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Concerns over cardiac side effects are the largest single cause of compound attrition during pharmaceutical drug development.
For a number of years, biophysically detailed mathematical models of cardiac electrical activity have been used to explore how
a compound, interfering with specific ion-channel function, may explain effects at the cell-, tissue- and organ-scales. With the
advent of high-throughput screening of multiple ion channels in the wet-lab, and improvements in computational modelling
of their effects on cardiac cell activity, more reliable prediction of pro-arrhythmic risk is becoming possible at the earliest
stages of drug development. In this paper, we review the current use of biophysically detailed mathematical models of
cardiac myocyte electrical activity in drug safety testing, and suggest future directions to employ the full potential of this
approach.
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Abbreviations
APD, action potential duration; hERG, human ether-a-go-go-related gene, encoding the major IKr channel protein; HH,
Hodgkin–Huxley; ICH, International Conference on Harmonisation of Technical Requirements for Registration of
Pharmaceuticals for Human Use; If, hyperpolarisation-activated depolarising (pacemaker) current, called ‘funny current’;
IKr, rapidly activating potassium current; IKs, slowly activating potassium current; INa, fast sodium current; INa,p,
late/persistent sodium current; ICaL, L-type calcium current; MM, Markov model; QT, the Q to T interval of the ECG;
QSAR, quantitative structure activity relationship; TdP, Torsade de Pointes

Introduction
The role of safety pharmacology is to evaluate whether any
off-target drug interactions may cause unwanted, in particu-
lar dangerous, side effects. In this review, we examine the role
of computational simulation, using biophysically detailed
models of cardiac electrophysiology, in predicting the risk of
drug-induced pro-arrhythmic effects.

Torsade de Pointes (TdP) is a ventricular tachycardia,
which has been linked to administration of drugs that delay
repolarization – the final stage of the electrical cycle underly-
ing the heartbeat. On the ECG, such drugs give rise to a
prolongation of the time between onset of ventricular excita-
tion (Q-wave) and the end of repolarization (end of T-wave).
This is referred to as QT prolongation. Even in the presence of
QT prolongation, however, TdP may occur as rarely as once in
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every 10 000 patient-years of exposure to a compound. Being
a (potentially exceedingly) rare event in human, clinical TdP
is notoriously difficult to assess during the pharmaceutical
compound development process. Prediction of ‘torsadogenic-
ity’ (the likelihood of a compound initiating TdP) is of high
relevance for cardiac safety assessment because, if it occurs,
TdP often degenerates into ventricular arrhythmias that may
cause sudden cardiac death (unless self-terminated; see
Figure 1). TdP as a potentially drug-induced side effect on the
heart has become a primary concern in drug development, so
that torsadogenicity needs to be assessed and, if possible,
excluded as early as possible in the compound development
pipeline.

As a result of the combination of (i) the potential severity
of TdP, and (ii) the difficulty in predicting TdP liability at
preclinical stages, this has become a significant problem for
the industry. TdP risk (both real and perceived) is responsible
for failure of countless compounds during development, and
it remains a leading cause of drug-withdrawal from the
market [e.g. of the antihistamine Terfenadine, and Cisapride
(Gottlieb, 1999; Henney, 2000)].

Human ether-a-go-go-related gene
(hERG), action potential duration
(APD), QT, and Torsade de Pointes

TdP liability has been linked to block of a particular ion
channel, expressed in cardiac cells. In humans, the channel’s
major subunit is encoded by the hERG (Kv11.1), which
encodes a protein that forms part of a potassium channel
which carries the rapidly activating potassium current (IKr),
one of the major repolarizing currents in cardiac tissue. In the
following, we use ‘hERG-channel’ to refer to this potassium
channel. Unfortunately, the hERG-channel is particularly
prone to interaction with a huge range of pharmaceutical
compounds (Vandenberg et al., 2001). Block of hERG-
channels causes a reduction in repolarizing currents, and,
correspondingly, an increase in the length of time that mem-
brane voltage remains at elevated levels. This manifests itself
in a prolongation of the cell’s APD, as shown in Figure 2.
Prolonged APs at the cellular level are one of the mechanisms
that give rise to prolongation of the QT interval of the ECG (see

Figure 2). Increases in APD, in particular if regionally hetero-
geneous, are believed to make early after-depolarizations more
likely, and these are thought to serve as potential triggers for
pro-arrhythmic events (Madhvani et al., 2011).

As torsadogenicity can be associated with prolongation of
the QT interval, it has been concluded that any block of IKr or
QT prolongation should be taken as an indication of pro-
arrhythmic risk. To address this, the International Confer-
ence on Harmonisation of Technical Requirements for
Registration of Pharmaceuticals for Human Use (ICH; http://
www.ich.org) has introduced two assays: (ICH, 2005a)

• ICH-S7B (ICH, 2005a): suggests in vitro IKr and in vivo QT
measurements. These take the form of patch clamp experi-
ments using a hERG expression system, and an in vivo
conscious animal QT study;

• ICH-E14 (ICH, 2005b): suggests a human phase II ‘thor-
ough QT’ trial. If the 95% confidence interval for prolon-
gation of QT interval, corrected for heart rate, is equal or
greater than 10 ms (this generally indicates a mean prolon-
gation of as little as 5 ms), then the compound will be of
concern to regulatory bodies (Recanatini et al., 2005;
Pollard et al., 2010). Should this occur, extensive further
trials are necessary to establish whether a pro-arrhythmic
liability exists, and subsequent product warning labels may
restrict the market access of a drug. In practice, pharma-
ceutical companies spend considerable effort on avoiding
this, as further trials are expensive and may not result in a
positive outcome for the company (unless the clinical ben-
efits of a compound outweighs its TdP risk – i.e. for life-
threatening conditions with no existing treatment, or with
poor prognosis).

Both guidelines were produced jointly by regulators and
pharmaceutical industry, with the effect that the suggested
assays are effectively mandatory for regulatory approval to
register and market a drug. As a result, pharmaceutical com-
panies have developed a range of earlier and cheaper
in-house assays, designed to evaluate whether compounds
are likely to run into problems with the regulatory require-
ments mentioned earlier (Pollard et al., 2008). We outline a
‘typical’ pharmaceutical cardiac side effect screening strategy
in Figure 3. This approach has been relatively effective in
preventing potentially torsadogenic compounds from reach-

Figure 1
Onset and self-termination of TdP in a patient during ECG observation. From top to bottom: ECG leads I, II and III. Adapted by permission from
BMJ Publishing Group Limited. (British Heart Journal, Krikler & Curry, 38:117–120, 1976) (Krikler and Curry 1976).
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ing the market. However, this process is likely to include
false-positive termination of otherwise promising candidate
drugs. In addition, a sizeable number of compounds still fail
the expensive human ‘thorough QT’ trial, as their QT pro-
longation risk remains undetected until that late stage
(Gintant, 2011).

However, the sequence that we have outlined so far,
hERG-channel block → APD prolongation → QT prolonga-
tion → TdP, is far from a definitive description of the problem
(Hoffmann and Warner, 2006). Many compounds that would
fail the (relatively recently introduced) ICH-S7B and E14
guidelines have reached the market before and are not asso-
ciated with TdP. Many other possible factors have been sug-
gested (Corrias et al., 2010), including AP triangulation
(Hondeghem et al., 2001), reverse-rate dependence (Hon-
deghem and Hoffmann, 2003), dispersion of repolarization
(Valentin et al., 2004), rate adaptation (Green et al., 2011) and
beat-to-beat variation in QT (Abrahamsson et al., 2011; Jacob-
son et al., 2011), among others. Therefore, hERG-channel

block and QT prolongation are neither necessary nor suffi-
cient conditions for a torsadogenic risk, despite a strong asso-
ciation (Straus et al., 2005). As the precise mechanisms that
lead to initiation of TdP remain undetermined, hERG-
channel block and QT prolongation remain the most widely
employed biomarkers for detecting TdP risk.

Drug actions on multiple cardiac ion channels may
explain some of the discrepancies highlighted earlier (Martin
et al., 2004). A drug may block both IKr, which carries a
current contributing to repolarization, and other channels,
such as fast sodium (INa) or L-type calcium (ICaL), which carry
currents that oppose repolarization. A compound therefore
may be a hERG-channel blocker, but not markedly prolong
AP duration or QT (see Figure 4). This is believed to be the
case for Vernakalant [which also blocks INa (Schmitt et al.,
2008)]. Similarly, if a drug blocks the hERG-channel only
mildly (or not at all), but impedes another AP-shortening
channel (e.g. the slowly activating potassium current, IKs),
then AP lengthening may be present in spite of an apparently

Figure 2
Schematic representation of electrophysiological changes caused by 50% block of the hERG-channel in healthy tissue. Top: hERG current (IKr);
middle: action potential (voltage); bottom: ECG annotated with standard labels for characteristic parts of the curve. The QT interval is the period
of time from the Q to the T waves. Top and middle panels are from a 1-Hz steady-state simulation of the (Grandi et al., 2010) model, bottom is
a schematic. In all panels, control is indicated by a solid line, and the effect of 50% IKr conductance block by a dashed line; simulations illustrating
steady-state responses.
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safe hERG assay, potentially causing QT prolongation that
exceeds what would have been expected from examining
hERG action alone.

Such potential for multiple ion-channel effects is recog-
nized by pharmaceutical companies. Most, if not all, have
started to employ high-throughput screens on a range of
cardiac ion-channel targets (typically three to six), early in
drug development (see Figure 3). The individual ion-channel
targets are not yet standardized across the industry, and the
results of screens are rarely used quantitatively and in context
with one another.

High-throughput screens for multiple targets provide
large amounts of data, and novel means are needed for
turning this into meaningful information to support
flagging-up of potential negative side effects that warrant
further investigation in subsequent studies, or indeed to iden-
tify drug candidates that should not be progressed further.

Evaluation of compounds in an integrated biological
system (e.g. animal-based models) is often a key to under-
standing the implications of multichannel block. However,
these model systems are costly, demand primary tissue and
data gathering is low-throughput. For these reasons, they are
used later on in the drug development pipeline, after consid-
erable investment has already been made, and when alterna-
tive chemical leads have already been deselected. In silico
approaches offer the opportunity of improving the decision
making at a time when alternative lead compounds are still in
scope, and before considerable expense and time has been
committed. In Figure 5, we outline the benefits associated

with in silico approaches, supporting early and improved
decision making.

In silico tools

A number of approaches are used to quantitatively describe
the interactions of a drug compound with cardiac ion chan-
nels, including molecular dynamics simulations and quanti-
tative structure activity relationship (QSAR) models.

In molecular dynamics studies, drug and ion channels are
represented at an atomic level, and affinity is established in
terms of energy minimization [notable recent work includes
the study by Silva et al. (2009) linking molecular dynamics to
biophysical models]. A drawback is that this approach is
computationally very expensive. QSAR modelling is a statis-
tical approach, based on evaluating properties of the molecu-
lar structure and estimating target affinity based on a
compound’s similarity to others contained in a historical
dataset (Inanobe et al., 2008).

Because the approach to, and tools for, simulation have
matured, both of these models can be used prior to any
‘wet-lab’ experimental work on a compound, relying only on
knowledge of the chemical structure. In this review, however,
we will focus on another type of in silico simulation: biophysi-
cally detailed AP modelling.

Since Hodgkin & Huxley’s Nobel Prize winning descrip-
tion of AP formation in nerve cells (Hodgkin and Huxley,
1952), and its subsequent application to cardiomyocytes

Figure 3
A generic progression strategy for evaluation of QT prolongation risk during pharmaceutical compound development. Top rows (red): preclinical
assays, performed on a large number of candidate compounds; bottom rows (blue): clinical assays performed in human. Rectangular boxes: key
stages of drug development; oval shapes: profiling activities conducted to assess pro-arrhythmic risk.
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(Noble, 1960; 1962), cardiac electrophysiology insight has
been aided by biophysically based computational models of
AP formation [. . .], which we will refer to as ‘AP models’.
There is another type of AP model: a ‘phenomenological
model’. This represents features of an AP without modelling
ion channels (Bueno-Orovio et al. 2008; Walmsley et al.,
2010). These simplified models can be helpful in tissue simu-
lations, but they are not generally suited for the mechanistic
study of drug actions. So ‘AP models’ in this review refers to
biophysically detailed models containing descriptions of
individual ionic currents. Today, these AP models represent
some of the most detailed and well-tested models in systems
biology (Kohl and Noble, 2009). The earliest use of such
models to study the action of pharmaceutical compounds in
cardiac cells dates back to the 1970s (Katzung et al., 1977). In
terms of drug safety testing, these models are used in the
context of information on compound actions gathered from
experimental data, and to integrate insight across scales of
spatial complexity, from the single ion channel to cells,
tissue, organ and whole body (Figure 6).

Several previous reviews have examined the role of
cardiac simulation in drug discovery, design and safety assess-
ment (Noble and Colatsky, 2000; Noble 2008; Fink and
Noble, 2010; Rodríguez et al., 2010; Amanfu and Saucerman,
2011), and discussed the potential of the ‘systems biology
approach’ for modern healthcare challenges (Noble, 2002a;
Hunter et al., 2010; Kohl et al., 2010). Here, we focus on the
use of AP models in predicting drug-induced pro-arrhythmic
risk.

Modelling drug/ion-channel
interaction

In this section, we outline the various classes of mathematical
models for the drug/ion-channel interaction studies. These
were reviewed more thoroughly by Brennan et al., to whom
we refer the interested reader for a more complete description
of the derivation of these models (Brennan et al., 2009).

In the majority of cases, a drug affects cardiac ion-channel
currents by direct binding. Blocking actions are usually attrib-
uted to obstruction of the flow of ions through a channel
pore, either by forming a physical obstacle, or by changing
the conformation of the ion channel. There are exceptions to
this, for example pentamidine, which reduces whole-cell IKr

by interference with hERG expression and protein trafficking
(Cordes et al., 2005). Such ‘unexpected’ mechanisms are one
reason why experimental studies cannot be replaced com-
pletely by simulation. But as novel assays are developed (e.g.
for hERG protein trafficking interference) such data can be
included into existing models, and thereby reduce the likeli-
hood of such unexpected results.

To date, modelling efforts have focussed on simulating
direct binding of drug compounds to a channel. Ion-channel
models fall into two main categories: Hodgkin–Huxley model
(HH) formulations (Hodgkin and Huxley, 1952), and their
generalizations, which are termed Markov models (MM).

Figure 4
Changes to action potential repolarization during simulated expo-
sure to Verapamil. Using the human epicardial myocyte model of
(Ten Tusscher and Panfilov, 2006) at steady 1 Hz pacing, the appli-
cation of Verapamil is modelled using a conductance-block model
with hERG-channel IC50=143 nM and CaL IC50=100 nM [data from
(Mirams et al., 2011)]. Top: effect of hERG-channel block only;
bottom: combined block of hERG and L-type calcium channels.
Arrows indicate changes caused by increasing drug concentrations
from 0 nM as control (bold) to 25 nM (dashed) and 81 nM (thin
solid). 81 nM is the maximum effective free therapeutic plasma
concentration.

Figure 5
In silico approaches offer the possibility of bringing forward decisions
on the viability of compounds for further development. In silico
models can identify potentially unsafe compounds earlier in the
pipeline, when alternative chemical leads still exist, and before
expensive and time-consuming safety testing has occurred. The
resulting chemical leads are more likely to succeed in later safety
tests. This will reduce costs and improve the chances of developing
a successful compound.
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The simplest way to introduce a drug-block into a cardiac
electrophysiology model is via ‘conductance-block’, that is by
reducing the maximum conductance of an affected ion
channel or transporter, using a scaling factor. This factor
follows a function for the dose–response curve, describing the
effect of a compound on the maximum current flowing
through the target. Typically, this scaling factor ‘b’ is related
to the drug concentration ‘[D]’ according to:

b
D

IC

n=
+ [ ]⎛

⎝⎜
⎞
⎠⎟

1

1
50

(1)

where IC50 is the drug concentration at which a 50% reduc-
tion of the peak current is observed, while n is the Hill
coefficient of the dose–response curve (often assumed to be
equal to one, i.e. one drug molecule is necessary and suffi-
cient to block one ion-channel). Such models for drug action
do not include ‘kinetics’, and drug block is assumed to reach
its steady state immediately. Note that it is possible for a
simple conductance-block model to exhibit frequency/use
dependence at the AP scale, as the roles of a current may
change depending on pacing rate. More detailed models of
drug/ion-channel interaction take into account the rate at
which a drug binds to/unbinds from the ion channel, leading
to a differential equation for b (Starmer et al., 1991). Both
these types of drug/ion-channel interaction models can be
reproduced in either HH or MM ion-channel formulations.

For more complex drug/ion-channel interactions, the
MM approach is required (while it may be a relatively simple
exercise for a mathematician to convert HH models into MM,

the automation of this process is non-trivial). In MM formu-
lations, a drug may be given access only to certain channel
states (open, closed, inactivated, etc.) termed state-dependent
block. The speed at which overall drug binding (and unbind-
ing) occurs will therefore depend upon the proportion of
time that a channel spends in each of the states. This will vary
with pacing rates, and allows one to incorporate use/rate-
dependence of drug actions (Barber et al., 1991; Tsujimae
et al., 2007). The term ‘voltage dependent’ block is often
applied to describe this, but this is potentially misleading, as
drug binding and block depends primarily on the state of the
ion-carrying protein (of course, different states of a channel
may become available preferentially at certain voltages). True
voltage-dependent block, as seen experimentally, occurs when
the charge of a drug compound affects its likelihood of reach-
ing a binding site in a transmembrane voltage-dependent
manner [independent of/in addition to channel conforma-
tion availability effects (Tikhonov and Magazanik, 1998)].
This may be included in Markov models by making drug
binding rates for individual states functions of voltage.

A further intricacy occurs when the bound drug alters the
rates of transition between ion-channel states. This is termed
allosteric block. Models incorporating this behaviour are
complex and require large amounts of experimental data for
parameterization (often more than are available).

Many other factors that can influence the binding of a
drug to an ion channel are increasingly being modelled,
including: temperature, pH (Cardona et al., 2010), or
co-administration of other compounds. In practice,
however, pharmaceutical ion-channel screening does not
usually record sufficient data to evaluate many of the kinetic
changes caused by drug/ion-channel interaction, and it will

Figure 6
Simulation of human body-surface ECG, using a biophysically detailed cell electrophysiology model, embedded into an anatomically representa-
tive human heart mesh inside a whole-body mesh (containing sub-structures with distinct electrical properties). Left: simulated Lead-I ECG, as
measured between the white points indicated on the human mesh (right). The time point of body surface voltage snapshot (on the right) is
indicated relative to the ECG by a blue line (on the left). Image courtesy of Nejib Zemzemi, University of Oxford, using techniques developed in
(Zemzemi et al., 2011).
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not do so until more advanced high-throughput screening
technologies/approaches become available. Simpler dose–
response curves, described by the equation above, are often
the only available quantitative data. Fortunately, with the
exception of drugs that exhibit allosteric effects, the ‘con-
ductance block’ approach is as useful as kinetic models of
drug action, when considering steady-state pacing condi-
tions (Brennan et al., 2009). However for conditions with
variable pacing rates (such as in arrhythmia) the conduct-
ance block approximation may be insufficient for simulation
of realistic drug actions. In addition, drug block is rarely at
a true ‘steady state’, as compound concentration fluctuates
between dosing. The incorporation of, or coupling to,
pharmacokinetic/pharmacodynamic models to predict the
free concentration of drug compound likely to be found at
the cardiac ion channels is a desirable future development
(van der Graaf and Benson, 2011).

At present all ‘production simulations’ that we are aware
of in pharmaceutical companies take (quite reasonably) the
simpler modelling approach of conductance block (Bottino
et al., 2006; Davies et al., 2012). The increasing availability of
high-throughput ion-channel screens means that required
parameters for these models (IC50 and Hill coefficient) can be
acquired at low cost for large numbers of candidate com-
pounds, thereby effectively auto-generating the parameters
for this class of models. One plea to industry in this context
is to consider dose–response curve characterisation as a
parameter fitting exercise for equation (1) above. There is
information to be gained from the parameters of the dose–
response curve, even where a drug effect reaches, for example,
only 40% block of an ion channel at the largest concentration
tested. Communication of such data is relevant, and much
more informative than stating that ‘no IC50 was attained’.

Anything other than simple conductance-block models
are typically developed manually, requiring a skilled compu-
tational modelling team. The literature on such models is
expanding quickly (Noble, 1980; Bean et al., 1983; Gilliam
et al., 1989; Weirich and Antoni, 1989; Pásek and Simurda,
2004; Clancy et al., 2007; Comtois et al., 2008; Brennan and
Tarassenko, 2010). But manual ‘model building’ is not scal-
able to the creation of models for every drug candidate and
ion channel of interest. The process of ‘model building’, in
particular for kinetics and allosteric effects of drug/ion-
channel interactions, needs to be automated and established
in-house inside pharmaceutical companies. This should be
aided by innovative experimental designs, in order to focus
on the most relevant data for parameter/model fitting tech-
niques (Ball and Sansom, 1989; Ball et al., 1999; Fink and
Noble, 2009; Moreno et al., 2011), and will benefit from
academia/pharma consortia, such as the recent PreDiCT ini-
tiative (Fletcher et al., 2011).

Modelling the effects of drugs on
the AP

There has been some success in the safety pharmacology field
using computational models that incorporate drug/ion-
channel representations into whole-cell AP models. These
models relate the change in membrane potential to the sum

of the currents flowing in and out of the cell. They are
composed of (typically 10–70) differential equations, with
multiple parameters. To facilitate their exchange and re-use,
the CellML model description language and associated tools
have been vital (Lloyd et al., 2008; Garny et al., 2009; Cooper
et al., 2011). The reason for the relevance of whole-cell
models is that it is at this spatial scale that the block of single
or multiple ion channels may manifest itself in an alteration
of AP parameters, a manifestation of key electrophysiologi-
cally relevant behaviour of cardiac myocytes (Rudy, 2007).
Whole-cell integration of ion currents occurs, of course, also
in ‘biological model systems’ of adult heart cells, such
as stem-cell derived cardiomyocytes. A recent combined
experimental and modelling study has highlighted that the
expectation that this may soon lead to patient-specific phar-
macological assays could be overly optimistic (Jonsson et al.,
2012), as ion current amplitudes and activation properties of
stem-cell derived cardiomyocytes are probably closer to neo-
natal than to adult phenotypes.

In terms of cardiac drug safety assessment, two notable
examples of the biophysical simulation approach are related
to the development of ivabradine and ranolazine. Ivabradine
blocks the so-called ‘funny current’ (If) first observed in 1968,
when it was assumed to carry only potassium ions (Noble and
Tsien, 1968). The If current was later identified as a mixed
cation channel (DiFrancesco, 1981), and simulation work
suggested that reduction of If would slow sino-atrial node
pacemaker cells by a moderate amount only, due to redun-
dancy with other ion channels (Noble et al., 1992). Ivabra-
dine, marketed by Servier as Procoralan and Corlentor for the
symptomatic management of stable angina pectoris, has been
reported to be highly effective and safe, causing a small but
significant reduction in heart rate. The European Medicines
Agency are currently moving to add ‘chronic heart failure’ to
the indications for Corlentor, where it has been reported to
significantly reduce mortality (Swedberg et al., 2010). Thus,
biophysically detailed AP modelling predicted essential
aspects of the pharmacological profile of ivabradine, based on
the description of underlying ionic current mechanisms.

Ranolazine (Ranexa; CV Therapeutics, now Gilead) is an
anti-angina drug. In spite of a large affinity for the hERG-
channel, it was observed to cause only moderate QT prolon-
gation. As mentioned earlier, strong hERG-channel block
would normally spell the end for a compound, but CV Thera-
peutics had not observed any early after-depolarizations (as
one might otherwise have expected with the degree of hERG-
channel block that ranolazine caused). Further studies
showed that ranolazine is also a potent blocker of the late/
persistent sodium current INa,p (Antzelevitch et al., 2004). At
this point, there was still no quantitatively plausible expla-
nation as to why the block of the relatively small sodium
current INa,p could curb potentially detrimental effects
expected from strong hERG-channel block. The company
turned to AP models. These showed that block of INa,p com-
pensated for many of the effects that would otherwise have
been associated with hERG-channel block, including AP pro-
longation. Computer simulations further identified that the
reduced sodium loading, caused by INa,p block, led to reduced
calcium loading of the cell. The associated smooth repolari-
zation makes QT prolongation, which is still seen in this
setting, much less proarrhythmic than usual (Noble and
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Noble, 2006). Benefiting from this mechanistic insight pro-
vided by AP models, Ranolazine is now on the market for
angina treatment, and it is being tested as an anti-arrhythmic
agent (Belardinelli et al., 2006).

Motivated by the observation that multi-channel effects
may alleviate torsadogenicity, a recent modelling investiga-
tion (Mirams et al., 2011) examined the effect of including
into a human ventricular AP model the IC50 data for three
ion channels: hERG/IKr, INa and ICa,L. The study included IC50

data for 31 currently marketed compounds, and assessed the
extent to which AP prolongation in the model correlated
with the human clinical TdP risk of each drug. By simply
including three (instead of IKr only) ion-channel effects, the
predictive classification of drugs into the risk categories
established by Redfern (Redfern et al., 2003) was substan-
tially improved. This suggests that AP modelling of multiple
ion-channel effects may improve early identification of clini-
cal risk. It also implies that torsadogenic effects of hERG
block can be eliminated by inhibiting additional channels.
Of course, in certain circumstances, this may be detrimental
for cardiac function via other mechanisms (e.g. reduced con-
tractility), which represents a separate but important safety
issue.

So, how many ion channels should one screen? And how
about currents that cannot easily be recorded? This forms
part of a conundrum that one might term the ‘inverse
problem’: is it possible to infer how a drug affects different
ionic currents by measuring an overall change to the AP
(which is easier to record than ion currents)? Bottino et al.
approached this task with some success, measuring hERG-
channel block and associated AP shapes experimentally, and
then attempting to fit the IC50 values of five other channels/
exchangers present in the cell, using computational AP
models (Bottino et al., 2006). As pharmaceutical ion-channel
assays expand, this approach may become relevant in the
evaluation of drug action on channels/exchangers that
cannot yet be screened efficiently in an automated setting, or
that may not even be known.

One of the remaining challenges is the variability of data
recorded in cardiac preparations of many different types.
This can be caused by experimental errors, but more usually,
data variability is an expression of genuine differences
between individual cells (or hearts), termed extrinsic variabil-
ity; or to inherent stochasticity in the behaviour of a single
cell (or ion channel), termed intrinsic variability. Mathemati-
cal consideration of these factors is only just beginning (Dan-
gerfield et al., 2010; Walmsley et al., 2010). First applications
to simulating drug action on cardiac cells include the recent
study by Davies et al., who re-parameterized a dog ventricu-
lar AP model, fitting it to traces from different experiments,
thus encapsulating extrinsic variability in the model. They
were able to observe different levels of AP prolongation in
models representing different animals, potentially explain-
ing some of the observed variation in reaction to drugs as
a consequence of natural variation in electrophysiology
(Davies et al., 2012). This work points towards the need to
develop a spectrum of models, representing such variability
as will be present in a patient population (Sarkar & Sobie,
2011). This is a concept that may become important in
detecting rare side effects and working towards patient-
specific prescription.

Drug effects in tissue models
Like real cells, AP models exhibit different behaviour in iso-
lation, compared to a setting when they are coupled together
in tissue, and many of the clinically used biomarkers can be
observed only at the tissue level. For this reason, AP models
have been coupled together to form tissue simulations
(Winslow et al., 1993; Silva and Rudy, 2010), and a number of
advanced simulation software packages have been developed
to run simulations, from basic cell models (Garny et al.,
2009), 1-D (string) or 2-D (sheet) tissue models that can be
implemented on a personal computer, to more extensive 3-D
(block or anatomical volume) simulations run on supercom-
puters (Bordas et al., 2009; Pitt-Francis et al., 2009; Niederer
et al., 2011a). In recent years, the simulation of drug effects
has been an expanding area of application of these tissue
models (Soubret et al., 2009).

One reason for this trend is that the most frequently used
marker for cardiac side effects in the clinical setting is the QT
interval of the ECG (Figure 2), and multicellular simulations
are required to reproduce these. Drug actions, incorporated
into ion-channel and AP models, can be related to ECG
changes at all levels of tissue complexity. Pseudo-ECG beha-
viour, computed using 1-D tissue strand models, is thought to
reproduce certain aspects of ‘real’ ECGs well, such as relative
changes in QT interval duration (Viswanathan et al., 1999;
Benson et al., 2009). 2-D and 3-D simplified models (Garny
et al., 2005), highly structured 3-D whole ventricular repre-
sentations (Rodríguez et al., 2010), and body surface potential
simulations (Zemzemi et al., 2011), as illustrated in Figure 6,
can all simulate ECG dynamics. In the remainder of this
section, we will illustrate some recent efforts in studying drug
actions using these tissue models.

At the tissue strand level, Obiol-Pardo et al. used QSAR
models to predict the IC50 values for IKr and IKs, and then
simulated conductance-block in 1-D coupled AP models
(Obiol-Pardo et al., 2011). This allowed them to compute
drug-induced changes in a pseudo-ECG, based purely on
projections between compound structure data and historical
information on IKr and IKs block by similar compounds. This
suggests that it may become possible to simulate ECG
effects even before a compound is synthesized, particularly
when reliable QSAR models are developed for further ion
channels.

Of a particular interest for the prediction of arrhyth-
mogenicity is the identification of drug-induced changes in
transmural dispersion of repolarization (Müller and Dhein,
1993), as this may provide the conditions necessary for sus-
tenance of arrhythmic behaviour. For experimental explora-
tion of this concept, coronary-perfused ventricular tissue
wedges have become popular, and a matching ‘virtual ven-
tricular wedge’ model of canine tissue has been developed as
a corresponding in silico safety screen (Benson et al., 2008;
Holden, 2010).

Arrhythmias can be induced in wedges (and other cardiac
tissue models) by special pacing protocols, and several studies
have examined how drug actions change the vulnerability of
cardiac tissue to the induction of arrhythmias, including ven-
tricular fibrillation (Weiss et al., 1999; Qu and Weiss, 2005;
Seigneuric et al., 2005). The role of early after-depolarizations
in triggering and/or sustaining arrhythmias in this context,
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has been simulated (Viswanathan and Rudy, 1999; Huffaker
et al., 2007), as has been the hypothesis that ischemic tissue
may provide a substrate for arrhythmia initiation under drug
action (Trénor et al., 2005).

In Moreno et al., allosteric models for block of the fast
sodium current, INa, were fitted to experimental data for lido-
caine and flecainide (Moreno et al., 2011). Simulations at the
human ventricle scale highlighted differences in sustainabil-
ity of ventricular fibrillation, which matched observed differ-
ences in the clinical profiles of the two drugs.

Thus, computer models of drug actions on ion channels,
embedded into cell AP models that form part of multi-cellular
tissue simulations, may reproduce and partially predict rel-
evant experimental and clinical findings. This is a remarkable
achievement, and illustrates the value of representing our
understanding of biological structures and functions in quan-
titative mathematical descriptions that adhere to basic physi-
cal laws, such as conversation of mass and charge, or of
reaction and diffusion behaviour.

Challenges and opportunities

The field of computational electrophysiology has made large
strides towards more accurate simulation of drug-induced
changes in cardiac electrical behaviour. Of course, there are
many further mechanisms and interactions that need to be
considered in order to allow systematic, accurate and high-
throughput prediction of drug actions on the heart. Tissue
and organ electrophysiological modelling still requires sig-
nificant computing power that may not be easily available for
routine work [although improvements in hardware and
model implementation have reduced this overhead very sig-
nificantly in recent years (Niederer et al., 2011b)].

Present limitations include that fact that the vast majority
of ‘whole heart models’ do not include descriptions of the
atria, atrio-ventricular activation, mechano-electric coupling
and feedback, tissue deformation, coronary flow, and fluid/
solid interactions, let alone their combined and interactive
effects. So, most of the in silico hearts do not actually pump,
even though it is ultimately this mechanical activity of the
heart that decides a patient’s fate! The heart also contains
more non-mycoytes than muscle cells (Camelliti et al., 2005),
and contributions of endothelial cells, connective tissue or
intra-cardiac neurones (to name but a few) are not yet receiv-
ing due attention in modelling (and, arguably, experimental
research).

Some of the mechanisms thought to be of relevance for
arrhythmogenicity rely on heterogeneous cell behaviour
throughout the tissue, for example regional (and temporal)
dispersion in excitability, refractoriness and electrical load.
There is an ongoing debate about the presence and relevance
of cells in the mid-myocardium with prolonged AP duration
[see the recent M-cells debate in the Heart Rhythm journal
(Janse et al., 2011; Nattel et al., 2011; Wilson et al., 2011)],
which highlights that heterogeneity throughout the heart is
poorly understood at present. It is, arguably, even more
poorly modelled. We are far from a comprehensive apprecia-
tion of the physiological relevance of local heterogeneity for
homogenous global cardiac function [called ‘homogeneity
out of heterogeneity’ (Katz and Katz, 1989)], and are barely

touching the surface of patho-physiological changes to this
heterogeneity, whose increase – but presumably also reduc-
tion – may well underlie disturbances in organ behaviour
(Markhasin et al., 2003).

Spontaneous drug-induced arrhythmias at therapeutic
concentrations do not tend to occur in silico. But, perhaps, we
should not expect them, as: (i) at present our models repre-
sent healthy cardiac tissue, with no factors that pre-dispose
towards arrhythmias, and (ii) many drug-induced arrhyth-
mias are rare events in the clinic. Disease states, gender dif-
ferences, electrolyte imbalance, energy availability and use,
autonomic control, circadian changes (Jeyaraj et al., 2012),
etc. all need to be incorporated into the computational
models of the future, and used for cardiac safety testing. This
work has begun with models of the AP for patients with
hereditary long QT syndromes (Clancy and Rudy, 2001; 2002;
Grant et al., 2002), and for models of ischemia (Noble,
2002b). Application of these models to drug safety investiga-
tions will open the door to simulating the risk for different
patient subgroups. This could serve as an important step
towards better stratification of therapeutic approaches, so
that patients with no anticipated susceptibility to cardiac
adverse events could benefit from a range of drugs that may
otherwise not be accessible to them. This concept of ‘reha-
bilitation of pharmacological compounds’ also benefits from
a potentially attractive economical context, as much of the
testing and development work has already occurred.

To explore these possibilities, members of preDiCT (http://
www.vph-predict.eu), a Europe-wide consortium on cardiac
modelling for drug safety, have put forward state-of-the-art
models and highlighted their potential use in a recent work-
shop that was well-attended by representatives from pharma-
ceutical companies and regulatory agencies, including
AstraZeneca, Pfizer, GlaxoSmithKline, Roche, Health Canada,
the US Food and Drug Administration, the UK Medicines and
Healthcare products Regulatory Agency and the European
Medicines Agency [for report see (Fletcher et al., 2011)]. Some
of the more important suggestions made at the meeting
focussed on the issue of access to, and consistency of, data-
sets; and we expand upon them here.

Firstly, good-quality experimental data are needed, and
we applaud the efforts of teams who are assembling and
publishing large ion-channel screens. Notable examples
include the University of Kraków who have put together an
open-access dataset of hERG-channel IC50 values (Polak et al.,
2011), and the AstraZeneca safety pharmacology group for
both hERG- and fast sodium channel data (Redfern et al.,
2003; Harmer et al., 2011). In this context, the publication of
raw datasets, rather than pre-analysed IC50 values and dose–
response curves, would be highly desirable, as the original
data allow one to glean extra parameters (for example Hill
coefficients or, potentially, ion-channel kinetic parameters).

Secondly, because we want to be able to accurately predict
when a drug is safe, data from studies that are suggestive of
lack of effect are crucial in training and testing the models (a
measure of specificity is only possible when such data are
included). The current trend of not publishing such results
needs to change, as data that is ‘negative for an effect’ is not
‘negative data’.

Thirdly, it is evident that assays are not performed con-
sistently between laboratories. Temperature, species, cell
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lines, perfusion protocols, etc. are not standardized, and
assays may change over time as new technologies become
available. To tackle this problem an international group of
scientists recently published a draft Minimum Information
standard for Cardiac Electrophysiology Experiments (Quinn
et al., 2011), in an effort to, at the very least, define the
differences between laboratories, including descriptions of
the processing, filtering or other conditioning of data that
may have occurred. Not only the reporting of (‘positive and
negative’) raw data, but more comprehensive metadata are
needed to advance this area.

Despite the limitations in models and available data, now
is the time to expand the role of cardiac simulation in the
pharmaceutical industry. The development costs per mar-
keted compound are becoming prohibitively expensive, and
any assays that have the potential to reduce these costs, via
more accurate and/or earlier safety predictions (Figure 5), are
worth investigating (Mirams and Noble, 2011).

In principle, cardiac AP models now capture a majority of
relevant sarcolemmal ion channels, exchangers and pumps
that a pharmaceutical compound is likely to interact with.
There is no technological reason, or gap in biological know-
ledge, to suggest that prediction of drug actions will not be
possible on this basis. Of course, simulation will not replace
the role of animal-based experimental models in cardiac safety
testing for the foreseeable future. There will always be novel
drug (off-)target effects that are not screened for, which are
important in cardiac behaviour, perhaps in genetic toxicology
involving up-/down-regulation of channel expression, for
example. But models can provide increasingly accurate predic-
tions for a vast majority of compounds with simple affinity for,
say, the 10 most promiscuous ion channels and exchangers.
Computational models do not need to provide 99% accurate
predictions to be useful, as the in vitro models that they
complement and/or partially replace tend to be no more than
~70% specific for the human QT liability. Thus, replacement of
experimental assays, including animal-based work (Figure 3) is
not an impossible vision, but something that has already
begun, while remaining experiments will be conducted more
selectively and yield more relevant information.

In the future, we envisage that pharmaceutical companies
will not store databases of IC50 values only, but instead create
and use repositories of kinetic models that represent com-
pound action on a particular ion channel. These models will
be integrated into AP/tissue/organ simulations and analysed
to provide a biophysically-based rational risk assessment. The
simulation of animal and human tests will be performed in
tandem with, and aided by, fewer yet more targeted experi-
mental studies. An agreement of simulation with animal
experiments, for example, will provide confidence in the
computational projection towards estimation of clinically rel-
evant effects in humans, which may be different due to
species differences – yet another domain of mathematical
model application. Disagreement will highlight the need for
further, more thorough investigation.

Conclusions

Biophysically detailed AP models can offer a ‘short cut’ for
cardiac safety testing in the context of QT evaluation. In

addition, computational modelling at tissue and organ levels
can be helpful in predicting cardiac (and, increasingly, other
organ) side effects. Models are already helping to develop an
understanding of the mechanisms causing, or predisposing
to, cardiac side effects such as TdP. These models do not only
allow one to reproduce, and increasingly predict, the result
of existing tests, but through an improved understanding of
the underlying mechanisms involved in the regulation of
cardiac activity, they can be used to propose better safety
assessments.

The various challenges outlined earlier can only be
addressed via pre-competitive collaboration between industry
and academia, bringing together experts with skills in elec-
trophysiology, pharmacology, toxicology, mathematical
modelling, numerical methods, computer science, data man-
agement and statistics. In the short term, cardiac electro-
physiology models offer an opportunity to gain extra
information from in vitro and in vivo animal-based model
systems. In the medium term, they will allow us to reduce the
numbers of experiments that have to be performed, and
speed-up the process of safety assessment. In the longer term,
simulation offers the hope of replacing certain assays, and
suggesting novel ones with greater predictive power.
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