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Abstract

Background: DNA extraction is an essential step in all cultivation-independent approaches to characterize microbial
diversity, including that associated with the human body. A fundamental challenge in using these approaches has been to
isolate DNA that is representative of the microbial community sampled.

Methodology/Principal Findings: In this study, we statistically evaluated six commonly used DNA extraction procedures
using eleven human-associated bacterial species and a mock community that contained equal numbers of those eleven
species. These methods were compared on the basis of DNA yield, DNA shearing, reproducibility, and most importantly
representation of microbial diversity. The analysis of 16S rRNA gene sequences from a mock community showed that the
observed species abundances were significantly different from the expected species abundances for all six DNA extraction
methods used.

Conclusions/Significance: Protocols that included bead beating and/or mutanolysin produced significantly better bacterial
community structure representation than methods without both of them. The reproducibility of all six methods was similar,
and results from different experimenters and different times were in good agreement. Based on the evaluations done it
appears that DNA extraction procedures for bacterial community analysis of human associated samples should include bead
beating and/or mutanolysin to effectively lyse cells.
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Introduction

The microorganisms that colonize various anatomical sites of

the human body play important roles in human health and disease

[1]. For example, bacteria in the human intestine contribute to

digestion of inaccessible compounds [2] and development of the

host immune system [3,4], while vaginal microbiota helps prevent

urogenital diseases and maintain health in women [5,6,7]. In

recent years there has been increasing interest in knowing more

about how differences between individuals, or within individuals

over time influence the maintenance of health and risk to disease.

Such studies require a detailed understanding of the microbial

diversity found at various anatomically distinct sites of the human

body. The cultivation-dependent methods commonly used in

clinical and research laboratories have provided a valuable but

incomplete picture of the vast diversity found in the human

microbiome because many, if not most human-associated

microorganisms have not yet been successfully cultured in the

laboratory [8,9,10,11]. These methods are also limited because

most do not lend themselves to the analysis of large numbers of

samples because they are labor-intensive and costly. However, the

application of cultivation-independent molecular approaches

based on the phylogenetic analysis of the 16S rRNA gene

sequences provides a way to access the uncultured majority

[12,13], allowing for more comprehensive comparative studies of

microbial communities associated with the human body

[14,15,16].

Various cultivation-independent approaches to characterizing

diversity in microbial communities all require extraction of

genomic DNA from the samples of interest. Previous studies have

shown that differences in the structures of bacterial cell walls cause

bacterial cell lysis to be more or less efficient [17,18,19]. This can

distort the apparent composition of microbial communities

[17,20,21,22,23,24] and introduce bias in estimates of relative

abundances of microbes in samples [17,19,25]. However, despite

the critical nature of this first step, the selection of a suitable

procedure for the extraction of DNA from human samples has not

received enough attention [18,26]. Indeed, in many previous

investigations of the human microbiome, the genomic DNA

extraction methods used were chosen without an obvious

rationale, and used without validation.

Multiple criteria, including DNA yield, DNA shearing,

reproducibility, and representativeness can be used to evaluate

DNA extraction methods. Numerous investigators have tried to
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increase the DNA yield through use of physical disruption

methods such as bead beating and sonication to improve the lysis

of bacterial cells. However, such treatments can shear genomic

DNA into small fragments and this may lead to the formation of

chimeric products during PCR amplification of gene targets

[27,28]. In addition, it is important to assess the variation between

analysts and over time. This is especially important when trying to

track differences across sampling sites, time scales or treatments,

and to compare results obtained by different laboratories. But

achieving an accurate representation of bacterial profiles is

arguably the most critical criterion [29,30], because ultimately

the objective is to obtain DNA that fairly represents the microbial

diversity in samples with the least bias for composition and

abundance. Unfortunately, most studies have evaluated the

efficacy of different DNA extraction methods using environmental

samples comprised of unknown microbes [17,31,32], which make

evaluation of representativeness impossible.

In this study, we created a mock community that contained

equal numbers of cells of eleven human-associated bacterial

species. Six commonly used DNA extraction methods that

employed different mechanisms for cell lysis and DNA purification

were statistically evaluated according to the following criteria:

DNA yield, DNA shearing, representation of microbial diversity,

and reproducibility. The objective of this study was to identify

DNA extraction methods suitable for comparative analysis of

human microbiome samples.

Results

DNA yield
We compared six different DNA isolation methods commonly

used to extract bacterial total DNA from human samples (Table 1).

The yield of genomic DNA from 11 microbial species (Table 2)

representing different human body sites and a mixture of these

were determined. Since the volumes of all DNA samples were

standardized, we used DNA concentrations to compare yields.

Analysis of variance (ANOVA) showed that the DNA yield varied

significantly depending on the DNA extraction method used

(p = 0.0017). To explore this in more detail, Tukey’s HSD

procedure was used to perform pair-wise comparisons between

the six methods with respect to DNA recovered from each species.

As shown in Table 3, the phenol-chloroform-isoamyl alcohol

extraction method (method 4) produced the highest DNA

concentrations on average from all but one (Atopobium vaginae

BAA-55) of the twelve samples. For seven of the 11 bacterial

species, DNA yields obtained using method 4 were significantly

higher than DNA yields obtained using the other five methods that

employed commercial kits. For example, DNA yield using the

phenol-chloroform-isoamyl alcohol extraction method was at least

5.7, 5.4 and 3.3-fold higher on average for S. aureus ATCC 12600,

Pr. acnes ATCC 6919 and C. tuberculostearicum ATCC 35692,

respectively. Among the five methods based on commercial kits,

method 1 and 5 performed better than the other three methods for

most species based on DNA yields. In comparison, the lowest

DNA concentrations were achieved with method 3 for seven of the

twelve samples.

DNA shearing
The degree of genomic DNA shearing during the various

extraction procedures was assessed by electrophoresis using a 0.8%

(wt/vol) agarose gel and compared to l-Hind III DNA size

standards (data not shown). The maximum size of genomic DNA

in all cases was between 9.4 kb and 23 kb. DNA shearing occurred

in all extractions and DNA fragments were as short as 125 bp.

Higher molecular weight genomic DNA was observed from S.

aureus ATCC 12600, S. agalactiae ATCC 12403 and C. tuberculos-

tearicum ATCC 35692 using methods 1, 5 and 6. In contrast, the

genomic DNA of L. iners DSMZ 13335, L. crispatus ATCC 33820,

A. vaginae BAA-55 and G. vaginalis ATCC 14018 demonstrated

more shearing when methods 1, 4, 5 and 6 were used.

Representation of microbial diversity
To evaluate how well each method yielded DNA that was

representative of that in a mixture of organisms, we created a

mock community in such a way that expected abundances could

be calculated. Since we included an equal number of cells of each

species in the mock community, a simple prediction should be that

the expected relative abundance of the 16S rRNA gene per strain

would be directly proportional to their copy number of 16S rRNA

genes. Using this approach the expected relative abundances were

calculated and are shown in Table 4. By counting the number of

reads of 16S rRNA genes from each species and normalizing by

the total number of reads per sample, we could estimate the

observed relative abundances of 16S rRNA gene reads for each

species in the mock community (Table 4). Using a likelihood ratio

test with bootstrapping, and accounting for overdispersion in

sampling (see Appendix S2), we tested whether observed

abundances matched expected abundances. For all DNA

extraction methods the observed abundances distribution was

significantly different from expected abundances (all p-val-

ues%0.01).

Furthermore, to evaluate whether some DNA extraction

methods better represented bacterial community structure than

other DNA extraction methods, we calculated Euclidean distances

between observed and expected proportions for all 48 samples (8

replicates per method). Based on a boxplot of Euclidean distances

(Figure 1) and pair-wise comparisons of Euclidean distances using

Wilcoxon rank sum test, we found that method 1 and method 2

produced a significantly better representation of bacterial

community structure than method 3, method 5 and method 6

(all p-values,0.01). Method 4 was better than methods 5 and 3 (p-

value,0.03), but not method 6 (p-value = 0.1049).

Curiously, L. iners DSMZ 13335 was significantly over-

represented in all samples relative to the expectation. For example,

the relative abundances of L. iners DSMZ 13335 generated from

Method 3 and Method 5 were at least 4.7-fold higher than its

expected relative abundance. This can not be explained. In

contrast, C. tuberculostearicum ATCC 35692, E.coli ATCC 47076, P.

aeruginosa ATCC 10145 and P. acnes ATCC 6919 were under-

represented in all samples.

Table 1. Features of the six DNA extraction methods used.

Method Cell lysisa DNA purification References

1 E2, C Silica column [71]

2 B, E1, E2, E3, C Silica column [16,60]

3 C Silica column [14,62]

4 B, C Precipitationb [58,61]

5 E1, C Silica column [15,59]

6 B, E1, C Silica column This study

aCell lysis method: B, bead beating; E1, lysozyme; E2, mutanolysin; E3,
lysostaphin; C, chemical.
bPhenol-chloroform purification and isopropanol precipitation.
doi:10.1371/journal.pone.0033865.t001
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Reproducibility
To evaluate the reproducibility of the DNA extraction methods

we performed eight replicated DNA extractions from samples of

the mock community for each DNA extraction method, and these

were performed by two experimenters on two different days. Pair-

wise comparison of variances showed no significant differences

between any two of the six DNA extraction methods based on an

F-K test (all p-values&0.00067). However, the results obtained

using method 5 had the largest variance (Figure 2). Analyses of

the data using the Wilcoxon rank sum test showed there was

usually good agreement between results from different experi-

menters and for extractions done on different days (all p-

values.0.05). The one exception was the poor agreement

between results from different experimenters using method 4

(p-value = 0.0286).

Correlation between DNA yields and representation of
microbial diversity

DNA yield is often used as a criterion to assess the effectiveness

of procedures for the isolation of genomic DNA from microbial

communities. To determine if higher DNA yield ensured better

representation of microbial diversity, we calculated Spearman’s

rank correlation coefficients to compare DNA yield and

representativeness. Euclidean distances between observed propor-

tions and expected proportions were used to represent microbial

diversity. The correlations were calculated within a method or

between different methods. There was no significant correlation

between DNA yields and distances within (all p-values.0.1) or

between DNA extraction methods (p-value = 0.3556).

Comparison of cell lysis efficiency of different lytic modes
To investigate the lysis efficiency of different lytic modes in

more details, four different enzymatic lysis modes, including no

lytic enzyme, lysozyme alone, mutanolysin alone and a cocktail of

lysozyme, mutanolysin and lysostaphin, were evaluated using a

double blind experimental design (see Appendix S1). Consistent

results were obtained by different experimenters at different times

using each of the four enzymatic lysis modes (Figure S1). However,

DNA extractions done using a cocktail of lytic enzymes

consistently lysed cells of different species more effectively

(Figure 3).

Discussion

Numerous studies have been done to evaluate microbial DNA

extraction methods using various kinds of samples [17,21,22,23,

24,33,34,35,36,37]. The criteria employed in these studies

included DNA yield [17,21,23,24,33,34,35,36,37], DNA purity

[23,24,33,36,37], cell lysis efficiency [17,35,38], reproducibility

[17,21,22,24,37] and species richness [17,21,23,24,37]. However,

the representation of microbial diversity, which is often the main

goal of community analysis, is generally not considered as a

criterion for evaluation of DNA extraction methods. This is mainly

due to the use of environmental samples for the assessment of

protocols, and such samples include unknown numbers and kinds

of indigenous microbes. Without a control community with known

species composition and abundances, it is impossible to evaluate

the ability of different DNA extraction methods to fairly represent

the microbial diversity in a sample.

Here we sought to compare the ability of six DNA extraction

methods previously used in studies of the human microbiome and

environmental samples to recover DNA from known organisms

and yield genomic DNA representative of mock community. We

found that observed species abundances from all six DNA

extraction methods did not match the expected species abun-

dances, and the differences between them were significant. This

bias could be ascribed to many factors in addition to DNA

extraction efficiency. For example, the copy number of the

chromosome can vary depending on growth phase [39,40], and

bias can occur during PCR amplification since the ‘‘universal’’

primers used are not really universal [28]. In addition, genome size

and rrn gene copy number also have an effect on PCR [41].

Because this study was not designed to evaluate the effect of those

factors mentioned above on observed relative abundance, we tried

to minimize biases introduced by those factors. First, the cells used

were harvested in post-exponential phase of growth to reduce the

variation of chromosome copy number. Second, a mixture of

forward primers (27F) were used to minimize the PCR

amplification bias [42]. Third, information on the rrn gene copy

number of each strain was taken into account to calculate the

expected relative abundances. Therefore, in this case, DNA

extraction efficiency was likely to be the main factor that

introduced bias between observed and expected relative abun-

dance.

Table 2. Bacterial strains and cultivation condition used.

Type strains Gram-stain Atmospherea Mediumb

Escherichia coli ATCC 47076 2 aerobic Broth: LB

Staphylococcus aureus ATCC 12600 + aerobic Broth: TSB

Pseudomonas aeruginosa ATCC 10145 2 aerobic Broth: Nutrient

Streptococcus agalactiae ATCC 12403 + aerobic Broth: BHI

Corynebacterium tuberculostearicum ATCC 35692 + aerobic Agar: BHI +5% sheep blood

Enterococcus faecalis ATCC 19433 + aerobic Broth: BHI

Lactobacillus iners DSMZ 13335 + anaerobic Broth: BHI +5% horse serum

Lactobacillus crispatus ATCC 33820 + anaerobic Broth: MRS

Atopobium vaginae BAA-55 + anaerobic Broth: TSB +5% horse serum

Gardnerella vaginalis ATCC 14018 + anaerobic Broth: ATCC NYC III medium

Propionibacterium acnes ATCC 6919 + anaerobic Broth: Reinforced Clostridial medium

aAnaerobic strains were cultivated in GasPak anaerobic chamber (Becton Dickinson, Franklin Lakes, NJ) with Pack-Anaero sachet (MGC Inc., New York, NY).
bMedium: LB, Luria-Bertani; TSB, Trypticase soy base; BHI, Brain heart infusion; MRS, De Man, Rogosa and Sharpe.
doi:10.1371/journal.pone.0033865.t002
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Previous studies have shown that observed microbial composi-

tion is mainly affected by the efficiency of cell lysis instead of DNA

recovery [21,23,34,43]. Generally, gram-positive bacteria are

expected to be under-represented in the observed relative

abundance data because they are more recalcitrant to lysis while

gram-negative bacteria should be over-represented. However, this

was not always the case in our study. For example, gram-positive

L. iners DSMZ 13335 was over-represented (2.2–4.8 fold) relative

to its expected relative abundance in all samples. This may be

partly explained by the gram-variable property of L. iners reported

before [44]. In contrast, two gram-negative bacteria (E. coli ATCC

47076 and P. aeruginosa ATCC 10145) were markedly under-

represented in all samples. Similar results were reported by

Morgan et al. [20]. The reasons for these results are unknown.

We found that extraction methods that included bead beating

and/or mutanolysin (methods 1, 2, and 4) produced significantly

better representations of bacterial community structure than

methods without both of these steps (methods 3 and 5; Figure 1).

Table 3. Comparison of DNA yields of type strains obtained using six DNA extraction methods.

Strain Method
DNA conc.
(mg/ml)a

Pairwise
comparisonb Strain Method

DNA conc.
(mg/ml)

Pairwise
comparison

Es. coli ATCC 47076 4 4.26 A L. iners DSMZ 13335 4 6.45 A

5 3.47 A 5 3.65 A B

1 2.96 A 1 3.32 B

6 1.46 B 2 1.28 C

3 0.88 C 3 1.23 C

2 0.81 C 6 1.11 C

Sta. aureus ATCC 12600 4 4.81 A L. crispatus ATCC 33820 4 3.65 A

1 0.85 B 1 2.22 B

2 0.84 B 2 1.24 C

5 0.4 C 5 1.16 C

6 0.29 C 3 0.27 D

3 0.19 D 6 0.23 D

Ps. aeruginosa ATCC 10145 4 5.39 A A. vaginae BAA-55 1 1.66 A

1 2.38 B 4 1.01 B C

5 2.07 B 5 0.73 C D

6 1.24 C 3 0.51 D E

3 0.86 C D 2 0.38 E

2 0.71 D 6 0.18 F

Str. agalactiae ATCC 12403 4 5.91 A G. vaginalis ATCC 14018 4 1.7 A

1 2.5 A 1 1.65 A

2 0.75 B 5 0.62 B

5 0.46 B 2 0.58 B

6 0.34 B 6 0.1 C

3 0.05 C 3 0.09 C

C. tuberculostearicum ATCC
35692

4 4.54 A Pr. acnes ATCC 6919 4 2.2 A

1 1.38 B 5 0.41 B

5 0.79 C 2 0.36 B

2 0.77 C 1 0.35 BC

6 0.69 C 6 0.21 CD

3 0.19 D 3 0.14 D

En. faecalis ATCC 19433 4 8.33 A Mock community 4 2.77 A

1 3.12 B C 1 1.52 B

5 1.97 C D 5 1.04 B

2 1.71 D E 2 0.6 C

6 1.09 E F 6 0.38 D

3 0.97 F 3 0.37 D

aDNA concentrations are means calculated using data from eight replicates.
bMeans with the same letter are not significantly different.
doi:10.1371/journal.pone.0033865.t003
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Method 2, which included bead beating and a cocktail of lytic

enzymes (mutanolysin plus lysozyme and lysostaphin), gave the

best representation of microbial diversity compared to the other

five methods. Previous studies have reported that higher DNA

extraction efficiencies can be achieved if the procedure used

includes a step for the mechanical disruption of microbial cells by

bead beating [22,34,36]. This was especially true for the efficient

extraction of DNA from gram-positive bacteria that typically have

cell walls with thick layers of peptidoglycan. This higher lysis

efficiency provides a more comprehensive and even profile of the

microbial diversity [21,22,36]. In method 6, although bead

beating and enzymatic lysis were included, the beads used in this

method were much larger than the beads used in method 2 and

lysozyme alone was used for enzymatic lysis. This may partly

explain why method 6 produced a significantly worse represen-

tation of bacterial community structure compared to methods 1

and 2. Figure 3 showed that cell lysis is not very efficient when

lysozyme is used alone, especially for gram-positive bacterial cells.

However, a cocktail of lytic enzymes demonstrated consistently

good cell lysis efficiency for all samples. This probably reflects

differences in the structure of peptidoglycan between different

bacterial species, which results in more or less recalcitrance to

lysozyme. It is well known that c-type lysozyme such as hen egg-

white lysozyme is a 1,4-b-N-acetylmuramidase, cleaving the

glycosidic bond between the C-1 of N-acetylmuramic acid and

the C-4 of N-acetylglucosamine in the bacterial peptidoglycan

[45]. However, some bacteria have a modified peptidoglycan

structure that is not sensitive to c-type lysozyme [46,47]. For

example, many bacteria are known to have O-acetylated

peptidoglycan; including some important human-associated bac-

teria such as Neisseria gonorrhoeae, Proteus mirabilis and S. aureus [46]

These bacteria are sensitive to mutanolysin rather than lysozyme

[48]. Mutanolysin also has lytic activity against some species of

Streptococcus and Lactobacillus [49], which can be commonly found in

the human gut and vagina [14,50]. Lysostaphin is a glycylglycine

endopeptidase that is able to specifically cleave the cross-linking

pentaglycine bridges in the cell wall of staphylococci [51,52]. Using a

cocktail of lytic enzymes is likely to reduce insufficient or

preferential cell lysis and lead to a better representation of

bacterial diversity.

We found no correlation between DNA yields and the

representation of microbial diversity when within (all p-val-

ues.0.1) or between method (p-value = 0.3356) comparisons were

made. In addition, the species proportions observed with all six

methods were more consistent than DNA yields from replicate

extractions. This is consistent with findings of other studies in

which investigators have shown there are no correlations between

DNA yields and observed species richness [21,23,33,34,43,53,54].

These results suggest one cannot be assured that microbial

diversity will be better represented simply because the DNA yield

from a given procedure is greater. For example, it has been

reported many times that DNA extraction methods using phenol-

chloroform purification and ethanol precipitation harvested

relatively more bacterial DNA than DNA extraction methods

using silica columns for DNA recovery, however, higher DNA

yields did not provided higher observed species richness in these

studies [21,23,33,36,38,55]. To the contrary in this study we found

that methods that gave lower DNA yields actually more fairly

represented the microbial diversity in a mock community. For

example, method 2 performed best even though the DNA yield

from the mock community was relatively low.

In sum, protocols that employed bead beating and/or

mutanolysin for cell lysis better represented bacterial community

structure than methods without both of them. On this basis,
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methods 1 and method 2 can be recommended for studies done to

characterize microbial diversity using cultivation independent

methods. That said, it should be noted that no method tested in

this study provided an accurate representation of the bacterial

diversity present in the mock community used. This result

indicates that investigators should use caution in drawing

conclusions about the relative abundances of bacterial populations

in communities. Fortunately, the reproducibility of all the methods

when used by different experimenters on different days suggests

that comparative analyses between samples and over time can be

done with a reasonable degree of confidence.

Materials and Methods

Strains and cultivation conditions
Eleven type strains (Table 2) chosen in this study are represent

microbial species commonly found at different human body

sites, including the gut [14,56,57,58], skin [15] and vagina

[16,59,60,61,62]. Two of them are gram-negative and the others

are gram-positive, so two different kinds of cell wall architecture

were represented. The cultivation conditions used are shown in

Table 2. The cultivation temperature for all type strains was

37uC.

Figure 1. Boxplot of Euclidean distances between observed and expected species proportions. Euclidean distances between observed
and expected proportions were calculated for each of eight replicates of each method.
doi:10.1371/journal.pone.0033865.g001

Figure 2. Boxplot of Euclidean distances between observed and grand proportions. To calculate grand proportions, the total counts of
16S rRNA gene reads of each species were calculated for eight replicates of each method. Then grand proportions were calculated based on total
counts of 16S rRNA gene reads of each species per method. Grand proportions were used to calculate Euclidean distances between observed and
grand proportions.
doi:10.1371/journal.pone.0033865.g002
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Cell counting and preparation of the mock community
The cells of type strains that readily cultivated in liquid medium

(Table 2) were collected by centrifugation and then re-suspended

in phosphate buffered saline (PBS) on ice. The cells of C.

tuberculostearicum ATCC 35692 were collected from plates and re-

suspended in PBS on ice. The cell density of each type strain was

determined by using a bright-line counting chamber (Hausser

Scientific, Horsham, PA). We adjusted the cell density of each type

strain to 108 cells ml21 by diluting with PBS. In addition, a mock

community was prepared by mixing equal volumes of cell

suspensions of all eleven type strains, resulting in an equal number

of cells of each type strain in the mixture. Aliquots (0.5 ml) of these

cell suspensions were placed in microcentrifuge tubes and frozen at

280uC.

DNA extraction methods
Six DNA extraction methods (Table 1) were compared in this

study, representing different kinds and combinations of cell lysis

mechanisms and DNA purification methods commonly used in the

published literature on the human microbiome. Each method was

evaluated using all 11 type strains and a mock community sample.

The isolated genomic DNA was in a final volume of 200 ml.

Method 1. The QIAamp DNA mini kit (Qiagen, Valencia,

CA) was used in this method with minor modifications. Briefly,

6 ml mutanolysin (25 KU/ml, Sigma-Aldrich) was added to a

500 ml aliquot of cells and the mixture was incubated for 30 min at

37uC. After this, 50 ml Proteinase K (20 mg/ml) and 500 ml AL

buffer (Qiagen, Valencia, CA) were added and the sample was

incubated for 30 min at 56uC. Then, 500 ml of ethanol was added

and DNA was purified by using the columns provided in the kit

(Qiagen, Valencia, CA) according to the manufacturer’s instruc-

tions.

Method 2. A two-step cell lysis procedure was employed before

use of the QIAamp DNA mini kit (Qiagen, Valencia, CA). First,

50 ml lysozyme (10 mg/ml, Sigma-Aldrich), 6 ml mutanolysin

(25 KU/ml, Sigma-Aldrich), and 3 ml lysostaphin (4000 U/ml,

Sigma-Aldrich) were added to a 500 ml aliquot of cell suspension

followed by incubation for 1 hour at 37uC. Second, 600 mg of 0.1-

mm-diameter zirconia/silica beads (BioSpec, Bartlesville, OK)

were added to the lysate and the microbial cells were mechanically

disrupted using Mini-BeadBeater-96 (BioSpec, Bartlesville, OK) at

2100 rpm for 1 minute. Further isolation and purification of the

total genomic DNA from lysates was done using QIAamp DNA

mini kits (Qiagen, Valencia, CA).

Method 3. Genomic DNA was extracted by using the

QIAamp DNA stool kit (Qiagen, Valencia, CA) with a 95uC lysis

step according to the manufacturer’s instructions. Briefly, 500 ml

ASL buffer was add to a 500 ml aliquot of cells suspension and the

mixture was heated for 5 min at 95uC. Then, 100 ml Proteinase K

(20 mg/ml) and 1 ml AL buffer were added and the mixture was

incubated for 10 min at 70uC. After this, 1 ml of ethanol was

added and the rest of the isolation protocol was continued as

described by the manufacturer.

Method 4. A 210 ml aliquot of 20% SDS, 500 ml of a mixture

of phenol: chloroform: isoamyl alcohol (25:24:1)], and 600 mg of

0.1-mm-diameter zirconia/silica beads (BioSpec, Bartlesville, OK)

were add to a 500 ml aliquot of cells suspension. Microbial cells

were then disrupted by using Mini-BeadBeater-96 (BioSpec,

Bartlesville, OK) set on 2100 rpm for 1 min. Next, the mixture

was centrifuged at full speed (14000 rpm) for 5 min to separate

phases. The top aqueous layer was transferred to a clean 2 ml

micro-centrifuge tube. Then, 0.1 volume of 3 M sodium acetate

and an equal volume of ice-cold isopropanol were added to the

mixture. After incubation at 220uC for 10 min, the mixture was

centrifuged at 4uC at 14,000 rpm for 15 min to collect the DNA

pellet, which was then washed with 1 ml ice-cold 70% (v/v)

ethanol and air dried. Finally, DNA pellets were re-suspended in

200 ml AE buffer (Qiagen, Valencia, CA).

Method 5. DNA was extracted by using the DNeasy Tissue

Kit (Qiagen, Valencia, CA) and the manufacturer’s protocol for

isolation of genomic DNA from Gram-positive bacteria was

followed. Briefly, 50 ml lysozyme (10 mg/ml, Sigma-Aldrich) was

added to a 500 ml aliquot of cells and the mixture was incubated

for 30 min at 37uC. After the addition of 50 ml Proteinase K

(20 mg/ml) and 500 ml AL buffer, the mixture was incubated for

30 min at 56uC. Then, 500 ml of ethanol was added to the lysate

and the genomic DNA was purified using the columns in the kit

according to the manufacturer’s instructions.

Figure 3. DNA extractions using different enzymatic lysis modes. The mean concentrations (columns) were calculated based on nine
replicated extractions per sample per mode. Pair-wise comparisons of DNA concentrations between modes per sample were performed by using
Wilcoxon rank sum test. Bonferroni correction was used for multiple testing. Letters at the top of columns indicate whether there is significantly
difference between columns per sample. Means with the same letter are not significantly different.
doi:10.1371/journal.pone.0033865.g003
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Method 6. In this method, an enzymatic lysis was conducted

before the PowerSoilTM DNA Isolation Kit (MO BIO Laborato-

ries, Inc., Carlsbad, CA) was used. Briefly, 50 ml of lysozyme

(10 mg/ml, Sigma-Aldrich) was added to a 500 ml aliquot of

bacterial cells followed by incubation for 1 hour at 37uC. The

remainder of the DNA extraction was continued beginning with

step 2 of the manufacturer’s protocol.

This DNA extraction experiment was finished in 12 days, in

which only one DNA extraction method was used per day. The

selection of DNA extraction methods was made by randomly

assigning each of the six DNA extraction methods to two of 12

days. On a given day, two experimenters used a given method to

extract DNA from two replicates of each sample. This was

repeated once, so eight replicate samples were analyzed using each

method.

Determination of DNA yield and DNA fragment
distribution

The quantity of genomic DNA in each preparation was

estimated by using a PicoGreen dsDNA quantitation kit (Invitro-

gen, Carlsbad, CA). Fluorescence was measured using the

SynergyTM HT Multi-Mode Microplate Reader (BioTek, Wi-

nooski, VT) at an excitation wavelength of 485 nm and emission

wavelength of 528 nm. To evaluate DNA shearing the distribution

of DNA fragment sizes were assessed by electrophoresis (3 V/cm

for 1.5 h) of genomic DNA on a 0.8% (wt/vol) agarose gel

followed by staining with ethidium bromide and visualization

using UV light. The NEB l-HindIII DNA size standards (New

England Biolabs, Ipswich, MA) were used to estimate fragments

sizes.

16S rRNA operon copy number determination for type
strains

The 16S rRNA gene copy numbers for Escherichia coli ATCC

47076, Staphylococcus aureus ATCC 12600, Pseudomonas

aeruginosa ATCC 10145, Streptoccus agalactiae ATCC 12403,

Enterococcus faecalis ATCC 19433, Lactobacillus crispatus

ATCC 33820, Gardnerella vaginalis ATCC 14018 and Propioni-

bacterium acnes ATCC 6919 were obtained from the Ribosomal

RNA Operon Copy Number Database ([63]; http://ribosome.

mmg.msu.edu/rrndb/index.php) and the NCBI genome database

(http://www.ncbi.nlm.nih.gov/sites/genome). The 16S rRNA

gene copy numbers for the rest of type strains were determined

via pulse-field gel electrophoresis (PFGE) as described by Williams

[64].

Pyrosequencing of 16S rRNA genes of mock
communities

The 16S rRNA gene sequences amplified from the genomic

DNA isolated from the mock community using different

procedures (Table 1) were obtained by barcoded pyrosequencing.

Two universal primers were used to amplify the V1–V2

hypervariable regions of 16S rRNA genes. The forward primer

(59-GCCTTGCCAGCCCGCTCAGTCAGAGTTTGATCCTG-
GCTCAG-39) consisted of the 454 Life Sciences primer B

(underlined), the broadly conserved bacterial primer 27F (bold),

and a 2-base linker sequence (‘‘TC’’). The reverse primer (59-

GCCTCCCTCGCGCCATCAGNNNNNNNNCAGCTGCCTC-
CCGTAGGAGT-39) included the 454 Life Sciences primer A

(underlined), an 8 bp barcode, the bacterial primer 338R (bold), and

a ‘‘CA’’ linker. For each sample the primer had a unique specific

barcode. A mixture of forward primers were used to exclude the

PCR amplification bias [42]. The mixture contained: 27f-CM (59-

AGAGTTTGATCMTGGCTCAG, where M is A or C), fourfold-

degenerate primer 27f-YM (59-AGAGTTTGATYMTGGCTCAG,

where Y is C or T), and seven fold degenerate primer 27f-YM+3

[42]. This primer formulation was shown to better maintain the

original rRNA gene ratio of Lactobacillus spp. to Gardnerella spp. in

quantitative PCR assays [42]. Each PCR reactions consisted of

5.0 ml 106PCR buffer II (Applied Biosystems, Foster City, CA),

6.0 ml MgCl2 (25 mM; Applied Biosystems, Foster City, CA), 2.5 ml

Triton X-100 (1%), 0.4 ml deoxyribonucleoside triphosphates

(25 mM), 0.25 ml each of primer 27F and 533R (20 pmol/ml each),

0.2 ml AmpliTaq DNA polymerase (5 U/ml; Applied Biosystems,

Foster City, CA), and 1,5 ng of template DNA in a total reaction

volume of 50 ml. Samples were initially denatured at 95uC for 5 min,

then amplified by using 30 cycles of 95uC for 30 s, 56uC for 30 s, and

72uC for 90 s. A final extension of 7 min at 72uC was added at the

end of the program to ensure complete amplification of the target

region. The PCR amplicons were quantified by using the PicoGreen

dsDNA quantitation kit (Invitrogen, Carlsbad, CA) with TBS-380

mini fluorometer (Promega, Sunnyvale, CA), and equimolar

amounts (100 ng) of the PCR amplicons were combined in a single

tube. The 16S rRNA genes in the purified amplicon mixture were

sequenced by 454 Genome Sequencer FLX System (Roche,

Branford, CT).

Raw unclipped DNA sequence reads from the 454 were

cleaned, assigned and filtered in the following manner. Raw SFF

files were read directly into the R statistical programming

language using the R package rSFFreader (unpublished), Roche

quality clip points were identified and recorded, however full

sequence reads (unclipped) were used for the identification of

Roche 454 adapters, barcodes and amplicon primers sequence

using Cross Match (version 1.080806, parameters: min match-

es = 15, min score = 14) from the phred/phrap/consed application

suite. Cross Match alignment information was then read into R

and processed to identify alignment quality, directionality, barcode

assignment, and new read clip points. Base quality clipping was

then performed using the application Lucy (version 1.20p,

parameters: max average error = 0.002, max error at ends =

0.002). We then aligned the clipped reads to the SILVA bacterial

sequence database-using mothur (version 1.12.1). Alignment end

points were identified and used in subsequent filtering. Sequence

reads were then filtered and only those that met the following

criteria were analyzed further: (a) sequences were at least 100 bp

in length; (b) max hamming distance of barcode = 1; (c) maximum

number of matching error to forward primer sequences = 2; (d)

had ,2 ambiguous bases; (e) had ,7 bp homopolymer run in

sequence; (f) alignment to the SIILVA bacterial database was

within 75 bp of the expected alignment start position as identified

by the trimmed mean of all read alignment (trim = 10%); and (g)

read alignment started within the first 5 bp and extended through

read to within the final 5 bp. The RDP Bayesian classifier [65] was

used to assign sequences to phylotypes. Reads were assigned to the

first RDP level with a bootstrap score . = 50. In this study, a

reference 16S rRNA gene sequences database, which contained

the complete 16S rRNA gene sequences of the 11 type strains, was

also used for further assignment of 16S rRNA gene sequences

generated from pyrosequencing using speciateIT (http://

sourceforge.net/projects/speciateit/). The percentages of phylo-

types within each sample were then calculated.

Data analysis
A split plot design [66] was used in this experiment. This design

included one whole-plot factor (DNA extraction method), one

split-plot factor (bacterial species), and complete randomization at

both levels (whole-plot and split plot). Both of these factors were
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considered fixed. We controlled for expected difference between

experimenters by using an experimenter as a random block. This

resulted a mixed-effects, split plot experimental design. An analysis

of variance was then conducted to evaluate significance of

differences in the effect of isolation methods on DNA yield.

DNA concentration data was log-transformed to accommodate

the assumptions of normality and constant variance of model

residuals required for this analysis. Additional pairwise compar-

isons were done to compare DNA concentrations between

isolation methods for each bacterial species used. We used Tukey’s

HSD procedure to correct for multiple testing.

To compare the accuracy (representation), of the different

methods in recovering the expected structure of the mock

community we used a likelihood ratio test with bootstrapping,

and accounted for overdispersion in sampling (see Appendix S2) as

described by Schütte et al. [67]. Then we computed the Euclidean

distances between the observed read proportions, per sample,

resulting from each of these methods to the expected read

proportions presented in Table 4. Accurate methods had distances

close to zero. To evaluate whether some DNA extraction methods

produced better bacterial community representation than other

DNA extraction methods, we performed pair-wise comparisons of

Euclidean distances using Wilcoxon rank sum test [68] as

implemented in R [69] and utilizing a Bonferroni correction for

multiple testing.

To evaluate and compare the reproducibility, precision, of these

DNA extraction methods, we first pooled the reads for each OTU

in the mock community within each sample observed per method.

Using this pooled data we then computed the proportion of reads

per OTU. The resulting vector of ‘‘grand’’ proportions per

method was used as a baseline and Euclidean distances were

calculated between proportions observed, per sample and per

method, and this baseline. Reproducible methods were taken to be

those with small deviation from the baseline. Reproducibility was

compared using these deviations from baseline between methods

by utilizing the F-K test, a nonparametric pairwise comparison of

variance test [70] implemented in R [69]. We employed a

Bonferroni correction for multiple testing in this case as well.

Furthermore, to evaluate whether different experimenters at

different time points generated similar results using the same DNA

extraction method, Euclidean distances (calculated above for

representation) within each DNA extraction method generated

from different experimenters at different days were compared.

This analysis was performed using a Wilcoxon rank sum test. At

last, correlations between DNA yields and Euclidean distances

between observed proportions and expected proportions were

calculated using Spearman’s rank correlation coefficients in R

[69]. Correlation coefficients that were not significant (p.0.001)

were set to 0.

Comparison of cell lysis efficiency of different lytic modes
The lysis efficiencies of four different enzymatic lysis modes,

including no lytic enzyme, lysozyme alone, mutanolysin alone and

a cocktail of lysozyme, mutanolysin and lysostaphin, were

evaluated on the basis of DNA yield using five bacterial species

and a mock community as described in Appendix S1.

Supporting Information

Appendix S1 Methods for comparison of cell lysis
treatments.

(DOC)

Appendix S2 A Poisson-Binomial mixture model to
account for overdispersion in microbiome sampling.

(DOCX)

Figure S1 Combinations of species and enzymatic lysis
methods.

(TIF)
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