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Abstract

Here we analyzed whole-genome sequences of 3,969 influenza A(H1N1)pdm09 and 4,774 A(H3N2) strains that circulated during

2009–2015 in the world. The analysis revealed changes at 481 and 533 amino acid sites in proteins of influenza A(H1N1)pdm09 and

A(H3N2) strains, respectively. Many of these changes were introduced as a result of random drift. However, there were 61 and 68

changes that were present in relatively large number of A(H1N1)pdm09 and A(H3N2) strains, respectively, that circulated during

relatively long time. We named these amino acid substitutions evolutionary markers, as they seemed to contain valuable information

regarding the viral evolution. Interestingly, influenza A(H1N1)pdm09 and A(H3N2) viruses acquired non-overlapping sets of evolu-

tionarymarkers.Wenextanalyzed thesecharacteristicmarkers invaccine strains recommendedby theWorldHealthOrganization for

the past five years. Our analysis revealed that vaccine strains carried only few evolutionary markers at antigenic sites of viral hem-

agglutinin (HA)andneuraminidase (NA). Theabsenceof thesemarkersat antigenic sites couldaffect the recognitionofHAandNAby

human antibodies generated in response to vaccinations. This could, in part, explain moderate efficacy of influenza vaccines during

2009–2014. Finally, we identified influenza A(H1N1)pdm09 and A(H3N2) strains, which contain all the evolutionary markers of

influenza A strains circulated in 2015, and which could be used as vaccine candidates for the 2015/2016 season. Thus, genome-wide

analysis of evolutionary markers of influenza A(H1N1)pdm09 and A(H3N2) viruses may guide selection of vaccine strain candidates.
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Introduction

Human influenza A viruses impact public health and the global

economy by causing annual epidemics and occasional pan-

demics. The viruses infect 5–10% of adults and 20–30% of

children annually. Approximately 17% of infected people visit

physicians, and 2% are hospitalized (Hayward et al. 2014).

The average annual rate of influenza-associated hospitaliza-

tions and deaths is around 25 and 6 per 100,000 infected

people, respectively (Lozano et al. 2012; Goldstein et al.

2015).

Influenza vaccines have been developed to protect the gen-

eral population and especially people at risk (young children,

pregnant women, health professionals, and adults over 65

years of age) from developing severe disease (Osterholm

et al. 2012). However, vaccines need to be reformulated

each year owing to the rapid viral antigenic evolution

(Plotkin et al. 2002; Smith et al. 2004; Lee et al. 2015a).

Twice a year, the World Health Organization (WHO) provides

recommendations on influenza strains that should be included

in vaccines for the upcoming influenza season, for southern
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and northern hemispheres (www.who.int/influenza/vaccines/

virus/recommendations/en/). For example, in February 2014,

the WHO has recommended to include A/California/7/

2009(H1N1pdm09)-like, A/Texas/50/2012(H3N2)-like, and B/

Massachusetts/2/2012(Yamagata)-like viruses in trivalent vac-

cines for the 2014/2015 influenza season for the northern

hemisphere. However, overall vaccine effectiveness against

laboratory-confirmed influenza associated with medically at-

tended acute respiratory infections was as low as 23% for

2014/2015 (Flannery et al. 2015). Similarly, vaccine effective-

ness was moderate for other seasons and varied from year to

year (Simpson et al. 2013; Broberg et al. 2015; Flannery et al.

2015; Rondy et al. 2015; Valenciano et al. 2015). This could be

owing to antigenic differences between the circulating influ-

enza viruses and the vaccine strains recommended by the

WHO (Broberg et al. 2015).

The WHO recommendations are based on phylogenetic

and immunological analyses of influenza viruses from previ-

ous seasons (http://apps.who.int/gb/pip/pdf_files/

Fluvaccvirusselection.pdf ?ua=1). However, the phylogenetic

approaches are often limited to the analysis of the nucleotide

sequences of viral hemagglutinin (HA) and neuraminidase

(NA) (Plotkin et al. 2002; Smith et al. 2004; Drummond

et al. 2006; Strelkowa and Lassig 2012; Bhatt et al. 2013;

Bedford et al. 2014; Lee et al. 2015a; Tharakaraman and

Sasisekharan 2015). However, newer studies increasingly uti-

lized whole-genome sequences of influenza viruses, shedding

new light on virus evolution and aiding vaccine strain selection

process (Holmes et al. 2005; Nelson and Holmes 2007; Du

et al. 2012; Luksza and Lassig 2014; Neher et al. 2014;

Steinbruck et al. 2014; Lee et al. 2015b; Neher and Bedford

2015; Vijaykrishna et al. 2015).

Here, we present a simple approach for reliable real-time

tracking and prediction of viral evolution based on whole-

genome sequences of influenza A(H1N1)pdm09 and

A(H3N2)viruses, which could further improve vaccine strain

selection process and, thereby, enhance vaccine efficacy. In

particular, we analyzed the evolution of human influenza A

viruses utilizing thousands of available whole-genome se-

quences of influenza A(H1N1)pdm09 and A(H3N2) strains

representing different geographic regions. We identified hun-

dreds mutation sites in influenza genomes. We noticed that

mutations at several sites resulted in amino acid changes,

which were maintained in influenza proteins for a relatively

long time. We named these characteristic variants as evolu-

tionary markers, as they seemed to contain valuable informa-

tion regarding the viral evolution. Furthermore, we showed

that A(H1N1)pdm09 and A(H3N2) viruses acquired their own

sets of these markers. We also searched for these markers in

corresponding vaccine strains and found many mismatches

between vaccine strains and circulating influenza viruses.

We also applied our approach to identify recent influenza

A(H1N1)pdm09 and A(H3N2) strains that contain all the

emerging evolutionary markers. We propose to use these

strains as vaccine candidates for the upcoming influenza

season. Thus, our evolutional analysis may improve the selec-

tion process of vaccine strain candidates, enhance vaccine ef-

ficacy, and supplement disease management.

Materials and Methods

The complete sets of influenza A(H1N1)pdm09 and A(H3N2)

virus genome segments were retrieved from the Influenza

Virus Resource (IVR; http://www.ncbi.nlm.nih.gov/genomes/

FLU/FLU.html) and the Global Initiative on Sharing Avian

Influenza Data (GISAID; http://platform.gisaid.org/) databases.

Nucleotide sequences were translated into protein se-

quences. Protein sequences of each strain were concatenated.

To construct a reference-free multiple sequence protein align-

ment, the sequences were aligned using Muscle v3.7 software

under default parameters (Edgar 2004). Distances were calcu-

lated using the Jukes–Cantor algorithm, and phylogenetic

trees were constructed using the neighbor-joining method

in Geneious 8.0 software (Kearse et al. 2012). Sequences of

vaccine A/California/07/2009(H1N1) and A/Brisbane/10/

2007(H3N2) strains were included in the alignments and phy-

logenetic trees.

Sites for amino acids changes were identified in concate-

nated protein sequences, and frequencies (F) of substitutions

at these sites were calculated for 2009–2015 using A/

California/07/2009 and A/Brisbane/10/2007 as references for

A(H1N1)pdm09 and A(H3N2) influenza strains, respectively.

Frequencies of changes were also calculated yearly (1.7.20xx–

31.6.20xy). Substitutions that have difference in frequencies

(�F = Fmax� Fmin) of more than 0.1 were selected and named

evolutionary markers. These markers were also analyzed every

three months in viral sub-populations and �Fs were calcu-

lated. We also estimated false discovery rates for these

changes, as described previously (Storey 2002).

We also compared evolutionary markers in circulating in-

fluenza viruses and vaccine strains recommended by the WHO

for corresponding seasons focusing on markers, which had

F> 0.5 during season covered by vaccine. We also analyzed

evolutionary markers that were prevalent (F> 0.5) in

A(H1N1)pdm09 and A(H3N2) viral populations in 2015, in

influenza vaccine strains recommended by the WHO for

2015/2016 season. In addition, we identified influenza A

strains, which possess all the identified markers of circulating

influenza strains from 2015 and could be included in the vac-

cine for 2015/2016. References to influenza vaccine strain

candidates were retrieved from the WHO Web site (www.

who.int/influenza/vaccines/virus/recommendations/en/).

The sites for evolution markers were mapped onto available

influenza A virus protein structures, retrieved from the Protein

Data Bank (PDB; supplementary table S1). PyMol was used to

visualize the sites on the protein structures and generate struc-

tural images (www.pymol.org).
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The mutation rates of influenza A viruses were calculated

by dividing the average number of substitutions in viral pro-

teins occurring every year, by the total number of amino acids

in the concatenated protein sequences. The resulting numbers

were multiplied by 100 to express mutation rates in

percentages.

Results

Evolutionary Markers of Influenza A(H1N1)pdm09 Viruses

We retrieved 3,969 whole-genome sequences of human in-

fluenza A(H1N1)pdm09 viruses, which circulated in the world

from 1.5.2009 to 30.9.2015. We translated nucleotide se-

quences into viral HA, M1, M2, NA, NP, NS1, NS2, PA, PA-

X, PB1, and PB2 protein sequences. Protein sequences of each

strain were concatenated, and concatenated sequences were

aligned. The concatenated protein sequence of vaccine influ-

enza A/California/07/2009 strain, which is one of the earliest

A(H1N1)pdm09 isolates, was used as a reference in the align-

ment (fig. 1A). Analysis of aligned sequences revealed 481

sites for amino acid changes in 4,807-amino acid-long protein

sequences, indicating that approximately 0.18% of the amino

acids of influenza A(H1N1)pdm09 virus changed every year.

We calculated frequencies of different amino acids changes

at 481 sites. The frequency of each change was plotted

against its position in concatenated protein sequences (fig.

1B). We then calculated frequencies of these changes yearly

(supplementary table S2), and computed differences between

maximal and minimal frequencies, taking into account the

number of available sequences for each year. The majority

of changes had �F� 0.1, suggesting that these changes

were introduced as a result of random drift, and, therefore,

they were discarded from further analysis. However, there

were 61 changes with �F>0.1, indicating that these changes

were subjected to selective evolution pressure. We defined

these changes as evolutionary markers. Interestingly, these

markers were found in 11 influenza proteins, in contrast to

random changes, which resided mainly in HA and NA. The

contribution of these markers into global mutation rate of

A(H1N1)pdm09 viruses was as low as 13%.

We next analyzed the dynamics of acquisition of evolution-

ary markers by influenza A(H1N1)pdm09 viruses using three-

month intervals, taking into account the number of available

sequences for each period. We found that some of these

markers showed similar evolutionary patterns. For example,

the I354L mutation of PB2 was acquired in April and the

V344M mutation of PB2 was acquired in May 2009 in the

United States (fig. 1C). Strains with both mutations were de-

tected in June 2010, in Singapore. Since August 2010, both

mutations were found in viruses circulating in Thailand,

Australia, and, later on, in Russia, Canada, Denmark,

Greece, China, and the United Kingdom. Since October

2011, more than 90% of A(H1N1)pdm09 strains carried

these mutations. The similar evolutionary pattern of these

two mutations could be explained by structural and functional

constraints: sites for both mutations are located in PB2 cap-

binding domain, and both markers can participate in forma-

tion of hydrophobic interactions between two antiparallel

b-strands, which are involved in cap binding (fig. 1D)

(Pautus et al. 2013; Reich et al. 2014). We also mapped

these markers on phylogenetic trees that were generated

using concatenated protein sequences of selected

A(H1N1)pdm09 strains (fig. 1E). Thus, the acquisition of

these and other markers or their combinations could be ben-

eficial for global evolution of influenza A(H1N1)pdm09 vi-

ruses. Interestingly, 29 of 62 identified mutations or their

combinations were associated previously with viral fitness or

virulence (Uraki et al. 2013; Elderfield et al. 2014; Sun et al.

2014; Mishel et al. 2015).

Evolutionary Markers of Influenza A(H3N2) Virus

We analyzed 4,774 whole-genome sequences of human in-

fluenza A(H3N2) viruses that circulated in the world from

1.1.2009 to 30.9.2015. We translated the nucleotide se-

quences into viral HA, M1, M2, NA, NP, NS1, NS2, PA, PB1,

and PB2 proteins. We concatenated the protein sequences

and aligned them. We calculated the total number of muta-

tion sites using a sequence of the vaccine A/Brisbane/10/2007

strain as a reference (fig. 2A). We found 533 sites for amino

acid substitutions in 4,465-amino acid-long concatenated pro-

tein sequences, indicating that approximately 0.21% of the

amino acids of influenza A(H3N2) virus changed annually.

We calculated frequencies of different changes at 533

sites. The frequency of each change was plotted against its

position in concatenated protein sequences (fig. 2B). We also

calculated frequencies of these changes for each analyzed

year (supplementary table S3). We compared mutation fre-

quencies between different years and found that 68 substitu-

tions had �F> 0.1. These substitutions were found in 10

protein sequences, in contrast to random changes, which re-

sided mainly in HA and NA protein sequences. Moreover, the

contribution of these markers into global mutation rate of

A(H3N2) viruses can be calculated at 13%, which is similar

to that of A(H1N1)pdm09 viruses.

Many influenza A(H3N2) markers had similar evolutionary

patterns (fig. 2C). For example, D53N and Y94H in HA (num-

bering is based on the protein sequence without the signal

peptide) were identified already in influenza A(H3N2) strains

circulated in 2009, and their prevalence in the viral population

increased up to and through July 2010 and then gradually

decreased (numbering of mutations is based on the HA pro-

tein without the signal peptide). Interestingly, these markers

are located in HA epitope that is recognized by stem-specific

CR8020 antibody. Therefore, they could compromise CR8020

binding to HA and promote virus escape from host immune
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responses (fig. 2D) (Tharakaraman et al. 2014). We further

highlighted these markers on a phylogenetic tree that was

constructed using concatenated protein sequences of selected

influenza A(H3N2) strains representing different geographic

regions and different epidemics (fig. 2E). Altogether, these

indicate that the acquisition of these and other markers or

their combinations could be beneficial for the viruses’ evolu-

tion. Interestingly, at least three identified mutations or their

combinations were previously associated with viral fitness, vir-

ulence, or pathogenicity (Memoli et al. 2009; Forbes et al.

2012, 2013; Job et al. 2014).

Comparison of Evolutionary Markers of Influenza
A(H1N1)pdm09 and A(H3N2) Viruses

We next compared evolutionary markers of A(H1N1)pdm09

and A(H3N2) viruses. We found that both viral subtypes have

their own sets of evolutionary markers (supplementary tables

S2 and S3). To simplify interpretation of the results, we

mapped the marker sites on available influenza A virus pro-

tein structures (fig. 3). Our analysis revealed no overlap be-

tween the sites. Thus, influenza A(H1N1)pdm09 and

A(H3N2) viruses evolved in parallel during 2009–2015,

which is in agreement with previous studies. Interestingly,

FIG. 1.—Evolutionary markers of influenza A(H1N1)pdm09 viruses. (A) Schematic representation of the process of identification of changes at amino

acid level and their frequencies in the influenza A(H1N1)pdm09 viruses that circulated in the world during 2009–2015. (B) A scatter plot showing frequencies

and distribution of these changes in concatenated viral protein sequence of the A(H1N1)pdm09 viruses from 2009 to 2015. (C) Frequencies of I354L and

V344M substitutions in PB2 were analyzed in three-month intervals and plotted against virus collection dates. (D) Zoom into structure of PB2:m(7)GTP

complex (PDB ID: 4PB6) showing position of 354 and 344 amino acids and their hydrophobic interaction. The distance between interacting residues is shown.

(E) Phylogenetic tree constructed using A(H1N1)pdm09 strains that were circulating in the world during 2009–2015. Approximately 20 strains per year

representing different geographies and collection times were used in the phylogenetic analysis. Strains were color-coded based on the year of virus collection.

Full circles indicate strains that carry I354L and V344M substitutions in PB2.
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many mutation sites resided on the surface of the viral pro-

teins, suggesting that they could be involved in virus–host

interactions, such as antigen–antibody interplay depicted on

fig. 2D and described in literature (Ekiert et al. 2009, 2011,

2012; Corti et al. 2011; Koel et al. 2013).

Analysis of Evolutionary Markers in Vaccine Strains
Recommended by WHO for 2010–2014

We searched for identified evolutionary markers in influenza

A(H1N1)pdm09 and A(H3N2) vaccine strains recommended

by the WHO for past five influenza seasons (supplementary

tables S4 and S5). For example, we searched for markers (with

F> 0.5) of live influenza strains isolated during 2013–2014 in

vaccine strains recommended by WHO for 2013/2014 season.

It appeared that only 0–2 of 50 and 19 of 24 evolutionary

markers were identified in influenza A(H1N1)pdm09 and

A(H3N2) vaccine strains, respectively (table 1). We also

found substantial mismatches between evolutionary markers

of circulated influenza viruses and vaccine strains recom-

mended for other four seasons. Most importantly, many of

these mismatches were located in antibody-binding sites of

FIG. 2.—Evolutionary markers of influenza A(H3N2) viruses. (A) Schematic representation of the process of identification of changes at amino acid level

and their frequencies in the influenza A(H3N2) viruses that circulated in the world during 2009–2015. (B) A scatter plot showing frequencies and distribution

of amino acid substitutions in concatenated viral protein sequence of the A(H3N2) viruses from 2009 to 2015. (C) Frequencies of D53N and Y94H in HA were

analyzed in three-month intervals and plotted against virus collection dates. (D) Zoom into structure of HA:CR8020 antibody complex (PDB ID: 3SDY)

showing position of sites for amino acid changes (D53N and Y94H) in HA and interacting residues of CR8020. The distance between interacting residues of

HA and antibody is shown. (E) Phylogenetic tree constructed using A(H3N2) strains that were circulating in the world during 2009–2015. Approximately 20

strains per year representing different geographies and isolation times were selected. Strains were color-coded based on the year of circulation. Full circles

indicate strains that carry D53N and Y94H in HA. Numbering of markers in HA is based on the protein sequence without the signal peptide.
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FIG. 3.—Mapping evolutionary markers of human influenza A(H1N1)pdm09 and A(H3N2) viruses on available virus protein structures. Available three-

dimensional structures of individual proteins and the polymerase protein complex of influenza A viruses were used to map the positions of sites for

evolutionary markers (PDB IDs: HA – 3LZG and 4FNK, NA – 1IVG, M2 – 2LY0, M1 – 3MD2, pol – 4WSB, NP – 4IRY, and NS1 – 3F5T). Sites of influenza

A(H1N1)pdm09 virus are shown in orange, whereas sites of influenza A(H3N2) virus are shown in blue. Numbering starts from Met1 for all proteins except

HA. Numbering of markers in HA is based on the protein sequence without the signal peptide. The schematic structure of the influenza A virion is also

shown. One monomer in NA tetramer and one monomer in HA trimmer are highlighted with light-blue.
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FIG. 4.—The prevalence of evolutionary markers of live A(H1N1)pdm09 viruses isolated during 2015 in A(H1N1)pdm09 vaccine strains recommended by

the WHO and by the authors for 2015/2016 influenza season. (A) Frequencies of 40 selected evolutionary markers of live viruses were plotted against their

positions in corresponding viral proteins. The distribution of these markers was analyzed in A(H1N1)pdm09 vaccine strains recommended by the WHO and by

the authors (encircled) for 2015/2016 influenza season. Evolutionary markers are shown as black dots. Antibodies that recognize regions of viral proteins

where evolutionary markers are located are also shown. (B) Mapping sites for evolutionary markers found in HA of A(H1N1)pdm09 viruses from 2015 on H1

structure (PDB ID: H1-3LZG). Mutation sites and antibodies that recognize corresponding regions on HA are shown (PDB IDs: HA:C05 – 4FP8; HA:S139/1 –

4GMS; HA:CH65 – 3SM5; HA:2D1 – 3LZG; HA:HC45 – 1QFU; HA:HB36.3 – 3R2X; HA:F-HB80.4 – 4EEF; HA:C179 – 5COR; HA:FI6V3 – 3ZTN; HA:CR6261 –

3GBN; HA:F10 – 3FKU). One monomer in HA trimmer is highlighted with light-blue. Numbering of markers in HA is based on the protein sequence without

the signal peptide. (C) Mapping sites of evolutionary markers found in NA of A(H1N1)pdm09 viruses from 2015 on N1 structure (PDB ID: N1 – 4B7N).

Mutation sites and antibodies that recognize corresponding regions of NA are shown (PDB IDs: NA:NC41 – 1NMB, NA:Mem5 – 2AEP). One monomer in NA

tetramer is highlighted with light-blue.
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HA and NA, thereby compromising recognition of circulating

influenza strains by antibodies generated in response to cor-

responding vaccine strains. Thus, the absence of the evolu-

tionary markers in vaccine strains could decrease vaccine

efficacy by affecting recognition of circulating viruses by

host antibodies developed in response to corresponding vac-

cine strains.

Analysis of Emerging A(H1N1)pdm09 Evolutionary
Markers in Corresponding Vaccine Strains Recommended
by WHO for 2015/2016, and Identification of Vaccine
Strain Candidate for 2015/2016 That Contains all the
Evolutionary Markers

We identified 40 evolutionary markers with F>0.5 in influ-

enza A(H1N1)pdm09 strains circulated during 2015 (fig. 4A).

We searched for these markers and found 0 to 2 in vaccine

strains recommended by the WHO for 2015/2016 epidemic

season. Many of these markers were located at the surface of

HA and NA proteins. Moreover, some of them were found at

the interfaces between viral glycoproteins and host antibodies

(fig. 4B and C). This result indicates that mismatches between

evolutionary markers in live viruses and amino acids in vaccine

strains could alter recognition of HA and NA of live viruses by

anti-HA and anti-NA antibodies generated against vaccine

strains. For example, amino acid substitutions at position 375

of HA may alter binding of HB36.3-, HB80.4-, CR6261-, F10-,

FI6V3-, and C179-like antibodies, and mismatch at position

353 of NA may interfere with binding of NC41-like antibodies.

Thus, we found substantial differences in evolutionary markers

between influenza A(H1N1)pdm09 strains circulated in 2015

and vaccine A(H1N1)pdm09 strains recommended by the

WHO for 2015/2016 influenza season.

We also searched for influenza strains that contain all 40

evolutionary markers of 2015 live A(H1N1)pdm09 viruses. We

identified A/Hawaii/64/2014(H1N1) strain (fig. 4A). This indi-

cates that A/Hawaii/64/2014(H1N1)-like strains could be used

as a vaccine candidate for 2015/2016. Importantly, six evolu-

tionary markers of A/Hawaii/64/2014(H1N1) reside in known

antibody-binding regions of HA and NA, suggesting that such

vaccine candidates could induce better protective immunity

against live viruses than the strains recommended by the

WHO.

Analysis of Emerging A(H3N2) Evolutionary Markers in
Corresponding Vaccine Strains Recommended by WHO
for 2015/2016 and Identification of Vaccine Strain
Candidate for 2015/2016 That Contains All the
Evolutionary Markers

We also identified 32 evolutionary markers with F> 0.5 in live

A(H3N2) strains from 2015. The analysis of these markers in

A(H3N2) vaccine strains recommended by the WHO for 2015/

2016 epidemic season revealed only 22 markers (fig. 5A).

Table 1

The mismatches between evolutionary markers of circulating influenza viruses and corresponding amino acids in vaccine strains (2010–2014)

Time interval A(H1N1)pdm09 vaccine strain No. of markers A(H3N2) vaccine strain No. of markers

2010/2011 A/California/07/2009 0 (11) A/Perth/16/2009 1 (9)

A/Wisconsin/15/2009 0 (9)

2011/2012 A/California/07/2009 0 (14) A/Perth/16/2009 0 (10)

2012/2013 A/California/07/2009 0 (31) A/Victoria/361/2011 16 (22)

A/Christchurch/16/2010 2 (31)

A/Brisbane/10/2010 2 (31)

A/California/04/2009 0 (31)

A/Texas/05/2009 1 (31)

A/England/195/2009 1 (31)

A/New York/18/2009 1 (31)

2013/2014 A/California/07/2009 0 (50) A/Texas/50/2012 19 (24)

A/Christchurch/16/2010 2 (50)

A/Brisbane/10/2010 2 (50)

A/California/04/2009 0 (50)

A/Texas/05/2009 1 (50)

A/England/195/2009 1 (50)

A/New York/18/2009 1 (50)

2014/2015 A/California/07/2009 0 (42) A/New York/39/2012 20 (33)

A/Christchurch/16/2010 2 (42) A/Almaty/2958/2013 20 (33)

A/Brisbane/10/2010 2 (42)

A/California/04/2009 0 (42)

A/Texas/05/2009 1 (42)

A/England/195/2009 1 (42)

A/New York/18/2009 1 (42)

The numbers in brackets refer to markers present in live viruses, and the numbers in front of the brackets refers to markers in corresponding vaccine strain.
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FIG. 5.—The prevalence of evolutionary markers of live A(H3N2)pdm09 viruses from 2015 in A(H3N2) vaccine strains recommended by the WHO and by

the authors for 2015/2016 influenza season. (A) Frequencies of 32 selected evolutionary markers of live viruses were plotted against their positions in

corresponding viral proteins. The distribution of these markers were analyzed in A(H3N2) vaccine strains recommended by the WHO and by the authors

(encircled) for 2015/2016 influenza season. Evolutionary markers are shown as black dots. Antibodies that recognize regions of viral proteins where

evolutionary markers are located are also shown. (B) Mapping sites for evolutionary markers found in HA of A(H3N2) viruses from 2015 on H3 structure

(PDB ID: 4FNK). Mutation sites and antibodies that recognize corresponding regions on HA are shown (PDB IDs: A:F045-92 – 4O58, HA:2D1 – 3LZG,

HA:S139/1 – 4GMS, HA:C05 – 4FP8, HA:FLD194 – 5A3I, HA:FI6V3 – 3ZTN). One monomer in HA trimmer is highlighted with light-blue. Numbering of

markers in HA is based on the protein sequence without the signal peptide. (C) Mapping sites of evolutionary markers found in NA of A(H3N2) viruses from

2015 on N2 structure (PDB ID: N1-1IVG). Mutation sites and antibodies that recognize corresponding regions of NA are shown (PDB IDs: NA:CD6 – 4QNP,

NA:Mem5 – 2AEP). One monomer in NA tetramer is highlighted with light-blue.
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Most of the markers were located on the surfaces of HA and

NA (fig. 5B and C). Ten mismatches between evolutionary

markers and corresponding amino acids of vaccine strains

could alter recognition of viral glycoproteins of live viruses

by antibodies generated against vaccine HA and NA. For ex-

ample, mismatches at position 159 and 160 of HA may lower

the affinity of F045-92-like and 2D1-like antibodies that target

HA head region. Thus, we found substantial differences in

evolutionary markers between live influenza A(H3N2) strains

circulated in 2015 and corresponding vaccine strains recom-

mended by the WHO for 2015/2016 influenza season.

We also searched for live influenza strain that contain all 32

evolutionary markers. We identified A/Stockholm/17/

2014(H3N2) strain (fig. 5A). This indicates that A/Stockholm/

17/2014(H3N2)-like strains could be used as vaccine candi-

dates for 2015/2016. Importantly, three evolutionary markers

of the A/Stockholm/17/2014(H3N2) strain reside in known

antibody-binding sites of HA, suggesting that such vaccine

candidates could induce better protective immunity against

live viruses than the strains recommended by the WHO.

However, clinical trials are needed to validate our predictions.

Discussion

There were many studies that have attempted to track the

evolution and evolutionary driving sites in influenza viruses,

mostly by identifying those sites under selective pressure,

using evolution-aware and statistically rigorous codon

models that consider separately the non-synonymous and syn-

onymous substitution rates and base/codon frequencies

(Plotkin et al. 2002; Smith et al. 2004; Drummond et al.

2006; Strelkowa and Lassig 2012; Bhatt et al. 2013;

Bedford et al. 2014; Lee et al. 2015a; Tharakaraman and

Sasisekharan 2015). Moreover, some of these studies utilized

whole-genome sequences of influenza viruses and modern

software, such as FUBAR and PAML/CODEML (Holmes et al.

2005; Nelson and Holmes 2007; Nunes et al. 2008; Murrell

et al. 2013; Vijaykrishna et al. 2015). Phylogenetic trees have

also been used in such studies to help differentiate mutations

that are gained by individual events and by inheritance in a

lineage, and hence to predict the impact of the mutations to

the virus survival (Holmes et al. 2005; Smith et al. 2009; Bhatt

et al. 2013; Bedford et al. 2014; Steinbruck et al. 2014).

Here we analyzed available primary and tertiary protein

structures of human influenza A viruses to better understand

their evolution. In particular, we retrieved whole-genome se-

quences of A(H1N1)pdm09 and A(H3N2) viruses collected

during 2009–2015 from public databases, translated them

into protein sequences, and identified amino acid changes

in these proteins whose frequencies (�F) varied in virus pop-

ulations from one epidemic season to another by �F>0.1.

We defined these changes as evolutionary markers.

Importantly, these markers were masked by large number

of amino acids changes with �F� 0.1, that is, substitutions

in viral proteins that appeared in relatively small number of

strains for short periods.

Some of these markers have emerged in viral sub-popula-

tions and remained, whereas others disappeared. Moreover,

some of these markers re-emerged. The sites of re-emerged

markers may represent hot spots of virus evolution. Such hot

spots could be found at positions 235 of HA, 82 of NA, and

330 of PA of A(H1N1)pdm09 or 142 of HA, 129 of NS1, and

613 of PB2 of A(H3N2). However, analysis of longer evolution

periods is needed to validate our hypothesis (supplementary

tables S2 and S3).

We further clustered the markers into groups based on

similarities in their evolution dynamics (amino acid frequency

over virus collection time). For example, amino acid changes

I354L and V344M of PB2 as well as N321K of PA had similar

evolution patterns and therefore can be grouped together

(supplementary table S2). Interestingly, I354L and V344M

could modulate PB2 activity in snatching caps from host

RNAs, whereas N321K of PA was reported to enhance poly-

merase complex activity in vitro and virus replication in cell

culture (Elderfield et al. 2014). Moreover, all three changes

could be a part of the adaptation strategy of swine-origin

A(H1N1)pdm09 virus to human host, which resulted in virus

transition from severe pandemic to mild epidemic mode

(Elderfield et al. 2014; Mishel et al. 2015). Also other markers

can be divided into groups based on their evolution patterns:

D98N and E500K of HA; K166Q and A267T of HA; I34V,

K432E of NA, and K361R of PA; N200S of NA, K230R of

M1, D21G of M2, and S498N of NP; L90I of NS1 and

I397M of PB1; T373A and V425I of NP; E55K of NS1and

N29S of NS2; as well as D195N, R293K, and V731I of PB2.

The simultaneous increase and reversions of these changes

could be reflections of influenza segments being reasonably

well-linked.

Similar co-evolving markers can be found in influenza

A(H3N2) strains. For example, amino acid changes D53N

and Y94H occurred almost simultaneously in HA. These

changes could allow the virus to overcome the immunity de-

veloped after previous infections or vaccination. Some other

influenza A(H3N2) markers within and outside of HA have

similar evolution patterns: Q33R and N278K of HA; N144

and Q311H of HA; N145S and V223I of HA; K160T and

F159Y of HA; T48I, S45N of HA, and K229E of NS1; T267K

of NA and N272S of PA; E421D of NP and E331D of PB1;

A587T of PB1, I461V and I63V of PB2, S135N and D139G of

NS1, and K88R of NS2; M81I, V560I, K353R, R293K, and

A221S of PB2; M129T of NS1; and N92S of NS2. However,

the effects of these changes in viral proteins should be evalu-

ated in vitro and in vivo.

Furthermore, we subdivided the evolutionary markers into

drivers and passengers based on their time of appearance

within these groups (supplementary tables S2 and S3). For

example, PB2 I354L was detected few months before PB2

V344M and PA N321K, and thus, can represent a driver in
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this group of mutations with overall similar evolution dynam-

ics. However, more whole-genome sequences in shorter time

intervals would be needed to validate the driver/passenger

hypothesis.

We also demonstrated that influenza A(H1N1)pdm09 and

A(H3N2) viruses have their own sets of evolutionary markers.

But the question remained, whether these viruses can ex-

change their evolutionary markers via reassortment events.

Only a small fraction of the influenza A virus population had

reassorted genomes. In particular, A(H1N1)pdm09 viruses ac-

quired PB1 segments from A(H3N2) viruses during 2013 (sup-

plementary fig. S1). But, the �F of mutations introduced via

reassortment events was less than 0.1; therefore, these mu-

tations should not be considered evolutionary markers. Thus,

rare reassortment events did alter the composition of evolu-

tionary markers of influenza A virus subtypes. By contrast,

influenza B viruses of Victoria and Yamagata lineages fre-

quently exchange their segments (Matsuzaki et al. 2004;

Vijaykrishna et al. 2014; Dudas et al. 2015). The frequent

reassortment events complicate genome-wide analysis of evo-

lutionary markers for influenza B virus lineages. Thus, our ap-

proach at its current stage is relevant only for influenza A

viruses.

We were wondering whether our genome-wide analysis of

evolutionary markers of influenza A viruses can improve vac-

cine strain selection. We analyzed evolutionary markers in vac-

cine strains recommended by the WHO for corresponding

influenza seasons and found only few of them in vaccine

strains. Many of these markers were located on the surface

of major influenza antigens, HA and NA, and the absence of

these markers in vaccine strains could compromise the anti-

genic properties of vaccine strains, and thus lower vaccine

efficacy. Also, many of the markers were located in other

viral proteins, and could affect their function and interactions.

Furthermore, we identified A/Hawaii/64/2014(H1N1) and A/

Stockholm/17/2014(H3N2) strains, which contain all the

emerging evolutionary markers, and propose to use these or

similar viruses as vaccine candidates for 2015/2016. Thus, our

genome-wide analysis of evolutionary markers suggested a

potential vaccine candidate that can be a close match with

most of the circulating strains, hence providing better protec-

tion against influenza A virus infections to the population.

In conclusion, recent advances of next-generation sequenc-

ing techniques and increasing number of available whole-ge-

nomes sequences of influenza A viruses from different

geographic regions can be used for tracking and prediction

of virus evolution and for selection of vaccine strain candi-

dates. Here, we developed a simple approach for reliable

real-time tracking and prediction of viral evolution based

on whole-genome sequences of human influenza

A(H1N1)pdm09 and A(H3N2)viruses, which could further im-

prove vaccine strain selection process and, thereby, enhance

vaccine efficacy. Our approach may also improve diagnostics

and personalized treatment of severe influenza infections. It

can also be used in drug development programs as well as in

virus surveillance studies, which monitor antiviral drug-resis-

tance. Altogether, these may allow us to better control sea-

sonal influenza outbreaks in near future.

Supplementary Material

Supplementary figure S1 and Supplementary tables S1–S5 are

available at Genome Biology and Evolution online (http://

www.gbe.oxfordjournals.org/).
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