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Protein secretion systems are vital for prokaryotic life, as they enable bacteria to

acquire nutrients, communicate with other species, defend against biological and

chemical agents, and facilitate disease through the delivery of virulence factors. In

this review, we will focus on the recently discovered type IX secretion system (T9SS),

a complex translocon found only in some species of the Bacteroidetes phylum.

T9SS plays two roles, depending on the lifestyle of the bacteria. It provides either a

means of movement (called gliding motility) for peace-loving environmental bacteria

or a weapon for pathogens. The best-studied members of these two groups are

Flavobacterium johnsoniae, a commensal microorganism often found in water and soil,

and Porphyromonas gingivalis, a human oral pathogen that is a major causative agent

of periodontitis. In P. gingivalis and some other periodontopathogens, T9SS translocates

proteins, especially virulence factors, across the outer membrane (OM). Proteins destined

for secretion bear a conserved C-terminal domain (CTD) that directs the cargo to the

OM translocon. At least 18 proteins are involved in this still enigmatic process, with

some engaged in the post-translational modification of T9SS cargo proteins. Upon

translocation across the OM, the CTD is removed by a protease with sortase-like

activity and an anionic LPS is attached to the newly formed C-terminus. As a result,

a cargo protein could be secreted into the extracellular milieu or covalently attached

to the bacterial surface. T9SS is regulated by a two-component system; however, the

precise environmental signal that triggers it has not been identified. Exploring unknown

systems contributing to bacterial virulence is exciting, as it may eventually lead to new

therapeutic strategies. During the past decade, the major components of T9SS were

identified, as well as hints suggesting the possible mechanism of action. In addition,

the list of characterized cargo proteins is constantly growing. The actual structure of the

translocon, situated in the OM of bacteria, remains the least explored area; however, new

technical approaches and increasing scientific attention have resulted in a growing body

of data. Therefore, we present a compact up-to-date review of this topic.
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INTRODUCTION

Secretion of hemolysin A by E. coli, described four decades
ago, was the first protein secretion system discovered in Gram-
negative bacteria (diderm bacteria; Goebel and Hedgpeth, 1982).
Since then, eight other protein secretion pathways have been
characterized in these prokaryotes, which have a cell envelope
consisting of the inner membrane (IM) and the outer membrane
(OM) separated by the periplasm. They are now referred to
as type x secretion systems (T1SS–T9SS; reviewed in Abdallah
et al., 2007; Gerlach and Hensel, 2007; Remaut et al., 2008;
Desvaux et al., 2009; Goyal et al., 2014; Costa et al., 2015; Abby
et al., 2016). Secretion systems in diderm bacteria are considered
gateways through the OM that transport cargo with the help of
either dedicated IM and periplasmic proteins or the Sec, Tat,
and holins systems that first transport cargo to the periplasm. In
fact, the Sec, Tat, and holins pathways, which transport proteins
across the cytoplasmic membrane, are universal among bacteria,
eukaryotes, and even archaea (Hutcheon and Bolhuis, 2003;
Denks et al., 2014; Berks, 2015; Saier and Reddy, 2015). Therefore,
secretion may be either a single-step process in which substrates
(proteins or DNA) are translocated through a designated cell
envelope-spanning structure (T1SS, T3SS, T4SS, and T6SS) or
a two-step process in which the substrates first cross the IM
into the periplasm using the Sec/Tat/holins systems, then are
directed to the OM translocon. The final destinations of secreted
cargos are diverse: they may stay attached to the surface of the
OM, be released into the extracellular milieu, or be injected into
the cytoplasm of a target cell (Costa et al., 2015; Abby et al.,
2016).

Secretion systems perform numerous physiological
functions essential for cell propagation and fitness within a
specific ecological niche. They facilitate nutrient acquisition,
communication with the environment, attachment to various
surfaces, defense against host antimicrobial systems, and delivery
of virulence factors at a precise location such as a eukaryotic
cell (Letoffe et al., 1994; Henke and Bassler, 2004; Gerlach and
Hensel, 2007; Rondelet and Condemine, 2013; Gaytan et al.,
2016; Hachani et al., 2016; Majerczyk et al., 2016). However,
none of the above adaptations can be assigned solely to one type
of secretion.

The presence of protein secretion systems varies among
phylogenetic lineages of diderm bacteria. Proteobacteria encode
the broadest range of described secretion types, whereas other
clades have a strong preference for only one or two types (e.g.,
Fusobacteria possess only T5SS; Chlamydiae, T3SS and T5SS).
The most widespread systems are T1SS and T5SS; conversely,
T2SS is rarely detected outside Proteobacteria (Abby et al.,
2016).

In this review, we will cover the current knowledge regarding
the recently discovered type IX secretion system (T9SS), also
known as the Por secretion system (PorSS) or PerioGate.
T9SS is exclusively present in the Bacteroidetes phylum, in
a majority of its species (62% out of 97 genomes available;
Sato et al., 2010; McBride and Zhu, 2013; Abby et al.,
2016).

DISCOVERY OF T9SS

Uncovering and characterizing this unique secretion system was
a gradual process over the last two decades and originated from
studies of the Gram-negative, non-motile, anaerobic bacterium
Porphyromonas gingivalis. P. gingivalis is a human oral pathogen
that is a major causative agent of periodontitis, and, along
with two other bacteria, Tannerella forsythia and Treponema
denticola, forms the so-called red complex (Hajishengallis, 2015).
Besides being a key pathogen in periodontitis, P. gingivalis is
implicated in many systemic illnesses such as atherosclerosis
(Kebschull et al., 2010), aspiration pneumonia (Benedyk et al.,
2016), rheumatoid arthritis (RA; Laugisch et al., 2016), and even
cancer (Whitmore and Lamont, 2014; Gao et al., 2016).

An important initial finding was that P. gingivalis produces
potent proteolytic enzymes called gingipains (Kgp, RgpA, and
RgpB; discussed in more detail later in this review; Pike et al.,
1994; Pavloff et al., 1995; Curtis et al., 1999). Gingipains are
essential virulence factors responsible for corrupting host innate
defense mechanisms (Potempa et al., 2003; Hajishengallis, 2015).
They are secreted in large amounts and are mainly attached to the
surface of the OM, but are also partially released in a soluble form
into the extracellular milieu (Pike et al., 1994; Rangarajan et al.,
1997). Because none of the genes associated with known protein
secretion systems could be found in the P. gingivalis genome, it
was suspected that this bacterium had developed a unique OM
translocon.

The search for this novel secretion system was greatly
facilitated by the observation that colonies of P. gingivalis
deficient in gingipain activity lack black pigmentation while
growing on blood agar plates (Figure 1; Okamoto et al., 1998; Shi
et al., 1999). Colony pigmentation results from the accumulation
of heme on the surface of P. gingivalis cells, a process
dependent on the proteolytic activity and hemagglutinin- and
heme/hemoglobin-binding activity of gingipains (Smalley et al.,
1998; Sroka et al., 2001). Spontaneous white/beige mutants were
occasionally observed, and this phenotype was associated with,
among other things, decreased cell surface-associated proteolytic
activity (McKee et al., 1988; Shah et al., 1989). The discovery
of the essential role of secreted, cell-bound gingipains in heme
acquisition meant that pigmentation could be used as an easy
screening tool for mutations blocking gingipain secretion. Of
note, as potent virulence factors, gingipains were of particular
interest for elucidating the role of P. gingivalis in the development
of periodontitis.

Several high-throughput transposonmutagenesis studies were
performed, resulting in the characterization of various pigment-
less clones. Early studies associated this phenotype with the
impaired activity of trypsin-like proteases and diminished
hemagglutination and heme acquisition by mutants (Hoover and
Yoshimura, 1994; Genco et al., 1995). Later investigations found
aberrations in polysaccharide synthesis and disruption of kgp
(one of the gingipains; Simpson et al., 1999; Chen et al., 2000;
Abaibou et al., 2001; Shoji et al., 2002). Finally, Sato et al. (2005)
identified in their transposon study porT (PG0751/PGN_0778),
the first gene encoding a protein involved in the secretion of
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FIGURE 1 | Pigmentation of various P. gingivalis W83 strains. (A) The

wild-type P. gingivalis W83 and ATCC33277 strains grown anaerobically on

blood agar plates present brown/black pigmentation due to heme

accumulation. This phenotype is in a great part dependent on Kgp gingipain

activity on the cell surface. P. gingivalis strains deficient in Kgp activity yield

beige colonies which darken over the time. Arginine gingipains (RgpA/B) are

not involved in this process and their deletion does not influence pigmentation.

Strains impaired in T9SS e.g., 1porT lack pigmentation which is never

restored. Due to the absence of A-LPS in the P. gingivalis HG66 strain all

gingipains and other T9SS cargo proteins are not associated with the cell

membrane, but secreted into extracellular milieu resulting in white phenotype.

(B) Single colonies of P. gingivalis strains grown for 7 days showing black or

white pigmentation.

gingipains. Their mutated, non-pigmented strain had impaired
gingipain activity. Moreover, gingipains accumulated in the
periplasm as enzymatically inactive proenzymes instead of being
exported outside the cell. A database search (BLASTP) found that
PorT is present only in some species of the Bacteroidetes phylum,
such as Porphyromonas gingivalis, Cytophaga hutchinsonii, and
Prevotella intermedia, and absent from many other phylum
proteomes like Bacteroides thetaiotaomicron and Bacteroides
fragilis (Sato et al., 2005). Two years later, another gene,
sov (PG0809/PGN_0832), was implicated in the secretion of
gingipains, showing a mutation phenotype identical to the one
observed for the porT mutation (Saiki and Konishi, 2007).

Finally, the 2010 comparison of the porT-positive
proteomes/genomes of C. hutchinsonii and P. gingivalis
with the porT-negative species B. thetaiotaomicron resulted
in a list of 55 genes (in addition to porT) potentially involved
in the secretion mechanism. Subsequent isogenic mutagenesis
of all selected genes resulted in the identification of 11 genes
(including porT and sov) associated with gingipain transport
across the OM and gingipain activation. Because these proteins
do not have sequence similarity to components of any other

known secretion system, it was assumed to be a novel secretion
system and was originally called the Por secretion system (PorSS;
Sato et al., 2010; Nakayama, 2015). To be consistent with the
existing nomenclature of secretion systems in diderm bacteria,
the system was later designated the type IX secretion system or
T9SS.

NEW SECRETION SYSTEM: A DEADLY
WEAPON OR A PEACEFUL TOOL?

The comparative analysis of genomes carried out in a search
for porT homologs revealed that T9SS is exclusively present
in the Bacteroidetes phylum (Sato et al., 2005). Numerous
studies on P. gingivalis show that T9SS is involved in virulence
factor secretion, which damages human tissues and dysregulates
immune responses (Potempa et al., 2003; Yoshimura et al., 2008;
Sato et al., 2013; Bielecka et al., 2014; Taguchi et al., 2015). In
addition, T. forsythia and Prevotella intermedia (another oral
pathogenic bacteria) use this secretion pathway to disseminate
their effector proteins (Nguyen et al., 2007; Veith et al., 2013;
Narita et al., 2014; Tomek et al., 2014; Ksiazek et al., 2015b).
Consequently, it is plausible that more pathogens from the
Bacteroidetes phylum carrying porT homologs are utilizing
this mechanism for virulence factor secretion. Although no
experimental data are available to support this, it is likely
that T9SS is a molecular weapon aimed at various host cells,
similar to many other secretion systems (especially T3SS and
T6SS).

Among Bacteroidetes’ porT-positive species, there are many
non-pathogenic environmental microorganisms such as C.
hutchinsonii and F. johnsoniae. Both bacteria are aerobes
ubiquitously distributed in soil and are capable of digesting
macromolecules such as cellulose and chitin, respectively
(Stanier, 1942, 1947). They are motile microorganisms that
use a movement mechanism called gliding motility (Jarrell and
McBride, 2008; Nakane et al., 2013). Surprisingly, the core T9SS
genes are a subset of those necessary for gliding (gldK: ortholog
of P. gingivalis porK, gldL/porL, gldM/porM, gldN/porN, sprA/sov,
sprE/porW, and sprT/porT; Sato et al., 2010; McBride and Zhu,
2013; Shrivastava et al., 2013; McBride and Nakane, 2015).
Moreover, secretion of chitinase and cellulase requires T9SS,
meaning the system functions as a non-invasive tool used for
movement and food acquisition in these bacteria (Kharade and
McBride, 2014; Zhu and McBride, 2014; Yang et al., 2016).

The detailed mechanisms and regulation of T9SS in gliding
motility and food scavenging are still under investigation and
may reveal additional functions (even in non-gliding species).

STRUCTURAL AND FUNCTIONAL
COMPONENTS OF P. gingivalis T9SS

Presently, 18 genes from a total of 29 candidates have been
proven essential for proper T9SS function in P. gingivalis by
deletion mutagenesis studies (Heath et al., 2016). Deletion of any
of these genes results in the white pigmentation phenotype and
accumulation of cargos (e.g., gingipains) in the periplasm. Some

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3 May 2017 | Volume 7 | Article 215

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Lasica et al. Type IX Secretion System (T9SS)

of these proteins build the core structures in the IM and OM,
some play regulatory or accessory roles, and others are involved
in post-translationally modifying cargo proteins (Table 1). Many
aspects of their functions have yet to be discovered.

Genes encoding T9SS components are scattered around the
P. gingivalis genome. The exception is a group of five genes, porP-
porK-porL-porM-porN, that are co-transcribed (Vincent et al.,
2016). In many other Bacteroidetes species, the operon structure
of these genes is conserved [databases: STRING (Snel et al., 2000),
DOOR (Dam et al., 2007; Mao et al., 2009), ProOpDB (Taboada
et al., 2012), OperonDB (Pertea et al., 2009)]. Orthologs of the
porP gene (sprP in some gliding motility bacteria) show the most
variation, as the gene can be located in different genomic loci
(e.g., F. johnsoniae Fjoh_3477 vs. gldK/Fjoh_1853), and, even if
they precede porK, they remain as separate transcriptional units
(e.g., C. hutchinsonii sprP/CHU_0170 and gldK/CHU_0171; Zhu
and McBride, 2014). The rest of the P. gingivalis T9SS genes
are either single units or predicted to be in 2–5 gene operons
(Figure 2) with genes unrelated to T9SS structure and function.
In addition, none of the adjacent genes encode T9SS cargo
proteins.

Cytoplasmic and IM Components
Presently, there is only one known T9SS-related protein residing
entirely in the cytoplasm: PorX (PG0928/PGN_1019). It is a
response regulator (RR) of a two-component system (TCS)
involved in regulating the expression of several T9SS genes. Its
sensor kinase partner, PorY (PG0052/PGN_2001), is an IM-
anchored protein containing two transmembrane (TM) helices
and a large cytoplasmic domain (∼222 aa; Sato et al., 2010;
Vincent et al., 2016). Both proteins will be discussed in more
detail in the Regulation Section.

Two other essential components of T9SS, PorL (PG0289
/PGN_1675) and PorM (PG0290/PGN_1674), are also anchored
in the IM. PorL possesses two TM helices located between
residues 17–48 and 48–74, with both N- and C-termini in the
cytoplasm. The precise locations of the helices (the exact amino
acids) have not been determined (Vincent et al., 2017). The large
cytoplasmic C-terminal domain (∼236 residues) interacts in vitro
with PorX (Vincent et al., 2016); thus it may be involved in
regulating T9SS function. Moreover, PorL cytoplasmic domain
forms a homotrimer in E. coli cells and the full-length protein
was found in a complex with PorM both in vitro (Gorasia et al.,
2016; Vincent et al., 2017) and in vivo (Sato et al., 2010). PorM
is anchored in the IM by a single TM helix at its N-terminus
(between residues 9 and 41), with the remaining residues (475)
forming a domain facing the periplasm. In E. coli cells, the
periplasmic part of PorM dimerizes and interacts with two
other core T9SS proteins: PorK and PorN (Vincent et al., 2017).
The recombinant periplasmic domain (amino acid residues 36–
516) was crystallized, presenting with tetragonal crystals, but
automatic model building failed to provide a realistic structure,
thus leaving the nature of interactions unknown (Stathopulos
et al., 2015). Nevertheless, a possible function for PorL/PorM,
apart from the regulatory implications for PorL, has been
suggested.

It was proposed that the two proteins form an energy
transducer complex to provide energy for T9SS assembly and
substrate translocation. The idea came from F. johnsoniae, which
utilizes a proton-motive force for gliding motility (Nakane
et al., 2013; Gorasia et al., 2016). It was further noted that
the hydrophobic TM helixes of GldL (PorL ortholog), PorL,
and PorM possess conserved glutamate residues characteristic
of known energy transducers (Shrivastava et al., 2013; Vincent
et al., 2017). These assumptions need experimental verification;
nevertheless, they are compatible with mechanisms used by other
secretion systems to provide the energy needed to drive substrate
transport such as hydrolysis of ATP, proton-motive force, low-
energy assembly, and entropy gradient (Costa et al., 2015).

Periplasmic Components
Four T9SS proteins are located in the periplasm: PorN
(PG0291/PGN_1673), PorK (PG0288/PGN_1676), PorW
(PG1947/PGN_1877), and PG1058/PGN_1296. All but one
(PorN) are predicted or proven to be lipoproteins associated
with membranes (Sato et al., 2010). PorW is the least investigated
protein among the periplasmic elements of P. gingivalis secretion.
Experimental work on PorW has only been performed on the
F. johnsoniae PorW ortholog, SprE (Fjoh_1051), which is a
predicted lipoprotein that localizes to a membrane fraction
(most likely the OM). A mutant with a deleted sprE gene exhibits
phenotypes in gliding bacteria typical of other T9SS function-
deficient mutants, such as non-spreading colonies, defective
gliding, and blocked secretion of chitinase (Rhodes et al., 2011;
Kharade and McBride, 2015). Its subcellular localization and the
effects of its mutation on the secretory/gliding phenotype suggest
that SprE/PorW is yet another structural component of T9SS.

PG1058 is a multidomain protein necessary for T9SS function.
The phenotype of P. gingivalis with an inactivated PG1058 gene
is typical of other T9SS mutants: colonies on blood agar lack
pigmentation and inactive, unprocessed gingipains accumulate
in the periplasm. The PG1058 protein is anchored by its lipid
modification to the periplasmic surface of the OM. The predicted
structure suggests the presence of four structural domains: a
tetratricopeptide repeat (TPR) domain, a β-propeller domain,
a carboxypeptidase regulatory domain-like fold (CRD), and an
OmpA_C-like putative peptidoglycan-binding domain. TPR and
β-propeller domains are involved in protein-protein interactions;
hence, together with the PG1058mutant phenotype, it is plausible
that PG1058 supports the T9SS translocon structure (Heath et al.,
2016). Further, experiments are needed to verify this hypothesis.

PorN is a periplasmic protein that forms dimers in vitro and
has the propensity to interact both in vitro and in vivo with
IM protein PorM and periplasmic lipoprotein PorK (Gorasia
et al., 2016; Vincent et al., 2017). The nature of the interaction
with PorK is interesting, as both proteins form a ring-shaped
structure with an external and internal diameter of 50 and
35 nm, respectively. It was proposed that they form a large
complex in which PorN interacts in an almost 1:1 fashion (32–
36 total subunits) with the PorK lipoprotein. The ring structure is
anchored into the OM through the fatty acids of PorK. Consistent
with detected interactions, PorN has a crucial role in stabilizing
both PorL–PorM and PorN–PorK complexes, as deletion of the
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porN gene resulted in the degradation of PorL, PorM, and PorK
in P. gingivalis cells. By contrast, deletion of either porL or porM
does not interfere with the stability of the PorN/K complex
(Gorasia et al., 2016).

Further, studies on PorK,L,M,N interactions suggest the
existence of a PorK2L3M2N2 complex that likely oligomerizes
to form a superstructure with a final molecular mass of over
1.2 MDa (Gorasia et al., 2016; Vincent et al., 2017). Such a
large complex was originally reported by Sato and colleagues,
who identified all four proteins in a single spot on a blue-
native electrophoresis gel (Sato et al., 2010). However, additional
elements of the complex were recently identified: PG0189 and
PorP (PG0287/PGN_1677). Because they are predicted to be
integral OM β-barrel proteins, they are discussed in more detail
in the following section.

OM and Surface Components
The vast majority of T9SS components are confined to the OM.
In addition to the peripheral OM-associated and periplasmic
proteins delineated above, seven others (Sov, PorQ, PorP, PorT,
PorV, PG0189, and PG0534) are predicted to be integral OM β-
barrel proteins. Furthermore, two proteins, PorU and PorZ, are
associated with the bacterial surface. In addition, PG0192 was
found in a membrane fraction, but its association with the OM
needs further verification.

PorT and Sov were the first proteins found to be essential
for P. gingivalis protein secretion, and the discovery led to
intense research on T9SS (see Discovery Section; Sato et al.,
2005, 2010; Saiki and Konishi, 2007). Despite this, we still know
very little about the structure and function of these proteins
a decade later. PorT is predicted to have eight anti-parallel,
membrane-traversing β-strands, with four large loops facing
the environment, and this topology has been experimentally
confirmed (Nguyen et al., 2009). Sov was also described as an
integral OM protein with its C-terminal region likely exposed
to the extracellular milieu (Saiki and Konishi, 2007, 2010b).
However, the precise roles of both proteins in T9SS structure
and function remain unknown. Even less information is available
concerning PorQ (PG0602/PGN_0645) as a T9SS component
(Sato et al., 2010). In the genome annotation, it is described as
a hypothetical protein with a β-barrel structure belonging to the
porin superfamily (Nelson et al., 2003); thus it is assumed to
localize to the OM.

Similarly, little is known about PG0534/PGN_1437 as a
protein essential for T9SS function (Saiki and Konishi, 2010a).
Interestingly, PG0534 is upregulated in human gingival epithelial
cells, suggesting its contribution to P. gingivalis eukaryotic cell
invasion and/or intracellular survival (Park et al., 2004). In silico
predictions run on the RaptorX server (Kallberg et al., 2012)
modeled PG0534 as a β-barrel OM protein, with the pyochelin
OM receptor FptA from Pseudomonas aeruginosa (Cobessi et al.,
2005) as the best template (PDB: 1xkwA; p-value: 1.82e-23).

The next T9SS OM component, PG0192/PGN_300
(annotated as an OmpH-like protein), was found in the
total membrane fraction. Due to its 17 kDa molecular mass,
the protein is referred to as Omp17 (Taguchi et al., 2015). The
best template prediction by the RaptorX server is a putative
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FIGURE 2 | Arrangement of P. gingivalis W83 genes encoding T9SS components. Genes are grouped according to in silico operon predictions, reflecting

direction of transcripts (Dam et al., 2007; Mao et al., 2009; Pertea et al., 2009; Taboada et al., 2012). Gaps in the genome are indicated by the slashes. Intervals

between adjacent genes or overlapping regions (in base pairs-bp) are marked below each section. Each transcription unit is shown in different color. Genes encoding

T9SS components are depicted in red font. Black vertical arrow shows continuous region (75 bp) between PG0026 (porU) and PG0027 (porV ) but the two genes

were predicted to transcribe independently. Green arrows indicate operons that were confirmed experimentally (Taguchi et al., 2015; Vincent et al., 2017). Green

asterisk denotes proved single transcription unit for the PG0191-PG0192-PG0193 genes (in P. gingivalis ATCC33277 strain), however co-transcription of preceding

the PG0190 gene (17 bp interval) was not investigated (Taguchi et al., 2015). The PG0809 (Sov) gene was re-sequenced and confirmed to consist of the two

combined genes PG0809 and PG0810, mis-annotated in W83 genome as separate ORFs (Saiki and Konishi, 2007). A dashed arrow denotes indirect evidence that

PG0809 (Sov) and PG0811 may be co-transcribed. It was shown that sigma factor SigP (regulator of other por genes) binds to the region preceding PG0811 but not

the one before PG0809 (Kadowaki et al., 2016).

OM chaperone (OmpH-like) from Caulobacter crescentus (PDB:
4kqtA; p-value: 6.78e-04). The phenotypic effects of omp17
mutation are typical of other T9SS-defective mutants but with
an interesting exception. The mutant is still able to secrete
unprocessed T9SS cargo proteins, including pro-gingipains
and CPG70, which accumulate in the periplasm in other
secretion mutants (Taguchi et al., 2015). Of note, in the wild-type
P. gingivalis, T9SS cargos remain attached to the bacterial surface
through anionic lipopolysaccharide (A-LPS) anchoring (Shoji
et al., 2002; Shoji and Nakayama, 2016). This modification
is added by the surface-located PorU protein (Gorasia et al.,
2015; for more details see the Mechanism Section). Taguchi and
colleagues showed that A-LPS synthesis in the omp17 mutant
was not affected, suggesting the impairment of PorU function.
Consistent with that, PorU was not detected in the omp17− cell
envelope fraction, but was found in the cytoplasm/periplasm
fraction. Moreover, the omp17 mutant was less virulent than the
wild type in the mouse subcutaneous model, which is consistent
with the lack of gingipain activity (Taguchi et al., 2015).

As previously mentioned, PG0189 and PorP (a part of
the porPKLMN operon) were detected in association with the
PorKLMN complex. Specifically, a periplasmic loop of PG0189
interacts with both PorK and PorN, as shown by cross-linking

experiments. Due to its low abundance, PG0189 is proposed to
play an accessory role in secretion (Gorasia et al., 2016). The
nature of the interaction of PorP with PorK and PorM is still
enigmatic. The proteins co-precipitate in vitro; however, all tested
proteins were produced in E. coli cells, and, so far, have not been
detected in the native complex (Vincent et al., 2017).

Currently, the only OM β-barrel protein with an assigned
function is PorV (PG0027/PGN_0023/LptO). The PorV-mutated
strain retains inactive, unprocessed gingipains in the periplasm
(Ishiguro et al., 2009) and fails to O-deacylate LPS, which might
be a necessary step in post-translational processing during the
secretion of cargo proteins (Chen et al., 2011; Glew et al., 2012).
Yet another study indicated that PorV interacts in vivowith PorU
(PG0026/PGN_0022), and it was proposed that PorV serves as
an OM anchor for PorU (Saiki and Konishi, 2014). Indeed, PorU
localizes to the surface of P. gingivalis cells and is involved in T9SS
cargo processing (see the next section; Glew et al., 2012; Gorasia
et al., 2015). Despite this relative abundance of knowledge on
PorV, it remains unknown whether PorV is directly involved
in LPS processing or if it is only an accessory protein for an
unknown LPS O-deacylase. The secretion-deficient phenotype
of the PorV mutant might be related to the lack of PorU
immobilization on its surface.
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The last known component of T9SS is a surface-located
PorZ protein (PG1604/PGN_0509) recently characterized by our
group (Lasica et al., 2016). The non-pigmented phenotype of
the PorZ-mutant strain and its accumulation of unprocessed,
inactive gingipains confirmed that PorZ is essential for the
system. Interestingly, it was shown (through proteomics and
mutagenesis studies) that PorZ is itself a cargo of T9SS and
has the conserved C-terminal domain (CTD) (Glew et al., 2014;
Lasica et al., 2016). The CTD works as a signal, directing T9SS
cargo proteins to the OM translocon (see the next section; Shoji
et al., 2011). However, unlike other cargos, the CTD of PorZ is
not cleaved off upon secretion and the protein is not anchored
in the OM in the same manner as other secreted proteins (Lasica
et al., 2016). This phenomenon was observed for only one other
protein, PorU, which is also both a functionally essential element
and a cargo of T9SS (Glew et al., 2012). PorZ is currently the sole
Por protein with a solved atomic structure. It is composed of two
large β-propeller domains and a CTD, conforming to canonical
β-sandwich architecture (de Diego et al., 2016; Lasica et al.,
2016). Although the precise role of PorZ remains to be revealed,
β-propeller domains are a good platform for protein-protein
interactions and provide binding areas for small molecules (e.g.,
saccharides; Hunt et al., 1987; Zhang et al., 2014). Considering the
structure and processing, we hypothesize that, like PorU, PorZ
may be involved in post-translational maturation of T9SS cargo
proteins during their translocation across the OM.

MECHANISM OF SECRETION

Protein secretion using T9SS is a two-step process. First, the
cargo proteins are guided by a classical signal peptide to the
Sec machinery in the IM. During translocation, the signal
peptide is cleaved off by type I signal peptidase, and the
cargo is released into the periplasm. Although, the Sec pathway
has not been experimentally analyzed in P. gingivalis, the
screening of Bacteroidetes genomes confirmed that the system
is mostly conserved (McBride and Zhu, 2013). In the periplasm,
transported proteins fold into a stable conformation, as indicated
from the accumulation of their soluble forms in the periplasm
of T9SS secretory mutants. Whether the cargo proteins require a
chaperone(s) to assist in folding and/or guiding them to the OM
translocon is still unknown.

A common feature of all T9SS cargo proteins is the conserved
CTD that targets T9SS cargo proteins to the OM translocon.
The function of the CTD was first recognized while studying
the secretion and processing of the RgpB (PG0506/PGN_1466)
gingipain. The protein without the C-terminal Ig-like domain
of 72 amino acid residues was not secreted, but accumulated
in the periplasm of the mutated P. gingivalis strain in its
truncated form (Seers et al., 2006). A parallel study confirmed
this observation, showing that the integrity of the CTD is
essential for RgpB secretion, as even truncating the C-terminal
by two residues hinders transport across the OM. The same
effect is caused by mutating the highly conserved residues
at the C-terminus of the CTD (Nguyen et al., 2007). The
elegant follow-up investigations with CTDs from different

P. gingivalis T9SS cargo proteins (HBP35/PG0616/PGN_0659,
CPG70/PG0232/PGN_0335, P27/PG1795/no PGN, and RgpB)
genetically fused to GFP found that GFP was secreted and post-
translationally modified by P. gingivalis in the same way as
the native T9SS cargos. The secretion/modification signal was
narrowed down to the last 22 residues of the CTD domain (Shoji
et al., 2011), and proteomic analysis revealed cleaved CTDs in the
culture medium (Veith et al., 2013).

Taken together, these findings suggested the existence of
a C-terminal-sorting peptidase responsible for the proteolytic
removal of the CTD during the cargos’ translocation across the
OM. The postulated sortase was identified in P. gingivalis as
PorU, a surface-located cysteine peptidase that shares significant
sequence similarity with gingipains (see previous section;
Glew et al., 2012). Analysis of the cleavage sites of T9SS cargos
in P. gingivalis revealed a PorU preference toward polar or acidic
amino acid residues (Ser, Thr, Asn, Asp) at the carbonyl site (P1′

position) and small amino acid residues (such as Gly, Ser, Ala) at
the amide site (P1 position; Glew et al., 2012; Veith et al., 2013).
This low specificity of PorU was confirmed when the amino acids
surrounding the cleavage site (P1–P1′) in RgpB were mutated. Of
note, this did not affect the secretion of the gingipain (Zhou et al.,
2013).

Secretion Signal for T9SS Substrates Is
Embedded in the Secondary Structure
Bioinformatic analysis of 21 fully sequenced genomes from the
Bacteroidetes phylum revealed the presence of 663 predicted
CTD-containing proteins (Veith et al., 2013). Alignment of
the amino acid sequence of identified CTDs revealed up to
five conserved sequential motifs (A–E) in different T9SS cargo
proteins (Seers et al., 2006; Nguyen et al., 2007; Slakeski et al.,
2011). Out of these, two sequential motifs, PxGxYVV andKxxxK,
that reside in the last 22 amino acids of CTDs are the most
conserved. This conservation is consistent with this fragment
being sufficient for secretion in P. gingivalis (Shoji et al., 2011;
Veith et al., 2013). Cumulatively, however, the limited sequence
identity of CTDs suggests that the signal recognized by the
T9SS machinery is not imprinted in the amino acid sequence
but is formed by a specific fold of the CTD. This contention
was confirmed by the atomic structure of the CTD from two
P. gingivalis T9SS cargo proteins: RgpB and PorZ (de Diego
et al., 2016; Lasica et al., 2016). Their CTDs consist of seven β-
strands of similar length, generating a compact, sandwich-like
fold typical of an immunoglobulin-superfamily (IgSF) domain.
Analysis of the CTD of RgpB revealed a propensity of the protein
to dimerize by swapping the last β-strand (de Diego et al., 2016).
Of note, the last two β-strands overlap perfectly with the 22
amino acid residues essential for secretion of CTD proteins (Shoji
et al., 2011). Despite the differences within the loops and the low
amino acid sequence similarity, the PorZ-derived CTD structure
is topologically equivalent to that of RgpB. This conclusion likely
extends to the majority of identified CTDs, which share the fold
of the IgSF domain. Therefore, the tertiary structure of the CTD,
especially its two terminal β-strands, likely contains the signal
recognized by the T9SS translocon (Lasica et al., 2016).
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Secretion-Associated Modifications of
T9SS Cargo Proteins
The characteristic feature of T9SS function is the retention of
cargo proteins on the bacterial surface. SDS-PAGE analysis of
OM-associated proteins produced diffuse bands about 20 kDa
larger than that predicted from the primary structure of T9SS-
secreted proteins (Veith et al., 2002). The difference is due to the
presence of an A-LPS (Paramonov et al., 2005; Rangarajan et al.,
2008) covalently attached to the cargo proteins imbedded into the
OM, as indicated by western blot using specific antibodies (Abs).
By contrast, the molecular mass of proteins accumulating in the
periplasm of secretion mutants correlates well with the predicted
molecular mass, and the proteins have no reactivity with anti-
A-LPS Abs (Shoji et al., 2014). In addition, electron microscopy
revealed that CTD-containing proteins (especially gingipains)
form the electron-dense surface layer (EDSL) encapsulating
P. gingivalis cells (Chen et al., 2011). Gorasia et al. (2015) found
that the wbaP (PG1964/PGN_1896) mutant of P. gingivalis,
which is defective in A-LPS synthesis, completely lacks the EDSL
and releases T9SS cargos in soluble form into culture fluid. The
proteins lack CTDs, suggesting normal PorU sortase activity, but
are not A-LPS modified and therefore cannot be incorporated
into the OM (Gorasia et al., 2015).

The mechanism of A-LPS attachment to CTD-containing
proteins during secretion by T9SS is still unknown. The analysis
of CTD proteins isolated from the growth media of the wbaP
mutant revealed that peptides/amino acids derived from growth
medium or glycine (if added in excess to the broth) were added
to the proteins’ C-termini via peptide bond. On the other hand,
a 648 Da linker attached to C-termini by an isopeptide bond
was identified in CTDs derived from the wild-type P. gingivalis
strain (Gorasia et al., 2015). Such modification is reminiscent
of a sortase-like mechanism of protein binding to peptidoglycan
in Gram-positive bacteria. Sortases are cysteine proteases (C60
family) that have a catalytic Cys/His dyad, characteristic for
many cysteine proteases, and possess a conserved Arg residue
essential for sorting activity (Marraffini et al., 2004). This Arg
is absent in gingipains, but is found in PorU sortase (Gorasia
et al., 2015). All these findings suggest that PorU is a sortase,
the first identified among Gram-negative bacteria. It cleaves the
CTD and simultaneously attaches the A-LPS moiety to the newly
generated C-terminus of a cargo protein via a linker of unknown
structure. In this context, the T9SS mechanism resembles the
covalent attachment of proteins to the cell wall in Gram-positive
bacteria such as S. aureus (Schneewind and Missiakas, 2012).

REGULATION

Essential T9SS genes, including porT, porV, sov, porP, porK, porL,
porM, and porN, are regulated at the transcriptional level by
a signaling pathway composed of the PorXY two-component
system (TCS) and an extracytoplasmic function (ECF) sigma
factor (SigP/PG0162/PGN_0274; Kadowaki et al., 2016). In
contrast to the majority of TCSs, in which the components are
encoded within the same operon, the porX and porY genes occur
at separate loci within the P. gingivalis chromosome. Despite

this unusual genomic organization, the activation of the PorXY
TCS is canonical. PorY has a modular architecture typical for
a histidine kinase (HK) and undergoes autophosphorylation at
His193, as shown by radiolabeled [32P-γ]ATP. The phosphate
group is then transferred to the conserved Asp58 residue in
the receiver domain of PorX, which functions as the response
regulator (RR). To compensate for the lack of a DNA-binding
domain in the RR, PorX interacts with SigP, which directly binds
the promotor regions of T9SS genes. The SigP protein level is
very low in the porX-deletion mutant, suggesting a stabilizing
function for PorX on SigP (Kadowaki et al., 2016). Disruption
of the PorXY TCS results in the dysfunction of T9SS, which
manifests as the decrease of Rgp and Kgp activity, as well as the
impaired processing of gingipains (Sato et al., 2010).

PorX can also modulate the T9SS architecture directly by
interacting with the cytoplasmic domain of PorL (Vincent et al.,
2016). The N-terminal domain of PorX is similar to RRs
belonging to the CheY family, which are involved in chemotaxis.
After phosphorylation, the CheY protein binds to the C-ring
of flagella, which changes the direction of flagellar movement
(Roman et al., 1992; Sagi et al., 2003). Due to the fact that
T9SS was proposed to be a rotary apparatus enabling the rotary
movement of SprB adhesin in gliding bacteria (Shrivastava et al.,
2015), it has been speculated that the PorX mechanism might be
similar to that of CheY (Vincent et al., 2016). However, its role
in P. gingivalis cells will likely be different as this bacterium is
non-motile.

There are other studies reporting the changes in a T9SS
protein’s expression profile under specific circumstances. In a
PorZ-deletion strain, some of the T9SS genes (including porT,
porV, and porN), together with genes encoding CTD-cargo
peptidases (RgpB, Kgp, and CPG70), are upregulated, whereas
the expression of other T9SS genes (such as porQ, porW, sov,
and porU) is not changed (Lasica et al., 2016). Additionally, the
gliding motility protein GldN (orthologous of P. gingivalis PorN)
of Flavobacterium psychrophilum is significantly upregulated
under iron-limited growth conditions and in vivo (LaFrentz et al.,
2009). The expression of T9SS proteins must be strictly regulated
to fine-tune the energy-absorbing secretion of proteins into the
environment. However, a precise environmental signal has not
been identified and our knowledge about T9SS regulation is still
limited.

PROTEIN EFFECTORS IN P. gingivalis

Only a few secretion systems are dedicated to carrying a single
cargo protein; examples are HlyA in E. coli and HasA in S.
marcescens for T1SS (Kanonenberg et al., 2013), and PulA in
K. oxytoca and LT toxin in E. coli for T2SS (Rondelet and
Condemine, 2013). The majority of secretion systems translocate
many proteins of similar or diverse functions [e.g., T3SS; Gaytan
et al., 2016]. In many respects, T9SS is one of the most
robust secretion systems, which, in P. gingivalis alone, facilitates
secretion of up to 35 cargos bearing the CTD (see Table 2),
many of which are implicated in bacterial pathogenicity. In fact,
experiments conducted to characterize the important virulence
factors (the gingipains RgpA, RgpB, and Kgp) contributed to
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TABLE 2 | T9SS cargo proteins.

Porphyromonas gingivalisa

Locus Tag

W83 NC_002950.2 ATCC33277

NC_010729.1

Protein accession

number

Protein description References

PG_RS00120 PG0026 PGN_0022 WP_005874469.1 PorU; surface C-terminal sortase Glew et al., 2012; Veith et al., 2013;

Gorasia et al., 2015

PG_RS00835 PG0182 PGN_0291 WP_010955943.1 Mfa5; VWA domain-containing protein [von

Willebrand factor (vWF) type A domain]

Hasegawa et al., 2016

PG_RS00840 PG0183 no PGN WP_043876389.1 Hypothetical protein containing VWA domain

identical to that in PG0182 (circa 430 residues);

lipoprotein

Found only by proteomic analysisa

PG_RS01060 PG0232 PGN_0335 WP_005873522.1 CPG70; zinc carboxypeptidase Veith et al., 2004; Shoji et al., 2011;

Zhou et al., 2013

PG_RS01560 PG0350 PGN_1611 WP_005873799.1 Internalin; hypothetical protein; leucine-rich repeats

(x8)

Found only by proteomic analysisa

PG_RS01820 PG0410 no PGN WP_005873803.1 Hypothetical gingipain-like peptidase C25

PG_RS01825 PG0411 PGN_1556 WP_010956006.1 T9SS C-terminal target domain-containing protein Found only by proteomic analysisa

PG_RS02195 PG0495 PGN_1476 WP_010956042.1 T9SS C-terminal target domain-containing protein Found only by proteomic analysisa

PG_RS02240 PG0506 PGN_1466 WP_010956050.1 RgpB; arginine specific gingipain B, cysteine

protease

Pike et al., 1994; Seers et al., 2006;

Guo et al., 2010; de Diego et al., 2016

PG_RS02455 PG0553 PGN_1416 WP_010956068.1 PepK; lysine specific serine endopeptidase Sato et al., 2013; Nonaka et al., 2014;

Veith et al., 2014

PG_RS02700 PG0611 PGN_0654 WP_043876409.1 Hypothetical protein Found only by proteomic analysisa

PG_RS02710 PG0614 PGN_0657 WP_005874506.1 Hypothetical protein Found only by proteomic analysisa

PG_RS02720 PG0616 PGN_0659 WP_005874521.1 HBP35 (hemin binding protein 35) Shoji et al., 2010, 2011

PG_RS02765 PG0626 no PGN WP_005874512.1 T9SS C-terminal target domain-containing protein Found only by proteomic analysisa

PG_RS02890 PG0654 PGN_0693 WP_005873571.1 T9SS C-terminal target domain-containing protein Found only by proteomic analysisa;

Glew et al., 2012

PG_RS03370 PG0769 PGN_0795 WP_010956121.1 Fibronectin; hypothetical proteinb Found only by proteomic analysisa;

Sato et al., 2013

PG_RS03450 PG0787 PGN_0810 WP_005873930.1 T9SS C-terminal target domain-containing proteinc Found only by proteomic analysisa

PG_RS04535 PG1030 PGN_1321 WP_005874101.1 T9SS C-terminal target domain-containing protein Found only by proteomic analysisa

PG_RS05835 PG1326 PGN_1115 WP_005875446.1 Hemagglutinin Found only by proteomic analysisa

PG_RS06055 PG1374 PGN_0852 WP_005874331.1 T9SS C-terminal target domain-containing protein,

leucine-rich repeats (x7)

Found only by proteomic analysisa;

Glew et al., 2012

PG_RS06255 PG1424 PGN_0898 WP_005873463.1 PPAD; peptidylarginine deiminase Sato et al., 2013; Koziel et al., 2014;

Goulas et al., 2015

PG_RS06260 PG1427 PGN_0900 WP_005873781.1 Periodontain; peptidase C10; PrtT-related Nelson et al., 1999

PG_RS06835 PG1548 PGN_0561 WP_043876505.1 PrtT; cystein protease (domain peptidase C10) Madden et al., 1995; Gorasia et al., 2015

PG_RS07070 PG1604 PGN_0509 WP_010956350.1 PorZ; surface B-propeller protein Lasica et al., 2016

PG_RS07920 PG1795 PGN_1770 WP_005874140.1 Hypothetical protein Found only by proteomic analysisa

PG_RS07930 PG1798 PGN_1767 WP_005874135.1 T9SS C-terminal target domain-containing protein Found only by proteomic analysisa

PG_RS08090 PG1837 PGN_1733 WP_043876452.1 HagA (hemagglutinin A, 8 HA domains) Shi et al., 1999; Glew et al., 2012;

Saiki and Konishi, 2014

PG_RS08105 PG1844 PGN_1728 WP_043876454.1 Kgp; lysine specific gingipain, cysteine protease Pike et al., 1994; Veith et al., 2002

PG_RS08700 PG1969d no PGN WP_010956456.1 T9SS C-terminal target domain-containing protein Found only by proteomic analysisa

PG_RS08940 PG2024 PGN_1970 WP_010956476.1 RgpA; arginine specific gingipain A; cysteine

protease

Pike et al., 1994; Veith et al., 2002;

Glew et al., 2012

PG_RS09310 PG2100 no PGN WP_005873768.1 T9SS C-terminal target domain-containing protein;

TapC

Kondo et al., 2010; Sato et al., 2013

PG_RS09320 PG2102 PGN_0152 WP_005873754.1 T9SS C-terminal target domain-containing protein;

TapA

Kondo et al., 2010; Glew et al., 2012;

Sato et al., 2013

PG_RS09640 PG2172 PGN_0123 WP_005874973.1 Hypothetical protein Found only by proteomic analysisa;

Glew et al., 2012

PG_RS09755 PG2198 PGN_2065 WP_005874281.1 Hypothetical protein; peptidase Found only by proteomic analysisa

(Continued)
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TABLE 2 | Continued

Porphyromonas gingivalisa

Locus Tag

W83 NC_002950.2 ATCC33277

NC_010729.1

Protein accession

number

Protein description References

PG_RS09850 PG2216 PGN_2080 WP_010956525.1 Hypothetical protein Found only by proteomic analysisa;

Glew et al., 2012

Tannerella forsythia ATCC43037

Tanf_03370 WP_046824918.1 TfsA (surface layer protein A), classical CTD Tomek et al., 2014

Tanf_03375 WP_046824919.1 TfsB (surface layer protein B), classical CTD Tomek et al., 2014

Tanf_04820 WP_046825062.1 BspA, cell surface antigen, leucine rich protein,

classical CTD

Veith et al., 2009; Friedrich et al., 2015

Tanf_06225 WP_046825275.1 Forsilysin, metalloprotease, KLIKK-type CTD Narita et al., 2014

Tanf_00450 WP_070098098.1 Mirolysin, metalloprotease, KLIKK-type CTD Karim et al., 2010; Ksiazek et al., 2015a,b;

Koneru et al., 2017

Tanf_06550 D0EM77.2 Karilysin, metalloprotease, KLIKK-type CTD Karim et al., 2010; Narita et al., 2014;

Ksiazek et al., 2015a; Koneru et al., 2017

Tanf_00440 AIZ49398.1 Mirolase, serine protease, KLIKK-type CTD Karim et al., 2010; Ksiazek et al., 2015a,b;

Koneru et al., 2017

Tanf_09450, Tanf_06530

(not merged in one contig)

AKG97061.1 Miropsin-1, serine protease, KLIKK-type CTD Ksiazek et al., 2015b

Tanf_06530 WP_046825306.1 Miropsin-2, serine protease KLIKK-type CTD Narita et al., 2014

F. johnsoniae UW101e

Fjoh_4555 WP_012026520.1 ChiA, chitinase Rhodes et al., 2010;

Kharade and McBride, 2014

Fjoh_0979 WP_012023065.1 SprB, surface adhesin, necessary for gliding motility Rhodes et al., 2010;

Shrivastava et al., 2013

Fjoh_0808 WP_052295174.1 RemA, mobile surface adhesin, necessary for

gliding motility

Shrivastava et al., 2012, 2013

aAll P. gingivalis cargo proteins excluding PG0410 (no PGN) and PG1548 (PGN_0561) were originally found by Veith et al. (2013).
bPG0769 (PGN_0795) processing is unclear. Protein is devoid of N-terminal cleavage signal for periplasm transport (searched with SignalP and LipoP servers) as well as T9SS CTD

domain.
cPG0787 (PGN_0810) is a very small peptide (80 aa) devoid of N-terminal cleavage signal for periplasm transport (searched in SignalP and LipoP servers), however its last 66 aa

constitute a classical T9SS CTD domain.
dPG1969 processing is unclear. Protein is devoid of N-terminal cleavage signal for periplasm transport (searched with SignalP and LipoP servers) but contains T9SS CTD domain.
eProteins listed are the best studied among other identified T9SS cargos of F. johnsoniae. For more information please see Kharade and McBride (2015).

the discovery of T9SS. Below, we briefly describe only the most
important cargos from the point of view of P. gingivalis virulence.
References to other cargo proteins can be found in Table 2.

Gingipains and CPG70
There are three enzymes collectively termed gingipains: RgpA
(PG2024/PGN_1970), RgpB (PG0506/PGN_1466), and Kgp
(PG1844/PGN_1728). They are cysteine proteases that hydrolyze
peptide bonds at the carboxyl group of arginine (RgpA/B: Arg–
Xaa) or lysine residues (Kgp: Lys–Xaa; Pike et al., 1994). They
are exported into the periplasm as inactive zymogens, with the
N-terminal prodomain (NTP) functioning as a chaperone and
maintaining the latency of the proteases (Mikolajczyk et al., 2003;
Pomowski et al., 2017). After folding in the periplasm, they are
transported to the bacterial surface, where they are subjected
to extensive post-translational processing. The CTD is cleaved
by PorU sortase during translocation, with the concomitant
covalent attachment of A-LPS via an isopeptide bond to the
newly formed carbonyl group (Glew et al., 2012; Gorasia et al.,
2015). Then, the OM-anchored gingipains activate themselves by

cleaving off the NTP. For RgpB, this is the end of processing,
but the polypeptide chains of RgpA and Kgp are further
fragmented to form a large, non-covalent complex of catalytic
and hemagglutinin domains on the bacterial surface (Bhogal
et al., 1997; Veith et al., 2002; Sztukowska et al., 2012). The
activation and further processing are still not well-understood,
and, in addition to trans- and cis-autoproteolysis, they also
involve the removal of the C-terminal Arg and Lys residues by the
Arg/Lys-specific carboxypeptidase CPG70 (PG0232/PGN_0335;
Chen et al., 2002). Interestingly, CPG70 is a T9SS substrate itself
(Veith et al., 2004; Zhou et al., 2013). Of note, the retention
of gingipains, CPG70, and other T9SS cargos on the bacterial
surface depends on the synthesis of A-LPS. The P. gingivalis
strain HG66, which lacks the activity of an enzyme in the
A-LPS synthesis pathway, secretes soluble gingipains into the
media (Pike et al., 1994; Shoji et al., 2014; Siddiqui et al.,
2014).

Gingipains are the most powerful weapon within the
P. gingivalis arsenal of virulence factors, as they are responsible
for nearly 85% of the total proteolytic activity (Potempa et al.,

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11 May 2017 | Volume 7 | Article 215

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Lasica et al. Type IX Secretion System (T9SS)

1997). They are responsible for a variety of pathogenic functions
such as colonization, nutrition, neutralization of host defenses,
and alteration of the inflammatory response, which all lead
to massive oral tissue destruction called periodontitis during
prolonged infection (reviewed in Guo et al., 2010; Bostanci and
Belibasakis, 2012; Hajishengallis, 2015). However, gingipains are
not only directed against host proteins, but are also involved
in processing other P. gingivalis proteins [e.g., long fimbriae
(FimA)] (Nakayama et al., 1996; Xu et al., 2016). Interestingly,
gingipains’ activities rely on their local concentration, resulting
in either activation of some pathways at low concentrations
(specifically human complement) or destroying them upon
accumulation (Krauss et al., 2010).Moreover, despite the cleavage
specificity to a single C-terminal Arg or Lys residue, they can
act in a precise and fastidious manner or as unlimited shredders
(Potempa et al., 2000; Sroka et al., 2001; Goulet et al., 2004).

Considering the broad range of activities combined with cell
surface localization, it is not surprising that gingipains are a
tempting target for designing periodontitis treatments as well
as preventive strategies (inhibitors and vaccines; Olsen and
Potempa, 2014; Inaba et al., 2016; Wilensky et al., 2016).

Porphyromonas Peptidylarginine
Deiminase (PPAD)
Porphyromonas peptidylarginine deiminase (PPAD), encoded by
PG1424/PGN_0898, is a unique enzyme among prokaryotes. It
is the first and only bacterial peptidylarginine deiminase (PAD)
identified, and, moreover, its presence is limited to a single
species: P. gingivalis (McGraw et al., 1999; Gabarrini et al.,
2015).

PADs are well-described eukaryotic enzymes functioning
in vertebrates as post-translational modifiers of proteins.
Specifically, they citrullinate internal arginine residues, which
changes the fold, function, and half-life of proteins and peptides
(Vossenaar et al., 2003; Gyorgy et al., 2006). Dysregulation
of this process, particularly the accumulation of citrullinated
proteins, leads to inflammatory disorders and has been associated
with numerous diseases such as Alzheimer’s disease, multiple
sclerosis, psoriasis, fibrosis, cancer, and rheumatoid arthritis
(RA) (Vossenaar et al., 2003; Chang and Han, 2006; Baka
et al., 2012; Gudmann et al., 2015). The latter develops through
an autoimmune response against citrullinated proteins and is
enhanced by a combination of environmental and genetic factors
(MacGregor et al., 2000; McInnes and Schett, 2011). Currently,
periodontal disease is an acknowledged RA risk factor, and
the discovery of PPAD uncovered a missing mechanistic link
between the two illnesses (Wegner et al., 2010; Koziel et al., 2014;
Quirke et al., 2015; Laugisch et al., 2016).

PPAD was identified as a T9SS substrate through proteomics
studies of a porT mutant (Sato et al., 2013); however, the
enzyme was characterized mostly in relation to its function
rather than secretion. It citrullinates C-terminal arginine residues
in a calcium-independent manner, whereas eukaryotic PADs
are Ca2+-dependent (Takahara et al., 1986; McGraw et al.,
1999; Abdallah et al., 2007; Wegner et al., 2010; Bielecka
et al., 2014). Moreover, the C-terminal specificity of PPAD

plays into the cleavage activities of RgpA/B (after Arg), which
greatly enlarge the pool of citrullinated substrates from both
bacterial and host origins as gingipains cleave numerous human
proteins (Guo et al., 2010). Gingipain-null mutants (RgpA/B)
are almost devoid of endogenous citrullination (Wegner et al.,
2010). Furthermore, even the presence of PPAD (not only its
activity) may elevate anti-citrullination immune responses, as it
undergoes autocitrullination. Only this form triggers specific Abs
in mice and was recognized by RA patients’ sera (reviewed in
Koziel et al., 2014).

Analysis of PPAD structure revealed that the enzyme is
composed of four elements: a profragment, a catalytic domain
(CD), an IgSF domain, and a CTD, resembling domains observed
in gingipains. The CD has a flat 5-fold α/β-propeller architecture
and includes a catalytic triad (C351-H236-N297) also conserved
in human PADs (Goulas et al., 2015; Montgomery et al., 2016).
The crystal structure of substrate-free and substrate-bound
forms confirmed that PPAD is efficient in accommodating and
processing C-terminally situated Arg residues regardless of total
chain length (peptide or protein; Goulas et al., 2015).

The surface location of PPAD and the availability of its
detailed structure, combined with its important role in two
prevalent human diseases (periodontitis and RA), should make
PPAD a good target for therapeutic strategies; however, no such
experiments have been reported.

T9SS IN T. forsythia

The mechanism of protein secretion by T9SS was mostly studied
in P. gingivalis and gliding bacteria. Apart from a different subset
of secreted proteins reflecting bacterial habitats, the mechanism
of action is the same. Briefly, T9SS cargo proteins are directed
to the T9SS machinery by the CTD, which is removed during
secretion. Then, secreted proteins may be modified and attached
to the surface by A-LPS (P. gingivalis), stay associated with the
cell through polysaccharides, or be released (gliding bacteria;
McBride and Nakane, 2015; Nakayama, 2015). However, analysis
of T9SS in another member of the red complex, T. forsythia,
revealed some interesting differences.

T. forsythia is covered with a two-dimensional crystalline
surface (S-) layer that is thought to function as a protective
coat, working as an external sieve and ion trap (Sleytr and
Beveridge, 1999; Messner et al., 2010). It also mediates adhesion
and subsequent invasion into human gingival epithelial cells
(Sakakibara et al., 2007) and delays recognition of the bacterium
by the host innate immune system (Sekot et al., 2012). The S-
layer is composed of the glycosylated proteins TfsA (Tanf_03370)
and TfsB (Tanf_03375). Deleting porU (Tanf_02580), porT
(Tanf_10520), sov (Tanf_04410), or porK (Tanf_02360) results in
the lack of an S-layer, which can be observed by transmission
electron microscope (Narita et al., 2014; Tomek et al., 2014). In
thosemutants, both components of the S-layer are trappedwithin
the periplasm, but, unlike in P. gingivalis, they are modified by
O-glycosylation through the addition of multiple copies of a
complex oligosaccharide using a general glycosylation pathway
operating in Bacteroidetes (Coyne et al., 2013; Posch et al., 2013;
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Tomek et al., 2014). Nevertheless, TfsA and TfsB trapped in the
periplasm are much smaller than both proteins in the wild-type
cells, indicating that, upon secretion, both proteins are modified
by a second glycan attachment in a manner different than O-
glycosylation. It is speculated that, as in P. gingivalis, it could be a
variant of LPS (Tomek et al., 2014).

T9SS cargo proteins in T. forsythia have two different types of
CTD. The “classical” CTD associated with proteins from other
Bacteroidetes species is found in TfsA, TfsB, and leucine rich
protein BspA (Veith et al., 2009; Tomek et al., 2014). By contrast,
a family of six proteases, three metalloproteases (karilysin,
mirolysin, and forsilysin) and three serine proteases (mirolase,
miropsin-1, and miropsin-2), bear a nearly identical CTD that
shares very limited sequence similarity with the classical CTD.
Because these six CTDs end with a KLIKK sequential motif,
the enzymes are referred to as KLIKK proteases (Ksiazek
et al., 2015b). The KLIKK proteases possess a unique structure
and undergo extensive autoproteolytic processing (Cerda-Costa
et al., 2011; Lopez-Pelegrin et al., 2015). Their activities, such
as degrading complement proteins and LL-37 (the crucial
antimicrobial peptide in the human oral cavity), may contribute
to T. forsythia virulence through evading innate immunity (Jusko
et al., 2015; Koneru et al., 2017).

In stark contrast to the other CTD proteins of T. forsythia,
KLIKK proteases seem to be secreted directly into the
extracellular medium, as shown for miropsin-2 (Tanf_06530),
karilysin (Tanf_06550), and forsilysin (Tanf_06225) (Narita et al.,
2014). Supporting this, proteomic analysis of the T. forsythia
OM identified 13 of 26 proteins bearing the classical CTD,
including TfsA, TfsB, and BspA (Tanf_04820), but none of the
KLIKK proteases (Veith et al., 2009). Conversely, four KLIKK
proteases, forsilysin, miropsin-2 (Friedrich et al., 2015), mirolase
(Tanf_00440), and karilysin (Veith et al., 2015), were found in
outer membrane vesicles (OMVs), although with a low Mascot
score. This discrepancy could be explained by the transient
presence of these proteases in the periplasm before they enter
the OM translocon of T9SS. Interestingly, all three of the
KLIKK proteases characterized thus far (karilysin, mirolase, and
mirolysin) can remove the CTD during autoprocessing (Karim
et al., 2010; Ksiazek et al., 2015a; Koneru et al., 2017). Collectively,
the available data suggest that the KLIKK proteases are secreted
into the extracellular milieu without removal of the CTD. This
finding is similar to the secretion of PorU and PorZ from
P. gingivalis, where the CTD is also not removed during secretion,
although proteins stay associated with the cell surface (Lasica
et al., 2016).

FIGURE 3 | Hypothetical model of the structure and function of P. gingivalis T9SS. The overall translocon structure and the protein(s) forming a pore in the OM

(outer membrane) have not yet been characterized. Therefore, it is shown as a background blue shape accommodating known components. Interacting proteins are

situated in close proximity. OM β-barrel proteins are depicted as pentagons. PorZ is presently the only T9SS protein with the known atomic structure. The mode of its

association with the translocon is not yet defined. PorK, PorW, and PG1058 are lipoproteins anchored into the inner surface of the OM. PG0192 protein precise

localization and possible interactions are not known. A T9SS cargo protein is equipped with two sorting signals: N-terminal signal peptide (SP) directing the protein to

the general secretion system SecYEG and conserved C-terminal domain (CTD) recognized by T9SS. After translocation through the IM (inner membrane) most

proteins acquire their proper fold in the periplasm. Next, CTD directs the protein for further translocation across the OM through T9SS. Finally, CTD is cleaved off by

PorU sortase and a secreted protein is modified by attachment of A-LPS resulting in the anchorage of cargo protein to the cell surface. Two component system

PorX/PorY and sigma factor SigP have regulatory effect on por genes. Although, they are not physical elements of T9SS, PorX was shown in vitro to interact with PorL.
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CONCLUDING REMARKS

In this review, we summarized the biochemical and structural
data concerning the recently discovered T9SS identified in a
majority of the bacterial species belonging to the Bacteroidetes
phylum (Sato et al., 2010; McBride and Zhu, 2013). The system
has been investigated predominantly in human oral pathogens,
such as P. gingivalis and T. forsythia, and environmental
saprophytes, such as F. johnsoniae and C. hutchinsonii. It seems
to be a major mechanism of protein secretion in these bacteria
however, some families from Bacteroidetes were reported to
possess other secretion systems e.g., T1SS or T6SS (Russell
et al., 2014; Wilson et al., 2015; Abby et al., 2016; Chatzidaki-
Livanis et al., 2016; Wexler et al., 2016; Ibrahim et al., 2017).
Notably, both systems allow for direct substrate translocation
from bacterial cytoplasm to the cell exterior, while T9SS cargos
do not omit the periplasmic space during their secretion.

The role of T9SS is to ensure cell survival and fitness
in response to the microorganisms’ habitat by providing
transportation of proteins necessary for, among other things,
virulence, nutrition, andmovement (glidingmotility). Hence, the
variety of secreted proteins even within a single species is large
and comprises numerous adhesins and hydrolytic enzymes used
for attachment and degradation of large organic compounds such
as proteins, cellulose, and chitin (Guo et al., 2010; McBride and
Nakane, 2015).

The cargo proteins of this system (Table 2) are equipped with
the classical signal peptide for Sec-dependent translocation to
the IM and the conserved CTD that directs them further to the
secretion machinery in the OM. The recognition signal is mostly
embedded within the IgSF-like tertiary structure of the CTD (de
Diego et al., 2016; Lasica et al., 2016) and likely located within
the 22 amino acid residues composing the sequential motifs of

PxGxYVV and KxxxK in the two most C-terminal β-strands
(Shoji et al., 2011; Veith et al., 2013).

Currently, for P. gingivalis cells, there are 16 proteins
recognized as the structural and/or functional components
of the translocon and two additional elements involved in
T9SS regulation (Table 1). None of these proteins are fully
characterized, so their structure, mode of reciprocal interactions,
and precise roles in secretion are still obscure. Nevertheless, a
contemporary general concept of T9SS structure and function
based on available data is presented in Figure 3. Verification
of this model requires extensive structural and functional
investigations to elucidate the mechanism of CTD recognition
and cleavage, passage of cargos though the OM translocon,
attachment of a glucan moiety, and anchoring of cargos onto the
cell surface, their release into the environment, or their assembly
into gliding motility machinery.
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