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Diabetic nephropathy (DN) together with glomerular hyperfiltration has been implicated in the development of diabetic
microangiopathy in the initial stage of diabetic diseases. Increased amounts of urinary protein in DN may be associated with
functional and morphological alterations of podocyte, mainly including podocyte hypertrophy, epithelial-mesenchymal
transdifferentiation (EMT), podocyte detachment, and podocyte apoptosis. Accumulating studies have revealed that disruption
in multiple renal signaling pathways had been critical in the progression of these pathological damages, such as adenosine
monophosphate-activated kinase signaling pathways (AMPK), wnt/β-catenin signaling pathways, endoplasmic reticulum stress-
related signaling pathways, mammalian target of rapamycin (mTOR)/autophagy pathway, and Rho GTPases. In this review, we
highlight new molecular insights underlying podocyte injury in the progression of DN, which offer new therapeutic targets to
develop important renoprotective treatments for DN over the next decade.

1. Introduction

Diabetic nephropathy (DN), as the primary cause of end-
stage renal failure, is one of the most serious complica-
tions in diabetic patients, which develops in up to 30%–
40% of patients with types 1 or 2 diabetes mellitus [1].
An early sign of DN is an increased amount of urinary
protein and characterized by mesangial nodular hyperpla-
sia and thickening of the glomerular basement membrane
(GBM). Microalbuminuria plays an important role in the
change of the GBM. Additionally, a detailed renal biopsy
data analysis regarding diabetics showed that diabetic
kidney damage would include visceral epithelial cells and
sertoli cell dysfunction [2, 3]. Although some researches
demonstrated that podocyte injury had association with
the development of DN [4], the mechanisms underlying
this association are still not entirely understood and need
to be further investigated.

2. Proteinuria and Podocyte Injury in DN

Glomerular epithelial cells, also called podocytes, are highly
specialized cells, which are composed of cytoskeletal struc-
ture, joint connection, and branching foot processes circling
the GBM. Podocytes, as terminal differentiation cells, are
important functional cells in the glomerulus and can not
regenerate when they suffer from injury. Their damage and
apoptosis could result in the destruction of the glomerular fil-
tration membrane and induce unfavorable factors in DN [5].
Foot processes are consisted of basal aspects, basolateral
region and parietal region, which firmly adhere to the GBM
through podoplanin protein. The basolateral region was
found interdigitating with the neighboring basolateral region
by slit diaphragm (SD) [6]. Furthermore, transmembrane
proteins connect adapter proteins with actin cytoskeleton to
maintain filtration barrier structure and function. In the
podocyte parietal region, salivary proteins are used to
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maintain a filtration way among adjacent foot processes in
the GBM through sufficient negatively charging [7]. Podo-
cytes play an important role in pathological mechanisms
underlying DN. Imasawa et al. [8] declared that structure
and function in podocyte molecules transformed in high-
glucose conditions, which resulted from suppression of
myocyte-specific enhancer factor 2C (MEF2C) andmyogenic
factor 5 (MYF5) expressions through using a conditionally
differentiating human podocyte cell line.

3. Pathomechanism of Podocyte Injury

3.1. Podocyte Hypertrophy. Although the pathophysiology of
podocyte hypertrophy in the initial stage of DN is still ambig-
uous, animal and human studies have established that glo-
merular podocyte hypertrophy was associated with the
development of DN [9, 10]. Previous researches indicated
that MAPK, TGF-β, and AngII had different effects on
mesangial matrices and cells, leading to glomerular hypertro-
phy in the progress of DN. However, elaborate mechanisms
underlying podocyte hypertrophy were less reported [11].
Romero et al. [12] concluded that AngII increased expres-
sions of parathyroid hormone-related protein (PTHrP),
TGF-β1, and cell cycle regulatory protein-p27Kip, which
promoted the aggravation of podocyte hypertrophy in high
glucose. The mammalian target of rapamycin (mTOR) sig-
naling mainly consisted of mTORC1 and mTORC2. Several
studies suggested that mTORC1 was closely associated with
the activation of podocyte hypertrophy which was induced
by high glucose [13]. In the early stage of diabetes, it was
obviously found that high filtration of glomerular is accom-
panied with podocyte hypertrophy. In general, mature podo-
cytes had to expand the size of themselves in order to
compensate for glomerular dilation, which contributed to
cover the denuded region of the GBM, because they were
terminal-differentiated cells, which no longer are proliferated
[14, 15]. Jo et al. [16] declared that interleukin 6 (IL-6) and its
downstream cascade signaling proteins, such as Gp130 signal
transducer and activator of transcription 3 (STAT3) signal
transducer, were key regulators related to podocyte hypertro-
phy in a high-glucose environment. In general, hyperglyce-
mia induced the overexpression of nuclear STAT3 via the
activation of upstream signal transduction element Gp130,
which is eventually leading to podocyte hypertrophy. Kim
et al. [17] found that TCTP, as a mediating signal of cell
growth, was overexpressed with high percentage in the glo-
meruli of diabetic mice and gave rise to podocyte hypertro-
phy. Fluorescent double-labeling method indicated that
TCTP was mainly observed in podocytes. Studies showed
that TCTP could activate the mTORC1 signal pathway and
promote high expression of CKIs, which caused podocyte
cycle arrest and hypertrophy. On the contrary, overexpres-
sion of mTORC1 and CKIs could be inhibited by gene
knockout of TCTP, to make the podocyte bodies smaller.
Meanwhile, in vitro experiments indicated that TCTP inhib-
itor could downregulate the expression of CKIs, ameliorating
podocyte hypertrophy caused by high glucose. Kim et al. [18]
showed that AngII could also upregulate protein expressions
of kinases ERK1/2 and Akt/PKB, which contributed to

podocyte hypertrophy. Hence, it has been shown that all
ERK1/2, Akt/PKB, IL-6/JAK2/STAT3, and mTOR signal-
pathway activities had important roles in podocyte hypertro-
phy (Figure 1).

3.2. Podocyte Epithelial-Mesenchymal Transition. Previous
studies have shown a connection between podocyte apopto-
sis and proteinuria. However, more and more studies have
demonstrated that normal epithelial cells showed phenotype
conversion of a variety of nephropathies [19]. Cells lost their
original features when the pathological process of EMT
occurred, which induced disappeared cell contact, damaged
cell polarity, and recaptured characteristics of the mesen-
chymal markers, such as vimentin, α-smooth muscle actin
(α-SMA), and fibroblast-specific protein 1 (FSP1). FSP1 is
one of the important members of calcium-binding protein
S100 family and also a fibroblast-specific protein without
epithelial cells [20]. Many studies showed that renal tubular
epithelial cells and podocytes were activated after acute (48–
72 h) exposure of cells to elevated glucose levels or other
stimulations of diabetes, which resulted in less protein
expressions of E-cadherin and ZO-1. Conversely, expressions
of transdifferentiation proteins, such as α-SMA and vimentin,
were immediately increased after these stimulation [21–23].
In the initial stage of STZ-induced diabetes, morphology of
podocytes were damaged, accompanied with increased
expression of the podocytemarker, nephrin protein, and a fall
in themesenchymalmarker, desmin protein [24]. Yamaguchi
et al. [25] found that FSP1-positive cells were significantly
increased in urinary sediment and approximately attached
to 86 percent of total podocytes in 109 type 2 diabetes
patients. 43 of these patients with massive proteinuria in this
study experienced kidney biopsy. The FSP1 positive cells
selectively expressed Snail and ILK preferentially, which
played pivotal roles in inducing EMT. Xing et al. [26] demon-
strated that podocyte incubated in elevated glucose levels for
48 h could trigger activation of the PI3K/AKT pathway and
elevate protein expressions of α-SMA and desmin. Whereas,
protein expressions of podocalyxin and nephrin were
suppressed. Functionally, it is apparently speculated that
podocyte EMTmay be tightly related to the PI3K/AKT signal
pathway. Li et al. [27] found that the elevated glucose level
upregulated protein expression of Snail and suppressed
protein expressions of P-cadherin and nephrin in vitro.
The change above decreased podocyte-related proteins of
nephrin and ZO-1, elevated expressions of desmin, MMP9,
and FSP1 in sequence. As shown in Figure 2, podocyte
EMT widely participated in the early stage of podocyte
deletion in diabetes mellitus via leading to podocyte detach-
ment or podocyte apoptosis [28].

3.3. Podocyte Detachment. Podocytes and the glomerular
basement membrane (GBM) are closely connected and then
prevent the excretion of proteinuria via sustaining the glo-
merular filtration barrier. Researches showed that not only
dead podocytes but also normal podocytes were found in
the urinary sediment of patients with kidney disease.
Furthermore, it had been concluded that podocytes could
be cultured from urine of a healthy person [22]. One study
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Figure 2: Podocyte EMT. In elevated glucose levels, the TGF-β1/Smad signal pathway resulted in increased protein expression of Snail in
cultured podocytes, which induced podocyte EMT. Additionally, AngII promoted translocation of β-catenin/LEF-1 complexes into the
nucleus through the enhancement of ILK in transitioning epithelia, where they downregulated CD2AP expression via promoting EMT
transcription in podocytes.
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Figure 1: Podocyte hypertrophy. In elevated glucose levels, AngII could elevate protein expressions of kinases ERK1/2 and Akt/PKB through
ROS, trigger activation of p27Kip1 via TGF-β1 signal pathway, or upregulate protein expression of CKIs by activating mTORC1, which
eventually resulted in glomerular podocyte hypertrophy. Additionally, high glucose also induced podocyte hypertrophy via activation of
the IL-6/Gp130-JAK/STAT3 signal pathway.
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displayed that urinary podocyte might be used as an earlier
biomarker of DN than proteinuria albuminuria in respect
of renal injury [29]. It was generally known that integrin
α3β1 was an important receptor which could tightly connect
podocyte with the GBM [30]. Jim et al. [31] drew a conclu-
sion that the expressions of podocyte marker proteins in
the diabetic kidney, such as synaptopodin, podocin, and
nephrin, were significantly decreased, which could result in
podocyte cytoskeleton disorder, damaged sufficient adhe-
sion, and separation between podocyte and the basement
membrane. Hyperglycemia could downregulate expression
of integrin α3β1 in both human and rat, as well as trigger
activation of integrin-linked kinase (ILK). In addition, recent
researches suggested that α3β1 participated in the adhesion
function of podocyte [32, 33]. Experimental researches on
animals displayed that podocytes could break away from
the glomerulus basement membrane in an artificial diabetic
rat induced by streptozotocin (STZ) [34]. It was also sug-
gested that both podocyte detachment and podocyte early
changed in DN. However, whether podocyte detachment or
podocyte hypertrophy appeared earlier was still difficult to
distinguish [35]. It was obviously found that podocyte loss
contributed to the development of DN. In the progression
of disease, we found that in the same stage of DN, some
podocytes became hypertrophy and detached from the base-
ment membrane. Whereas, the others tightly combined with
the basement membrane [36] (Figure 3).

3.4. Podocyte Apoptosis. Apoptosis pathway is involved in
cellular growth and differentiation in many diseases, such
as DN and IgA nephropathy. There are some evidences that
podocyte apoptosis played a role in reduction in density and
number of glomerular. Susztak et al. [37] found that mito-
chondria could activate nicotinamide adenine dinucleotide

phosphate (NADPH) oxidase and reactive oxygen species
(ROS) in high glucose, improve the expressions of p38
protein kinase and caspase 3 at the same time, then led to
podocyte apoptosis, and produced much proteinuria. Glyco-
sylation end products activated transcription factor FOXO4,
which also induced podocyte apoptosis via p38 protein kinase
signaling pathways [38]. In addition, the cytochrome P450
family raised hydroxyl and reduced coenzyme II twenty-four
carbon olefine acid oxidase in high glucose, which increased
the active oxygen class produces and prompting podocyte
apoptosis [39]. Notch1 signal-dependent activation of p53 is
a new podocyte apoptosis pathway [40]. A recent study found
that podocyte apoptosis was closely related to the expression
level of Notch, which then induced proteinuria and glomeru-
lar sclerosis. The activation of Notch signaling pathway may
be included in DN all-acquired common mechanism of
kidney disease [41]. Experiment with STZ-induced diabetes
mouse displayed that the expressions of Jag, Notch, and
ICN1 were increased immediately and the downstream com-
ponent, such as Hes1 and Hey1, were activated. It is also
shown that the expressions of Bcl-2 and p53 were provoked,
and the process eventually induced podocyte apoptosis [42].
Under normal circumstances, apoptosis-promoting and anti-
apoptosis signaling pathways coexisted in a same condition
which maintained dynamic balance and guaranteed the stabil-
ity environment. In general, phosphatidylinositol-3 kinase/
protein kinase in podocyte plays a crucial role in inhibition
of podocyte apoptosis signaling pathways. The experiment
also suggested that protein kinase phosphorylation reduced
in db/db mice, which may be an important inducement for
podocyte apoptosis [43]. Liu et al. [44] found that podocyte
apoptosis was associated with the disorder of cytoskeleton.
Nestin is a VI intermediate filament protein related cell cyto-
skeleton which expressed in podocyte. The protein expression
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Figure 3: Podocyte detachment. Some podocytes became hypertrophic and stripped from the basement membrane in sequence, while the
others tightly combined with basement membrane at the same stage of DN, which seems to be more related to podocyte EMT.
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of nestin reduced in high glucose, however, podocyte apopto-
sis rate increased. TGF-β1 could directly activate Smad7,
which inhibit the activity of NF-kB and resulted in podocyte
apoptosis. It also could provoke p38 MAP kinase, enhance
the protein expressions of Bax and produce cytochrome C,
which activated caspase-3 apoptosis pathway in sequence
[45]. Liu et al. [46] demonstrated that metadherin was a potent
modulator of podocyte apoptosis, which represented the target
ofmiR-30miRNAs, facilitating podocyte apoptosis via activat-
ing the HG-induced p38 MAPK-dependent pathway. Yao
et al. [47] concluded that AS-IV inhibited podocyte apoptosis
induced by high glucose, which reduced the expressions of
TRPC6 and impaired the crosstalk of intracellular Ca2+ in
podocytes. More and more evidences [48] indicated that
AS-IV could protect the kidney from DN, including
reduced podocyte damages and suppressed podocyte apoptosis
through antioxidative stress and anti-inflammatory signaling
pathways (Figure 4).

4. Main Signaling Pathways of Podocyte Injury
Mechanism in DN

Many studies [49] suggested that DN podocyte injury was
induced by the association of multiple factors, including
mechanical stress, inflammatory reaction, oxidative stress,
TGF-β1 induction, renin angiotensin aldosterone system
(RAAS) activation, and AGEs accumulation. And there are
lots of signaling pathways involved in the regulation mTOR
signaling pathways mediated by autophagy, adenosine

monophosphate-activated kinase (AMPK) signaling path-
way, Wnt/β-catenin signaling pathway, and so on.

4.1. Adenosine Monophosphate-Activated Kinase Signaling
Pathways (AMPK) in DN. AMPK is not only a serine protein
kinase [50] playing a vital role in cells and tissues metabo-
lisms of the diabetes progression but also one of the impor-
tant metabolic emergency protein kinases. AMPK pathway
is an autophagy-related signaling pathway composed of sub-
unit heterologous proteins α, β, and γ, which was activated as
lack of energy in cells [51]. In the activation process, it could
combine calmodulin-dependent kinase β (CaMKK) and
transform-activated kinase 1 (TAK-l). Then, it also effectively
mediated intracellular calcium concentration and triggered
the activation of the AMPK pathway to induce autophagy
[52]. Conversely, AMPK could inhibit mTORCl activity
and induce autophagy through TSCl/2-Rheb signaling
pathways and/or phosphorus acidification of raptor-
related regulatory protein [53]. Meanwhile, AMPK also
directly launch the phosphorylation of Ulkl/2 and induc-
tion of autophagy [54]. In addition, Sharma et al. [55]
reported that adiponectin attenuated the induction of oxi-
dative stress, reduced the synthesis of NADPH in podo-
cyte, and simultaneously reduced albuminuria excretion
in adiponectin-knockout mouse which could activate the
AMPK pathway.

4.2. Wnt/β-Catenin Signaling Pathways in DN. Wnt protein
is one kind of secreted glycoprotein, containing a signal pep-
tide and 23 or 24 conserved cysteine residues. It was activated
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Figure 4: Podocyte detachment. In elevated glucose levels, TGF-β provoked p38 MAPK, Smad signal pathway and NADPH, and cytp450 to
increase the protein expressions of Bax, cytochrome C, and caspase-3, which resulted from overproduction of ROS. All of the above processes
could result in podocyte apoptosis. They also stimulated the Notch/Jag/ICN1 signal pathway, which activated the Bcl-2 and p53 apoptotic
pathways and induced podocyte apoptosis.
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via binding to ligand proteins and the Frizzled protein family.
Wnts triggered a cascade of downstream reaction protein
including axin, Disheveled, adenomatous polyposis coli
(APC), and glycogen synthase kinase- (GSK-) 3β, which gave
rise to phosphorylation of β-catenin in nuclei [56].
Researches showed that Wnt signaling pathway had effects
on the differentiation, hyperplasia, maturation, and viability
of cells [57]. It had been declared to be induced in DN, which
played a crucial role in apoptosis and EMT formation of
mesangial cells, podocyte, and tubular cells [58]. However,
Dickkopf-related protein 1 (DKK1) is a secreted protein con-
sisted of two cysteine abundant regions, which could reduce
podocyte injury, decrease albuminuria, and protect the kid-
ney by specific blocking Wnt/β-catenin signal pathways
[59, 60]. Liu et al. [61] found that curcumin could prevent
glomerular podocyte injury by inhibiting activated Wnt fam-
ily members and β-catenin downstream effectors in obesity-
related glomerular disease model. Zhang et al. [62, 63]
demonstrated that ubiquitin carboxy-terminal hydrolase-1
(UCH-L1) is abnormally expressed in injury podocytes,
especially in immune-mediated disease. They also proved
that the Wnt/β-catenin signal pathway is promptly activated
in podocyte, coinciding with overexpression of UCH-L1
induced by high glucose meanwhile [64]. Li et al. [65]
announced that podocyte incubated in high glucose under-
went injury, which attributed to the upregulation of tran-
sient receptor potential cation channel 6 (TRPC6) protein
triggered by the classic Wnt/β-catenin pathway.

4.3. Endoplasmic Reticulum Stress-Related Signaling
Pathways in DN. Recent studies suggested that endoplasmic
reticulum stress was closely relevant to the injury of podo-
cytes, endothelial cells, and mesangial cells in DN. It could
induce glomerular obstacle of podocyte structure and func-
tion, participate in a variety of kidney diseases, and also lead
to glomerular sclerosis [66]. Continuous endoplasmic reticu-
lum stress had effects on the function of endoplasmic retic-
ulum and could launch apoptosis signaling pathways
which were mediated by endoplasmic reticulum stress at
the same time and then activated the downstream apoptotic
signaling molecules [67]. In patients with diabetes, hypergly-
cemia can motivate endoplasmic reticulum stress through a
variety of ways, then cause cellular damage [68]. As impor-
tant factors of DN, advanced glycation end products
(AGE) could upregulate the protein expressions of glucose-
regulated protein 78 (GRP78) and induce endoplasmic retic-
ulum stress depending on its dosage and time, eventually
inducing apoptosis of podocyte [69]. In addition, high glu-
cose and free fatty acids could induce endoplasmic reticulum
stress as well as the occurrence of apoptosis in podocyte of
rats, which could be inhibited via exogenous endoplasmic
reticulum molecular chaperone [70]. Endoplasmic reticulum
stress may aggravate podocyte dysfunction in the early stage
of DN [71]. The relationship between endoplasmic reticu-
lum stress and podocyte injury could be summarized as
follows: both hyperglycemia and AGE could initiate endo-
plasmic reticulum stress and activate mTORC-1 protein.
Furthermore, continuous injury will contribute to podo-
cyte apoptosis by the caspase-12 pathway, while AGE

could act on collagen type IV, leading to podocytes loss
or dysfunction [15, 72].

4.4. mTOR Signaling Pathways Mediated by Autophagy in
DN. Studies have shown that intervention in the activity of
the mTOR signaling pathway is likely to aggravate podocyte
injury in DN renal tissue [73]. Activated podocytes in
mTORC1 could result in dislocation of nephrin protein,
ZO-1 (skeleton protein) disorders, and podocyte EMT,
which could eventually lead to podocyte detachment, foot
process fusion and disappearance, and other podocyte inju-
ries in Inoki knockout PcKO Tsc1 mouse. In conclusion,
mTORC1 activity has a key regulatory role in podocyte
injury on the DNmodel of rats [15]. In addition, many phar-
macological studies of mTOR inhibitors have further eluci-
dated the importance of mTOR in mediating DN podocyte
injury from another perspective such as rapamycin-
protected podocytes [15, 74]. Recent researches have indi-
cated that autophagy, a protective mechanism of podocyte,
was used to against damage in a variety of pathological fac-
tors. On the contrary, autophagy defects not only led to
podocyte injury and proteinuria but also aggravated glomer-
ular sclerosis [54, 75, 76]. Rapamycin, as the mTOR inhibi-
tor, acted on the autophagy pathway and protected the
podocyte [55]. In conclusion, there were two kinds of defense
mechanism that the autophagy/mTOR signal pathway is
using to protect podocytes from further injury. The pathway
of mTORC1 is activated and the protective autophagy is
inhibited when podocyte is in a high-glucose environment.
Specifically, mTORC1 inhibited the autophagosome by initi-
ating the activity of UNC-51-like kinase 1 (ULK1) [13, 77]. In
addition, rapamycin could upregulate the protein expression
of 1A/1B light chain 3 (LC3) in vitro and improved podocyte
autophagy disorders in sequence [78].

4.5. Rho/ROCK Signaling Pathway in DN. The Rho family is
mainly composed of RhoA, Rac1, and Cdc42. They were the
vital mediators of the actin cytoskeleton protein structure
[79]. RhoA/ROCK pathway was the important process in
the progression of DN and could induce downstream signal-
ing element cell apoptosis, migration, and differentiation
[80]. Immoderate activities of Rac1, a key element in the
Rho GTPases family, could cause macroalbuminuria quickly
with focal foot process effacement, indicating podocyte apo-
ptosis and slit diaphragm protein expression reductions in
high glucose [81, 82]. Wang et al. [83] found that Drp1 at
serine 600, as a substrate of Rho signal pathway, not only ini-
tiated mitochondrial ROS and podocyte apoptosis in high
glucose but also was phosphorylated in ROCK1 knock-out
mouse. RhoA played an important role in glomerular filtra-
tion barrier integrity, and its overexpression could damage
the structure and function of the barrier [84, 85]. Phospha-
tase and tensin homolog (PTEN) could inhibit the activation
of the RhoA/Rac1/Cdc42 signaling pathway, which contrib-
uted to reverse the cytoskeletal rebuilding and prevent the
development of DN [86, 87]. Previous studies demonstrated
that Rho-GTPase family elements were probably activated
to induce the downstream cascade reaction when they were
exposed in the environment of diabetics, such as AGEs,
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hyperglycemia, oxidized LDL, and ROS [88, 89]. Xie et al.
[90] suggested that Berberine not only inhibited RhoA/
ROCK to improve DN but also regulated Rho GTPases to
reduce oxidative stress.

5. Conclusion

Podocyte injury is an important factor in DN progression.
Several studies implied that the process of albuminuria devel-
opment in DN was complicated, which presumably included
four phases in sequence as follows: podocyte hypertrophy,
podocyte EMT, podocyte detachment, and podocyte apopto-
sis, serving as the warning mark of GFR in DN [91]. More
and more signal pathways which induced podocyte injury
have been discovered [92], such as Wnt/β-catenin signaling
pathways, Rho-GTPase signaling pathways, mTOR signaling
pathways, and endoplasmic reticulum stress-related signal-
ing pathways (Figure 5). People have understood the multi-
ple pathogenesis mechanisms of podocyte injury in DN, but
the complex clinical manifestations of that tell us that there
is still potential knowledge required to study and discuss.
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