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Abstract: The role of C17:0 and C15:0 in human health has recently been reinforced 

following a number of important biological and nutritional observations. Historically, odd 

chain saturated fatty acids (OCS-FAs) were used as internal standards in GC-MS methods 

of total fatty acids and LC-MS methods of intact lipids, as it was thought their concentrations 

were insignificant in humans. However, it has been thought that increased consumption of 

dairy products has an association with an increase in blood plasma OCS-FAs. However, there 

is currently no direct evidence but rather a casual association through epidemiology studies. 

Furthermore, a number of studies on cardiometabolic diseases have shown that plasma 

concentrations of OCS-FAs are associated with lower disease risk, although the mechanism 

responsible for this is debated. One possible mechanism for the endogenous production of 

OCS-FAs is α-oxidation, involving the activation, then hydroxylation of the α-carbon, 

followed by the removal of the terminal carboxyl group. Differentiation human adipocytes 

showed a distinct increase in the concentration of OCS-FAs, which was possibly caused 

through α-oxidation. Further evidence for an endogenous pathway, is in human plasma, 

where the ratio of C15:0 to C17:0 is approximately 1:2 which is contradictory to the expected 

levels of C15:0 to C17:0 roughly 2:1 as detected in dairy fat. We review the literature on the 

dietary consumption of OCS-FAs and their potential endogenous metabolism.  
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1. Introduction 

The development of chromatographic technologies has enabled the study of lipid biochemistry and 

the role lipids play in the pathology of many diseases. There has been an ever increasing drive to improve 

the resolution and sensitivity of lipid analysis starting from thin layer chromatography several decades 

ago to ultra-performance liquid chromatography coupled to high resolution mass spectrometry. This has 

led to a considerable development in the understanding of lipids and their associations with disease, 

through disease etiology, biomarkers, treatment and prevention. To the present date, there have been 

over 150 different diseases connected with lipids, ranging from high blood pressure and artery plaques [1], 

obesity [2], type II diabetes [3], cancer [4] and neurological disorders [5]. 

Fatty acids are the basic building blocks of more complex lipids [6] and their composition in different 

lipid species are often used as a means for comparison within a lipid class when examining disease and 

physiological perturbations in lipid metabolism. It has been shown that saturated fatty acids [7] are 

associated with increased relative risks for diseases such as coronary heart disease, atherosclerosis, fatty 

liver disease, inflammatory diseases and Alzheimer’s disease. In contrast many unsaturated fatty acids 

including both mono-unsaturated and poly-unsaturated, have been associated with a reduced risk for 

each of the previously described disorders in certain studies [8]. Fatty acid chain length is also used for 

the diagnosis and prognosis of disease with respect to adrenoleukodystrophy, Refsum disease and 

Zellweger Syndrome where the propagation of very long chain fatty acids (>22 Carbon length chain [9]) 

is indicative of these disorders [10]. 

The majority of research into fatty acid metabolism has been conducted primarily on even chain fatty 

acids (carbon chain length of 2–26) as these represent >99% of the total fatty acid plasma concentration 

in humans [11,12]. However there is also a detectable amount of odd-chain fatty acids in human tissue. 

As a result of the low concentration there are only four significantly measureable odd chain fatty acids, 

which are C15:0, C17:0, C17:1 [13] and C23:0 [14]. C15:0 and C17:0; these have been gaining research 

interest within the scientific community as they have been found to be important as: (1) quantitative 

internal standards; (2) biomarkers for dietary food intake assessment; (3) biomarkers for coronary heart 

disease (CHD) risk and type II diabetes mellitus (T2D) risk (although the objective is not to provide a 

meta-analysis of odd chain saturated fatty acids (OCS-FAs) and disease risk); (4) evidence for theories 

of alternate endogenous metabolic pathways, where these are discussed hereafter. The purpose of this 

review is to address these points and highlight the importance of their inclusion into routine lipidomic 

analyses, as well as introduce areas that need further research. 
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2. Discussion 

2.1. A Quantitative Internal Standard (Q-Int. Std.) 

Since the early 1960s, it has been concluded that odd chain saturated fatty acids (OCS-FAs) are of 

little physiological significance [15–17] and that the only real difference with their more abundant 

counterparts, even chain fatty acids [12], is seen in the endpoint of metabolism where OCS-FAs result 

in propionyl CoA [17] as opposed to acetyl CoA [18]. Moreover, the OCS-FAs are present at apparently 

insignificant plasma concentrations [19] (<0.5% total plasma fatty acid concentration [20]) and the 

natural variation of concentrations within blood plasma ranging from 0%–1% (Table 1).  

Table 1. (A,B) The relative concentrations of plasma fatty acid (12 to 24 number of carbons), 

within four lipid classes, showing the reported variation in the reporting of fatty acid profiles 

and the differences in the reported levels of OCS-FAs; NEFA—non-esterified fatty acids 

(free fatty acids), PL—Phospholipids, CE—Cholesterol esters, GL (TAGs)—Glycerolipids 

(Triacylglycerols). (A) Different studies showing the relative concentrations in plasma of 

fatty acids (12 to 24 carbons) with in different lipid classes; NEFA—non-esterified fatty 

acids (free fatty acids) [21–25], PL—Phospholipids [3,26–29]; (B) Different studies 

showing the relative concentrations in plasma of fatty acids (12 to 24 carbons) with in 

different lipid classes; CE—Cholesterol esters [3,25,30–32], GL (TAGs)—Glycerolipids 

(Triacylglycerols) [30,33–36]. 

(A) NEFA PL 

Saturated 

Fatty Acid 

n = 14, 

[21] 

n = 15, 

[22] 

n = 27, 

[23] 

n = 200, 

[24] 

n = *, 

[25] 

n = 1224, 

[26] 

n = 15164, 

[27] 

n = 4930, 

[12] 

n = 195, 

[28] 

n = 178, 

[29] 

n = 2657, 

[3] 

12:0 * 0.65 0.31 0.02 0.33 0.07 * * * * * 

12:1 * * 0.065 * * * * * * * * 

13:0 * * * * * * * * * * * 

14:0 3.5 2.96 1.93 0.74 2.79 0.69 0.36 * 0.27 0.32 * 

14:1 * * 0.23 0.04 * * * * * * * 

15:0 * 0.88 0.4 0.17 0.30 0.23 0.21 * 0.15 0.15 * 

15:1 * * * * * * * * * * * 

16:0 35.2 35.38 26.66 22.78 29.39 30.54 29.93 * 25.34 26.3 25.3 

16:1 2.7 2.01 5.5 2.64 6.77 0.95 * * 0.65 0.79 0.63 

16:2 * * 0.05 * * * * * * * * 

17:0 * 1.25 0.45 0.28 0.55 * 0.41 * 0.33 0.41 * 

17:1 * 0.3 0.38 * 0.47 * * * * * * 

17:2 * * 0.009 * * * * * * * * 

18:0 40.7 31.57 7.82 6.76 10.18 13.11 14.05 * 14.1 11.6 13.2 

18:1 8.7 * 40.37 22.45 36.99 10.44 * * 12.31 9.7 8.66 

18:2 9.2 7.53 9.96 * 7.00 20.91 * * 23.09 27.3 22.1 

18:3 * 0.64 1.39 0.49 0.53 0.30 * * 0.09 0.24 0.26 

18:4 * * 0.017 * 0.0074 * * * * * * 

19:0 * * 0.04 * * * * * * * * 

19:1 * * 0.17 * * * * * * * * 
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Table 1. Cont. 

(A) NEFA PL 

Saturated 

Fatty Acid 

n = 14, 

[21] 

n = 15, 

[22] 

n = 27, 

[23] 

n = 200, 

[24] 

n = *, 

[25] 

n = 1224, 

[26] 

n = 15164, 

[27] 

n = 4930, 

[12] 

n = 195, 

[28] 

n = 178, 

[29] 

n = 2657, 

[3] 

19:2 * * 0.014 * * * * * * * * 

20:0 * 0.89 0.044 0.19 0.11 0.24 0.13 * 0.03 * * 

20:1 * * 0.48 0.14 * 0.08 * * 0.28 * * 

20:2 * * 0.22 * 0.16 0.40 * * 0.37 * * 

20:3 * 0.6 0.23 0.01 0.45 3.25 * * 3.4 4.09 3.28 

20:4 * 0.36 0.68 * 1.35 10.97 * * 10.61 8.98 11.4 

20:5 * 0.66 0.107 0.34 0.20 0.84 * * 1.65 1.03 0.56 

22:0 * * 0.015 0.48 0.074 0.64 0.23 * * * * 

22:1 * * 0.042 * 0.013 * * * * * * 

22:2 * * 0.008 * 0.0051 * * * * * * 

22:3 * * 0.01 * 0.0018 * * * * * * 

22:4 * 1.74 0.12 * 0.17 0.41 * * 0.33 * * 

22:5 * * 0.22 0.41 0.18 1.18 * * 1.45 1.25 * 

22:6 * * 0.50 1.49 0.46 3.37 * * 5.41 4.03 2.76 

23:0 * * * * 0.015 * 0.10 * * * * 

24:0 * * 0.02 * 0.12 0.46 0.22 * * * * 

24:1 * * 0.045 * 0.032 0.78 * * * * * 

Total MUFA * * 47.41 25.91 * * * 11.61 13.25 * 10 

Total PUFA * * 13.70 * * * * * * * 42.7 

n6-PUFA * 7.77 11.3 * * * * 38.24 38.06 * * 

n3-PUFA * 1.01 2.24 2.62 * * * 7.81 * * * 

Trans FA * * * * * * * 0.1 * * * 

Total OCFA * * 0.22 0.45 1.34 * * 0.6 0.49 * * 

Total SFA * * * 31.85 * * * 39.95 40.19 * 40.5 

UNITS % of total free fatty acids % total phospholipid fatty acid 

(B) CE GL (TAG’s) 

Saturated 

Fatty Acid 

n = 2657, 

[3] 

n = 29, 

[31] 

n = 3570, 

[32] 

n = *, 

[25] 

n = 25, 

[30] 

n = 25, 

[30] 
n = 7, [33] n = 22, [35] n = 8, [34] n = 19, [36] 

12:0 * 0 * * * * * * 0.17 * 

12:1 * * * * * * * * * * 

13:0 * 0 * * * * * * * * 

14:0 * 0.43 * 2.17 1.03 1.62 1.9 1.07 2.03 4.27 

14:1 * 0.04 * 0.81 * * * * * * 

15:0 * 0 * 0.81 * * * * * 0.67 

15:1 * * * 0.81 * * * * * * 

16:0 9.95 12.41 10.04 5.15 10.71 21.73 26.7 24.37 25.08 30.59 

16:1 2.51 4.06 * 3.01 3.16 4.51 3.2 3.42 * 8.38 

16:2 * * * 0.84 * * * * * * 

17:0 * 0.04 * 0.87 * * 0.8 * * * 

17:1 * 0.2 * 0.84 * * * * * * 

17:2 * * * * * * * * * * 

18:0 0.9 0.96 * 1.60 2.39 3.29 5.9 2.52 2.52 3.15 
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Table 1. Cont. 

(B) CE GL (TAG’s) 

Saturated 

Fatty Acid 

n = 2657, 

[3] 

n = 29, 

[31] 

n = 3570, 

[32] 

n = *, 

[25] 

n = 25, 

[30] 

n = 25, 

[30] 
n = 7, [33] n = 22, [35] n = 8, [34] n = 19, [36] 

18:1 16 22.78 15.99 14.46 18.33 42.66 43.9 44.83 35.73 34.71 

18:2 54.3 47.81 54.16 49.36 53.59 20.03 14.4 20.36 23.3 10.96 

18:3 1.43 0.47 * 3.99 1.52 2.13 * 0.48 1.74 1.13 

18:4 * * * * * * * 0 * * 

19:0 * 0 * * * * * * * * 

19:1 * * * * * * * * * * 

19:2 * * * * * * * * * * 

20:0 * 0.5 * 0.87 * * 0.2 0.16 * * 

20:1 * * * 0.81 0.06 0.33 * 0.35 * * 

20:2 * * * 0.92 0.15 0.36 * 0 * * 

20:3 0.75 * * 0.87 0.61 0.31 0.2 0 * * 

20:4 8.16 * * 6.43 6.93 1.46 0.7 1.04 1.45 0.75 

20:5 0.54 * 0.53 * 0.68 0.23 * 0 0.17 0.27 

22:0 * * * 0.62 * * 0.7 * * * 

22:1 * * * 0.27 * * * 0 * * 

22:2 * * * 0.27 * * * * * * 

22:3 * * * * * * * * * * 

22:4 * * * * 0.01 0.18 * * * * 

22:5 * * * * 0.21 0.53 * 0.21 0.32 0.28 

22:6 0.43 * 0.44 0.87 0.66 0.56 0.5 0.67 0.68 0.7 

23:0 * * * * * * * * * * 

24:0 * * * * * * * * * * 

24:1 * * * * * * * 0.11 * * 

Total MUFA 18.6 * 18.59 * * * * 48.71 40.99 * 

Total PUFA 65.8 * 65.67 * * * 15.6 22.87 28.66 * 

n6-PUFA * * * * * * * 21.4 26.37 * 

n3-PUFA * * * * * * * 1.47 2.19 * 

Trans FA * * * * * * * * * * 

Total OCFA * * * 3.34 * * * * * * 

Total SFA 11.6 * 11.69 * * * 37.5 28.12 30.27 * 

UNITS % of total cholesterol ester fatty acid % of total glycerolipid fatty acid 

Note: * denotes data that was not indicated in the literature referenced. 

Therefore, it seemed logical to use OCS-FAs as low cost internal standards in quantitative analysis, 

with C15:0 and C17:0 fatty acids being the most widely employed in this context. Many assumed that 

the concentration of OCS-FAs did not vary in different diseases and these lipid species were commonly 

used for standards in analyses [37,38]. The natural plasma variation of C17:0 could account for a  

0.2%–3% variation in the Q-Int.Std response and therefore affecting the observed instrument abundance 

of the analyte (see Table 2). Furthermore the use of these two OCS-FAs as quantitative internal standards 

does not allow them to be incorporated into any statistical analysis and therefore no correlations can be 
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deduced. This is the main limiting factor to the amount of understand there is around the physiology  

of OCS-FAs. 

Table 2. The estimated error associated with the use of endogenous compounds containing. 

C15:0 and C17:0 as internal standards. For each study the added amount of internal standard 

and the possible sample endogenous concentration are shown, allowing the calculation  

of the possible error of the measured abundance of each of the fatty acid internal  

standards [25,39,40]. 

 

Fatty Acid 

Internal 

Standard 

Internal Standard and Sample Preparation 

Int.Std 

Concentration 

in Sample 

Sample 

Concentration 

of Fatty Acid 

Sample 

Compound 

Error 

References 

1 15:0 

50 µL of plasma was mixed with 25 µL of internal standard 

solution containing 3.01 µg of C15:0 in methanol, 1 mL of 

DMP, and 20 µL of concentrated aqueous HCL. Capped and 

kept at room temperature for 15 min. Pyridine, 10 µL, was 

added, then concentrated to 100 µL. Diluted with 0.5 mL of 

water. Aqueous mixture extracted with 0.5 mL of isooctane. 

After centrifugation, isooctane layer was transferred to a 1-mL 

serum, and evaporated to dryness. Then capped. Isooctane  

(30–50 µL) was added through the cap. An aliquot (0.5 µL) 

was injected into the gas chromatograph instrument. 

60.2 µg/mL ≈0.158 µg/mL 0.26% [37] 

2 15:0 

Blood is collected into a heparinized tube and centrifuged 

immediately at 4 °C in a refrigerated centrifuge. The plasma is 

removed and stored at −15 °C. Internal standard of 150 nMol 

C15:0 is added to 1.0 mL plasma. The FFA are extracted into  

20 mL of extraction solvent by shaking for 30 s. The plasma 

and extraction solvent is left at room temperature for 15 min 

then mixed for 10 s. After centrifugation, the organic phase 

removed and evaporated to dryness. The dry residue contains 

the FFA and is stable for at least 24 h at 4 °C. The residue is 

dissolved in 100 µL n-heptane and 2 µL injected into the gas 

chromatograph instrument. 

36.35 µg/mL ≈0.158 µg/mL 0.43% [21] 

3 17:0 

Aliquots of 250 µL plasma were also placed into extraction 

tubes. A quantity of 50 µL of the C17:0 internal standard 

solution was spiked to each concentration standard and each 

plasma sample. The standards and plasma samples were 

extracted with freshly prepared Dole solution. The extracts 

were taken to dryness and were analyzed on the LC-MS.  

One tenth of the volume of each concentration standard and 

each plasma sample were re-suspended in 400 µL of buffer A 

(80% acetonitrile, 0.5 mM ammonium acetate) prior to 

injecting 10 µL onto the LC-MS. 

12 µg/mL ≈0.323 µg/mL 2.69% [38] 
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2.2. Biomarkers for Dietary Food Intake 

With the realization that OCS-FAs are in fact a biologically relevant component of blood plasma [41] 

there came further insights into their origin, either through consumption or through endogenous 

biosynthetic or metabolic pathways. This new direction of research interest led into the field of dietary 

analysis and the aim to identify lipidome variations [42] in relation to dietary intake [43–45].  

OCS-FAs have attracted attention with research into the possible application of C15:0 in blood as  

a marker for intake of milk fat [26] and subsequent relations between intake of milk fat with metabolic 

risk factors, the results in the first published study that focused on this showed that the proportions of 

C15:0 in cholesterol esters are associated with the total amount of fat from milk products (r = 0.46,  

p < 0.0001), based on 62 men [46].  

The reason that OCS-FAs are thought to mainly originate from dairy fat [26,47] is based on the 

observation that these fatty acids are produced in relatively high levels by rumen microbial fermentation 

and microbial de-novo lipogenesis [4] which then transfers into the host animal. Likewise with 

mammals, microbial de-novo lipogenesis is the act of repeated condensation of malonyl CoA with acetyl 

CoA as a starting compound [48]; the sequential condensation reactions predominantly produce 

hexadecanoic acid (C16:0) and to a lesser extent [4] octadecanoic acid (C18:0) (both even chain length 

fatty acids) depending on the microbial species population ratio (Protozoa: Bacteria) [6,49]. 

Alternatively, in certain microbes C17:0 can be produced where propionic acid, a volatile fatty acid, is 

trapped by the rumen bacteria/protozoa and can be used in de novo lipogenesis [50–52]. OCS-FAs can 

also be produced by the rumen microbial population via a different pathway which utilizes the removal 

of the α-carbon [18,53], through the conversion of C16:0 or C18:0 (end products of de novo lipogenesis) 

to a hydroxyl fatty acid followed by decarboxylation to produce either C15:0 or C17:0, respectively. 

This results in up to a 40% (depending on the bacterial species [4]) OCS-FAs content within the cells, 

with the remainder being predominantly C16:0 and C18:0. 

These OCS-FAs are then taken up by the animal from the rumen and utilized by the mammary  

gland for the production of milk fat. The resulting level of OCS-FAs in milk fat is only between  

1.5%–2.5% [54,55]. The ratio of C15:0 to C17:0 is approximately 2:1 [56,57] within ruminant milk fat 

in part due to the more abundant production of C16:0 over C18:0 during de novo lipogenesis.  

In addition to this the apparent oxidation of the individual fatty acids decreases with an increase in carbon 

chain length [58] resulting in this approximate 2:1 ratio. The process of α-oxidation is summarized in 

Figure 1B.  

Dairy fat intake has been positively correlated with an increase in plasma saturated fatty acids [59] 

and on this basis one might expect that there would be a negative association between dairy fat and 

cardiovascular health however recent evidence contradicts this assumption. In a number of studies, 

saturated fatty acids have been proven to be detrimental to health, in part associated with their effect on 

cholesterol metabolism as well as direct factors associated with disease [7]. On the contrary, C15:0 and 

C17:0 have been shown to have a positive association with health which relate to several disease 

etiologies [12,60]. Holman and colleagues [61] described that both C15:0 and C17:0 have an association 

with reduced risk for developing multiple sclerosis with it being suggested that the fatty acids are thought 

to increase the fluidity of membranes [62] to a similar degree as polyunsaturated fatty acids. The authors 

hypothesized that the OCS-FAs are important to meet the homeostatic range compatible with the 
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necessary requirements of membrane functionality [61]. Currently there is a large amount of research 

going into the role of polyunsaturated fatty acids (PUFAs) in Alzheimer’s disease with [63–65] where 

they have been found to have two key roles; firstly neurotransmission and prostaglandin formation [66] 

and secondly for the improvement of membrane fluidity [67]. In a recently published manuscript by 

Fonteh and colleagues [68] it was shown that tissue levels of OCS-FAs were lower in Alzheimer’s 

disease when compared to a control group. With the realisation that OCS-FAs increase membrane 

fluidity more than PUFAs then the application of OCS-FAs as a form of treatment for Alzheimer’s 

disease could be a possibility. Interestingly, OCS-FAs are compartmentalized within tissue [68,69] and 

therefore can be distinguished from other fatty acids adding to their interest in research. In addition to 

this, OCS-FAs may have an anti-carcinogenic influence on cancer cells which further adds to the reason 

for their research interest within public health nutrition [4]. 

(A) (B) 

Figure 1. (A) On the left—the bacteria bio-synthesis pathway for the production of the fatty 

acids, C16:0 and C18:0 through the repeated condensation of malonyl CoA with acetyl  

CoA [19]. (B) On the right—the fundamental processes of α-oxidation where the removal of 

one carbon produces an odd chain fatty acid [18]. 

2.3. Predictor Biomarkers for Coronary Heart Disease (CHD) and Type II Diabetes (T2D) 

In recent years research has been carried out in two key studies: The European Prospective 

Investigation into Cancer and Nutrition (EPIC) and The Norfolk Prospective Study [12]. The plasma 

samples of 1595 CHD cases and 2246 controls were used to extract plasma phospholipid fatty  
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acids. The lipid extracts were measured by gas chromatography coupled to electron impact mass  

spectrometry and the concentrations were determined by peak comparison with an internal standard  

(di-palmitoyl-D31-phosphatidylcholine). The incidence of CHD was ascertained by the participant’s 

admission into hospital with a CHD diagnosis or death from CHD according to ICD9 410-414/ICD10 

I22–I25. The results from this study clearly revealed saturated plasma phospholipid fatty acid, C14:0, 

C16:0, C18:0, concentrations were significantly associated with an increased risk of CHD. However, 

OCS-FAs concentrations of C15:0 and C17:0 showed a significant inverse association with  

CHD incidence.  

More recent work based on the EPIC and INTERACT studies [27] examined the association between 

the incidence of T2D and the initial plasma phospholipid fatty acids, specifically C14:0, C15:0, C16:0, 

C17:0 and C18:0 which were measured in 12,403 T2D cases and 16,154 controls. This showed that 

saturated even numbered fatty acids from plasma phospholipids have a strong positive association with 

T2D incidence whereas plasma phospholipid OCS-FAs showed a strong inverse association with disease 

risk. Table 3 shows the testing characteristics of ten unique studies focusing on C15:0 and C17:0 with 

regards to disease risk.  

Table 3. Data collated from the literature regarding C15:0 and C17:0 with their association 

to disease risk, biomarker identification or treatment pathway. This is not a meta-analysis 

but an illustration that odd chain fatty acids have been associated in several diseases 

including metabolic and psychological pathologies. 

 Study Disease Number of Participants Country Outcome Study 

1 
Disorders of propionate, methylmalonate 

and biotin metabolism 
24 diseased 12 control Netherlands OCS-FAs—disease treatment marker [13] 

2 Atherosclerosis 2837 cohort USA 
OCS-FAs—inverse relationship with 

disease development 
[70] 

3 Type II diabetes 346 diseased 3391 control Australia 
OCS-FAs—inverse relationship with 

disease development 
[71] 

4 Coronary Heart Disease 1595 diseased 2246 control UK 
OCS-FAs—inverse relationship with 

disease development 
[12] 

5 Prediabetes and Type II Diabetes 181 diseased 170 control Australia 
OCS-FAs—inverse relationship with 

disease development 
[60] 

6 Biotin Deficiency 3 diseased USA OCS-FAs—increased in diseased cases [72] 

7 Peroxisomal Disorders 86 diseased 84 control  USA OCS-FAs—increased in diseased cases [73] 

8 Insulin sensitivity 86 diseased Australia 
OCS-FAs—inverse relationship with 

disease development 
[20] 

9 
Cardiomyopathy and rhabdomyolysis in 

long-chain fat oxidation disorders 
107 disease 50 control USA OCS-FAs—improve disease prognosis [74] 

10 Anorexia Nervosa 8 diseased 19 control USA 
OCS-FAs—improves cell  

membrane fluidity 
[62] 

This table displays the country, the number of participants, the studied disease and the outcome of 

that research. The aim of the table is not to provide a comprehensive meta-analysis but to show that 

many studies have claimed that there is an association between OCS-FAs and different pathologies. It 

will remain to be seen if a meta-analysis will proof that this association is true. 
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2.4. Evidence for Alternative Metabolic Pathways 

It is generally assumed that OCS-FAs are totally derived from dietary consumption of milk and other 

dairy products and originate from bio-synthesis in rumen microbiome. This assumption is eroding  

slowly [24] due to further understanding of alternative metabolic pathways which started with research 

into certain genetic diseases, such as Refsum disease and Zellweger Syndrome [18] were there was an 

accumulation of phytanic acid (3,7,10,14-tetramethylhexadecanoic acid) a β-branched-chain fatty acid. 

β-Branched chain fatty acids cannot undergo β-oxidation [75] and therefore need an alternative 

metabolic route to avoid compound accumulation. Additionally, this is seen in some genetic mutations 

where these alternative pathways are impaired and result in an accumulation of β-branched chain fatty 

acids. Typically fatty acids undergo β-oxidation; defined as the degradation of the fatty acid chain by 

units of acetyl CoA molecules producing NADH and FADH2 which are processed to produce ATP in 

the electron transport chain [76] (see Figure 2).  

 

Figure 2. Cyclic β-oxidation process and the production of the acetyl CoA molecules [76]. This 

diagram shows the substrates and products of each reaction in the β-oxidation pathway. 

In phytanic acid an acetyl CoA molecule cannot be removed due to the presence of a methyl group 

on the β-carbon position and therefore these β-branched chain fatty acids must undergo alternative 

oxidation pathways [77] to avoid physiological accumulation. The work of Wanders et al. described the 

process of α-oxidation of these molecules as an alternative pathway for the oxidation of β-branched  

chain fatty acids [78]. The α-oxidation process (see Figure 1B) involves the activation of the fatty acid 

then hydroxylation of the α-carbon in relation to the terminal carboxylic acid, which requires iron and 

α-keto-glutarate as co-factors. This step is then followed by the removal of the terminal carboxyl group 

involving thymine pyrophosphate and magnesium ions [18]. The conversion of the α-hydroxyl group to 
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a terminal carboxyl group results in an α-branched chain fatty acid that can directly undergo  

β-oxidation (see Figure 3). 

 

Figure 3. The α-oxidation process on the β-branched chain fatty acid (phytanic acid) to 

produce an α-branched chain fatty acid (pristanic acid) which then can be activated and enter 

the β-oxidation pathway [77]. 

This process has been proven to occur in humans but was thought to act only on β-branched chain 

fatty acids and not to occur on straight chain fatty acids due to the obscurity of the reaction and the 

localization of the reaction to the peroxisome cell organelle. Contemporarily, there has been emerging 

evidence that α-oxidation may operate on straight chain fatty acids to produce OCS-FAs [79–85], this 

evidence is summarized in the following sections.  

2.4.1. Inconsistent Ratios of C15:0 to C17:0 when Comparing Lipid Consumption with Measured  

Plasma Levels 

Although Table 1 shows that many studies lack useful information on OCS-FAs it is clear that there 

is a consistent difference between the C15:0 and C17:0 fatty acids. The ratio C15:0 to C17:0 is 

approximately 1:2 and this seems to be across all the lipid classes, although for some classes there is less 

information given (see Table 1). This ratio contradicts the ratio of these fatty acid in the diet (see Figure 4). 
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When it would be expected that when OCS-FAs solely originates from dairy fat, the ratio between C15:0 

and C17:0 should be at least similar to the ratio found in dairy fat. 

 

Figure 4. The comparison between the C15:0 and C17:0 fatty acids within dairy  

products [4] and the comparative concentration within in plasma [59]. 

Within the wider literature there is a similar trend, where C17:0 dominates as the most abundant  

OCS-FAs followed by C15:0 when analyzed within other human tissue tissues and biofluid, serum 

(C15:0 of 0.22% *, C17:0 of 0.37% *) [47], adipose tissue (C15:0 of 0.32% *, C17:0 of 0.34% *) [47], 

Erythrocyte (C15:0 of 0.28% *, C17:0 of 0.45% *) and human hindmilk [86] (C15:0 of 0.46% *, C17:0 

of 0.57% *). NB.* = % of total fatty acid. 

2.4.2. Bio-Synthesized Odd Chain Fatty Acids in Adipocyte Differentiation 

In the study by Roberts et al [87] on the differentiation of adipocytes a significant increase of  

OCS-FAs occurred. This provided evidence showing that straight chain fatty acids can be metabolized 

through an α-oxidation pathway. The differentiating adipocytes were able to convert C16:0 labeled  

fatty acid with a stable isotope to C15:0 still exhibiting the stable isotope label. This only occurred in 

the cells and not in the medium, which showed that OCS-FAs were endogenously metabolizing  

C16:0 into C15:0 [87]. These results show that α-oxidation occurs on straight chain fatty acids producing 

a single-carbon atom abatement and therefore an OCS-FAs. 

3. Conclusions 

From the literature it can be concluded that there is an association between plasma OCS-FAs and 

dietary intake of dairy fat, and this can contribute to the discussion that the consumption of OCS-FAs 

containing foods, such as dairy fats, could reduce the risk of developing metabolic diseases. On the other 

hand, there is at the moment no decisive evidence for a direct relation between both C15:0 and C17:0 
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plasma concentrations reflecting just dietary consumptions. This suggests that there could be other 

factors that need to be taken into account before a public health message can be formulated. 

Different large scale epidemiological studies have now shown that the plasma OCS-FAs levels are 

associated with reduced disease risks for CHD [12,74,88,89] and T2D [27,90]. These studies contradict 

the original ideas around OCS-FAs being insignificant in comparison to even chain fatty acids. This also 

raises new research questions on cooperative nutrient consumption (does propionyl CoA production 

through branched chain amino acid metabolism increases De novo OCS-FA synthesis [48]), endogenous 

metabolic reactions (does endogenous α-oxidation play a role in lipid metabolism) and genetic 

ascendancy (propionic acidemia [91]) on the plasma phospholipid OCS-FAs with regards to disease 

pathology, and these urgently requires further research. 

With regards to OCS-FAs there is need for caution because there has been very little research into 

any possible negative effects of high consumption but two aspects have arisen, for example behavioural 

maturation and hepatic oxidation inhibition. Research by Gozzo et al. has shown that OCS-FAs are 

capable of passing through the placental barrier and into milk of lactating mammals [92], this leads to 

the possibility that these fatty acids are also capable of crossing the cerebral endothelium (blood-brain 

barrier) and act on gestational and early postnatal brain development. Since brain microsomes are already 

known to perform α-oxidation reactions [16] then any variation in the flux of OCS-FAs may disrupt this 

process. Hepatic short chain fatty acid oxidation inhibition is a lesser concern due to the endogenous 

synthesis of carnitine which acts on the end product of OCS-FAs metabolism, propionyl CoA, reducing 

it by 50%, but as the subject increases in age the biosynthesis of carnitine reduces and propionyl CoA 

associated hepatic inhibition of ketogenesis may become an issue [93]. 

To summarize, it is clear that C15:0 and C17:0 can be utilized as rough markers for dairy fat intake 

with regards to dietary analysis but the main area of interest is with the identification of an alternate 

pathways, such as α-oxidation since this incites an additional area of research within metabolic pathology. 
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