreated cases. 
Details of the models can be found in the appendix to Gething et al.23 
 
2.2.1.2 Case fatality rate 
 
For each site-year for which CoD malaria cause fraction data were available we (i) estimated a site-year 
specific malaria mortality rate, as the product of malaria cause fraction and all-cause mortality rate (with the 
latter drawn from national-level values); (ii) divided the malaria mortality rate by the site-year specific 
estimate of untreated malaria incidence rate to estimate a site-year specific case fatality rate (CFR) 
amongst untreated malaria cases. These derived site-year specific CFR values were then used in a mixed-
effects regression model to estimate pixel-year CFR for each 5km × 5km grid cell. The covariates used in 
the model were the log of country-year all-cause mortality, night-time lights, accessibility and fractional land-
cover classes, and study-specific age and sex, with the location of each study site included as a national-
level random effect. Data were weighted by sample size (i.e. the number of all-cause deaths observed in 
each study site-year). Further details can be found in previous publications.23 
 
2.2.1.3 Cartographic mortality cube 
 
To estimate the fatal burden of P. falciparum malaria in Africa, we used epidemiologic measures of non-
fatal malaria burden as described in section “Africa prevalence model”. Pixel-year predictions of CFR were 
then multiplied by the corresponding untreated incidence rate cube to yield a pixel-year mortality rate 
estimate, which was then multiplied by pixel-year population to compute pixel-year malaria death 
estimates. These were then aggregated to yield the required GBD national or subnational death estimates. 
 
2.2.2 Mortality in surveillance countries 
 
In locations modelled using the surveillance approach, we used a traditional cause of death ensemble 
model (CODEm),45 closely mirroring that used in GBD 2015. The model included the following covariates: 
prevalence of P. falciparum of 2–10 age group, P. falciparum incidence rate, years of education, access to 
effective antimalarial drugs, and health system access. 
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2.2.3 Raking death estimates to match GBD results 
 
Malaria mortality estimates both inside and outside of Africa were aligned to the malaria death results 
from the GBD2017 by raking (i.e. linearly scaling up or down) them over our modelled mortality surfaces. 
This process preserved the spatial heterogeneity from earlier models while taking advantage of the GBD 
approach for balancing all causes of death within a single model. In brief, the GBD estimates were 
generated at the administrative level by taking the mortality estimates from all causes of deaths in the 
study (including those for malaria that we produced), and then applying the CodCorrect model to ensure 
that the sum of deaths for all causes matched the modelled total from an all-cause envelope. This 
approach reflects a key principle of the GBD to ensure internal consistency in mortality estimates across 
causes and within the all-cause envelope. One consequence is that the original modelled link between 
malaria case incidence and malaria mortality is decoupled to enable the latter to be adjusted where 
required by the CodCorrect process. This, in turn, caused some areas with low-malaria burden to have 
implied CFRs that are outside expected ranges (i.e., implausible mortality given the modelled incidence). 
This was considered preferable than the possible alternatives of (a) omitting the CodCorrect step or (b) 
making post-hoc adjustments to underlying case incidence estimates to preserve originally modelled 
CFRs. 
 
2.3 Results 
 

 
 

Figure S41: Plot of the mean malaria mortality rate against the mean P. falciparum incidence rate. 
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Figure S42: Absolute mortality rate decrease 2005-2017.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S43: Relative mortality rate decrease 2005-2017. 
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Figure S44: Lower and upper credible intervals (CIs) as well as the range for Pf mortality in 2005.  
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Figure S45: Lower and upper credible intervals (CIs) as well as the range for Pf mortality in 2017.  
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3 Schematic diagrams 
 

 
Figure S46: Flowchart of the prevalence and incidence modelling process for cartographic countries. 
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Figure S47: Flowchart of the prevalence and incidence modelling process for surveillance countries. 

 

 
Figure S48: Flowchart of the spatial disaggregation of prevalence and incidence estimates for surveillance 

countries. 
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Figure S49: Flowchart of the mortality modelling process for cartographic countries. 
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4 Extended figures and table 
 
 
 
 

Year  Region  Pf-Free  Hypo  Meso  Hyper  Holo  
2005  Global  0.515 (0.515-0.515)  0.411 (0.409-0.413)  0.047 (0.044-0.051)  0.018 (0.015-0.020)  0.010 (0.008-0.012)  
2017  Global  0.591 (0.591-0.592)  0.344 (0.341-0.349)  0.057 (0.052-0.060)  0.007 (0.005-0.009)  0.001 (0.000-0.002)  
2005  Latin America and Caribbean  0.353 (0.353-0.353)  0.647 (0.646-0.647)  0.001 (0.000-0.001)  -  -  
2017  Latin America and Caribbean  0.665 (0.665-0.665)  0.335 (0.335-0.335)  0.000 (0.000-0.001)  -  -  
2005  North Africa and Middle East  0.701 (0.699-0.710)  0.294 (0.286-0.298)  0.005 (0.003-0.008)  -  -  
2017  North Africa and Middle East  0.769 (0.762-0.776)  0.228 (0.221-0.237)  0.003 (0.001-0.007)  -  -  
2005  South Asia  0.018 (0.018-0.018)  0.974 (0.971-0.975)  0.007 (0.006-0.010)  -  -  
2017  South Asia  0.179 (0.179-0.179)  0.817 (0.816-0.817)  0.004 (0.004-0.005)  -  -  
2005  Southeast Asia, East Asia, 

and Oceania  
0.718 (0.718-0.718)  0.280 (0.280-0.280)  0.002 (0.001-0.002)  -  -  

2017  Southeast Asia, East Asia, 
and Oceania  

0.822 (0.822-0.822)  0.176 (0.176-0.177)  0.001 (0.001-0.001)  -  -  

2005  Sub-Saharan Africa  0.102 (0.102-0.102)  0.262 (0.244-0.285)  0.391 (0.363-0.422)  0.157 (0.135-0.178)  0.088 (0.073-0.106)  
2017  Sub-Saharan Africa  0.090 (0.091-0.091)  0.449 (0.425-0.481)  0.404 (0.369-0.428)  0.050 (0.040-0.063)  0.006 (0.003-0.011)  

 
Table S10: Global and regional proportions of population within P. falciparum endemicity classes in 

2005 and 2016. Hypo- (PfPR >0·0 – 0·1); Meso- (>0·1 – 0·5); Hyper- (>0·5 – 0·75); and Holo-Endemic (>0·75 
– 1). 

 
 
 
 

 
 

Figure S50: Categorizing modeling strategies for Plasmodium falciparum endemic countries in 2000-
2017. Malaria estimates were generated with the cartographic method for countries colored light gray and with 
the surveillance-based method for countries colored dark gray. Countries colored as white have either never 

been malaria-endemic or achieved malaria-free status prior to the year 2000. 
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Figure S51: Plasmodium falciparum mortality rate (A and B) and count (C and D) presented with 
uncertainty intervals, stratified by age group, globally and for sub-Saharan Africa from 2000-2017. 95% 

uncertainty intervals shown via the corresponding colored bands behind the mean lines. Rates were 
calculated using the total population in each age group in all endemic countries. 
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Figure S52: The regional distribution of Plasmodium falciparum mortality rate (A) and count (B). To 
show trends across regions with such different endemicity levels the y-axis is scaled using the square root of 

incidence rate (per 100,000 individuals) and count (in millions of cases) for A and B, respectively. 95% 
uncertainty intervals shown via the corresponding colored bands behind the mean lines. Rates were 

calculated using the total population in all endemic countries within each region. 
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Figure S53: The distribution of global population in 2005 and 2017 relative to Plasmodium falciparum 
risk shown as a percentage of global population (left) and in total population on a log base 10 scale 

(right). P. falciparum risk is stratified according to standard endemic classes: Hypo- (PfPR >0·0 – 0·1); Meso- 
(>0·1 – 0·5); Hyper- (>0·5 – 0·75); and Holo-endemic (>0·75 – 1). 
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5 GATHER compliance 
 
5.1 Checklist 

 
Item   

 

No. Checklist item Reference 
 

   
 

 Objectives and funding  
 

1 Define the indicator(s), populations (including age, sex, and Main text (Introduction, page 4) 
 

 geographic entities), and time period(s) for which estimates  
 

 were made.  
 

2 List the funding sources for the work. Main text (funding statement) 
 

 Data Inputs  
 

 From multiple sources that are synthesized as part of the study:   
 

3 Describe how the data were identified and how the data were Main text (pages 5 - 6), 
 

 accessed. Supplementary Information (sections 
 

4 
 1.1 and 2.1) 

 

Specify the inclusion and exclusion criteria. Identify all ad-hoc Supplementary Information (section 
 

 exclusions. 1.1) 
 

5 Provide information on all included data sources and their Supplementary Information (sections 
 

 main characteristics. For each data source used, report 1.1 and 2.1) and online data citation 
 

 reference information or contact name/institution, population tools from http: 
 

 represented, data collection method, year(s) of data collection, //ghdx.healthdata.org/gbd-2017 and 
 

 sex and age range, diagnostic criteria or measurement method,  https://map.ox.ac.uk/gather- 
 

 and sample size, as relevant. compliance/ 
 

6 Identify and describe any categories of input data that have Main text (page 4) 
 

 potentially important biases (e.g., based on characteristics  
 

 listed in item 5).  
 

 Which contribute to the analysis but were not synthesized as  
 

 part of the study:  
 

7 Describe and give sources for any other data inputs. Supplementary Information (section 
 

  1.1) 
 

 For all data inputs:  
 

8 Provide all data inputs in a file format from which data can be http://ghdx.healthdata.org/gbd- 
 

 efficiently extracted (e.g., a spreadsheet rather than a PDF), 2017 and https: 
 

 including all relevant meta-data listed in item 5. For any data //map.ox.ac.uk/gather-compliance/ 
 

 inputs that cannot be shared because of ethical or legal  
 

 reasons, such as third-party ownership, provide a contact  
 

 name or the name of the institution that retains the right to  
 

 the data.  
 

 Data analysis  
 

9 Provide a conceptual overview of the data analysis method. A Main text (Methods overview) 
 

 diagram may be helpful.  
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Item    
No. Checklist item Reference 
   

10 Provide a detailed description of all steps of the analysis, Supplementary Information (sections  
 including mathematical formulae. This description should 1.2 and 2.2) 
 cover, as relevant, data cleaning, data pre-processing, data   
 adjustments and weighting of data sources, and mathematical   
 or statistical model(s).    

 
11 Describe how candidate models were evaluated and how 

the final model(s) were selected. 

 
12 Provide the results of an evaluation of model performance, if 

done, as well as the results of any relevant sensitivity analysis. 
 

13 Describe methods for calculating uncertainty of the 
estimates. State which sources of uncertainty were, and 
were not, accounted for in the uncertainty analysis. 

 
14 State how analytic or statistical source code used to 

generate estimates can be accessed. 
 

Results and Discussion 
 

15 Provide published estimates in a file format from which data 
can be efficiently extracted. 

 
16 Report a quantitative measure of the uncertainty of the 

estimates (e.g. uncertainty intervals). 
 

17 Interpret results in light of existing evidence. If updating a 
previous set of estimates, describe the reasons for changes 
in estimates. 

 
18 Discuss limitations of the estimates. Include a discussion 

of any modelling assumptions or data limitations that affect 
interpretation of the estimates.  

 
 
Main text (page 5-7) and 
Supplementary Information 
(sections 1.2 and 2.2) 
 
Supplementary Information 
(sections 1.2 and 2.2) 
 
Main text (page 5) and 
Supplementary Information 
(sections 1.2 and 2.2) 
 
Main text (page 7) 
 
 
 

 
Available from  
www.map.ox.ac.uk/malaria-burden 
 
Main text (Results, Table 1, Figures 
2 – 5) 
 
Research in context, Main text 
(Discussion) 

 
Main text (Discussion) 
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