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Abstract

Although cancer often is referred to as “a disease of the genes,” it is indisputable that the 

(epi)genetic properties of individual cancer cells are highly variable, even within the same tumor. 

Hence, preexisting resistant clones will emerge and proliferate after therapeutic selection that 

targets sensitive clones. Herein, the authors propose that quantitative image analytics, known as 

“radiomics,” can be used to quantify and characterize this heterogeneity. Virtually every patient 

with cancer is imaged radiologically. Radiomics is predicated on the beliefs that these images 

reflect underlying pathophysiologies, and that they can be converted into mineable data for 

improved diagnosis, prognosis, prediction, and therapy monitoring. In the last decade, the 

radiomics of cancer has grown from a few laboratories to a worldwide enterprise. During this 

growth, radiomics has established a convention, wherein a large set of annotated image features 

(1–2000 features) are extracted from segmented regions of interest and used to build classifier 

models to separate individual patients into their appropriate class (eg, indolent vs aggressive 

disease). An extension of this conventional radiomics is the application of “deep learning,” 

wherein convolutional neural networks can be used to detect the most informative regions and 

features without human intervention. A further extension of radiomics involves automatically 

segmenting informative subregions (“habitats”) within tumors, which can be linked to underlying 

tumor pathophysiology. The goal of the radiomics enterprise is to provide informed decision 

support for the practice of precision oncology.
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INTRODUCTION

Although cancer is commonly described as a “disease of the genes,” it also is indisputable 

that the genetic and epigenetic properties of individual cancer cells are highly variable, even 

in different regions of the same tumor, or between metastatic sites within the same patient. 

By generating heterogeneous subpopulations, this genetic diversity can lead to the failure of 

targeted therapies or chemotherapies, even with validated targets and drugs, as resistant 

clones commonly emerge and proliferate. Even with the most promising of immune 

therapies, only approximately 10% to 20% of patients exhibit durable responses. Hence, 

approaches to characterize and quantify the extent of intratumoral heterogeneity in 

individual patients might be useful for guiding therapies that adapt during the course of 

treatment. Herein, we propose that a form of image-based quantitative analysis known as 

“radiomics” can be used to quantify heterogeneity, predict outcome, and longitudinally 

monitor responses.

The practice of radiology always has been focused on the interpretation of images, which, 

until recently, was facilitated entirely by human observation and recollection. Although there 

are exceptions (eg, in nuclear medicine, in which localized metabolic activity can be 

quantified as a specific uptake value), the characterizations of object location, shape, 

sharpness, and intensity are accomplished by highly trained human observers. These 

interpretations are critical for disease and patient management, including diagnosis, 

prognosis, staging, and assessment of treatment response. However, to our knowledge, with 

few exceptions, this is largely a subjective operation with limited specificity and high 

interreader variability.1

In 2007, Segal et al showed that careful characterization of the appearance of liver lesions in 

contrast-enhanced computed tomography (CT) scans could be used to reach a conclusion 

regarding their molecular properties.2 Similarly, in 2008, Brown et al demonstrated that 

quantitative analysis of gray scale image texture on magnetic resonance imaging (MRI) 

scans of patients with oligodendroglioma could be used to predict their genetic signatures, 

specifically codeletion of chromosomes 1p and 19q.3 These early examples indicated that 

not only could the appearance of noninvasive imaging be quantified, but that these data 

could illuminate the fundamental molecular properties of cancers. Early examples used 

“semantic features” (ie, categorizations of human observations using a controlled 

vocabulary),4–6 and these have expanded to the use of “computational features,” which are 

direct mathematical summarizations of image regions. Together, semantic and computational 

feature classes are the basis of the new field of “radiomics,”7,8 defined as the “high-

throughput extraction of quantitative features that results in the conversion of images into 

mineable data,”9,10 and feature prominently in what today is called quantitative imaging.
11–13 The following section describes the radiomics workflow, including its strengths and its 

challenges, and highlights the integration of radiomics with clinical data and the molecular 

characterization of tumors, also known as radiogenomics,14–21 for the building of predictive 

models. This includes both “conventional radiomics” (ie, machine computation of human-

engineered image features) and artificial intelligence, or “deep learning,” (DL) to 

automatically discover the most informative features for image phenotype description from 

the image and clinical data. In the second section, we discuss an emerging field, called 
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“habitat” imaging, which combines radiomics with multiparametric images to automatically 

classify the pathophysiological nature of subregions within tumors and surrounding tissues. 

All 3 approaches–conventional radiomics, DL, and habitat imaging–have shown high 

promise in predicting, making prognoses, and monitoring responses of patients with cancer 

to therapies.

Conventional Radiomics

Figure 1 illustrates the radiomics workflows for a volumetric data set. Component parts are: 

1) the identification of the location of the subject tumor; 2) annotation of the tumor with 

semantic features; 3) tumor segmentation (ie, identification of the entire volume to be 

analyzed); and 4) image feature computation via human- engineered image features 

(“conventional radiomics”) and/or via DL approaches (“DL radiomics”). In some cases, 

“delta” features22–26 may be computed by comparing individual feature values derived from 

different imaging phases or images obtained at different times during the course of therapy, 

and/or feature vectors may be created that combine computed features from multiple 

imaging methods.27–30

Tumor identification—Each and every tumor to be processed first must be identified, 

either semiautomatically or manually by a radiologist or automatically using computer-aided 

detection approaches. When multiple tumors are present in a single imaging study, human 

effort generally is required to identify those that are clinically relevant, as in the case of 

index lesions scored with RECIST (Response Evaluation Criteria in Solid Tumors). When 

delta radiomics features are required, matching of tumors across observations also will be 

required.

Annotation with semantic features—Semantic features are descriptive observations of 

image content. For example, semantic features of a lung tumor might include “left lower 

lobe,” “pleural attachment,” “spiculated,” “ground-glass opacity,” etc. However, the 

extraction of semantic content from unstructured radiology reports is not appropriate due to 

inconsistent and/or ambiguous vocabulary across observations and observers. Furthermore, 

structured reports may not support the types of detailed observations required for making 

fine distinctions among tumor characteristics that may prove useful in classification or 

assessing response. Advances in structured reporting include the description of semantic 

features using a controlled vocabulary, such as RAD-LEX.31 However, although much effort 

has been expended to develop more structured reporting, it is still not common in the broad 

radiology community. Currently, there are at least 2 systems that facilitate semantic 

annotation of radiological images using controlled vocabularies: electronic Physician 

Annotation Device (ePAD) (Fig. 2)32,33 and the Annotated Image Markup (AIM) data 

service plug-in34 to ClearCanvas.35 Some semantic features, such as location, other 

morbidities, etc, are meant to be complementary to computational features, whereas others, 

such as “spherical,” “heterogeneous,” etc, are correlated with computational features.36,37 

One advantage of semantic annotations is that they are immediately translatable (ie, they can 

be ascribed in clinical environments without specialized algorithms [eg, segmentation] or 

workstations). As such, they have shown interesting results in several radiogenomic studies.

20,38–43
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Tumor segmentation—Radiomics features can be extracted from arbitrary regions within 

the image volume. A given region may contain an entire tumor, a subset of the tumor (eg, a 

habitat), and/or a peritumoral region thought to be involved with or affected by the tumor. In 

all cases, these regions must be unambiguously identified (segmented) and input to the 

radiomics feature computation algorithms. This segmentation step is the single most 

problematic aspect of conventional radiomics workflows, because the features computed 

from tumor volumes may be extremely sensitive to the specification of the volume to be 

analyzed. Each combination of tumor type and image modality presents its own challenges 

(including volume averaging of tissues within each voxel, tumor contrast with surrounding/

adjacent structures, image contrast-to-noise characteristics, and variations of image quality 

across vendor implementations and time). In addition, many algorithms require operator 

inputs, such as bounding boxes and/or seed points, and the segmentation outlines and 

radiomics features computed from them may be sensitive to these inputs. For example, a 

recent study demonstrated wide variations in lung nodule segmentation outlines across 3 

different algorithms, and even across individual algorithms initialized with different user 

inputs.44 Another study using the same data set revealed that many radiomics features, 

particularly those that quantify shape and margin sharpness, are quite sensitive to 

segmentation.45 Thus, the state of the art today is such that each segmentation must be 

reviewed and possibly edited by a human observer in order for the radiomics features 

computed from it to be trusted. One potential mitigation is to ignore segmentation altogether 

and to compute only features that do not require complete edge-to-edge coverage of the 

tumor (ie, histogram and texture features), which may be less sensitive to the exact tumor 

definition, and to ignore shape and margin sharpness features, which require accurate and 

consistent edge delineations.46,47

Image feature computation—Conventional or human-engineered computational image 

features can be divided into 4 classes, namely those that describe shape48–50; margin 

sharpness51,52; histogram features (eg, mean, variance, kurtosis, maximum, and minimum); 

and texture features,53–60 which describe the spatial variation of gray values within the 

tumor. Within each class, there are hundreds to thousands of individual features: for 

example, some texture features quantify the spatial variation of gray values across multiple 

scales and orientations, and shape features can similarly quantify edge irregularity at 

multiple scales. It is important to recognize that many image features are intercorrelated and, 

as a result, not all features may add independent predictive power to radiomics models. A 

standard approach in many studies is to generate an autocorrelation matrix and combine 

correlated features into a single descriptor.61 Several groups have made available computer 

code and processing pipelines for the calculation of image features from volumetric image 

data and segmentations (or at least volumes of interest), for example the Imaging Biomarker 

Explorer,62 the Quantitative Image Feature Engine,63 and pyRadiomics.64

Challenges to conventional radiomics—The ultimate usefulness of conventional 

radiomics workflows is to generate image features that then can be integrated with other 

medical data such as diagnosis, survival, response to therapy, mutations or genomic profiles, 

and demographics for the purposes of building predictive models for ≥1 of the clinical 

variables. Space does not allow room for details, but we note that a primary concern in these 
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analyses is overfitting (ie, building statistically significant models based on hundreds to 

thousands of image features requires data from many multiples of that number of 

individuals). As noted, many of the features are correlated and therefore feature reduction 

techniques based on redundancy, relevance, and/or sparse regression should be used 

wherever possible.65,66 Although many investigators use cross-validation methods to avoid 

training and testing on the same data, it still is important to test each predictive model on a 

completely independent cohort to assess generalizability.

An additional challenge is the need to standardize the methods for the calculation of 

radiomics features so that identically intended features computed from the same data by 

different algorithms have the same name and values. Indeed, the same study referenced 

above that compared features computed from multiple segmentations also indicated that 

implementations from separate institutions of purportedly the same feature sometimes 

produced different values.45 Much effort currently is underway to standardize feature 

naming and computation conventions, predominately led by the Image Biomarker 

Standardization Initiative67 and the Quantitative Imaging Network.11–13

In addition to the challenges raised by segmentation, a final challenge is the sensitivity of 

radiomics features to image acquisition and reconstruction (ie, the heterogeneity of image 

acquisitions). Each clinical study uses their own combination of acquisition parameters, such 

as slice thickness, reconstruction kernel, MR pulse sequences, etc. In addition, many 

acquisition parameters are optimized for the particular patient being studied (eg, kilovoltage, 

mass, and field of view). Although radiologist interpretations are somewhat immune to these 

differences, computational radiomics features are by design sensitive to these choices. In 

addition, random image noise also may affect many radiomic computations.61,68 Thus, a 

predictive model built for lung nodule characterization may be validated in one cohort and 

fail in another because of differences in the data acquisition and reconstruction. Although 

there have been some efforts to compensate for these differences (eg, using phantoms and 

image interpolation),68–73 and herculean efforts on protocol standardization by the 

Quantitative Imaging Biomarkers Initiative (QIBA)74–78 currently are underway, much work 

remains before radiomics analyses can derive usefulness from large databases collected by 

multiple institutions. Another possibility to mitigate these issues is through a branch of 

artificial intelligence known as DL.

Deep Learning

In conventional radiomics workflows, accurate lesion segmentation and user-defined 

features play key roles. As described above, there are challenges to semiautomated 

segmentation, such as interoperator variability and time consumption.79–86 Although there 

are many hundreds of descriptive features designed by prior knowledge, the current feature 

sets still may not be optimal for a given task.87

DL can mitigate these limitations because it does not require accurate segmentation and it 

creates its own features through multiple layers of learning.87–88 Only recently applied to 

radiomics, DL has proven to be valuable in both differential diagnosis89–103 and prognosis.
104–107 DL involves abstraction by building networks with >2 processing layers.108 For 

medical images, convolutional neural networks (CNNs) are the most common models 
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because they can accept 2-dimensional (2D) or 3-dimensional (3D) images as input. The 

first CNN was proposed by LeCun et al in 1998,109 but its success was limited until the 

advent of graphic processing units and the development of learning algorithms.93,110–112

Figure 3 shows examples of CNNs, which can be used to classify data types as diverse as 

purchasing preferences and satellite images. With medical imaging, the input layer during 

training includes images or subregions of labeled images, which then are convolved in 

sublayers along with their known classifiers (for example, benign or malignant) to identify 

those image features that are most related to the classification. Because images contain many 

common features that are relevant to classification (eg, edges, shapes, colors), the core layers 

of CNNs relating to these can be transferred to other classification tasks. Indeed, although 

only recently applied in radiomics, DL has proven valuable in both differential 

diagnosis89–103 and prognosis prediction.104−107

Two major factors influencing CNN applications in diagnostic imaging are computational 

power and the availability of training data. Although the solution to computing power is 

simply time and/or money, the solution to the limited availability of well-annotated training 

data sets is not so simple. One solution can be to limit the size of the input data. For 

example, small 2D patches can be used to significantly reduce computational costs and 

required training cases. Even using only 2D images, CNNs have been shown to improve 

accuracy compared with conventional radiomic approaches. Examples include tumor 

grading with MRI,100 classification of pulmonary nodules with 2D CT,113 and predicting 

response to neoadjuvant therapy with positron emission tomography (PET) images.114

To better use volumetric information from the 3D medical images, information from 2D 

patches of the 3 orthogonal views (axial, sagittal, and coronal) can be used, which is a 

method referred to as 2.5D.115 These 3 views can be inputted into existing CNNs trained on 

3 channels (often the red-green-blue channels of natural images).116 If enough 

computational power and training cases are available, full 3D CNNs can be used to provide 

better results.105,117,118 In the past 2017 Data Science Bowl focusing on lung cancer 

detection,119 full 3D CNNs obtained the best performance. In addition to the different input 

and dimensions of the networks, many different architectures also have been attempted by 

incorporating unique task-specific properties such as multiview120 and multiscale to achieve 

higher accuracy.98,99,101,102,121

An approach for solving the issue of limited data is to use “transfer learning.”122,123 This 

approach uses an unrelated training set to preconfigure the CNN to reduce the size of the 

task-specific training set. There currently are 2 popular transfer learning strategies, one of 

which uses an “off-the-shelf” set of CNN features and the second of which performs 

unsupervised pretraining on unrelated images/classification task (eg, dogs vs cats in images 

from the Internet) and fine-tuning on medical target images. In either strategy, a pretrained 

network from a larger image data set could be used as a feature extractor. The first n layers 

of a pretrained CNN model are used as the first n layers of a target network, and the 

remaining layers of the target network then are retrained toward the target task (Fig. 3). The 

errors from the new task can be back-propagated into the pretrained features to fine-tune 

them to the new task.124 Thus, the outputs extracted from the initial layers are regarded as 
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meaningful features that can be used to train a separate classifier, which can include image 

data as well as clinical, demographic, and genomic data.101 This has been used, for example, 

using the gastrointestinal stromal tumors standard graphics library125 or bag of visual 

words126 descriptors to train a CNN for chest pathology,91,92 followed by combining generic 

CNN features with handcrafted features to significantly improve results in the detection of 

lung nodules.127 Using a similar approach, a multiview CNN model based on a publicly 

available pretrained CNN-F model128 was used for estimating a patient’s risk of developing 

breast cancer.94

There also are solutions to create computerized “pseudodata” to improve the performance of 

DL models. This involves generating additional examples by perturbing an image by 

multiple transformations while keeping the class unchanged. A generic and accepted current 

practice is to perform geometric augmentation including image reflection, cropping, 

translation, and rotation. Noting that the final aim of these studies is to achieve a 

classification (eg, “normal” vs “cancer,” “benign” vs “malignant”), when 1 class is 

overrepresented, only a small percentage of these cases are informative. Because the 

pathological classes generally are underrepresented in the cancer imaging population, using 

multiple transforms of these images for training the CNN can improve efficiency and 

accuracy.103

A common problem with CNNs is “overfitting,” which occurs when the training set is too 

small compared with the number of layers or a trained model fails to generalize. This can be 

mitigated with regularization techniques, which add penalties for complexity or extreme 

parameter values.129,130 More recently, CNN performances have been enhanced by 

propagating errors between layers to focus on the most robust and relevant features.131 

Several other network architectures, such as Boltzmann machine,132 deep belief network,133 

or stacked autoencoders,134 also have been used successfully in the detection, diagnosis, and 

prognosis of cancer. Although these networks can be applied to solve multiple classification 

problems, it is critical that the network is trained for the specific task at hand, and to test the 

classifier in a completely independent data set, preferably from a different institution.

Finally, and relevant to the previous and next sections, it is well known that multimodality 

images often provide additional information compared with those from a single modality; 

consequently, recent work using deep CNNs with multimodality images have attracted much 

attention.132,135–137 For example, for the task of pulmonary nodule detection, Teramoto et 

al136 combined CT and PET images of pulmonary nodules into a CNN and the outputs were 

used as inputs to 2 support vector machines, resulting in 50% fewer false-positive detections 

compared with a previous study.138 In another multimodal study, a 2D CNN was trained for 

low-grade glioma tumor segmentation using T2, fluid-attenuated inversion recovery 

(FLAIR), and T1 contrast-enhanced images, and image features were obtained from its final 

convolutional layers. These “learned” features demonstrated improved accuracy compared 

with conventional radiomics for predicting IDH1 mutation status in patients with brain 

cancers.137
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Habitat Imaging

One of the most well-studied hallmarks of cancer is dysregulated angiogenesis, in which the 

tumor cells locally promote new blood vessels to provide nutrients and oxygen to maintain 

their fitness. However, because cancer cells are independently promoting local angiogenesis 

without regard for the rest of the tumor, a chaotic and leaky vasculature results.139–141 This 

leads to stochastic and cyclical changes in blood flow142 that, in turn, have profound effects 

on the local environmental properties, and the resulting evolutionary selection pressure 

applied to cancer cells.143 Spatial variation in environmental stressors drives a natural 

selection for cells that are most fit within their specific patterns of oxygen and nutrient 

availability, and the buildup of acidic waste products.143–146 Thus, these subregions, or 

habitats, are expected to contain cells with similar genotypes and phenotypes, including 

those that confer therapy resistance.147–150 In fact, intratumoral spatial heterogeneity has 

been associated with resistance to therapy,151 tumor growth,152 and poor prognosis,153 and 

therefore has direct clinical consequences. Herein, we describe approaches to characterize 

the presence of these habitats using multiparametric MRI (mpMRI) and emergent analyses 

of PET.

In this context, mpMRI can go beyond its common use to characterize tumor size and 

anatomy. Although response to therapy is conventionally measured by tumor size (RECIST),
154,155 functional MRI allows the assessment of tissue metabolism and physiology.156,157 

Thus, different MRI sequences can be used to measure the spatial differences in cell density, 

tissue organization, perfusion, and metabolism, which potentially provide earlier indications 

of therapeutic efficacy than tumor shrinkage as observed in size measurements.158 The 

combined application of images produced by multiple MR pulse sequences (mpMRI) can 

simultaneously assess multiple functional processes at the cellular and molecular levels.159 

Anatomic (T2-weighted) MRI commonly is used in combination with diffusion-weighted 

MRI (DWI-MRI) and dynamic contrast-enhanced MRI (DCE-MRI), which are sensitive to 

cellularity and vascular perfusion, respectively.160 Normally, these are evaluated 

independently and/or are combined into an average parameter for the entire region of 

interest, discarding important spatial information.144,161 With habitat imaging, these 

orthogonal data sets are combined into a single parametric map. However, multiparametric 

analysis on a per-pixel basis to generate these maps remains challenging, because it requires 

spatial registration of all imaging sequences and must take into consideration resolution 

differences and deformations that can occur between scans.160,162,163

Based on the assumption that MRI scans are analogous to satellite images, the image 

processing technology from the National Aeronautics and Space Administration (NASA) 

first was adapted to segment MRI data into tissue populations as separate “scene elements.” 

To the best of our knowledge, Vannier et al were the first to apply this methodology in a 

series of articles164–166 wherein mpMRI data served as input to pattern recognition 

procedures implemented as feature extraction followed by classification. This enabled the 

production of “theme maps” through supervised and unsupervised pattern recognition 

procedures. By plotting the gray scale frequency distribution of each image, the data tended 

to form clusters, which were examined against the original MRI scans and classified with 

tissue characteristics. The supervised classification technique started by defining a region of 
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interest over the known structure, which served as a signature with which to train for the 

recognition of other structures that presented with the same classification. The unsupervised 

method analyzed mpMRI to classify tissue components without any prior information 

regarding the identification of the tissues. These analyses were able to differentiate brain 

parenchyma from hematoma, skin from cortical bone, fat from air, and cerebrospinal fluid 

from its surroundings. More recently, studies have evaluated intratumoral heterogeneity 

using specific MR images (eg, parameters derived from DWI-MRI or DCE-MRI).

DWI-MRI measures the random movements of water molecules, which are sensitive to 

cellular density in tissues.159 It can be used alone or can be analyzed by calculating the 

apparent diffusion coefficient (ADC) using multiple diffusion weightings, which can be used 

as a noninvasive biomarker for diagnosis, tumor grading, and prognosis.167,168 In addition, 

because changes in ADC can be observed earlier than changes in the tumor size, DWI-MRI 

is a useful technique for the assessment of therapy response.159,169 Low ADC values 

indicate restricted diffusion, which commonly is observed in solid tumors.170,171 

Conversely, areas of necrosis and edema are expected to demonstrate high ADC values.
159,160 In preclinical studies, these data can be spatially coregistered with histology (eg, 

demonstrating an increase in ADC in the one-half of a prostate xenograft that received 

radiotherapy, which was associated with a decreased nuclear count and increase in 

extracellular space and nuclear size).169 DWI-MRI scans of MDA-MB-231 and MCF-7 

xenografts were used to provide quantitative texture information regarding intratumoral 

heterogeneity by correlating parameters derived from ADC maps with histological features.
172 In this study, histogram-based measurements of ADC values, such as standard deviation, 

skewness, and kurtosis, were found to be positively correlated with Ki-67 staining. 

Histologically defined microvessel density was found to be inversely correlated with ADC 

values. Thus, the less heterogeneous texture parameters derived from DWI-MRI and 

observed in the MDA-MB-231 xenografts corresponded to higher vascularity (CD34) and 

diffuse multifocal necrosis identified in histology. The incorporation of texture features 

derived from the combination of ADC and T2-weighted MRI increased the accuracy of the 

classification of Gleason patterns in patients with prostate cancer when compared with 

classifiers using only the ADC mean instead of the texture features.173

DCE-MRI reflects vascular flow and permeability by tracking the passage of a bolus 

injection of intravenous gadolinium-based contrast through the tissue of interest using T1-

weighted images before and after the contrast administration.174 DCE-MRI can be analyzed 

quantitatively by fitting the data to ad hoc or pharmacokinetic models that measure the time 

course of the presence of gadolinium within the tissues.171,175 Quantitative parameters 

commonly reported by pharmacokinetic model–based analysis include the extracellular 

volume fraction (ve) and the volume transfer constant (ktrans) between blood plasma and 

extravascular space, which is sensitive to blood flow rate and vessel permeability.160,174 

These parameters have been related to tumor angiogenesis and hypoxia by histological 

coregistration.158,176–178 For example, in patients with head and neck tumors, several DCE-

MRI parameters, including ve and ktrans, were found to be correlated with positive staining 

for pimonidazole, a hypoxia tissue marker.177 These parameters can be clustered to identify 

regions with different blood flow dynamics.145,179,180 However, relevant to habitat imaging 
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is that the lack of perfusion would be expected to correlate to hypoxia only in areas with 

relatively high cell density.

The above discussion suggests that tumor habitats can be identified using different mpMRI 

combinations.151,181,182 Preclinical studies are valuable because these habitats can be 

identified by coregistration with histology. An example is shown in Figure 4, which 

demonstrates that data from T2, T2* (T2star), DWI-MRI, and DCE-MRI images can be 

combined to identify 4 different habitats that reflect different underlying phenotypes. It is 

worth mentioning here that the image contrast on T2-weighted MRI is determined mainly by 

tissue-specific T2 relaxation times. Such images provide anatomic information and typically 

are used qualitatively and in mpMRI protocols. Although quantitative information also can 

be obtained from T2-weighted images, T2 maps provide complete quantification because 

signals are captured during multiple echo times and then are fit to an exponential decay 

curve on a pixel-by-pixel basis, yielding quantitative T2 information. The habitat map 

derived from mpMRI in Figure 4 shows good visual agreement with the corresponding 

histological slice. In this example, a 3D-printed tumor mold was used to facilitate the 

coregistration of the histological slices with MRI.

In other examples, k-means clustering of the ADC from DWI-MRI, T2, and M0 (proton 

density) images from colorectal tumor xenografts were used to follow the temporal evolution 

of the tumor populations in response to therapy.181 In particular, 2 necrotic clusters were 

identified, both demonstrating high ADC values but differing by short or long T2 values. 

Necrotic regions with a long T2 value and high ADC value were confirmed as acellular, 

whereas the short T2 value in the other necrotic regions was ascribed to the presence of 

deoxyhemoglobin due to either hemorrhage or leaky vasculature. Low ADC values were 

found in areas of viable tumor cells and subcutaneous adipose tissue; however, viable tumor 

tissue exhibited lower M0 values compared with adipose. In a similar analysis, viable and 

necrotic areas were identified in primary tumors and metastases of a 4T1 syngeneic mouse 

model of breast cancer.183 Based on the k-means clustering of ADC and T2 data, 4 clusters 

(2 viable and 2 necrotic areas) were identified and confirmed by histological hematoxylin 

and eosin staining.182 Necrotic regions were characterized by high ADC values, but could be 

clustered into 2 different habitats based on their quantitative T2 values. One viable region 

(V1) presented with low ADC and qT2 values, whereas the other (V2) demonstrated 

intermediate ADC and lower qT2 values. Immunostaining of hypoxia-inducible factor 1 

differentiated the 2 viable regions as well oxygenated or hypoxic subpopulations. Expression 

of hypoxia-inducible factor 1 was concentrated in the perinecrotic regions, classified 

previously as V2, which are expected to be hypoxic. The evaluation of these different viable 

tumor populations was informative for treatment response. Viable subregions classified as 

V1, which presumably are well oxygenated, demonstrated regression after irradiation, 

whereas the V2 subregions, characterized as hypoxic, increased, suggesting a selective 

survival of a subpopulation of cells resistant to radiotherapy.151 In another study, DCE-MRI 

parameters were evaluated over the viable and necrotic subpopulations previously classified 

by the multispectral analysis of DWI-MRI, T2, and proton density. After an antiangiogenic 

therapy (antivascular endothelial growth factor antibody G6–31), a reduction in the Ktrans 

values was observed in the viable tumor regions, whereas Ktrans did not change in the areas 

classified as necrosis, and only provided noise to the DCE estimates.184
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Clinically, mpMRI approaches are being used to identify tumor habitats, which can be used 

to predict outcomes for patients with cancer. In 36 patients with soft tissue sarcoma who 

were treated with neoadjuvant doxorubicin, the T1 postcontrast and T2 images each were 

divided into “high” and “low” using Otsu segmentation, and then combined to generate 4 

distinct habitats: high-high, high-low, low-high, and low-low (Fig. 5).185,186 The goal of the 

Otsu thresholding method is to choose the threshold that minimizes the intraclass variance. 

The volumes of each of these regions were entered along with multiple clinical features in a 

meta-analysis to predict progression-free survival (PFS) and overall survival (OS). In this, 

only 1 univariate predictor, the volume of the (high T1 postcontrast/low T2) habitat, was 

able to accurately predict OS and PFS. In cases in which this habitat occupied >18% of the 

tumor volume, it predicted a short PFS (P = .05) and lower OS (P = .036). In addition, these 

habitats could predict the existence of occult metastases with >80% accuracy. Another 

important aspect of these studies is that soft tissue sarcomas are a histologically 

heterogeneous group of diseases, but this classifier was applicable to all, regardless of 

histological subtype.

In patients with glioblastoma, habitat imaging can be used to segment normal from 

abnormal tissue. As shown in Figure 6, ADC, precontrast T1 and postcontrast T1, T2-

weighted, and FLAIR images can be combined and clustered to classify tissue classes.186,187 

It has been proposed that such classifiers can be used instead of segmentation, possibly 

mitigating the problems discussed previously. To predict outcomes, habitat images have 

been generated based on postcontrast T1 and FLAIR sequences.188 First, tumors were 

separated into regions of low or high contrast enhancement, based on the postcontrast T1-

weighted data. Then, FLAIR values were added, thus classifying the images into 5 habitats 

according to different combinations of blood flow and cellularity. In this study, patients 

initially were divided into short-term or long-term survival groups. Long-term survivors had 

a predominant tumor habitat with high enhancement and intermediate cell density, whereas 

the tumors of short-term survivors had habitats with low enhancement and high FLAIR 

signals (indicating necrosis). It is interesting to note that habitats with low blood flow also 

exhibited cellularity comparable to that of habitats noted in regions with high blood flow, 

which could indicate the presence of viable cells that had adapted to survive in hypoxic and 

acidic conditions. More recently, these same authors presented a computational framework 

with which to quantitatively extract image features from the tumor habitats that 

demonstrated high accuracy to potentially predict the survival of patients with glioblastoma.
189 In related studies from another group, habitats in patients with glioblastoma multiforme 

were defined using postcontrast T1 and FLAIR data, and the spatial diversity features 

obtained from the habitats were associated with survival190 as well as with the epidermal 

growth factor receptor expression status in patients with glioblastoma.191

An emerging area of interest considers the use of PET data in combination with CT or MRI 

to identify habitats with distinct combinations of metabolic activity (PET) with cellularity or 

perfusion (MRI). In patients with lung, colorectal, or breast carcinomas, subregions based on 

metabolic rate of glucose, which can be calculated from the pharmacokinetic analysis of 

dynamic PET images and is used for measuring local glucose consumption, and CT revealed 

a relationship between high or low metabolic regions with blood volume, cellular uptake, 

and washout as well as phosphorylation rate constants.192 In a novel application of PET-
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MRI, 13 patients with primary or metastatic cancers were examined with DCE-MRI and 

PET using [18F]-galactoarginine-glycine-aspartic acid (18F-galacto-RGD) (which binds to 

αvβ3, an integrin upregulated during angiogenesis) and [F]fludeoxyglucose (18F-FDG) 

(glycolysis).193 The total tumor area was divided into 4 habitats with high and low RGD and 

FDG uptake, respectively. Perfusion (with DCE-MRI) was noted to be highest in tumor 

areas with simultaneously high RGD and FDG uptake, and was restricted in areas with low 

uptake of both RGD and FDG. In a recent PET-MRI study of preclinical and clinical breast 

cancers, Gaussian mixture models combining FDG-PET and DCE-MRI were found to be 

able to distinguish between cystic hyperplastic, solid acinar, and solid nodular malignancies. 

These subregions were validated with coregistered hematoxylin and eosin staining and ex 

vivo autoradiography in a preclinical setting.194

Conclusions

In this era of personalized medicine in oncology, we have a responsibility to collect as much 

meaningful information from different modalities as possible, which can help to make better 

informed decisions. Although mutational analysis and gene expression data are indisputably 

important to this process, there are additional relevant data that can be used. Quantitative 

imaging is able to contribute significantly to decision support for 3 major reasons: 1) 

virtually every patient with cancer is imaged with CT, MRI, and/or PET; 2) these images are 

obtained from the entire tumor, along with metastases, and thus can be used to describe and 

classify heterogeneity; and 3) these images can be obtained routinely longitudinally to 

monitor responses and to guide specific therapies. As the technologies of radiomics mature, 

including conventional radiomics, DL, and their combination, we expect that the 

classifications will become more granular and will be able to identify subtumor regions 

(“habitats”) with specific compositions of cancer cell phenotypes and genotypes, along with 

immune and stromal involvement, and thereby provide better options for diagnosis, staging, 

treatment, and monitoring of response.
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Figure 1. 
Radiomics workflows. The conventional workflow computes human-engineered features, 

whereas the deep learning workflow explores features during training using labeling from 

clinical and/or demographic data. Either workflow can be used, or both can be used and the 

resulting features combined. The deep learning workflow can use, but may not require, 

tumor identification or segmentation (hence “alternate pathway”). Both workflows also can 

use semantic features for the final classification stage, which generates an output such as 

benign/malignant, responder/nonresponder, probability of 5-year survival, etc.
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Figure 2. 
Example of semantic annotation of a lung tumor that is part solid and part ground glass 

using ePAD. After tumor segmentation (green), either manually within ePAD or created via 

other means, an observer selects annotations using a custom template (eg, one that was built 

using the AIM Template Builder)33 or one of several available templates. The example in 

this figure shows a subset of the annotation topics that are required to complete this 

annotation.
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Figure 3. 
Schematic representation of convolutional neural network (CNN) architecture and the 

concept of “transfer learning.” Because images from multiple sources have common salient 

features (borders, shapes, etc), the core of a CNN trained for 1 task (Top row: eg, cat from 

pot-au-feu from camping tent) can be “transferred” (ie, used without modification) for a 

second task (Bottom row: benign from malignant tumors in computed tomography images). 

Because only the distal layers (fully connected [FC] I and FCII) remain to be trained, much 

less training data are required for the second task. Max indicates maximum.
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Figure 4. 
Multiparametric magnetic resonance imaging (mpMRI) data used to identify tumor 

subregions (“habitats”) in a 4T1 breast cancer allograft in a mouse model. (A) Parameters 

derived from T2 map, T2* map, diffusion-weighted (DWI)-MRI, and dynamic contrast-

enhanced (DCE)-MRI were clustered to create a habitat map, demonstrating 4 intratumor 

subpopulations with different patterns of cellularity. Blue indicates necrotic; yellow, 

nonviable hypoxic; pink, viable hypoxic; green, viable nonhypoxic. (B) A coregistered 

habitat map derived from histology demonstrating good spatial correspondence with the 

habitat map derived from MRI. Histological slices were obtained by cutting the tumors using 

a 3-dimensional printed mold, which ensured the coregistration with MRI slices. 

Hematoxylin and eosin (H&E) and immunohistochemistry images were automatically 

segmented and superimposed to create habitat maps derived from histology, showing 

necrosis (blue), viable normoxic (green), pimonidazole in a viable region (pink), and 

pimonidazole in a nonviable region (yellow).
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Figure 5. 
Multiparametric magnetic resonance imaging (mpMRI) habitats in patients with soft tissue 

sarcoma. Otsu thresholding was used to separate postcontrast T1 images into low (L) and 

high (H) intensities. Within each of these subsets, Otsu thresholding again was used to 

separate quantitative T2 images into L and H, generating 4 habitats: L-H (indicated in 

green), L-L (indicated in blue), H-L (indicated in yellow), and H-H (indicated in red). The 

occurrence of the yellow habitat was the only significant predictor of outcome in univariate 

analyses (in cases in which this habitat occupied >18% of the tumor volume, progression-

free survival and overall survival were significantly worse).
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Figure 6. 
Five coregistered magnetic resonance imaging (MRI) sequences, namely apparent diffusion 

coefficient, T1 precontrast, T1 postcontrast, T2 weighted, and fluidattenuated inversion 

recovery (FLAIR), were combined to generate this map containing 7 habitats. The entire 

brain was clustered to identify normal and abnormal tissue classes. Note that this provides 

an automatic delineation of the tumor (arrow) along with its accompanying subregions.
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