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ongoing subterranean coal mine fire

Sang-Hoon Lee1,2,5, Jackson W Sorensen1,5, Keara L Grady1, Tammy C Tobin3 and
Ashley Shade1,4
1Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA;
2School of Civil, Environmental, and Architectual Engineering, Korea University, Seoul, South Korea;
3Department of Biology, Susquehanna University, Selinsgrove PA, USA and 4Program in Ecology,
Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, USA

Press disturbances are stressors that are extended or ongoing relative to the generation times of
community members, and, due to their longevity, have the potential to alter communities beyond the
possibility of recovery. They also provide key opportunities to investigate ecological resilience and to
probe biological limits in the face of prolonged stressors. The underground coal mine fire in Centralia,
Pennsylvania has been burning since 1962 and severely alters the overlying surface soils by elevating
temperatures and depositing coal combustion pollutants. As the fire burns along the coal seams
to disturb new soils, previously disturbed soils return to ambient temperatures, resulting in a
chronosequence of fire impact. We used 16S rRNA gene sequencing to examine bacterial and
archaeal soil community responses along two active fire fronts in Centralia, and investigated the
influences of assembly processes (selection, dispersal and drift) on community outcomes. The
hottest soils harbored the most variable and divergent communities, despite their reduced diversity.
Recovered soils converged toward similar community structures, demonstrating resilience within
10–20 years and exhibiting near-complete return to reference communities. Measured soil properties
(selection), local dispersal, and neutral community assembly models could not explain the
divergences of communities observed at temperature extremes, yet beta-null modeling suggested
that communities at temperature extremes follow niche-based processes rather than null. We
hypothesize that priority effects from responsive seed bank transitions may be key in explaining the
multiple equilibria observed among communities at extreme temperatures. These results suggest
that soils generally have an intrinsic capacity for robustness to varied disturbances, even to press
disturbances considered to be ‘extreme’, compounded, or incongruent with natural conditions.
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Introduction

Human interactions with and alterations of environ-
mental systems are important components of global
change (Allen et al., 2014). Anthropogenic distur-
bances are outcomes of human activity, and include
land use and land cover changes, pollution, dispersal
of invasive species, and over-harvesting of native
animal or plant populations (Vitousek et al., 2008).
Anthropogenic disturbances are typically classified
as press disturbances, as they often impact multiple

generations of organisms within their ecosystems
(Bender et al., 1984). Because of their longevity,
press disturbances have the capacity to alter ecosys-
tems beyond the possibility of recovery (for example,
Thrush et al., 2009).

Within every ecosystem, microbial communities
underpin biogeochemical processes, sustain the
bases of food webs, and recycle carbon and nutrients.
In some situations of anthropogenic disturbance,
such as pollution, native microbial communities
also can provide bioremediative functions to support
ecosystem recovery (Ruberto et al., 2009; Desai et al.,
2010; Fuentes et al., 2015; Ma et al., 2016). Because
of their foundational roles in driving important
ecosystem processes, understanding how microbial
communities respond to press disturbance can
provide insights into the potential for ecosystems to
recover. It may also help to uncover mechanisms by
which environmental microbial communities may be
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managed to improve ecosystem outcomes. A better
understanding of microbial responses to press dis-
turbances, including examples of communities that
have recovered or shifted to an alternative stable
state, is necessary to move toward the goal of
microbial community management (Shade and
Peter et al., 2012).

Recent work has highlighted the importance of
understanding the relative contributions of commu-
nity assembly processes to community changes
(for example, Vellend, 2010; Ferrenberg et al.,
2013; Nemergut et al., 2013; Vellend et al., 2014;
Dini-Andreote et al., 2015; Evans et al., 2016;
Tucker et al., 2016), and these processes can also
be informative for understanding community
changes after a disturbance (for example, secondary
succession; Dini-Andreote et al., 2015). According to
Vellend, 2010, community assembly can be summar-
ized by four major processes: dispersal, diversifica-
tion, drift, and selection. Dispersal is the movement
of individuals between localities, diversification is
the generation of new genetic variation (which can
lead to speciation), drift encompasses the stochastic
processes resulting in fluctuations in member abun-
dances (for example births and deaths), and selection
refers to deterministic fitness differences among taxa
driven by abiotic conditions or biotic interactions
(as summarized by Nemergut et al., 2013). Together,
these processes complement and interact to drive
community patterns, and together provide a founda-
tion on which to build a predictive theoretical
framework for microbial community ecology.

Because diversification processes are relatively
more important at evolutionary scales, Vellend et al.,
2014 focused on the remaining processes of ecological
selection, drift, and dispersal. They asserted that
selection processes are deterministic, that drift pro-
cesses are stochastic, and that dispersal processes can
be either or both, depending on the situation (Vellend
et al., 2014). Tucker et al. (2016) provided clarity to
the distinction between deterministic/stochastic and
niche/neutral processes, which are often used inter-
changeably. Niche/neutral refers to the ecological
differentiation and equivalence of species, while
deterministic/stochastic refers to non-probabilistic or
probabilistic outcomes (Tucker et al., 2016). Thus,
neutrality concerns ecological equivalence of species,
while stochasticity concerns demographic variability
in birth, death, and dispersal.

We aimed to understand the responses of soil
microbial communities to an anthropogenic press
disturbance, and to apply the Vellend, 2010,
Nemergut et al., 2013, and Tucker et al., 2016
conceptual frameworks of community assembly for
interpretation of patterns. The town of Centralia,
Pennsylvania is the site of an underground coal mine
fire that has been burning since 1962. It is one of
thousands of coal mine fires burning in the world
today (Melody and Johnston, 2015), which are incon-
spicuously common anthropogenic disturbances.
However, the Centralia fire is especially long-lived,

and, after efforts to extinguish it failed, it was left to
burn until it self-extinguished (Nolter and Vice, 2004).
The fire is expected to burn slowly until the coal
reserves have been consumed. The fire currently
underlies more than 150 acres and continues to spread
slowly (3–7m per year, Elick, 2011) through under-
ground coal seams. Depending on the depth of the
coal bed, it burns at an estimated 46-69m below the
surface (Nolter and Vice, 2004; Elick, 2011). Heat,
steam and combustion products vent upward from the
fire through the overlying soils. The surface soil
temperatures can exceed 80 °C, scarring the landscape
with dead vegetation that reveals the fire's subsurface
trajectory. As steam and gasses pass through the
overlying rock and soil, soil temperatures increase
while soil chemical composition is altered by both
spontaneous and microbial-mediated chemical reac-
tions (Janzen and Tobin-Janzen, 2008). As the fire
expands into new areas, it also retreats from some
affected sites, which then recover to ambient tempera-
tures (Nolter and Vice, 2004; Elick, 2011). Thus,
the ‘end’ of the disturbance can be delineated by
temperature recovery. In this way, a chronosequence
of fire-affected Centralia soils provides a space-for-
time proxy of disturbance response and recovery.

Our research objectives were to understand the
diversity and spatio-temporal dynamics of the sur-
face soil bacterial and archaeal communities that
have been impacted historically or are currently
influenced by the ongoing subterranean coal mine
fire in Centralia. We used a definition of disturbance
response to include changes in member relative
abundances as well as in composition. Previous
work using terminal restriction fragment length
polymorphism analysis showed that microbial diver-
sity decreased at hotter sites, and that compositional
changes were correlated with soil ammonium and
nitrate concentrations (Tobin-Janzen et al., 2005).
We move forward from this work to use high
throughput sequencing of soil community 16S rRNA
genes to quantify the community dynamics along a
chronosequence of fire response and recovery. We
specifically investigated the community assembly
processes of selection, dispersal, and drift.

Materials and methods

Study site, soil sampling, soil biogeochemistry and
microbial community DNA extraction
We undertook fieldwork in Centralia (GPS: 46°
46”24’N, 122°50”36W) on 5–6 October 2014. We
collected surface soils to capture the expected
maximum changes along a chronosequence of fire
recovery (Supplementary Figure 1). We sampled two
fire fronts along gradients of historical fire activity.
Fronts are trajectories of fire spread from the 1962
ignition site outward along near-surface coal seams
(Elick, 2011). These fronts include surface soils that
were previously hot and have cooled, as well as soils
that are currently warmed by the ongoing fire. We
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collected soil from two unaffected, proximate sites as
references, seven recovered sites along the gradient,
and nine fire-affected sites (18 total soils), and these
collections were distributed across both fire fronts.
Soil samples were collected from the top 20 cm of
surface soil (core diameter 5.1 cm), and were sieved
through 4 mm stainless steel mesh. We collected
cores only at bare surface soil locations (no vegeta-
tion) to minimize the influence of local vegetation
and to maximize comparability between soils, as the
thermal surface soils generally lacked vegetation.
Collected soils were stored on ice up to 72 h during
transport to the laboratory, then stored at − 80 °C
pending further processing. The physico-chemical
characteristics of each soil sample (percent moisture,
organic matter (500 °C), NO3

- , NH4
+, pH, SO4, K, Ca,

Mg, P, As, and Fe) were assayed by the Michigan
State Soil and Plant Nutrient Laboratory according to
their standard protocols (East Lansing, MI, USA,
http://www.spnl.msu.edu/). Gravimetric soil moist-
ure was measured after drying the soil at 80 °C for
2 days. Fire history was estimated as years since
the surface soil was first hot from the fire, at each
sampling location. Fire history observations were
measured using either winter snow cover, aerial
vegetation photography, or thermal infrared imagery,
as collated and reported by Elick, 2011 (Figure 3
therein). Soil community DNA was extracted from
0.25 g of soil in three technical replicates using the
MoBio Power Soil DNA Isolation Kit according to the
manufacturer’s protocol (MoBio, Solana Beach, CA,
USA). The concentration of the extracted DNA was
measured using the Qubit dsDNA BR Assay Kit (Life
Technologies, NY, USA), and DNA amount was
standardized for sequencing to 1,000 ng/sample.

Soil cell counts
Direct bacterial and archaeal cell counts were
conducted on frozen soil samples based on a
protocol to separate cells from soil reported in
(Portillo et al., 2013). To dissociate the microbial
cells from soil particles, 10 g of soil was mixed with
100ml of phosphate buffered saline containing 0.5%
Tween-20 (PBST). Soil samples were homogenized
in a Waring blender three times for 1min each,
followed by a 5min incubation on ice. Slurries were
centrifuged at 1000× g for 15min to concentrate
soil particulates. Supernatants were set aside and
stored at 4 °C, and the remaining soil pellets were re-
suspended in 100ml of fresh PBST and blended for
an additional 1min. The soil slurry was then
transferred to sterile 250ml centrifuge bottles and
the blender was washed with an additional 25ml
of sterile PBST and added to the slurry before
centrifugation at 1000× g for 15min. All resulting
supernatants for each site were combined, then
centrifuged at 10 000× g for 30min to pellet cells.
Supernatants were discarded, and cell pellets were
re-suspended in 10ml of sterile Milli-q water and
400ml of 37% formaldehyde to fix cells. 1ml of cell

suspension was then carefully layered over 500 μl of
sterile Nycodenz solution (0.8 gml−1 in 0.85%
NaCl), then centrifuged at 10 000× g for 40min.
The upper layer was then collected and cells were
pelleted by centrifugation at 20 000× g for 15min,
then re-suspended in 1ml of sterile 0.85% NaCl. To
dissociate remaining soil clumps, cell suspensions
were sonicated for 10 s in a sonicating water bath.

Cell suspensions were stained with DTAF ((5-(4,6-
Dichlorotriazinyl) Aminofluorescein)) according to
(Robertson et al., 1999). DTAF-stained smears
were visualized on a Nikon Eclipse e800 microscope
(Tokyo, Japan) equipped with a Photometrics
Coolsnap Myo camera (Tuscon, AZ, USA), and
images were collected using Micro-Manager software
(Edelstein et al., 2014). Fiji image analysis software
was used to adjust background, thresholding, and to
conduct particle counts from images (Schindelin
et al., 2012). Briefly, background correction was
completed using an automated rolling ball subtrac-
tion with a 35-pixel radius, followed by automatic
local thresholding using the Bernsen method with a
12-pixel radius to convert greyscale images to binary.
Watershed segmentation was conducted to separate
touching nuclei, then particles were counted using
the ImageJ ‘Analyze Particles’ function, excluding
anything smaller than 0.1 micron (Schneider et al.,
2012).

Quantitative PCR
We performed quantitative PCR (qPCR) using bacter-
ial and archaeal 16S rRNA gene universal primer sets
(Supplementary Table 1; Caporaso et al., 2012). The
reaction mixtures consisted of 10 μl SYBR qPCR
Master mix (Quanta Bioscience, Gaithersburg, MD,
USA), 0.4 μl each of the forward and the reverse
primers (0.4 pM), 2 μl of template DNA, and sterilized
deionized water to adjust the final volume of 20 μl.
The thermal profile was as follows: initial denatura-
tion at 95 °C for 10 s, followed by 40 cycles of
denaturation at 95 °C for 10 s, annealing at 50 °C
for 15 s, and extension at 72 °C for 40 s. A final
dissociation protocol (58–94.5 °C, increment 0.5 °C
for 10 s) was performed to ensure the absence of
nonspecific amplicons. The reactions were con-
ducted using the Bio-Rad iQ5 real time detection
system (Bio-Rad, Hercules, CA, USA). Please see the
Supplementary materials for more details as to the
qPCR methods.

16S rRNA amplicon sequencing
For each of the 54 DNA samples (18 soils, each with
three replicate DNA extractions) and mock commu-
nity DNA, paired-end sequencing (150 base pair) was
performed on the bacterial and archaeal 16S rRNA
gene V4 hypervariable region using the Illumina
MiSeq platform (Illumina, CA, USA; Supplementary
Table 1; Caporaso et al., 2012). All of the sequencing
procedures, including the construction of Illumina
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sequencing library using the Illumina TruSeq Nano
DNA Library Preparation Kit, emulsion PCR, and
MiSeq sequencing were performed by the Michigan
State University Genomics Core sequencing facility
(East Lansing, MI, USA) following their standard
protocols. The Genomics Core provided standard
Illumina quality control, including base calling by
Illumina Real Time Analysis v1.18.61, demultiplex-
ing, adaptor and barcode removal, and RTA conver-
sion to FastQ format by Illumina Bcl2Fastq v1.8.4.
Raw sequences were submitted to the GenBank SRA
Accession SRP082686.

To estimate sequencing error, mock community
DNA was prepared from six different type strains
(D. radiodurans ATCC13939, B. thailandensis E264,
B. cereus UW85, P. syringae DC3000, F. johnsoniae
UW101, E. coli MG1655). The genomic DNA from
these type strains were extracted separately using the
EZNA Bacterial DNA Kit (Omega Bio-tek, GA, USA)
according to the manufacturer’s protocol, and then
quantified using the Qubit dsDNA BR Assay Kit (Life
Technologies, NY, USA). Each isolates’ 16S rRNA
sequence was amplified using universal 27F and
1492R primers. Amplification was performed with
the GoTaq Green Master Mix (Promega) with the
following reaction conditions: 0.4μM each primer,
20–200 ng template, 12.5 μl 2 × GoTaq Green Mas-
termix and nuclease free water to 25 μl final volume.
The products were visualized on 1% agarose gels
before being cleaned using the Promega Wizard SV
Gel and PCR Cleanup System per manufacturer’s
instructions. Cleaned amplification products were
sequenced using the 27F and 1492R primers using
the ABI Prism BigDye Terminator Version 3.1 Cycle
kit at Michigan State’s Genomics Research Technol-
ogy Support Facility (https://rtsf.natsci.msu.edu/
genomics/). Forward and reverse reads were merged
using the merger tool in the EMBOSS (V. 6.5.7)
package (Rice et al., 2000). Based on the DNA
concentration, size of genomic DNA, and 16S rRNA
gene copy number, the final mixture contained
100 000 copies of 16S rRNA gene from each strain.
The mock community was sequenced alongside the
54 soils’ metagenomic DNA. All sequences are
available in NCBI’s Short Read Archive (https://
www.ncbi.nlm.nih.gov/sra/SRP082686).

Sequence processing
Paired-end sequence merging, quality filtering, denois-
ing, singleton-sequence removal, chimera checking, and
open-reference Operational Taxonomic Unit (OTU)
picking were conducted using a UPARSE workflow
v8.1 (Edgar, 2013; Edgar and Flyvbjerg, 2014). Open-
reference OTU picking was modified for compatibility
with the UPARSE pipeline but proceeded as described
for open-reference workflows (Rideout et al., 2014). We
selected open-reference OTU picking because it allowed
us to retain all high-quality sequences, even if they did
not match to the reference database. In addition, we
expected novel diversity in Centralia, and it was likely

that many Centralia sequences would not hit to
reference databases. Furthermore, we wanted to create
consistent OTU definitions that could be tractable
across this study and future work. In the open-
reference OTU picking workflow, reference-based
OTU clustering first was conducted using the usearch_-
global command to cluster sequences with 97% identity
to the greengenes database (v 13.8, http://greengenes.
secondgenome.com/downloads). Second, de novo OTU
picking was performed for any sequences that did not
hit the greengenes reference; the usearch command
cluster_otus was used to cluster sequences at 97%
identity (this step includes chimera checking). The
reference-based and de novo OTUs were combined
together to create the final data set. Finally, to reduce
the potential effects of candidate contaminant sequ-
ences, any sequences in the final data set that matched
100% to a database of extraneous sequences (found in
the mock community) were removed.

Additional analyses were performed with QIIME
v.1.9.1 (Caporaso et al., 2010b), including alignment
with PyNAST (Caporaso et al., 2010a), taxonomic
assignment with the RDP Classifier (Wang et al.,
2007), tree building with FastTree (Price et al., 2009),
subsampling/rarefaction to an equal sequencing
depth, and within and comparative diversity calcu-
lations (for example, UniFrac, Lozupone and Knight,
2005). Sequences identified as Chlorophyta, Strepto-
phyta (that is, Chloroplasts) and Mitochondria were
removed before subsampling to an even sequencing
depth. Our sequence analysis workflow and comput-
ing notes are available on GitHub (https://github.com/
ShadeLab/PAPER_LeeSorensen_ISMEJ_2017/tree/mas
ter/Sequence_analysis). We used the UPARSE work-
flow (with the recommended 10% divergence filter)
for error rate calculation using the mock community
(http://drive5.com/usearch/manual/upp_tut_misop_
qual.html).

Ecological statistics
We first assessed the reproducibility of evenly-
sequenced technical replicates (DNA extraction and
sequencing replicates), and found that replicates
were similar to one another in measures of within-
sample (alpha) and comparative diversity (beta
diversity). The average and standard deviation
of weighted non-normalized UniFrac distances
between replicates was 0.319± 0.126 with a range
from 0.105 to 1.29 (maximum distance between
different samples was 4.49; Supplementary Figure 2;
and alpha diversity among technical replicates
provided in Supplementary Table 2). Given the low
technical variability, unrarefied technical replicates
were collapsed into one combined set of sequences
for each soil core to provide more exhaustive
sequencing of each soil; these collapsed samples
were subsampled to an even sequencing depth
(321,000 sequences per soil), and singleton OTUs
(observed only once in the data set) were removed
before proceeding with analysis. Within-sample
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diversity of species richness, Faith’s phylogenetic
diversity (whole tree method), and comparative
diversity of weighted and unweighted UniFrac dis-
tance (non-normalized and normalized, (Lozupone
et al., 2007, 2011) were calculated within QIIME.
Non-normalized UniFrac distances can fall outside
of 0 and 1, while normalized UniFrac distances are
bound to 0 to 1; Lozupone et al., 2007 reported no
differences in overarching patterns in beta diversity
between the non-normalized and normalized Uni-
Frac (Lozupone et al., 2007), and we have found that
this holds for our data set (Supplementary Table 3).
The data were then moved into the R environ-
ment for statistical analyses. Briefly, we used
vegan functions for multivariate hypothesis testing,
fitting environmental vectors to ordinations (envfit),
constrained ordination (capscale), and Mantel tests
(mantel) and to calculate Pielou’s evenness (Oksanen
et al., 2011); the cmdscale function (stats) for princi-
pal coordinates analysis; custom code of neutral
models of community assembly (Sloan et al., 2007)
as written and implemented by Burns et al., 2015
(‘sncm.fit_function.R’); custom R scripts for beta-
null model fitting written by Tucker et al., 2016,
Appendix 2 therein) modified by our group to
include weighted UniFrac beta-null modeling; and
ggplot and ggplots2 for plotting (Wickham, 2009).
Our R script is available on GitHub (‘R_analysis’
repository in https://github.com/ShadeLab/PAPER_
LeeSorensen_ISMEJ_2017/tree/master/R_analysis).

Results and Discussion

Soil physical-chemical characteristics and microbial
population size
We measured a suite of contextual data for each
sampling site, and asked whether any of those
data were correlated with surface soil temperature
(Supplementary Figure 3). Centralia soils generally
represented a wide range of soil chemistry. We did
not find strong correlations between measured
contextual data and temperature, with the exception
of correlations with ammonium and nitrate (Pear-
son’s R=0.50 and 0.54, respectively; Po0.05). This
finding supports previous work in Centralia showing
that ammonium and nitrate were elevated at active
vents (Tobin-Janzen et al., 2005). In addition, the pH
of recovered sites was consistently lower than
reference sites (mean pH=4.4 and 5.9, respectively),
and the hottest soils were more likely to have
extreme or disparate values. In two previous reports,
soil ammonium, nitrate, and sulfur concentrations
were not necessarily correlated with absolute soil
temperature values at Centralia, nor to proximity
to an active vent; though extreme or disparate
chemistry values were sometimes observed at hot
sites, values comparable to unaffected sites were also
routinely observed (Tobin-Janzen et al., 2005; Janzen
and Tobin-Janzen, 2008). The authors suggested that
duration of fire impact, whether the fire was advan-

cing or receding from the site, and other complex
environmental factors were likely contributing.

All soils were within one order of magnitude of
16S rRNA copies per dry mass of soil with fire-
affected soils having the highest copy numbers and
recovered soils having the lowest, but there were no
statistical differences among groups (Supplementary
Figure 4A, Student’s t-test all pairwise pX0.09).
Total number of cells per dry mass of all soil ranged
from 105 to 107 cells per gram of dry soil, but cell
counts across fire classifications also were not
statistically distinct (Supplementary Figure 4B, Stu-
dent’s t-test all pairwise p≥0.09). Together, these
data indicate overall community size is relatively
stable across the fire gradient and that any changes
in community structure along the fire gradient are
due to changes in member abundances rather than
to differences in the total number of individuals
(community size) among soils.

Sequencing efforts were near-exhaustive for these
soils, as assessed by a clear asymptote achieved with
rarefaction (Supplementary Figure 5). A summary
of sequencing efforts, as well as a discussion of
reference-based and de novo OTU taxonomic assign-
ments for fire-affected and recovered soils, are
provided in Supplementary materials.

Selection
To understand the influence of selection (determi-
nistic) processes on community responses, we used
surface soil temperatures measured in 2014 to
designate categorical groups of communities accord-
ing to their fire classification. Soils classified as
reference and recovered had temperatures between
12 °C and 15 °C (ambient air temperature was 13.3 °C
at the time of soil collection), while soils classified as
fire-affected had temperatures ranging from 21 °C to
58 °C. We hypothesized that within-sample diversity
would be lower in fire-affected soils because of the
extreme environmental filter of high temperatures,
which we expected to result in lower richness
and less phylogenetic breadth. Faith’s phylogenetic
diversity and OTU richness both were lowest and
most variable for fire-affected soils, and highest for
reference sites (Figure 1; Student’s t-test all pairwise
Po0.001). Pielou’s evenness had a similar trend,
with fire-affected soils having lower evenness than
other soils, suggesting that there are a small number
of highly dominant OTUs in the fire-affected soils
(all pairwise P40.05, not significant). These results
generally agree with studies investigating soil micro-
bial diversity after coal mine reclamation in China
and Brazil, respectively, where the most recovered/
reconstructed soils (20 years post-mining in Li et al.,
2014) and 19 years of reconstruction in de Quadros
et al., 2016) had highest within-sample diversity and
were most comparable to reference sites. Centralia
soils are expected to share similar contamination
from coal extraction with these mine reclamation
soils, but also are distinct because of their thermal
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conditions and ongoing surface contamination
by coal combustion products, such as inorganic
gases containing arsenic, selenium, ammonium,
sulfur, and hydrogen sulfide, and organic toxins like
polycyclic aromatic hydrocarbons (Janzen and
Tobin-Janzen, 2008). Elements within inorganic
gases mineralize and deposit around active vents
(Janzen and Tobin-Janzen, 2008). Some coal combus-
tion products, like volatile sulfur and nitrogen
compounds, may enrich for microorganisms capable
of using them, while other combustion products, like
organic toxins, may decrease microbial community
size or diversity (Janzen and Tobin-Janzen, 2008).

We used weighted UniFrac distance to assess
comparative community diversity across the fire

categories. Weighted UniFrac distance was chosen
after considering multiple taxonomic and phyloge-
netic, and weighted and unweighted metrics. All
resemblances revealed the same overarching pat-
terns (all pairwise Mantel and PROTEST Po0.001,
Supplementary Table 3), demonstrating that these
patterns were very robust. However, weighted Uni-
Frac distance provided the highest explanatory value
(Supplementary Table 3), suggesting that changes in
both phylogenetic breadth and the relative abun-
dances of taxa are important for interpreting com-
munity responses. As compared to recovered and
reference sites, fire-affected soils were distinct
(PERMANOVA pseudo F=16.10, R2 = 0.50 and
P=0.001 on 1000 permutations) and more variable
in their community structure (difference in median
dispersions = 0.53, P=0.008; Figure 2). Differences in
surface soil temperature had most explanatory value
on Axis 1 (77.1% variance explained by Axis 1,
temperature Axis 1 correlation =0.97, P=0.001,
Supplementary Table 4), with nitrate and iron
contributing; calcium and pH (and, to a lesser extent,
soil moisture) explained variation on Axis 2 (12.7%
variance explained by Axis 2, Supplementary
Table 4). Notably, soil fire history (estimated years
since the local soil surface was first measured hot as
reported by Elick, 2011) was not correlated to
community dynamics (Supplementary Table 4).

Fire-affected soils were more variable in their
community structure across soils, especially in soils
at the most extreme temperatures observed (sites
C13, C10 which were 450 °C at the time of sampling
and were at the opposite ends of PCoA2). In contrast,
recovered soils were less variable, even though they
spanned decades of difference in their years of peak
fire activity (the earliest impacted soils that we
sampled were last recorded to be hot in 1980; Elick,
2011). Also, recovered soils were very similar in
community structure to reference soils. These pat-
terns show that Centralia soils achieve divergent
community structures over the transition from
ambient to extreme conditions, but then generally
converge towards a consistent community structure
after the fire subsides. These results also show
resilience of soil communities impacted by an
extreme press disturbance, with recovery occurring
within 10–20 years after the stressor subsided.

We observed a temperature ‘threshold’ effect among
fire-affected soils, and soils with temperatures between
21 °C and 24.5 °C (sites C06, C11 and C16) separated
cleanly from soils with temperatures greater than 30 °C
(Figure 2). To better understand the divergence in
community structure among fire-affected soils, we
performed a PCoA with these communities (Supple-
mentary Figure 6A, Supplementary Table 5), and also a
constrained analysis to ask what variability remained
after removing the influence of temperature (Supple-
mentary Figure 6B, Supplementary Table 6). Even after
removing the influence of temperature, three discrete
subsets of fire-affected communities separated from
each other along both axes, with C13 remaining as an
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outlying point. C13 had very different calcium and pH
than the other soils, and both of these factors had high
value in discriminating C13 from the other fire-affected
soils (P=0.092 and 0.014, respectively). There were no
other measured abiotic factors that explained the
divergence among the fire-affected soils. In addition,
the constrained axes had high explanatory value
(Supplementary Figure 6B, combined axes 1 and
2=90.0% var. explained), suggesting that, given the
measured conditions, there are additional processes
beyond abiotic selection that explain the differences in
these subsets.

We observed broad phylum-level changes in res-
ponse to the fire (Figure 3, Supplementary Table 8).
Not all OTUs affiliated with particular phyla had
identical responses; however, our analysis of phylum-
level responses points to some general trends. In
particular, fire-affected soils were enriched for members
of Chloroflexi, Crenarcheaota and many lineages of
unidentified Bacteria. As compared to the fire-affected
soils, recovered soils also were enriched for Parvarch-
aeota, Bacteroidetes, Elusimicrobia, Gemmatimona-
detes, Planctomycetes, Spirochaetes, TM6, and
Verrucomicrobia suggesting that members affiliated
with this these phyla are able to persist after the fire
subsides. Acidobacteria also had an increase in recov-
ered soils (but less significant, P=0.10), presumably
because of the decrease in soil pH observed
post-fire (Supplementary Figure 3, pH panel: row 1,
column 3). Reference soils had higher representation of
Proteobacteria and Verrucomicrobia, which suggests
that members of these phyla may be sensitive to the fire.

Dispersal and drift
To investigate the relative importance of local
dispersal, we assessed the value of spatial distance

for explaining differences in community structure. If
local dispersal were important, we would expect that
soils in close proximity would have more similar
community structures than soils that are distant
from one another. We found no relationship in the
measured spatial distances between soil collection
sites and their corresponding differences in commu-
nity structure for all sites (Mantel P=0.66 on 999
permutations), nor for recovered sites only (after
removing the fire-affected sites from analysis; Mantel
P=0.135 on 999 permutations). The lack of evidence
for spatial autocorrelation suggests that local dis-
persal is not a key factor shaping community
structure in Centralia soils.

To explore the relative importance of drift in fire-
affected and recovered soils, we used two comple-
mentary approaches. First, we fitted a neutral model
of community assembly. The model predicts taxon
frequencies as a function of their metacommunity log
abundances, which is one method to consider the
influence of drift with the influence of dispersal
(calculated as an immigration term, m, to the model).
The neutral model fit better to the recovered sites
than to fire-affected sites (R2 = 0.53, 0.12, respec-
tively; Supplementary Figure 7, Supplementary
Table 7). Furthermore, we found a lower influence
of dispersal (lower value of m) in the fire-affected
sites (Supplementary Table 7). These differences in
fit and generally minimal influence of dispersal
suggest that neutral processes play a more minor role
in the microbial community assembly of fire-affected
sites than they do in the recovered sites.

Next, we asked how observed differences in beta
diversity deviate from null expectations. We used
abundance-based beta-null approaches to distin-
guish niche and null processes according to Tucker
et al., 2016, and we extended their approach to also
consider community differences in phylogenetic
breadth by applying it to weighted UniFrac dis-
tances. In this comparative approach, deviations to
and from a permuted null expectation (neutral) are
used to interpret the relative influences of neutral
and niche processes, respectively. All Centralia
communities deviated from neutral, with reference
and recovered soils falling closer to neutral expecta-
tions than fire-affected soils (Figure 4a). Fire-affected
soils had statistically higher beta-null deviations
than recovered soils (both Po0.05 for Bray-Curtis
and weighted UniFrac). In the fire-affected soils,
there was a consistent increase in niche processes
with increasing soil temperature, and the hottest
sites deviated furthest from the neutral expectation
(Figure 4b). Accounting for phylogenetic breadth
(using weighted UniFrac distance, Figure 4b sug-
gested relatively less deviation from neutral than
accounting for abundance alone (using Bray-Curtis
dissimilarity, Figure 4b), but both resemblances had
similar trends (Pearson’s R=0.71, P=0.001) and
produced identical statistical outcomes. These abun-
dance null deviation results agree with the Sloan
neutral model because they suggest that unmeasured
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niche processes structure soil communities at tem-
perature extremes.

Understanding community divergences at temperature
extremes
To dig deeper into the differences in the three
subsets of fire-affected soil (Supplementary Figure 6)
that were not well explained by measured abiotic
selection, local dispersal, or drift as assessed by the
Sloan neutral model of community assembly and
beta-null modeling, we asked if there were notable
differences in their dominant memberships. Fire-
affected soils generally had more variability and
greater phylogenetic breadth in their dominant
membership than recovered soils, and each fire-
affected subset harbored an exclusive membership
among their most prevalent taxa. We examined the
top 10 prevalent taxa from each of the nine fire-
affected soils. Collectively, there were 68 unique top
10 OTUs in fire-affected soils (out of a possible 90, if
each of the nine fire-affected soil harbored mutually
exclusive membership across their top 10). These
prevalent fire-affected OTUs spanned fourteen phyla
or Proteobacteria classes, included 30 de novo OTUs,
and included seven taxa of unidentified Bacteria
and two taxa of unidentified Proteobacteria. Acid-
obacteria OTUs were detected among the top 10 for
all fire-affected soils, and eight of nine fire-affected
soils included Chloroflexi among the top 10 OTUs.
In comparison, recovered soils included ten phyla or
Proteobacteria classes among their collective top 10,
had no unidentified Bacteria or Proteobacteria,

and included four de novo OTUs. Acidobacteria
and Alphaproteobacteria OTUs were among the top
10 for all recovered soils, and six of the seven
recovered soils also included Deltaproteobacteria.
Together, these results show that fire-affected soils
were more divergent and diverse in their prevalent
membership than recovered soils.

An analysis of occurrence patterns of prevalent
OTUs also showed greater divergence among fire-
affected soils than recovered (Figure 5), and further
supported the distinction among the subsets of fire-
affected soils revealed by the constrained ordination
(Supplementary Figure 6B). Fire-affected soils had
more OTUs within their collective most prevalent
taxa, and were more heterogeneous as shown by the
wider range represented by the color scale and the
more divergent sample and OTU clustering. In fact,
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taxa that were among the top 10 in one fire-affected
soil were likely to be among the rare biosphere in
another fire-affected soil, exhibiting stark contrast
in their abundances within these soils. However,
most of the top 10 prevalent OTUs were detected
within every fire-affected soil (Table 1, Figure 5),
suggesting that changes in taxa relative abundances,
rather than turnover in membership, were driving
these patterns.

This dominance analysis helps to explain the
lower fit of the neutral model, and the relatively
higher influence of niche processes with beta-null

modeling, to fire-affected communities. Outliers to
the neutral model that were below detection (taxa
that were present in fewer sites than predicted given
their relative abundance in the metacommunity)
included these many lineages that were prevalent
in few fire-affected soils. Taxa that fall below their
neutral model prediction have been proposed to be
‘selected against’ or particularly dispersal limited
(Burns et al., 2015). However, in the Centralia
extreme environment, we suggest these are taxa that
were most successful locally given the thermal
disturbance.
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Community assembly processes given a press
disturbance
Centralia soil communities were sensitive to the coal
mine fire, and changed substantially from reference
conditions. Selection processes, specifically abiotic
soil conditions, offered high explanatory value for
Centralia soil community dynamics. These commu-
nities first were constrained by environmental filters
imposed by the press disturbance, such as thermal
temperatures in fire-affected soils and low pH in
recovered soils. The fire acts as a strong environmental
filter, resulting in decreased diversity and a very
different phylogenetic representation among the sur-
viving lineages in fire-affected soils. These environ-
mental filters, such as changes in pH, likely alter the
functions of the community as well as its composition.
However, even after removing the influence of
temperature on fire-affected communities, the commu-
nities fell into three distinct subsets that could not be
explained by the physico-chemical characteristics
measured. Furthermore, neutral modeling, beta-null
modeling and lack of spatial autocorrelation suggests
that these particular assessments for drift and dispersal
processes offer minimal explanation for fire-affected
sites. Given the low explanatory value of unweighted
resemblances in describing patterns of comparative
diversity (Supplementary Table 3), and the observation
that many of the prevalent taxa detected in some fire-
affected soils were rare in other fire-affected soils
(Figure 5a), we can also attribute these patterns to
changes in the relative abundances of taxa within a
locality, rather than to changes in taxa turnover
(differing memberships). Thus, given that neither
assessed selection, dispersal, nor drift processes, nor
their combination can provide a complete explanation
for the divergence of fire-affected communities, the
questions remain: why are fire-affected soils so
divergent from each other, and how do they event-

ually manage to recover to the same post-disturbance
community structure?

One hypothesis is that the remaining variability in
community structure of fire-affected sites may be
attributed to priority effects initiated from different
local transitions between the dormant seed bank and
the active community. The proportion of dormant cells
in soils is estimated to be as high as 80% (Lennon and
Jones, 2011), and the importance of dormancy for
microbial community assembly processes has been
discussed at length (Nemergut et al., 2013). Specific to
the Centralia coal mine fire disturbance, thermophiles
are prime examples of microbial seed bank members
that often have been found in environments that are
improbable to permit their growth (for example, McBee
and McBee, 1956; Hubert et al., 2009; Portillo et al.,
2012).

There are two aspects of seed banks that could
help to explain Centralia community divergences at
temperature extremes: membership and dynamics. If
each soil harbored a different seed bank member-
ship, different thermophilic taxa could become
active and prevalent in each fire-affected soil, and
would manifest as drift influences. This scenario is
not well-supported by our data because we detect the
dominant members of each fire-affected soil in the
other fire-affected soils, albeit in lower abundances.
Alternatively, awakenings from the microbial seed
bank (Buerger et al., 2012) could result in priority
effects at temperature extremes, in which the first fit
microorganisms to wake after the fire’s local onset
have important influence over the community’s
ultimate trajectory (for example, Fukami, 2015). In
our chronosequence study, the outcome of priority
effects would appear as divergent community struc-
tures at high temperatures that are explained by
niche processes. In addition, unknown nuances in
local abiotic conditions at fire onset could also set

Table 1 Ten most abundant OTUs in fire-affected Centralia soils

OTU ID Cumulative % abundance (out of
total no. sequences in fire-affected

samples)

% occurrence (out of 9 warm
or venting fire-affected soils)

Taxonomic assignment

111933 5.5% 100% Archaea; Crenarchaeota; MBGA
OTU_dn_1 2.5 100% Bacteria; Chloroflexi; Ktedonobacteria;Thermogem-

matisporales; Thermogemmatisporaceae;
OTU_dn_2 2.2 100% Bacteria; Chloroflexi; Ktedonobacteria;Thermogem-

matisporales Thermogemmatisporaceae
242467 2.0 100% Bacteria; Acidobacteria; DA052;Ellin6513
174835 2.0 100% Archaea; Crenarchaeota; Thermoprotei;YNPFFA;

SK322
61819 1.7 100% Bacteria; Acidobacteria; TM1
OTU_dn_17 1.5 78% Bacteria; Proteobacteria; Deltaproteobacteria
215700 1.4 100% Bacteria; Acidobacteria; Acidobacteriia;Acidobacter-

iales; Koribacteraceae
OTU_dn_8 1.3 100% Bacteria
OTU_dn_3 1.2 100% Bacteria

Abbreviation: OTU, Operational Taxonomic Unit.
OTUs (defined at 97% sequence identity) were assigned to the most resolved taxonomic level possible; there were no taxonomic assignments that
could be made to these prevalent OTUs below the family level (RDP Classifier confidence40.80).
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communities onto parallel trajectories and result in
multiple equilibria during the press, which would
also be explained by niche processes. Our data
indirectly support either of these last two scenarios,
as the three separate clusters of fire-affected com-
munities suggest multiple equilibria (Supplementary
Figure 6B). It could be that the most similar fire-
affected communities began either from the same
(or functionally equivalent) waking pioneer taxon,
or from the same abiotic conditions (that are similar
beyond reaching thermal temperatures), or from
some combination of both, which initiated distinct
trajectories towards each equilibrium.

Diversification is a fourth community assembly
process discussed by Vellend, 2010 and Nemergut
et al., 2013. At ecological time scales, diversification
was suggested by Vellend et al., 2014 to have
relatively lower influence than the other community
assembly processes. We do not directly address
diversification in this study, focusing instead on
ecological processes. Aside from a consistent obser-
vation of Acidobacteria and Chloroflexi among the
dominant taxa in fire-affected soils, there is no
evidence that different but closely related lineages
are most prevalent across all fire-affected soils,
which may have hinted at distinct but parallel
trajectories of diversification within a locality. How-
ever, we cannot reject the hypothesis that diversifi-
cation processes also contribute to divergences in
community structure at temperature extremes.

Conceptual model
Extending the conceptual models of Ferrenberg et al.,
2013; Dini-Andreote et al., 2015, we present a
hypothesis of the assembly processes shaping com-
munities before, during, and after an extreme press
disturbance. Our model is based on our chronose-
quence trajectory for beta-null data presented in
Figure 4b, and includes a phase encompassing the
press disturbance, which extends beyond the repre-
sentation of a pulse disturbance as a single time point
as typical in previous conceptual models. Our model
also incorporates a hypothesis of multiple transient
equilibria within the press disturbance phase. We
apply the advice of Tucker et al., 2016 to not use the
direction of the change from neutral (positive or
negative) to infer specific ecological processes.

We hypothesize that weak variable selection drives
stability in heterogeneous Centralia soil communities
before the fire (reference sites in Figure 4; phase 1
in Figure 6). This is additionally supported by the
literature demonstrating generally high heterogeneity
and diversity in mature soil microbial communities
(for example, O’Brien et al., 2016). Next, strong
environmental filtering from thermal temperatures
(homogeneous selection, phase 2) decreases commu-
nity diversity at the onset of the press disturbance. The
lower diversity and prolonged disturbance conditions
permit priority effects initiated by taxa fit in the
thermal environment (for example, thermophiles

waking from the seed bank), which set communities
onto distinct deterministic trajectories with multiple
equilibria during the fire (phase 2). Alternatively, the
distinct trajectories and multiple equilibria could have
been initiated by unmeasured nuances in abiotic
conditions at thermal onset. Finally, weak environ-
mental filtering from increased soil acidity relaxes
communities back towards neutral in post-fire condi-
tions (homogeneous selection, phase 3).

Regardless of the interim dynamics that resulted in
community divergence to the stressor, Centralia soils
eventually recovered to a community structure very
similar to reference soils, and these community
structures were explained by the ultimate post-fire
soil environment. Our results show that Centralia
soil communities, though sensitive to this extreme,
complex, and arguably unnatural stressor, had near-
complete return to pre-disturbance conditions, and
were resilient within ten to twenty years after the
stressor subsides. We have no reason to suspect that
temperate soils in Centralia are exceptional as
compared to other soils. Thus, these results suggest
that soils may have an intrinsic capacity for robust-
ness to varied disturbances, even to those
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disturbances considered to be ‘extreme’, com-
pounded, or incongruent with natural conditions.
Understanding the precise functional underpinnings
of soil microbial community resilience, including
the roles of seed banks in determining that resilience,
is a next important step in predicting and, poten-
tially, managing, microbial community responses to
disturbances.
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