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SUMMARY

Systematic studies of cancer genomes have pro-
vided unprecedented insights into the molecular na-
ture of cancer. Using this information to guide the
development and application of therapies in the
clinic is challenging. Here, we report how cancer-
driven alterations identified in 11,289 tumors from
29 tissues (integrating somaticmutations, copy num-
ber alterations, DNA methylation, and gene expres-
sion) can be mapped onto 1,001 molecularly anno-
tated human cancer cell lines and correlated with
sensitivity to 265 drugs. We find that cell lines faith-
fully recapitulate oncogenic alterations identified in
tumors, find that many of these associate with drug
sensitivity/resistance, and highlight the importance
of tissue lineage in mediating drug response. Logic-
based modeling uncovers combinations of alter-
ations that sensitize to drugs, while machine learning
740 Cell 166, 740–754, July 28, 2016 ª 2016 The Author(s). Published
This is an open access article under the CC BY license (http://creative
demonstrates the relative importance of different
data types in predicting drug response. Our analysis
and datasets are rich resources to link genotypes
with cellular phenotypes and to identify therapeutic
options for selected cancer sub-populations.

INTRODUCTION

Cancers arise because of the acquisition of somatic alterations in

their genomes that alter the function of key cancer genes (Strat-

ton et al., 2009). A number of these alterations are implicated as

determinants of treatment response in the clinic (Chapman et al.,

2011; Mok et al., 2009; Shaw et al., 2013). Studies from The Can-

cer Genome Atlas (TCGA) and the International Cancer Genome

Consortium (ICGC) have generated comprehensive catalogs of

the cancer genes involved in tumorigenesis across a broad

range of cancer types (Lawrence et al., 2014; Tamborero et al.,

2013b; Zack et al., 2013). The emerging landscape of oncogenic

alterations in cancer points to a hierarchy of likely functional pro-

cesses and pathways that may guide the future treatment of
by Elsevier Inc.
commons.org/licenses/by/4.0/).
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patients (Ciriello et al., 2013; Hanahan and Weinberg, 2000;

Stratton et al., 2009).

Clinical trials are complex and expensive, and pre-clinical data

that helps stratify patients can dramatically increase the likeli-

hood of success during clinical development (Cook et al.,

2014; Nelson et al., 2015). Thus, pre-clinical biological models

that, as much as reasonably possible, capture both the molecu-

lar features of cancer and the diversity of therapeutic responses

are a necessity. Human cancer cell lines are a facile experimental

model and are widely used for drug development. Large-scale

drug sensitivity screens in cancer cell lines have been used to

identify clinically meaningful gene-drug interactions (Barretina

et al., 2012; Basu et al., 2013; Garnett et al., 2012; Seashore-Lu-

dlow et al., 2015). In the past, such screens have labored under

the limitation of an imperfect understanding of the landscape of

cancer driver genes, but it is nowpossible to view drug sensitivity

in such models through the lens of clinically relevant oncogenic

alterations.

Here, we analyzed somatic mutations, copy number alter-

ations, and hypermethylation across a total of 11,289 tumor

samples from 29 tumor types to define a clinically relevant cata-

log of recurrent mutated cancer genes, focal amplifications/

deletions, and methylated gene promoters (Figure 1A; Tables

S1A–S1D). These oncogenic alterations were investigated as

possible predictors of differential drug sensitivity across 1,001

cancer cell lines (Figures 1B and 1C; Table S1E) screened with

265 anti-cancer compounds (Figures 1D and S1; Table S1F).

We have carried out an exploration of these data to determine

(1) the extent to which cancer cell lines recapitulate oncogenic

alterations in primary tumors, (2) which oncogenic alterations

associate with drug sensitivity, (3) whether logic combinations

of multiple alterations better explain drug sensitivity, and (4)

the relative contribution of different molecular data types, either

individually or in combination, in predicting drug response

(Figure 1E).

RESULTS

Oncogenic Alterations in Human Tumors
We built a comprehensive map of the oncogenic alterations in

human tumors using data from TCGA, ICGC, and other studies

(Figure 1A; Table S1C). The map consisted of (1) cancer

genes (CGs) for which the mutation pattern in whole-exome

sequencing (WES) data is consistent with positive selection, 2)

focal recurrently aberrant copy number segments (RACSs)

from SNP6 array profiles, and 3) hypermethylated informative

50C-phosphate-G-30 sites in gene promoters (iCpGs) from DNA

methylation data, hereafter collectively referred to as ‘‘Cancer

functional events’’ (CFEs). We identified CFEs by combining
Figure 1. Overview of Data and Analyses

(A) Publicly available genomic data for a large cohort of primary tumors were ana

(B) A panel of 1,001 genomically characterized human cancer cell lines.

(C) The catalog of CFEs from patient tumors was used to filter the set of molecu

cogenomic modeling.

(D) Cancer cell lines were screened for differential sensitivity against 265 anti-ca

(E) The resultant datasets were used for pharmacogenomic modeling.

See also Figure S1 and Table S1.
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data across all tumors (pan-cancer), as well as for each cancer

type (cancer specific) (Tables S2A, S2D, and S2H).

The WES dataset consisted of somatic variant calls from 48

studies of matched tumor-normal samples, comprising 6,815

samples and spanning 28 cancer types (Tables S1A–S1D).

CGs were detected per cancer type by combining the outputs

of three algorithms: MutSigCV, OncodriveFM, and Oncodrive-

CLUST (Lawrence et al., 2013; Rubio-Perez et al., 2015; Tambor-

ero et al., 2013a). This identified 461 unique pan-cancer genes

(Table S2A). We further added nine genes identified as putative

tumor suppressors (Wong et al., 2014). We mined the COSMIC

database to identify likely driver mutations in 358 of the 470

CGs (Table S2B; Supplemental Experimental Procedures).

Most tumors harbored only a few driver mutations (median

n = 2, range 0–64), consistent with previous reports (Kandoth

et al., 2013; Vogelstein et al., 2013).

RACSs were identified using ADMIRE for the analysis of 8,239

copy number arrays spanning 27 cancer types (van Dyk et al.,

2013) (Table S1D; Supplemental Experimental Procedures). In

total, 851 cancer-specific RACSs were gained (286 segments)

or lost (565 segments), with a median of 19 RACSs per tumor

type (Table S2D). The median number of genes within each

RACS was 15 for amplified regions and one for deleted regions.

The majority of known driver gene amplifications (e.g., EGFR,

ERBB2, MET, and MYC) and homozygous deletions (e.g.,

CDKN2A, PTEN, and RB1) were captured, with 320 RACSs

(38%) containing at least one known putative cancer driver

gene, in addition to 531 RACSs (62%) without known driver

genes. A smaller pan-cancer set (due to overlap in RACSs across

cancer types) was constructed by pooling these results,

comprising 425 RACSs (117 amplified and 308 deleted) (Tables

S2D–S2F).

iCpGs were identified using DNA methylation array data for

6,166 tumor samples spanning 21 cancer types (Table S1D).

We defined 378 iCpGs based on a multimodal distribution of

their methylation signal in at least one cancer type (Tables S2H

and S2I). This also established a discretization threshold used

to define such regions as hyper-methylated in the cell lines

(Table S2J; Supplemental Experimental Procedures).

In total, our multidimensional analysis of >11,000 patient

tumor samples identified 1,699 cancer-specific CFEs, which

were further merged into 1,273 unique pan-cancer CFEs

(Figure S2A).

Oncogenic Alterations in Patient Tumors Are Conserved

across Cell Lines

Next, we assessed the extent to which the mutational landscape

of cancer cell lines captures that seen in primary tumors. We uti-

lized a panel of 1,001 human cancer cell lines analyzed through

WES (n = 1,001), copy number (n = 996), gene expression
lyzed to identify clinically relevant features called cancer functional events.

lar alterations identified in cell lines and subsequently was used for pharma-

ncer compounds.



5% quantileB *0 20 40 60 80 100

CGs

Amplified RACSs

iCpGs

All CFEs

Pan-cancer cell line coverage

Median cancer-specific cell line coverage 
of frequent CFEs

CGs

Amplified RACSs

Deleted RACSs

iCpGs

A
%

Covered
cancer genes

Class C: single signal
of positive selection 

Class B: two signals
of positive selection

Class A: multiple signals
of positive selection

Deleted RACSs

Chronic lymphocytic
leukemia

CLL

Brain lower grade glioma
LGG

Bladder urothelial carcinoma
BLCA

Small cell lung cancer
SCLC

Prostate adenocarcinoma
PRAD

Skin cutaneous melanoma
SKCM

Acute myeloid leukemia
LAML

Lymphoid neoplasm diffuse
large B-cell lymphoma

DLBC

Head and neck squamous
cell carcinoma

HNSC

Lung squamous cell carcinoma
LUSC

Thyroid carcinoma
THCA

Uterine corpus
endometrial carcinoma

UCEC

Multiple myeloma
MM

Stomach adenocarcinoma
STAD

Kidney renal
clear cell carcinoma

KIRC

Esophageal carcinoma
ESCA

Colon/Rectal adenocarcinoma
COAD/READ

Liver hepatocellular carcinoma
LIHC

Acute
lymphoblastic leukemia

ALL

Neuroblastoma
NB

Ovarian
serous cystadenocarcinoma

OV

Glioblastoma multiforme
GBM

Breast invasive carcinoma
BRCA

Lung adenocarcinoma
LUAD

> 2 Samples

51

36

34

32

26

17

51

35

32

25

18

9

30

16

15

42

35

28

55

6

66

19

17

3

Cancer-specific cell line coverage
of frequently mutated CGs

64

n. c
ell

lin
es

Pancreatic adenocarcinoma
PAAD

Cell Lines

LGG
MB

PRAD
LIHC

LAML
OV

ESCA
ALL

DLBC

LUSC
BLCA
UCEC

STAD
NB

BRCA

THCA
HNSC

GBM
LUAD

KIRC
SCLC

MM
SKCM

PAAD

P
rim

ar
y 

Tu
m

or
s

p = 1.1e−07

A
lte

ra
tio

n 
fre

qu
en

cy
 p

ro
fil

es
 c

or
re

la
tio

n

-0.02 0.97

C
G

 m
ut

at
io

n

R

* * * ** * * **** * ***** * ** * ** *** ** ** * ** *

CLL

LG
G

M
B

P
R

A
D

LI
H

C
LA

M
L

O
V

ES
C

A
A

LL
D

LB
C

LU
S

C
B

LC
A

U
C

E
C

S
TA

D
N

B
B

R
C

A

TH
C

A
H

N
S

C
G

B
M

LU
A

D
K

IR
C

S
C

LC
M

M
S

K
C

M
PA

A
D

C
LL

COAD/READ

C
O

A
D

/R
E

A
D

*

**
** *** ** *
* ** * * *** *** ** *

LIHC
LAML

CESC
THCA

DLBC
UCEC

PAAD
SKCM

KIRC
PRAD

LUSC
BLCA

HNSC
MESO

LGG
LUAD

STAD
BRCA

ESCA
OV

GBM

G
B

M
O

V
E

S
C

A
B

R
C

A
S

TA
D

LU
A

D
LG

G
M

E
S

O
H

N
S

C
B

LC
A

LU
S

C
P

R
A

D
K

IR
C

S
K

C
M

PA
A

D
U

C
E

C
D

LB
C

TH
C

A
C

E
S

C
LA

M
L

LI
H

C

P
rim

ar
y 

Tu
m

or
s

p = 4.1e−03

A
lte

ra
tio

n 
fre

qu
en

cy
 p

ro
fil

es
 c

or
re

la
tio

n

same
cancer
type

different
cancer

type

-0.24 0.6

R
A

C
S

 a
m

pl
ifi

ca
tio

n

R

COAD/READ

C
O

A
D

/R
E

A
D

* *

* ** *

*
* * * *

* * * *** ** * *** **

UCEC
THCA

PRAD
DLBC

LAML
LUSC

LIHC
LGG

ESCA
BLCA

COAD/READ
STAD

GBM
MESO

SKCM
LUAD

BRCA
PAAD

HNSC
CESC

OV
KIRC

K
IR

C
O

V
C

E
S

C
H

N
S

C
PA

A
D

B
R

C
A

LU
A

D
S

K
C

M
M

E
S

O
G

B
M

S
TA

D

B
LC

A
E

S
C

A
LG

G
LI

H
C

LU
S

C
LA

M
L

D
LB

C
P

R
A

D
TH

C
A

U
C

E
C

P
rim

ar
y 

Tu
m

or
s

p = 1.7e−04

A
lte

ra
tio

n 
fre

qu
en

cy
 p

ro
fil

es
 c

or
re

la
tio

n

-0.21 0.79

R
A

C
S

 d
el

et
io

n

R

C
O

A
D

/R
E

A
D

LGG
THCA

LIHC
MESO

BRCA
PAAD

BLCA
PRAD

KIRC
DLBC

ESCA
UCEC

LUSC
LUAD

CESC
GBM

LAML
HNSC

SKCM
STAD

COAD/READ

*
*

* *
*

*
*

*
*

* * *
*

*
*

*
*

*
*

*
*

*
*

LG
G

T
H

C
A

LI
H

CM
E

S
O

B
R

C
A

P
A

A
D

B
LC

A
P

R
A

D
K

IR
C

D
LB

C
E

S
C

A
U

C
E

C
LU

S
C

LU
A

D
C

E
S

C
G

B
M

LA
M

LH
N

S
C

S
K

C
M

S
T

A
D

C
O

A
D

/R
E

A
D

p = 1.4e−29

P
rim

ar
y 

Tu
m

or
s

iC
pG

 h
yp

er
m

et
hy

la
tio

n

A
lte

ra
tio

n 
fre

qu
en

cy
 p

ro
fil

es
 c

or
re

la
tio

n

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-0.02 0.99

R

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Missing Cancer Genes

(legend on next page)

Cell 166, 740–754, July 28, 2016 743



(n = 968), and DNA methylation (n = 957) (http://cancer.sanger.

ac.uk/cell_lines) (Figure 1B) and which we reclassified according

to the TCGA tissue labels (Figure 2A; Tables S1A and S1E). Mo-

lecular alterations identified in cell lines were filtered using the

CFEs identified in the primary tumor samples, providing a set

of clinically relevant CFEs for the cell lines (Figure 1C).

Of the 1,273 pan-cancer CFEs identified in patient tumors,

1,063 (84%) occurred in at least one cell line, and 1,002 (79%)

occurred in at least three (Figure 2A). This concordance was

greatest for the RACSs (100% of 425; Table S2G), followed by

iCpGs (338 of 378, 89%; Table S2J) and CGs (300 of 470,

64%; Table S2C). When considering cancer-specific CFEs,

concordance was highest for CFEs occurring in at least 5% of

patients (median of 86% of CFEs covered across cancer types;

Figure 2A; Data S1A). Coverage of CFEs varied by cancer type,

and when we include infrequent CFEs (occurring in < 5% of pa-

tients), this concordance is markedly lower for the majority of

cancer types (median coverage = 46%; Figure S2B). CFEs ab-

sent in cell lines are reported in Table S2K.

The correlation between the frequency of CFEs in cell lines and

patient tumors was high for the majority of the cancer types and

for all three classes of CFEs (Figures 2B and S2C; Table S2L;

Supplemental Experimental Procedures). Using a simple near-

est-neighbor classifier based on the presence of CFEs in cell

lines and tumors across cancer types, we could correctly match

the tissue of origin of cell lines to primary tumors (and vice versa)

for 71% of the cases (27 out of 38 alteration profiles [randomly

expected 1%]) (Figures S2D and S2E; Table S2M; Supplemental

Experimental Procedures). This percentage increased to

81% and 92% (randomly expected 2% and 5%), when consid-

ering the second and fifth nearest-neighbors, respectively

(Figure S2E).

The frequency of alterations in 13 canonical cancer-associ-

ated pathways was highly correlated between cell lines and tu-

mors of the same cancer type (median R = 0.75 across all 13

pathways) (Figure 3A; Table S3A).

A previous hierarchical classification of �3,000 tumors identi-

fied two major subclasses: M and C class (dominated by muta-

tions and copy number alterations, respectively) (Ciriello et al.,

2013). We expanded this analysis by including methylation

data and by jointly analyzing cell lines and tumor samples. This

integrated analysis of 3,673 samples (composed of 1,001 cell

lines and 2,672 primary tumors for which all three data types

were available and that were positive for at least one of the

1,250 CFEs [Tables S3B and S3C]) yielded four classes referred

to as M, H, CD, and CA (Table S3D; Supplemental Experimental

Procedures). Class M is enriched for CG mutations, class H for

hypermethylation of iCpGs, and classes CD and CA for deleted
Figure 2. Representation of Cancer Functional Events in Cancer Cell L

(A) First bar chart: the percentage coverage of cancer functional events (CFEs) in

class of CFEs individually and when combined is shown. Second bar chart: the m

cancer-specific CFEs in at least one cell line. The solid line indicates coverage of C

frequently occurring cancer genes (CGs). Missing cancer genes are grouped by th

of cell lines for each cancer-type and the full name of each cancer-type and ass

(B)Matrix of Pearson correlations of CFE frequency between cell lines and patient t

correlations of CFEs within the same (on-diagonal) and between different (off-dia

See also Figure S2, Table S2, and Data S1.

744 Cell 166, 740–754, July 28, 2016
and amplified RACSs, respectively (Figures 3B and S3; Tables

S3E, S3F, and S3H; Data S1B). We observed a high concor-

dance between the predominant class of CFEs in primary tumors

and cell lines of the same tissue type (80% of cancer types, ex-

ceptions being GBM, KIRC, and PRAD) (Figure 3C; Table S3G;

Data S1B).

Taken together, these results show that a sufficiently large

panel of cell lines is able to capture individual clinically relevant

genomic alterations, in addition to pathway alterations and

global signatures of driver events.

A Therapeutic Landscape of Human Cancers
Modeling Pharmacogenomic Interactions

To investigate how CFEs detected in primary tumors impact

drug response, we first mapped these on our panel of cell lines

(Figure 1C; Tables S2C, S2G, and S2J). Cell lines underwent

extensive drug sensitivity profiling, screening 265 drugs across

990 cancer cell lines and generating 212,774 dose response

curves (median number of screened cell lines per drug = 878,

range = [366, 935]; Figure 1D). This is an expansion on previous

pharmacogenomic datasets (Barretina et al., 2012; Basu et al.,

2013; Garnett et al., 2012; Seashore-Ludlow et al., 2015). The ef-

fect of each drug on cell number was used tomodel sensitivity as

IC50 (drug concentration that reduces viability by 50%) or AUC

(area under the dose-response curve) values (Tables S4A and

S4B).

Screened compounds included cytotoxics (n = 19) and tar-

geted agents (n = 242) selected against 20 key pathways and

cellular processes in cancer biology (Figure 1D; Table S1F).

These 265 compounds include clinical drugs (n = 48), drugs

currently in clinical development (n = 76), and experimental com-

pounds (n = 141). We screened seven compounds as biological

replicates and observed good correlation between replicate IC50

values with a median Pearson correlation (R) = 0.65 (0.78 for the

compounds with most of IC50 values falling within the range of

tested concentrations) and consistent classification of cell lines

as sensitive or resistant to a compound (median Fisher’s exact

test [FET] log10 p value =�26) (Figure S1). Cluster analysis based

on AUC values confirmed that compounds with overlapping

nominal targets or targeting the same process/pathway had

similar activity profiles (Table S1G; Supplemental Experimental

Procedures).

We used three distinct analytical frameworks to define the

contribution of CFEs to the prediction of drug sensitivity (Fig-

ure 1E). ANOVA was used to identify single CFEs as markers

of drug response. Logic models identified combinations of

CFEs that improve the prediction of drug response. Lastly, we

used machine-learning algorithms to assess the contribution of
ines

the pan-cancer dataset occurring in at least one cell line. Coverage for each

edian coverage by cancer type of frequently occurring (>5% of tumor samples)

FEs occurring in >2 cell lines. Third bar chart: coverage in each cancer type of

e level of evidence supporting their classification as a cancer gene. The number

ociated acronym are shown.

umors for each cancer-type and class of CFEs. Box andwhisker plots show the

gonal) cancer-types.

http://cancer.sanger.ac.uk/cell_lines
http://cancer.sanger.ac.uk/cell_lines
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Figure 3. Comparative Analysis of Pathway Alterations and Global CFE Signatures in Cell Lines and Tumors

(A) Concordance of CFEs in cancer-associated pathways between cell lines and tumors.

(B) Enrichments of the dominant CFE type across four global classes.

(C) Classification of primary tumors and cell lines from each cancer type into global classes based on CFEs. Segment lengths are the percentage of samples (cell

lines or primary tumors) falling within each global class. For primary tumors, results are compared to published classifications (Ciriello et al., 2013) (top diagram),

and for cell lines, the comparison is with primary tumors from the same cancer type (bottom diagram). The classification of concordance is based on the identity of

the predominant class of CFEs.

See also Figure S3, Table S3, and Data S1.
eachmolecular data type (CGs, RACS, iCpGs, and gene expres-

sion) in explaining variation in drug response. For consistency,

all analyses used IC50 values. We carried out a pan-cancer, as

well as a cancer-specific, analysis (for those 18 cancer types

of sufficient sample size, n > 15 cell lines).

ANOVA Analysis Defines a Landscape of

Pharmacogenomic Interactions

For pan-cancer ANOVA, the set of CFEs included 267 CGs, 407

RACSs, and three gene fusions (BCR-ABL, EWSR1-FLI1, and

EWSR1-X). Overall, for the 265 compounds, we identified 688

statistically significant interactions between unique CFE-drug

pairs (p value < 10�3 at a false discovery rate [FDR] < 25%; Fig-
ure 4A), with 540 pan-cancer and 174 cancer-specific hits (Fig-

ure S4A; Table S4C). A subset of 262 CFE-drug pairs was addi-

tionally defined as large-effect interactions (Figure 4A). The

effect size was quantified through Glass deltas (Ds) and Cohen’s

D (CD) (Supplemental Experimental Procedures).

The majority of CFE-drug interactions was exclusively

identified in either the pan-cancer or cancer-specific analysis

(n = 662 of 688 significant interactions, 96%, and n = 254 of

262 significant large-effect interactions, 97%), with few overlap-

ping interactions (Figure 4A; Table S4C). The effect size was

frequently greater for the cancer-specific associations than for

pan-cancer associations (CD > 1 for 100% and 30% of hits,
Cell 166, 740–754, July 28, 2016 745



respectively) (Table S4D). A possible explanation for this obser-

vation could be that cancer-specific associations, with fewer cell

lines, require a larger effect size to be statistically significant.

However, downsampled pan-cancer analyses confirmed that

the increased effect size of cancer-specific associations is

greater than expected by downsampling alone (Figures S4B

and S4C; Supplemental Experimental Procedures). This indi-

cates that sensitivity to many drugs is modulated by genomic al-

terations in the context of a defined tissue lineage.

Overall, 233 of 674 (34%) CFEs were significantly associated

with the response to at least one compound, and more RACSs

(62%) were associated with response than were CGs (38%).

The importance of these two classes of CFEs varied by cancer

type and was related to their prevalence (Figures 3C and S4G).

We identified significant associations for the majority of com-

pounds (85%; n = 225 of 265). When compounds were classified

by their nominal target into 20 specific biological processes (Fig-

ure S4H; Table S1F), CFEs best explained sensitivity to com-

pounds targeting EGFR and ABL signaling, mitosis, and DNA

replication and least explained sensitivity to compounds target-

ing TOR, IGF1R, and WNT signaling. For the latter, alternative

non-genomic events may be the primary modulators of drug

sensitivity. The proportion of cytotoxic and targeted compounds

(Table S1F) associated with at least one significant large-

effect interaction was similar (63% and 60%, respectively). How-

ever, compared to targeted agents, the significant interactions

between CFEs and cytotoxics tended to be of a smaller

effect size (average CD 0.96 vs. 1.32) and less significant

(average –log10 p value 3.68 vs. 4.56).

We performed ANOVA on randomly downsampled subsets of

cell lines (500, 300, 150, and 60 cell lines) and evaluated our abil-

ity to retain the set of statistically significant associations. The

number of associations exponentially decreased as the number

of cell lines was reduced, with a loss of�80% of pan-cancer as-

sociations when using 500 cell lines (Figures S4D–S4F; Supple-

mental Experimental Procedures). This highlights the utility of us-

ing a large cell line collection to increase statistical power and to

preserve representation of diverse genotypes and histologies.

ANOVA Identifies Known and Novel Gene-Drug

Associations

Among the individual CFE-drug associations, we identified

many well-described pharmacogenomics relationships (Fig-

ure 4B). These included clinically relevant associations between

alterations in BRAF, ERBB2, EGFR, and the BCR-ABL fusion

gene and sensitivity to clinically approved drugs in defined tumor

types, as well as associations between KRAS, PDGFR, PIK3CA,

PTEN, CDKN2A, NRAS, TP53, and FLT3 with drugs that target

their respective protein products or pathways (Figure 4B; Table

S4C). Moreover, we observed a secondary T790M EGFR muta-

tion in lung adenocarcinoma (LUAD) and resistance to EGFR-tar-

geted therapies (Gefitinib and Afatinib) (Godin-Heymann et al.,

2008) (Figure 4D), as well as resistance of NRAS mutated mela-

noma patients to a BRAF inhibitor (Figure 4B; Table S4C) (Su

et al., 2012).

A pathway-centric view highlighted the number of interactions

between CFEs in cancer pathways (EGFR, ERK-MAPK, PI3K-

MTOR, and DNA repair and cell-cycle-related pathways) and

drugs targeting those CFEs (Figure S4I). For example, com-
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pounds targeting EGFR signaling showed potent activity in cells

with EGFR and ERBB2 alterations, but were ineffective in cells

with downstream alterations in ERK-MAPK signaling, such as

mutant RAS.

To explore the most important CFE-drug interactions, we

focused on 262 associations with a large effect on drug sensi-

tivity (p < 10�3, FDR < 25%, and D > 1, for both the cell line pop-

ulations included in the test) (Figure 4C; Table S4C). For

example, at the pan-cancer level, U2AF1 mutations associate

with sensitivity to multiple FLT3 inhibitors, such as AC220 (p =

8.33 10�8, CD = 2.5), Sorafenib (p = 3.043 10�6, CD = 2.8), Su-

nitinib (p = 5.6 3 10�5, CD = 2.5), and XL-184 (p = 1.3 3 10�4,

CD = 1.9); PTEN mutations associate with sensitivity to an AKT

inhibitor in COAD/READ (p = 3.5 3 10�6, CD = 2.4). The chemo-

therapeutic Mitomycin C is widely used to treat BLCA, and here,

we detect, in the BLCA specific analysis, a sensitizing interaction

with mutations in TP53 (p = 9.93 10�5, CD = 2.8) that are highly

prevalent in this cancer type. In LUSC cells, loss-of-function mu-

tations in the DNA methyltransferase MLL2 are associated with

sensitivity to the clinical anti-androgen Bicalutamide (p = 6.02

� 10�4, CD = 3); the BCL-2 inhibitor, ABT-263, shows activity

in COAD/READ cells that harbor focal amplifications of MET

(p = 1.02 3 10�4, CD = 2.8) or FOXA1/CRNKL1 (p = 1.31 3

10�4, CD = 2.2), events found in almost 60% of colorectal tu-

mors; and truncating mutations in the co-repressor of BCL6,

BCOR, statistically interact (p = 2.04 3 10�5, CD = 3.5) with

sensitivity to a PKC beta inhibitor in STAD (Figure 4D), and dele-

tions of a RACS (2q37.3) containing MTERFD2 and SNED1 is

associated with resistance to the HDAC inhibitor Vorinostat

(p = 5.4 3 10�7, CD = 4; Figure 4D) in OV cell lines.

Interestingly, 24 of the 262 associations are driven by RACSs

that do not contain known cancer genes (Tables S4C and S2D).

For these regions, the patterns of drug sensitivity may give clues

as to the likely contained driver cancer gene(s).

Logic Formulas of Drug Response Refine

Pharmacogenomic Modeling

Many genomic alterations occur together or in a mutually exclu-

sive way that suggests a biological function (Babur et al., 2015).

We hypothesized that combinations of CFEs could, in some con-

texts, improve our ability to explain variation in drug sensitivity.

We employed a computational approach termed ‘‘logic optimi-

zation for binary input to continuous output’’ (LOBICO) to find

the optimal logic model combining CFEs to explain the IC50

values for a drug, for example, ‘‘ifRAS orRAFmutated, then sen-

sitive to MEK inhibition’’ (Knijnenburg et al., 2016). LOBICO bi-

narizes the IC50s, labeling cell lines as sensitive or resistant,

and uses these together with the continuous IC50s to find optimal

models (Table S5C) (Supplemental Experimental Procedures).

We employed 5-fold cross-validation (CV) to select the appro-

priate model complexity from a set of eight possible models,

ranging from single CFE predictor models to complexmulti-input

models with up to four CFEs. We required solutions to have

specificity greater than 80%. The input features included the

CGs, RACSs, gene fusions, and binarized pathway activity

scores derived from the basal gene expression profiles of the

cell lines (Figure S5A; Tables S5A, S5B, and S5D). The latter is

based on 11 transcriptional signatures of pathway activation

(Parikh et al., 2010) (Table S5B; Supplemental Experimental
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teractions are divided into those identified in a single or multiple cancer-specific analyses.

(B) A summary of established pharmacogenomic interactions detected in this analysis including a subset of clinically approved markers. The total number of
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indicated.
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Procedures). LOBICO was executed for each drug separately

utilizing pan-cancer and cancer-specific molecular datasets.

This led to the inference of 1,112 logic models (Table S5E).

In the pan-cancer dataset we found that for 69% (182 of 265)

of the drugs, the IC50s were better explained than expected by

chance (p value < 0.05 and FDR < 5%). Across the cancer-spe-

cific datasets, on average, 24% of the drugs were explained by

the inferred logic models (Figure 5A). We termed these logic

models (182 from the pan-cancer dataset and 208 from the 18

cancer-specific datasets) ‘‘predictive models’’. When consid-

ered together, the pan-cancer and cancer-specific LOBICO an-

alyses identified predictive models for 208 out of 265 (78%)

drugs. Importantly, for 85% of the 390 predictive models, a

multi-input model achieved better performance than did the

best single-predictor model (Figure 5B). Although the pan-can-

cer dataset produced the largest number of predictive models,

the CV error was consistently higher than for cancer-specific

datasets (Figure S5B). This is in agreement with the ANOVA

analysis, where larger effect sizes were observed for the can-

cer-specific datasets. The response to drugs that target the

p53 or ERK-MAPK pathway were especially well-predicted by

LOBICO (Figure S5C).

We observed that CGs had the largest role in explaining drug

response, followed by RACSs and the pathway activities derived

from gene expression (Figure S5A; Supplemental Experimental

Procedures). The small number of pathway signatures had a

disproportionately large effect in the logic models, showing

that basal pathway activation scores provide relevant informa-

tion to predict drug response beyond the genomic CFEs (Cost-

ello et al., 2014) (Figure S5D).

LOBICO uncovered many known, as well as novel, associa-

tions (Table S5F). Figure 5C depicts a selection of particularly

strong and consistent ‘‘and/or’’ combinations found for clinically

approved drugs. For example, in the pan-cancer dataset, the

‘‘or’’ combination of KRAS or BRAF improved the precision

and recall compared to single predictor models to explain cell

line sensitivity to a number of MEK and RAF inhibitors (e.g., Tra-

metinib in Figures 5C and 5D).

In general, the ‘‘or’’ combinations led to models with higher

recall (Figure 5C, right quadrants) as compared with the single-

predictor model. For example, HNSC cell lines that have an

EGFR amplification or a SMAD4 mutation account for 45%

(10 out of 22) of cell lines sensitive to the ERRB2/EGFR inhibitor

Afatinib, whereas considering only the EGFR amplified cell lines

accounts for only 32% (7 out of 22) of the sensitive cell lines

(Figure 5E). Conversely, ‘‘and’’ combinations led to models with

higher precision (Figure 5C, left quadrants). For example, BRCA

cell lines that lack a deletion of the FAT1/IRF2 locus and are

TP53 mutant show increased sensitivity to the ERRB2/EGFR in-

hibitor Lapatinib. This is achieved at higher precision (57%

instead of 45% for the single predictor model), but at a lower
(C) Volcano plot with effect size (x axis) and significance (y axis) of large-effect can

nificantCFE-drug interaction.Circle size is proportional to thenumber of alteredcel

drug name, target (italics), and name of the associated CFE (bold).

(D) Examples of cancer-specific pharmacogenomic interactions identified by our s

co-incident resistance-associated EGFR T790M mutation is labeled.

See also Figure S4 and Table S4.
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recall (80% instead of 100%) (Figure 5F). Collectively, LOBICO

analysis highlights the importance of considering combinations

of oncogenic alterations as biomarkers for drug response.

Validation of Pharmacogenomic Modeling Results on

Independent Datasets

We sought to validate our pharmacogenomic models using

independent drug sensitivity datasets from the Cancer Cell

Line Encyclopedia (CCLE) (Barretina et al., 2012) and the Can-

cer Therapeutics Response Portal (CTRP; second version)

(Seashore-Ludlow et al., 2015). This analysis was for necessity

restricted to only those compounds and cell lines shared with

our own study (hereafter referred to as GDSC). The shared set

consisted of 466 cell lines and 76 compounds from the CTRP

study (Tables S4I–S4K) and 389 cell lines and 15 compounds

from the CCLE study (Tables S4E–S4G; Supplemental Experi-

mental Procedures). Validation was performed using IC50 values

from the GDSC and CCLE studies and AUC values from the

CTRP study (where IC50 values were not reported).

We performed ANOVA on the overlapping set of cell lines/

compounds. We validated 53% (19 of 36 on CTRP) and 86%

(6 of 7 on CCLE) of the testable sensitivity associations identi-

fied in the GDSC, and 21% (6 of 29 on CTRP) and 0% (0 of 7 on

CCLE) of testable resistance associations (p < 0.05, Fisher’s

exact test CTRP: p = 8.1 3 10�9; CCLE: p = 0.01; Figures

S4J and S4K; Tables S4H and S4L; Supplemental Experimental

Procedures). A significant Pearson correlation of the CFE-drug

interaction significance was observed between the GDSC data-

set and the other two datasets (R = 0.86 for CTRP and R = 0.86

for CCLE; Figures S4J and S4K). Similarly, using LOBICO, we

validated 44% (17 of 39) of testable models using the CTRP,

including both single and multi-input models, and observed a

significant Pearson correlation of the interaction significance

between the two datasets (R = 0.96; Figures S5E and S5F;

Data S1C). Thus, even within the relatively limited set of

overlapping drugs and cell lines, resulting in reduced statis-

tical power, we observed reasonable-to-good rates of valida-

tion for the set of pharmacogenomic interactions identified

in our study, including a number of novel associations. Com-

plete summaries of these comparisons are provided in Tables

S4E–S4L and S5G, Data S1C, and Supplemental Experimental

Procedures.

Contribution of Different Molecular Data Types in

Predicting Drug Response

To investigate the power of different combinations of molecular

data to predict drug response, we built linear and non-linear

models of drug sensitivity (elastic net [EN] regression and

Random Forests [Costello et al., 2014]). As input features, we

used CGs, RACSs, iCpGs, and gene expression data.

Here, we refer to ENmodels using IC50 values (Table S4A), but

very similar results were obtained with Random Forests (Fig-

ure S6F; Table S6A). We assessed the predictive power of
cer-specific pharmacogenomic interactions. Each circle corresponds to a sig-

l lines, and the color indicates cancer type. A subset of interactions is labeledwith

ystematic ANOVA. Each circle represents the IC50 of an individual cell line. The
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Figure 5. Logic Models of CFEs Explain Drug Sensitivity

(A) The number of predictive LOBICO models from the pan-cancer and cancer-specific analyses. The number of cell lines for each cancer type is given in

brackets.

(B) Optimal model complexity for each of the predictive logic models.

(C) Strong AND/OR model combinations involving clinically approved drugs from the pan-cancer and cancer-specific analyses. Each arrow goes from the

precision (x axis) and recall (y axis) of the single-predictor model to that of the logic combination. The arrow color reflects cancer type, and drug names and

nominal targets (italics) are shown.

(D) Distribution of IC50 values of all cell lines (gray) in response to Trametinib with respect to the KRAS mutant single-predictor model (red line) and the KRAS OR

BRAF mutant combination (blue line). The dashed line is the IC50 threshold used to classify cell lines as sensitive and resistant. The inset table shows the number

of cell lines classified as sensitive or resistant for each model and the associated precision (pr.) and recall (re.).

(E) HNSC cell lines response to Afatinib with respect to EGFR amplification and the combination of EGFR amplification OR a SMAD4 mutation.

(F) BRCA cell lines response to Lapatinib with respect to lack of the FAT1/IRF2 deletion and the logical TP53 mutant AND lack of the FAT1/IRF2 deletion

combination.

See also Figure S5, Table S5, and Data S1.
each model using the Pearson correlation coefficient (R) of

observed versus predicted IC50 values. For each of the 265 com-

pounds, we built pan-cancer and cancer-specific models (for

18 cancer types) and considered a model with a corresponding

RpancancerR0:21 and RcancerspecificR0:25 as predictive (Figures

S6G and S6H; Supplemental Experimental Procedures).

In a pan-cancer analysis, the most predictive data type was

gene expression, closely followed by the tissue of origin of the
cell lines (Figure 6A). By comparison, genomic features (CG mu-

tations and RACSs alterations) performed poorly. The predictive

power of gene expression and tissue type was strongly corre-

lated, while RACSs and CGs are less correlated with the tissue

type (Figure S6A). This is consistent with the tissue specificity

of gene expression (Ross et al., 2000).

Next, we compared themost predictive data types in pan-can-

cer versus cancer-specific analyses (Figures 6B and 6C). For
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Figure 6. Predictive Ability of Combinations of Molecular Data Types

(A) Predictive performances of individual pan-cancer pharmacogenomic models using elastic net modeling and the indicated single data types. Selected outlier

predictive models are labeled.

(B) The number of molecular data types included in the best-performing models (lead models) across the pan-cancer and cancer-specific analyses. The best-

performing models use combinations of multiple data types. Absolute counts of best performing models are given.

(C) Absolute counts of lead models from the pan-cancer and cancer-specific analyses and the number of molecular data types used in the models.

(D) A heat map of the percentage of leadmodels identified in the pan-cancer and cancer-specific analyses incorporating different combinations of molecular data

types.

(E) Absolute count of leadmodels identified in pan-cancer and cancer-specific analyses incorporating different combinations of molecular data types. Data types

are ordered from most (top) to least (bottom) predictive in the cancer-specific analysis.

See also Figure S6 and Table S6.
each drug, we identified the best-performing combination of

data types and the corresponding model, referred to as the

‘‘lead model’’. Notably, paired molecular data types contributed

to the most lead models in both the pan-cancer (�42% of all

models) and the cancer-specific analyses (�45% for all cancer

types) (Figures 4B and 4C). In the pan-cancer analysis, all of

the lead models use gene expression data (Figures 6D and

6E), but for 211 drugs (�86%), the models are improved by

including methylation, RACSs, CGs, or any combination of those

additional data types. In addition, we identified 379 predictive

(non-lead) models (�17%) independent of gene expression (Fig-

ures S6B�S6E).

In a cancer-specific analysis, the majority of lead models are

based solely on genomics features (Figures 6D and 6E). For

120 cases (�38%) the lead model is based on genomics alone

(CGs and RACS). We found that genomics in combination with

methylation provided an additional 117 lead models (�37%),

whereas genomics in combination with gene expression contrib-

uted 19 (�6%). The remaining lead models use methylation

alone (�7%), gene expression alone (�3%), or a combination

of genomic, epigenetic, and transcriptomic features (12%).

Therefore, in the context of a cancer-specific analysis, �74%

(237 of 319) of lead models were explained by genomics, either

alone or when combined with methylation (Figures 6D and 6E).
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DISCUSSION

Constructing a Pharmacogenomics Resource
Cancer cell lines are important tools for drug development. Here,

we have extended previous efforts with the systematic expan-

sion of the pharmacological, genomic, transcriptomic, and

epigenetic characterization of 1,001 human cancer cell lines.

These datasets can be investigated through the COSMIC and

Genomics of Drug Sensitivity in Cancer Web portal (http://

www.cancerrxgene.org). To the best of our knowledge, this is

the largest and most extensively characterized panel of cancer

cell lines and should enable a broad range of studies linking

genotypes with cellular phenotypes.

Our analysis of >11,000 patient tumor samples and the subse-

quent superimposing of salient cancer features on cell lines ex-

emplifies how large-scale cancer sequencing can be used to

empower biological research and maximizes the potential clin-

ical relevance of the pharmacological models reported.

The majority of CFEs identified from a broad range of tumor

types is captured within a large cell line panel and often at a fre-

quency similar to that observed in patient cohorts. However, the

picture is far from complete; many CFEs occurring at low to

moderate frequency (2%–5%) are represented by a single cell

line or not at all, and coverage by cancer type is variable. As

http://www.cancerrxgene.org
http://www.cancerrxgene.org
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we enter an era of precision cancer medicine, where many drugs

are active in small molecularly defined subgroups of patients

(e.g., only 3%–7% of lung cancer patients harbor the drug sensi-

tizing EML4-ALK gene fusion [Soda et al., 2007]), the scarcity of

models for many cancer genotypes and tissues is a limitation.

New cell culturing technologies enable derivation of patient cell

lines with high efficiency and thus make derivation of a larger

set of cell lines encompassing the molecular diversity of cancer

a realistic possibility (Liu et al., 2012; Sato et al., 2011).

Pharmacogenomic Models of Drug Sensitivity
Pharmacogenomic screens in cancer cell lines are an unbiased

discovery approach for putative markers of drug sensitivity.

We identified a wealth of molecular markers of drug sensitivity,

including completely novel associations not easily explained

with our current knowledge. With appropriate validation and

follow-up studies, these putative biomarkers may aid patient

stratification and help to explain the heterogeneity of clinical

responses.

Going beyond single gene-drug interactions, ‘‘logic’’ combi-

nations of CFEs consistently perform better than single events

in sensitivity prediction. Clinical support for this comes from

the observation that BRAF mutant melanoma patients treated

with BRAF inhibitors show heterogeneity of response that may

be explained by the presence of additional molecular alterations

(Chapman et al., 2011). Our analyses suggest that clinical

studies in cancer patients should be designed to enable

combinations of genomic alterations to be detected, which has

implications for both trial size and the statistical approaches

employed.

We validated our pharmacogenomic models using indepen-

dent datasets from the CCLE and CTRP. Consistent with previ-

ous reports, this demonstrated good consistency in the set of

markers identifiable across these studies (Cancer Cell Line Ency-

clopedia Consortium, 2015) and lends additional support to the

results presented here. However, our ability to validate some

pharmacogenomic associations was restricted by the limited

number of overlapping cell lines and compounds between these

studies. Furthermore, the consistency between datasets is not

perfect, and efforts toward standardization to reduce methodo-

logical and biological differences across the different studies

are likely to improve future correlation between datasets.

Glimpses of a Precision Medicine Landscape
For many of our pharmacological models, the defining CFE is

present in clinical populations at a frequency that would make

testing in a clinical trial setting feasible (Figure 7). For example,

the alkylating agent Temozolamide (used to treat glioblastoma

multiforme) shows activity in MYC amplified colorectal cancer

lines (present in 33% of primary tumors) (Figure 7A). Overall,

we found that a median of 50% of primary tumor samples harbor
Figure 7. A Precision Medicine Landscape

(A) Percentages of primary tumor samples for each cancer type harboring a sensiti

all compounds.

(B) Percentages of primary tumors whose genomic features satisfy the logic mod

right of the bars.

See also Table S7.
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at least one CFE, or logic combination of CFEs, associated with

increased drug response; ranging from 0.63% (OV) to 83.61%

(COAD/READ) (Figure 7; Tables S7A–S7C; Supplemental Exper-

imental Procedures). This suggests that there are likely to be

a number of molecular subtypes within many cancers that,

following appropriate validation, could be tested in the clinical

trial setting using these stratifications for treatment selection.

Using machine learning, we determined that within each spe-

cific cancer type, genomic features (either driver mutations or

copy number alterations) generated the most predictive models,

with the addition of methylation data further improving our

models. While informative in the pan-cancer setting, baseline

gene expression data was less informative in the more clinically

relevant tissue-specific setting. Prioritizing the design of diag-

nostics that deliver driver mutations, copy number alterations,

and DNA methylation profiles might be the most cost effective

means in the short-term to stratify patients for cancer treatment.

Conclusions
The clinical development of molecularly targeted cancer thera-

pies remains a formidable challenge. Our current analysis is

restricted by the availability of patient genomic datasets, the

cell lines and compounds screened, and methodological and

biological variables, as well as the inherent limitation associated

with the use of in vitro cancer cell lines. Nonetheless, our results

represent a comprehensive attempt to describe the landscape of

clinically relevant pharmacogenomics interactions in cellular

models of cancer, complementing previous efforts (Barretina

et al., 2012; Basu et al., 2013; Garnett et al., 2012; Seashore-Lu-

dlow et al., 2015). The data resource and analyses described

here should enable the matching of drug response with onco-

genic alterations to provide insights into cancer biology and to

accelerate the development of patient stratification strategies

for clinical trial design.

EXPERIMENTAL PROCEDURES

Cancer Cell Line Characterization

Genomic data for a panel of 1,025 genetically unique human cell lines were

assembled from the COSMIC database. 1,001 cell lines were included in this

study (Table S1E). Variants and copy number alterations were identified as

described in the Supplemental Experimental Procedures. Microsatellite insta-

bility data were assembled as detailed in the Supplemental Experimental

Procedures. Gene fusions from a subset cell lines (�700) were identified by tar-

geted PCR sequencing or split probe fluorescence in situ hybridization (FISH)

analysis (Table S2C).

Variant Identification in Tumors

Variant data from sequencing of 6,815 tumor normal sample pairs derived from

48 different sequencing studies were compiled (Rubio-Perez et al., 2015).

To aid in the analysis, the tumor data were reannotated using a pipeline consis-

tent with the COSMIC database (Vagrent: https://zenodo.org/record/16732#.

VbeVY2RViko).
vity marker to a given compound and the accumulate percentage of patients for

el for sensitivity for a given drug. Corresponding logic circuits are shown to the

https://zenodo.org/record/16732#.VbeVY2RViko
https://zenodo.org/record/16732#.VbeVY2RViko


Methylation Data

For primary tumors, raw data for 6,035 methylation samples, covering 18 tu-

mor types, were downloaded from the TCGA data portal. For the cell lines,

data were generated in-house as described in the Supplemental Experimental

Procedures. In both cases, Infinium HumanMethylation450 BeadChip arrays

were preprocessed using the R Bioconductor package Minfi. Only CpG site

probes falling on the promoter region of the known genes were considered,

i.e., TSS1500, TSS200, 50 UTR, and 1st exon. Probes containing SNPs and

non-specific probes, falling on sex chromosomes, and not associated with a

gene were discarded. Methylation beta values of CpG islands were averaged

across CpG sites.

Identification of Cancer Functional Events

The selection of cancer-driver genes (together with the variant recurrence

filter) of the recurrently copy-number-altered chromosomal regions and

the informative CpG islands is detailed in the Supplemental Experimental

Procedures.

Gene Expression Data

Cell line pellets collected during exponential growth in RPMI or DMEM/F12

were lysed with TRIzol (Life Technologies) and stored at �70�C. Following

chloroform extraction, total RNA was isolated using the RNeasy Mini Kit

(QIAGEN). DNase digestion was followed by the RNAClean Kit (Agencourt

Bioscience). RNA integrity was confirmed on a Bioanalyzer 2100 (Agilent Tech-

nologies) prior to labeling using 30 IVT Express (Affymetrix). Microarray analysis

was performed as described in the Supplemental Experimental Procedures.

Cell Line versus Tumor Comparisons

All analyses evaluating the extent to which cell lines resemble primary tumors

are detailed in the Supplemental Experimental Procedures.

Cell Viability Assays

Experimental protocols used for compound screening are detailed in the

Supplemental Experimental Procedures. Effects on cell viability were

measured, and a curve-fitting algorithm was applied to this raw dataset to

derive a multiparameter description of the drug response (half maximal

inhibitory concentration (IC50),and area under the curve [AUC]) through a

multilevel mixed model (Vis et al., 2016) (Supplemental Experimental

Procedures).

Statistical Models of Drug Response

For each drug an ANOVAmodel was fitted to correlate drug response with the

status of Cancer Functional Events (CFEs), as described inGarnett et al. (2012),

implemented in GDSCtools (http//gdsctools.readthedocs.io) and detailed in

the the Supplemental Experimental Procedures. The downsampling ANOVA

simulation studies are detailed in the Supplemental Experimental Procedures.

We applied the LOBICO (Knijnenburg et al., 2016) framework as detailed in the

Supplemental Experimental Procedures. Machine learning models were

computed as detailed in the Supplemental Experimental Procedures.

ACCESSION NUMBERS

The accession numbers for the sequencing/copy number, transcriptional,

and methylation data reported in this paper are, respectively, EGA:

EGAS00001000978, GEO: GSE68379, and ArrayExpress: E-MTAB-3610.
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Supplemental Figures

Figure S1. Screened Compound Duplicates, Related to Figure 1

Histograms, scatter plots and Pearson correlation scores between IC50 profiles for 7 compounds screened in biological duplicates. In all cases replicate data

were generated at least one year apart. Superimposed to each scatter plot is a contingency table (and a corresponding Fisher exact test p-value) showing

consistency of sensitive (IC50 % maximal tested concentration) and resistant (IC50 > maximal tested concentration) cell lines across replicates.
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Figure S2. Cancer Functional Events on Cancer Cell Lines, Related to Figure 2

(A) Status of 1,273 Cancer Functional Events (CFEs) identified from primary tumor data in 1,001 cancer cell lines. Each column is a cell line, colors at the top

indicate different cancer types, and each row is a CFE. The heatmap is horizontally divided in three parts with (i) high confidence cancer driver genes; (ii) focal

recurrently aberrant copy number segments and (iii) informative CpG islands. A white space denotes absence of the functional events, whereas presence is

indicated using the color schemes in the adjacent legends.

(B) Number of cancer-specific CFEs occurring in at least one cell line from the corresponding tissue, across the three molecular data types. Box plots on the right

show the frequency of the missing CFEs in the primary tumors for each cancer type. Percentages of missing cancer genes for each cancer types are grouped

based on their confidence (i.e., A = more than two signals of positive selection, B = two signals of positive selection, C = one signal of positive selection).

(C) Example of CFE frequency scatter plot for COAD/READ. Each circle is a CFE whose occurrence frequency across cell lines and primary tumors is given by its

coordinates, respectively on the x- and y axis. Different CFE types are indicated by color and corresponding correlation scores are reported in the inset.

(D) Nearest neighbor analysis for similarities among cell lines and primary tumors based on frequency profiles accounting for all the CFEs. The proximity of two

points is proportional to the correlation across the two corresponding CFE frequency profiles. A line connects a point to its closest neighbor (indicated by the

small black dot).

(E) Performance of a k-nearest-neighbor classifier based on a comprehensive correlation distance between cell lines and primary tumors, accounting for all the

CFEs.
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Figure S3. Enrichment of Cancer Functional Events in Global Signatures, Related to Figure 3

Enrichment analysis for global signatures of cancer functional events (CFEs) across different molecular data types identifies 4 classes of CFEs and cell-line/

primary-tumor samples (on different rows). Pie charts on the left indicate the proportions of individually enriched CFE data types within each class (orange color

indicates generic RACSs, both amplified and deleted). Bar diagrams on the right indicate, for each class and each CFE data type (on different columns),

enrichment results for individual cancer functional events. Selected CFEs are highlighted.
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Figure S4. ANOVA Result Summaries, Down-Sampled ANOVA Result Summaries, and ANOVA Validation Using CCLE and CTRP Datasets,

Related to Figure 4

(A) The number of statistically significant CFE-drug interactions for each cancer type.

(B) Example of ANOVA down-sampling analysis outcomes. Each point is a tested drug-CFE interaction, with position on the x-/y axis indicating significance and

effect size, respectively. The vertical line correspond to the significance level p = 0.05. The effect size increment observed in the BRCA specific ANOVA is more

evident and less variable than that observed in the down-sampled pan-cancer ANOVA.

(C) Effect-size variation for 4 different levels of statistical significance (indicated by the 4 groups of three box-plots) across pan-cancer, down-sampled, and

cancer-specific ANOVAs. Each plot refers to a different cancer type (as indicated also by different colors). The effect size increment with respect to the pan-

cancer analyses is consistently and significantly greater in the cancer-specific analyses than the down-sampled pan-cancer analyses. The total numbers of

significant interactions (and the same value averaged across the sub-sampling simulations) according to the p-value threshold under consideration are reported.

(D) Number of significant (dashed lines) and significant large-effect (solid lines) pharmacogenomic interactions identified across 18 cancer-specific ANOVAs

(using the whole panel of cell lines) that are retained in simulated down-sampled cancer-specific ANOVAs involving 500, 300, 160 and 60 cell lines. A missing dot

means that, for the cancer type under consideration, a cancer-specific analysis is not possible due to reduced sample sizes.

(E) Average number of significant large-effect pharmacogenomic interactions identified across 18 cancer-specific ANOVAs (using the whole panel of cell lines)

that are identifiable in simulated down-sampled cancer-specific ANOVAs.

(F) Number of significant (top plot) and significant large-effect (bottom plot) pan-cancer pharmacogenomic interactions that are identifiable in simulated down-

sampled pan-cancer ANOVAs.

(G) Proportions of cancer functional event (CFE) types involved in significant pharmacogenomic interactions for each cancer type.

(H) Percentage of drugs involved in at least one significant CFE-drug interaction (pan-cancer or cancer-specific) across drugs classified into cancer associated

pathways and processes.

(I) Pathway-centric overview of the identified pharmacogenomic interactions. Cells are color-coded according to corresponding –log10 p-values. Compounds are

identified by the nominal therapeutic target.

(J) ANOVA results on overlapping GDSC-CCLE datasets. Each circle represents a drug-CFE association. The y axis is the signed log10 p-values of the identified

interactions on the CCLE and the x axis that on the GDSC. Markers highlighted in red or green are significant in both studies. FET: Fisher exact test of consistency

of marker behavior on all or only significant associations. A subset of associations is labeledwith cancer-type, drug name, drug target (italics) and associated CFE

(bold text).

(K) ANOVA results on overlapping GDSC-CTRP datasets.
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Figure S5. LOBICO Performance and Validation of LOBICO Models on CTRP, Related to Figure 5

(A) Pearson correlation of SPEED pathway activity scores across all cell lines using the original publication cutoffs (left) and our optimized cutoffs (right).

(B) Multi-predictor models outperform single predictor models. Scatter plot with the 5-fold cross-validation (CV) error for single predictor models (x axis) and the

best (lowest CV error) multi-predictor model (y axis) averaged across 10 repeats for the cancer-specific datasets and 5 repeats for the pan-cancer dataset. Each

point represents one of the 390 predictive logic models. The CV errors for the pan-cancer dataset (n = 182) are on the left; the CV errors from the 18 cancer-

specific datasets (n = 208) are on the right.

(C) CV errors across cancer types and drug classes. Left: Number of drugs for which LOBICOwas run, i.e., the drugs with 5 or more sensitive cell lines, number of

drugswhere a predictive model was inferred, and number of drugs, where the predictive model was amulti-predictor model, for the pan-cancer and each cancer-

specific analysis. Center: CV error averaged across all drugs in a drug class (columns) for which LOBICO was run on the pan-cancer or cancer-specific dataset

(rows). Grey indicates that no LOBICO models were run for the drugs in a drug class.

(D) Feature importance scores across data types: Normalized feature importance (FI) scores for each cancer type grouped into four categories (amplified RACSs;

deleted RACSs; mutations in CGs; SPEED pathway activity). These scores were averaged across the drugs for which the LOBICO analysis was performed.

(E) t test p-values for LOBICO models on GDSC and CTRP. The scatter plot depicts the �log10 p-values for t tests that quantify the difference between cell lines

predicted to be sensitive and resistant according to LOBICO. The x axis depicts p-values for the difference between these two groups based on the IC50s within

(legend continued on next page)
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GDSC. The y axis depicts p-values for the difference between these two groups based on the AUCs within CTRP. Drugs with a p-value lower than 10�7 are

annotated.

(F) t test p-values on GDSC and CTRP for predictive LOBICOmodels. The scatter plot depicts the�log10 p-values for t tests that quantify the difference between

cell lines predicted to be sensitive and resistant according to LOBICO. The 43 drugs are sorted based on the t test p-value derived from the GDSC IC50s. P-values

are considered significant at p < 0.023 (1/43).
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Figure S6. Predictive Ability Assessment of Individual Molecular Feature Layers and Layer Combinations, Related to Figure 6
(A) Predictive performance (Pearson correlation of predicted versus observed IC50 values) of tissue label versus other feature layers in pan-cancer analysis with

Elastic Net.

(B) Percentages of all the predictive models (RpancancerR0:2 and RcancerspecificR0:25) across different cancer types and molecular data type. Absolute counts of

best performing models are indicated above the bars.

(C) Absolute counts of pan-cancer and cancer-specific models separated by number of feature layers.

(D) Heatmap split by cancer types and possible feature combination, showing the percentage of all predictive models.

(E) Count of all predictive models by data type combination separated in pan-cancer and cancer-specific analysis.

(F) Comparison of Random Forests versus Elastic Net performances in the pan-cancer analysis.

(G) Deriving pan-cancer threshold of predictive models by fitting a mixed Gaussian distribution across all build models, while assuming that one distribution is

informative and the other one is not. A model is considered predictive if the ratio of informative to non-informative is at least 9, resulting in a minimal Pearson

correlation of �0.2 pan-cancer models achieving high performances due to tissue bias.

(H) Deriving cancer-specific threshold in same manner as for pan-cancer, resulting in minimal Pearson correlation of �0.25. Negative correlations result from

overfitting and too small sample sizes.
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1. Variant identification in cell lines 
After sequencing variants were identified by comparison to a reference genome. A matched lympoblastoid 
line was used as the reference genome for a small subset (n=39) of the cell lines where this was available. 
Differences from the reference genome were identified using the CaVEMan and Pindel algorithms 
identifying substitution and small insertions/deletions, respectively (https://github.com/cancerit). The 
resulting variants were then screened against approx. 8,000 normal samples to remove sequencing artefacts 
and germline variants (428 in-house normal exomes, 6500 normal exomes (NHLBI GO Exome Sequencing 
Project, June 20th 2012 release), 1000 genomes project (29th March 2012 release)) as well as variants in the 
DBSNP database (only those with associated minor allele frequency).  
 
The remaining putatively somatic variants were classed as validated if present in other large scale cell-line 
sequencing datasets (the CCLE targeted sequencing (Barretina et al., 2012), NCI60 exome sequencing or 
previous capillary sequencing of 70 known cancer genes across 770 cell lines (Garnett et al., 2012)) and all 
such validated variants, together with other high quality variants (read depth ≥ 15 and a mutant allele 
burden ≥ 15% with no reads in the reference normal) were entered into the COSMIC cell line project 
database. Additional validation was carried out for putatively oncogenic ‘low confidence’ variants seen in 



	

genes listed in the Cancer Gene Census (v67). Several transcripts are listed in COSMIC for some genes and 
this results in duplication of variants when exported, such duplicates were removed from the dataset.  
 
All the BAM files have been deposited on the European Genome-phenome Archive (accession number: 
EGAS00001000978). 
 

2. Microsatellite instability data 
Analysis of microsatellite instability (MSI) was carried out according to the guidelines set down by "The 
International Workshop on Microsatellite Instability and RER Phenotypes in Cancer Detection and Familial 
Predisposition" workshop. Samples were screened using the markers BAT25, BAT26, D5S346, D2S123 
and D17S250 and were characterised as MSI if two or more markers showed instability. 
 

3. Selection of cancer driver genes 
As described in (Rubio-Perez et al., 2015) we identified a set of high confidence cancer genes and we 
filtered individual variants based on the their occurrence frequency in COSMIC (v68) 
(http://cancer.sanger.ac.uk/cosmic/), as follows. We analysed sequence data from 6,815 matched tumor 
normal sample sets collated from 48 tumor-resequencing cohorts covering 28 major human cancer types. 
Briefly, three methods identifying complementary signals of positive selection were used: (a) 
OncodriveFM (Gonzalez-Perez and Lopez-Bigas, 2012), which identifies genes biased towards the 
accumulation of mutations with high functional impact; (b) OncodriveCLUST (Tamborero et al., 2013a), 
which identifies genes with an abnormal clustering of mutations across the protein sequence; and (c) 
MutSigCV (Lawrence et al., 2013), which identifies genes mutated at frequencies significantly above the 
background mutation rate. Genes stated as non-expressed in the corresponding cancer tissue were excluded 
from the observation set but used for the construction of the background models. The analysis was 
performed for each tumor cohort and in a pooled sample set to increase the statistical power to detect 
lowly-recurrent drivers acting consistently across several tumor types. The results of each method were 
combined by following the rationale explained by (Tamborero et al., 2013b). This analysis identified 461 
cancer genes, which were classed as having evidence levels of A, B or C, as below and where genes with 
the former had the strongest evidence for selection and C the weakest. Level A = the gene exhibited more 
than one signal of positive selection (significant by more than one method) across one cohort of somatic 
mutations; Level B = the gene displayed only one single signal of positive selection in a certain cohort, and 
was a well-established cancer driver (i.e. included in the Cancer Gene Census); and Level C = the gene 
displayed only one single signal of positive selection, and was connected through a protein-protein or 
otherwise functional interactions (in the Reactome (Croft et al., 2014) or the PathwayCommons networks 
(Cerami et al., 2011)) to a gene with A or B evidence levels. 
 
A recent analysis of nonsense mutations across 7,651 diverse tumors identified 55 putative recessive 
oncogenes (Wong et al., 2014), 46 of which were present in the set of 461 genes described above. The 
remaining 9 genes were added to the list of cancer genes (AMOT, ASXL2, FTSJD1, LARP4B, MBD2, 
PHLPP1, RNF43, SACS and ZNRF3). Therefore the final set consisted of 470 high confidence cancer 
genes. 
 
We compared these results with the current version of the Cancer Gene Census, a manually curated 
catalogue of cancer genes, which is widely used as a benchmark (http://cancer.sanger.ac.uk/census). The 
current version (v72) contains 189 cancer genes driven by somatic point mutations, nonsense and frame 
shift mutations, of which 99 were identified in 1 or more of the 27 tumor types studied. The majority of the 
Cancer Gene Census genes not identified in this study are either found in tumor types not included in this 
analysis (e.g. basal cell carcinoma) and/or are mutated at very low frequency (e.g. FANCA in AML). 
 

4. Variants recurrence filter 
Variants from both the cell lines and tumors were screened against the ‘systematic screen data’ from 
COSMIC (v68) (derived from large-scale clinical datasets) to identify the recurrent variants most likely to 
contribute to carcinogenesis (‘driver mutations’). We defined recurrence for missense variants, which are 



	

generally activating and therefore ‘pile-up’ within a limited number of codons within the gene, differently 
to protein truncating mutations, which are inactivating events that occur across the footprint of the gene. 
For missense variants the number of non-synonymous variants in each codon of all genes within the 
systematic screen data in COSMIC (v68) was calculated, and any codon with ≥ 3 variants was classed as 
recurrently mutated. Inframe indels were treated in the same manner (although separately). With regards to 
protein truncating variants all genes that contained > 10 truncating variants (frameshifting indels, essential 
splice and nonsense mutations) within the systematic screen data were classed as recurrently inactivated. 
 

5. Identification of recurrently copy number altered chromosomal regions 
Segment copy number data was downloaded from the TCGA (Cancer Genome Atlas Research Network et 
al., 2013) (8,182 samples) and analysed with ADMIRE (van Dyk et al., 2013). The cohorts of COAD and 
READ were merged due to their high similarity in tissue type and response profile. The ADMIRE analysis 
results comprised copy number segments statistically different from expectation. Filter criteria were 
defined to focus the analysis on potential driver segments. The filter list required the segments to include at 
least one protein coding or antisense gene, but no more than 100 of them. It required the deletions to 
include an exon (a proxy for gene disruption) and amplifications to span a gene (as sub-genic 
amplifications are unlikely to be functional). The false discovery rate (FDR) controlled p-value was 
required to be smaller than 0.05, and the segment was required to be at recursion level two or higher unless 
it was a top-level segment. To ensure clinical relevance, the identified segment needed to be affected in at 
least 2.5% of the subjects. The latter was evaluated on two levels, using the overall background variance, 
and using the local background variance. The first was calculated on the log2 values not part of any 
identified segment, regardless of filtering. The second was calculated on the recursion level below the 
identified segment. 
 
Within each tumor type the segments obtained after filtering (Table S2D) were further compacted by 
pruning all overlapping segments such that only the shortest were retained. This results in a fairly concise 
set of segments per tumor type. The pan-cancer set of segments was derived from the entire collection of 
filtered cancer specific segments, but only the largest overlapping segment was retained (Table S2E). 
 
CEL files containing copy number profiles for all the cell lines in the panel (from SNP6.0 arrays) have been 
deposited on the European Genome-phenome Archive (accession number: EGAS00001000978) 
 

6. Cell line methylation profiling 
DNA samples were assessed for integrity, quantity and purity by electrophoresis in a 1.3% agarose gel, 
Picogreen quantification, and Nanodrop measurements. All samples were randomly distributed into 96 well 
plates. Bisulfite conversion of 500 ng of genomic DNA was performed using EZ DNA methylation kit 
(Zymo Research. Irvine) following manufacturer’s instructions. 200 ng of bisulfite converted DNA were 
used for hybridization on the HumanMethylation450 BeadChip (Illumina, Inc. San Diego). Briefly, 
samples were whole genome amplified followed by an enzymatic end-point fragmentation, precipitation 
and resuspension. The resuspended samples were hybridized onto the beadchip for 16 hours at 48ºC and 
washed. A single nucleotide extension with labeled dideoxy-nucleotides was performed and repeated 
rounds of staining were applied with a combination of fluorescently labeled antibodies differentiating 
between biotin and DNP. Fluorescent signal from the microarray was measured with a HiScan scanner 
(Illumina, Inc. San Diego) using iScan Control Software (V 3.3.29).  
 
Raw methylation profiles have been deposited on Gene Expression Omnibus (GEO) (accession number: 
GSE68379). 
 

7. Identification of informative CpG island and methylation data discretisation 
After pre-processing, the beta signal of each CpG island was analysed in the context of each cancer type C. 
Pre-processed beta-signals for primary tumors and cell-lines are available at 
http://www.cancerrxgene.org/gdsc1000/. 
 



	

Due to the high tissue specificity of the epigenomic profiles, a systematic Hartigan’s dip test for 
unimodality was executed on each of the beta signals across the tumor samples of C (for each C with 
methylation data available for at least 100 tumor samples), with the aim of identifying a set of CpG islands 
for which this signal did not distribute unimodally. Such CpG islands were deemed unlikely to be tissue-
specific, hence consistently hyper methylated or hypo methylated across all the C tumor samples. 
Additionally, they were considered informative, because by using their bimodal beta signal distribution is it 
possible to stratify the tumor samples from C into two classes of lowly and highly methylated samples, 
respectively. 
 
Once a set of informative CpG islands was identified, for each cancer type C, we found that for all of them 
the beta signal distribution was bimodal, hence we fitted a two Gaussians mixture model distribution to 
each of their beta signals, using the standard Expectation-Maximization (EM) algorithm. Finally, by 
examining the means of the two Gaussian distributions in the resulting fitted model, we labeled them as the 
generator of the low and high beta values, respectively. For each informative CpG islands we fixed a 
discretization threshold equal to the beta value for which the posterior probability of the high-beta 
distribution was at least 10-fold higher than that of the low-beta distribution. For each cancer type C for 
which methylation data for less than 100 tumor samples was available (DLBC, MESO, PAAD), or no 
methylation data was available from a matched tumor dataset (ALL, CLL, LCML, MB, MM, NB, OV, 
SCLC), we used as C-specific set the 19 CpG islands found informative in at least 2 other cancer types. In 
this case, a discretization threshold for a CpG island in this pooled set was computed as the median of all of 
its discretization threshold values obtained from the analyses of the cancer types with available tumor data 
(as explained above). 
 
The cancer specific threshold value of each informative CpG islands was finally used to discretize its 
corresponding beta values across both the tumor and the cell line samples from the cancer type under 
consideration, thus coding all the methylation datasets in a binary fashion (where 1 indicates a relatively 
high-level of methylation and zero means a low level). 
 
The R-code used to perform this analysis is available on request, all the intermediate results and plots are 
available at http://www.cancerrxgene.org/gdsc1000/, and the final list of informative CpG islands is 
reported in Table S2H. 
 

8. Transcriptional data pre-processing 
Microarray data generated as specified in the Experimental Procedures of the main text, was analyzed as 
described on the Human Genome U219 96-Array Plate using the Gene Titan MC instrument (Affymetrix). 
The robust multi-array analysis (RMA) algorithm (Irizarry et al., 2003) was used to establish intensity 
values for each of 18562 loci  (BrainArray v.10, (Dai et al., 2005)).  
 
Raw data was finally deposited in ArrayExpress (accession number: E-MTAB-3610). The RMA processed 
dataset is available at http://www.cancerrxgene.org/gdsc1000/.	
	
9. Tumors/cell lines integrated analysis: Frequency profile comparisons 
For each data-omic D, cancer type C, and sample type T (cell lines or tumors) a frequency profile P(D,C,T) 
was assembled, containing n entries: one for each of the cancer functional events (CFEs) involving 
genomic features from the D data-omic (i.e. high confidence cancer driver gene mutations, copy number 
alterations of recurrently amplified/deleted chromosomal regions, methylation status of informative CpG 
islands). The value of the i-th entry of this profile corresponded to the percentage of T samples from cancer 
type C in which the i-th CFE was present. 
 
Once all these profiles were assembled for all the possible (D,C,T) triplets, for a given D we computed 
Pearson’s correlation (R) scores between each pair of profiles P(D,C,tumors) and P(D,C,cell lines), for all 
the cancer type C for which D data was available for tumors and cell lines both. Grouping the resulting R-
scores based on the omic D and arranging them into pairwise comparison matrices MD (containing m rows 
and columns, with m = number of cancer types for which D data was available for cell lines and tumor 



	

both), which the generic entry i,j contains R(P(D,Ci,tumors), P(D,Cj,cell lines)), yielded the results showed 
in the heatmaps of Figure 2B and Table S2L. To avoid correlation boosts due to consistently high 
frequency of occurrence across all the cancer types and sample types, the CFE accounting for TP53-
mutations was excluded from these comparisons. Additionally to make the R-scores comparable across 
different cancer types, the same set of CFE (i.e. the pan-cancer set) was used to assembled each P(D,C,T) 
profile. 
 
The tendency of the R-scores computed between profiles of cell lines and tumors from the same cancer type 
to be higher than those computed between profiles of cell lines and tumors from different cancer types (i.e. 
the statistical difference between the on/off diagonal values of the three MD matrices) was quantified with a 
Welch’s t-test (yielding the box plots in Figure 2B). 
 

10. Tumors/cell lines integrated analysis: Knn classification performances and euclidean embedding 
To evaluate the performances of a K-nearest-neighbors classifier in assigning the correct cancer lineage to a 
given Cancer Functional Events (CFEs) frequency profile (computed as described in the previous section) 
by looking at its closest neighbor (i.e. the most correlated other profile), and to visualise all the profiles into 
a low dimensional space, the R-score computation was extended also to cell-line versus cell-line, and tumor 
versus tumor comparisons. In other words, for a given data omic D all the possible comparison 
R(P(D,C1,T1), P(D,C2,T2)), with C1 and C2 both belonging to the set of cancer types for which D data was 
available for cell lines and tumors both and T1 and T2 can be both cell lines or tumors. After this, all the 
resulting R-scores were scaled in [0,1] on a data-omic basis, then averaged across the different omics. The 
resulting final averaged set of R-scores (Table S2M) was finally used to compute the performances of a K-
nearest neighbor classifier (Figure S2E) and to embed all the profiles into a bi-dimensional space where 
their pair-wise distance is inversely proportional to their pair-wise correlation (Figure S2D). This was 
obtained by making use of the t-SNE tool (Van der Maaten and Hinton, 2008), by giving as input to the 
dimensional scaling algorithm the final averaged set of R-scores, and performing 5,000 optimization-
iterations with a perplexity parameter equal to 50% of the number of points to be embedded (i.e. the total 
number of cell lines and tumors frequency profiles). 
 

11. Tumors/cell lines integrated analysis: identification of classes of samples and selected functional 
events 
Two multi-omics datasets were assembled, respectively for cell lines and tumors, by pooling together all 
the Cancer Functional Events (CFEs) occurrence profiles across all the cell line and tumor samples and the 
three data omics layers (i.e. mutations, copy number alterations and hypermethylations). Subsequently 
these two datasets were merged together (Table S3B) and modeled as a bipartite network G (Table S3C, in 
simple interaction format (sif)), where the first class of nodes corresponded to CFEs, the second class of 
nodes corresponded to samples (both cell lines and tumors) and a link connected the node corresponding to 
the i-th CFE to the node corresponding to j-th sample, if the i-th CFE occurred in the j-th sample. A fast 
community detection algorithm, based on a greedy strategy (Newman, 2004) was then applied to this 
network, yielding 4 communities (i.e. groups of densely interconnected nodes), or classes, containing both 
CFE and sample nodes. 
 
12. Tumors/cell lines integrated analysis: enrichment analysis of event types across the identified 
classes 
Given a class C = {S,E}, where S is a set of sample-nodes and E is a set of cancer functional event (CFE) 
nodes, the statistical enrichment of a given CFE type T (i.e. mutated high confidence cancer genes, 
amplified and delete recurrently copy number altered chromosomal regions, and hypermethylated 
informative CpG islands) in C was quantified through a p-value assignment derived from an 
hypergeometric test with parameter x, k, n, N, where N was the total number of nodes corresponding to 
CFEs of any type in the bipartite network G (modeling the combined cell-lines/tumors dataset); n was the 
total number of nodes corresponding to CFEs of type T in in G; k = |E| was the total number of CFE nodes 
in class C; x was the total number of nodes corresponding to CFE of type T in class C. 
 



	

13. Tumors/cell lines integrated analysis: enrichment analysis of individual cancer functional event 
occurrences in a given class 
Given a class C = {S,E}, where S is a set of sample nodes and E is a set of Cancer Functional Event (CFE) 
nodes, and an individual CFE e belonging to E. The number of occurrences of e across all the samples in 
the combined datasets was equal to the degree of the corresponding node in G, defined as above, (i.e. 
number of sample nodes connected to the e node). Then the statistical enrichment of these occurrences in 
class C was computed through a p-value assignment derived from an hypergeometric test with parameter x, 
k, n, N, where N was the total number of occurrences of all the CFEs across all the samples of the combined 
cell-line/tumor datasets (equal to the total number of links in the network G); n is the total number of 
occurrences of e in the combined cell-line/tumor datasets (equal to the degree of the e node in G); k was the 
total number of links between nodes in S and nodes in E (i.e. the total number of links in class C); x was the 
total number of links connecting the e node to nodes in S (i.e. the total number of links connecting e to the 
sample nodes of C). 
 
14. Cell viability assay, dose response curve fitting model, comparison across replicates and 
compound cluster analysis 
The majority of the screened compounds were sourced from SelleckChem. We have adopted industry 
standards for the storage of compounds under inert conditions (low O2, dark, low humidity) to maximize 
their stability. Compound stability and precipitation have been monitored through visual inspection of 
compound solutions and using an Echo acoustic dispenser plate audit function. Furthermore, the same 10 
cell lines have been screened every 2 - 3 months with compounds to confirm that compound activity was 
retained. 
 
Cells were seeded in 384-well microplates at ~15% confluency in culture medium with 10% FBS and 
Penicillin/Streptomycin. The optimal cell number for each cell line was determined to ensure that each was 
in growth phase at the end of the assay (~85% confluency). For adherent cell lines, after overnight 
incubation cells were treated with either 9 concentrations of each compound (2-fold dilutions series), or 5 
concentrations of each compound (4-fold dilution series), using liquid handling robotics (Beckman 
Coulter), and then returned to the incubator for assay at a 72-h time point. Cells were fixed in 4% 
formaldehyde for 30 minutes and then stained with 1µM of the fluorescent nucleic acid stain Syto60 
(Invitrogen) for 1 hour. For suspension cell lines, cells were treated with compound immediately following 
plating, returned to the incubator for a 72-h time point, then stained with 55 µg/ml Resazurin (Sigma) 
prepared in Glutathione-free media for 4 hours. Quantitation of fluorescent signal intensity is performed 
using a fluorescent plate reader at excitation and emission wavelengths of 630/695 nM for Syto60, and 
535/595 nM for Resazurin.  
 
All screening plates were subjected to stringent quality control measures and to assess the quality of our 
screening a Z-factor score comparing negative and positive control wells was calculated across all 
screening plates. 
 
In estimating the characteristic IC50 dose-response value, all data is fitted in a single model (Vis et al., 
2016). The assumed dose-response model is a two-parameter sigmoid that models the relative viability. The 
latter is obtained by scaling the observed intensities to the mean intensities of the control wells. Since the 
assumed response is strictly between 0 and 100% relative viability, the values are capped at 0 and 100. 
Particularly, in this non-linear mixed effect model, it is assumed that the position and shape parameters 
vary. 
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The parameters !!"# and !!!!"# are allowed to vary across the cell lines and for each cell line-drug pair a 
drug specific deviance is accommodated. On the cell line level, the two parameters are assumed to be 
correlated. The variation due to the drug is nested in the cell line level. The model is fitted using The R 
Project for Statistical Computing package nlme (Pinheiro et al., 2007). The x-positions represent the 
concentration dilution series, in which nine is the highest and one is the lowest screening concentration, 
such that a unit decrease translates to a two-fold dilution. Doubling the interval on x accommodates 



	

alternative designs with five concentration points and four-fold dilutions. The interpretation of the dose-
response curve as a function of the dilution series removes the scaling differences in the maximum test 
concentrations between the drugs, which ranges from the low nanoMolar (Bryostatin 1) to the milliMolar 
(DMOG) range. Note that the IC50s are recorded as the natural logarithm of the half-maximal inhibitory µM 
concentrations 
 
To evaluate reproducibility of results we screened 7 compounds in biological replicates observing a median 
Pearson correlation between patterns of IC50 values across cell lines equal to 0.65 when considering all the 
7 compounds, and equal to 0.78 when considering the compounds for which the majority of compared IC50 
values fell within the range of tested concentrations in at least one replicate (Figure S1). Furthermore, the 
sets of sensitive (IC50 ≤ maximal tested concentration) and resistant (IC50 > maximal tested concentration) 
cell lines were highly overlapping across replicates, yielding statistically significant Fisher exact test p-
values for all the 7 compounds. 
 
Finally we performed a cluster analysis of the screened compounds based on similarity of their AUC 
profile across cell lines. Cell lines and compounds with less than 50% of AUC values available were not 
considered in this analysis and remaining missing AUCs were imputed with a k-nearest-neighbour (knn) 
approach. The first filtering reduced the original dataset (containing AUC values for 81% of all the possible 
compound/cell-line combinations) from 265 drugs and 990 cell lines to 223 drugs and 925 cell lines (with 
AUC values for 92% of the compound/cell-line combinations). On this dataset, the remaining 8% of 
missing AUCs were imputed through knn. The cluster analysis was performed through consensual non-
negative matrix factorization (Brunet et al., 2004), with clustering cardinalities k ranging in [5,30], a 
maximal number of 500 iterations in each clustering and 20 clustering trials for each k. The optimal number 
of clusters was determined as a trade-off between the best cophenetic coefficient across the different values 
of k and the maximal k. Results are reported in Table S1G, together with a silhouette width score for each 
samples, quantifying how much it is well-placed in its cluster. 
 
 
15. ANOVA model, effect-size, significance and p-value correction 
A drug–response vector consisting of n IC50 values from treatment of n cell lines was constructed for each 
drug. The model was linear (no interaction terms) with dependant variables represented by the described 
vector and factors including tissue type, and screening medium (for the pan-cancer analysis only), micro-
satellite instability status (for the cancer types with positive samples for this feature) and the status of a 
CFE (one model for each CFE). These factors were selected based on a preliminary analysis assessing their 
impact on differential drug response in the pan-cancer context as well as for all the cancer types included in 
the study. This was performed through a type-II error ANOVA modelling drug response as a linear 
combination of the tissue of origin of the cell lines (only in the pan-cancer context), screening medium (i.e. 
DMEM or RPMI/F12) and growth properties (i.e. adherent, semi-adherent or suspension) (Table S1E). We 
observed that for growth properties these variables are essentially homogenous for cell lines within a 
specific cancer type, and so the contribution of these factors to the cancer-specific analysis is negligible.  In 
contrast, media type has an impact on the response to several compounds when performing a pan-cancer 
analysis. 
 
For the pan-cancer analysis, the union of all the cancer-specific CFEs (across omics layers and cancer 
types) was used. To reduce the number of tests, the set of informative CpG islands were excluded from this 
analysis. Additionally, only CFEs occurring in at least 3 cell lines were considered and CFEs with identical 
pattern of positive occurrence were merged together, thus resulting into a final set of 677 (individual or 
combined) features across 987 cell lines (screened against at least 1 drug). In order to include as many cell 
lines as possible in the pan-cancer analysis (even those not matching a TGCA type), values of the tissue 
factor were determined by looking at the GDSC.description_1 label in the cell lines annotation file (Table 
S1E). Whereas for the cancer-specific analysis, only cell lines with a matching TCGA label were used. The 
tissue factors corresponding to ‘digestive_system’ and ‘urogenital_system’ were further sub-classed by 
using the more specific GDSC.description_2 label.  
 
For all the tested gene-drug associations, effect size estimations versus pooled standard deviation 
(quantified through the Cohen’s d), effect sizes versus. individual standard deviations (quantified through 



	

two different Glass deltas, for the CFE positive and the CFE negative population respectively), CFE p-
values and all the other statistical scores where obtained from the fitted models. A CFE-drug pair was 
tested only if at least three cell lines were contained in the two sets resulting from the dichotomy induced 
by the CFE-status (i.e. at least 3 positive cell lines and at least 3 negative cell lines), for the pan-cancer and 
all the cancer-specific analyses as well. 
 
The resulting p-values were corrected (all together those obtained in the pan-cancer analysis and on a 
cancer type basis those obtained in a given cancer-specific analysis), with the Tibshirani-Storey method 
(Storey and Tibshirani, 2003). A p-value threshold of 10-3 and a false discovery rate threshold equal to 25% 
were finally used to call significant associations across all the performed analyses. A pan-cancer and 18 
cancer-specific (where at least 15 cell-line samples and sequencing and copy-number variation data was 
available for primary tumors) analyses were performed. 
 
A Python package implementing the ANOVA analysis described in this section is available at   
http://gdsctools.readthedocs.io, together with detailed instructions on how to reproduce the results 
presented in our manuscript. 
 
16. ANOVA down-sampling studies 
This analysis aimed to assess whether the tendency of the cancer-specific interactions to associate with 
larger effect sizes (compared to the pan-cancer interactions) originates solely from the population-size 
reduction. Four cancer types (BRCA, COAD/READ, SKCM and LUAD) were selected because they are 
among those with the largest numbers of cancer specific associations and more than 20 available samples. 
 
For a cancer type C with n available samples, 10 down-sampled pan-cancer ANOVAs were executed. To 
perform each of these analyses, a simulated cell line dataset was composed by randomly selecting n 
samples from the pan-cancer input matrix of features and their columns corresponding to their 
corresponding positive CFEs. Then effect-sizes of the resulting ANOVA tests (for fixed levels of 
significance) where compared across pan-cancer, down-sampled and C-specific analyses. As expected, all 
the tested cancer types showed a strong consistent increase of effect size due to the down-sampling. 
Nevertheless, within the cancer specific analyses, this increment was significantly more evident and less 
variable. 
 
A second down-sample ANOVA study was conducted to determine how many of the statistical significant 
and large-effect pharmacogenomic interactions (p-value < 0.001, FDR < 25%, Glass Δs > 1) reported in our 
study (S) would be still detectable if using reduced cell line sub-sets. To this aim, for n = 500, 300, 150, and 
60, and a number of iterations k = 1,…,50, n cell lines were randomly selected from the whole panel 
(reported in Table S1E), in a way that the spectrum of values of the tissue factor used in the pan-cancer 
ANOVA (assembled as described in the supplementary experimental procedures section 15), was 
preserved. On this set of cell lines a pan-cancer and 18 cancer-specific ANOVAs were performed. The 
number of significant and large-effect interactions Sk, were then determined in each of these k iterations and 
the overlap between Sk and S assessed. The average cardinalities of these overlaps across all the iterations 
were then collected for all n values, and reported in Figure S4D, S4E and S4F. These results show that only 
a limited number of the interactions identified based on an analysis of the whole panel of 991 screened cell 
lines would have been still detectable on n cell lines, with an average loss of 95% of high confidence 
cancer specific interactions and a loss of 70% of high confidence pan-cancer interactions already at the first 
n (= 500, Figures S4D, S4E and S4F). 
 
17. Pathway activity signatures and inference (SPEED analysis) 
To infer the activity of different signaling pathways, we used activation signature genes provided by the 
SPEED platform (Parikh et al., 2010). These are derived from multiple activation-response experiments 
using a total of 215 perturbations performed in 77 different experiments and covering 11 different signaling 
pathways [URL: http://speed.sys-bio.net/cgi-bin/database_statistics.py]. We chose this platform in favor of 
more recently derived breast cancer activation signatures (Gatza et al., 2010; 2014) to cover a large 
variation in experimental conditions and obtain signatures that are the consensus between different tissues. 
Those signatures represent genes that are differentially expressed when a pathway is perturbed. Comparing 
the expression level of those perturbation-response genes in the basal expression profile of different cell 



	

lines gives us insight about the constitutive activity caused by mutations, copy number alterations, or other 
signaling aberrations. This activity may represent well-known mutational activations, but more importantly 
can also represent signaling activation for which there is no clear mutational marker available. 
 
In order to derive consensus signature sets of genes for 11 different pathways the authors of (Parikh et al., 
2010) defined the following quantities: z-scores – the number of standard deviations a certain gene is 
expressed in the perturbed condition compared to the basal condition; overall expression – the percentile of 
top expressed genes that a gene needs to belong to in order to be considered; overlap – in which percentage 
of experiments this needs to be the case; and uniqueness – if a given gene can be associated to more than 
one pathway. 
 
In the original SPEED publication the authors suggested to use a constant cutoff of z < 1%, expression > 
50%, overlap > 20% and allowing non-unique genes. However, they only evaluated gene lists by their 
overlap with Gene Ontology categories, and not based on how well their enrichment scores are able to 
differentiate between microarrays where a given pathway perturbation is present and those where it is 
absent. This resulted in pathways that were highly correlated, as shown in Figure S5A. To counteract this, 
we performed a scan of the four adjustable platform parameters to optimize the order obtained by GSEA 
scores between control and stimulated experiments. The set of control arrays comprised all the un-
stimulated arrays in the database, and the stimulated set all arrays in the database where a certain pathway 
was perturbed. This way, we allow cross-activation of pathways while minimizing the fit to random 
differences in gene expression by different initial conditions. We trained the parameters using 5x cross 
validation and selected the model with the best fit on the part of the data set not used for training. As a 
performance measure we used the area under the precision-recall curve that was obtained by the order of 
raw GSEA scores. Table S5B shows the improved separation between basal and pathway-perturbed arrays. 
We calculated the raw basal GSEA scores for all cell lines using the gene lists obtained. As we do not have 
a background set, we transformed the resulting bimodal distribution for each pathway across all cell lines 
into a normal distribution using a kernel density estimator (kCDF function from the R package sROC) 
followed by the transformation log(x/(1 − x)). 
 

18. LOBICO to predicted drug response 
As binary input features we used the set of cancer functional events (CFEs), excluding iCpGs and including 
gene expression derived binary pathway activity scores computed with the SPEED framework (Parikh et 
al., 2010) as detailed in SEP17. 
 
Each of the 11 SPEED signatures resulted in two binary features: one representing upregulation by 
thresholding the continuous SPEED activity scores at a value of 3, and one representing downregulation 
(thresholding at a -3). These threshold values corresponded to three standard deviations above/below the 
mean of the normalized scores. The output feature was the response of the cancer cell lines to an anti-
cancer drug as measured by the IC50, discretized as detailed in below. 
 
LOBICO was employed in a pan-cancer and 18 cancer-specific analyses and run for each drug individually, 
when the number of sensitive cell lines was 5 or higher. A cross-validation strategy was employed and 
feature importance scores derived as detailed in SEP19. Statistical tests to identify predictive models, 
selection of interesting pairwise AND and OR combinations and representative cases highlighted in Figure 
5C, are detailed in the SEP20 to 22. 
LOBICO finds the optimal logic function of the binary features that minimizes the error, defined as the sum 
of the weighted misclassified cell lines. The weight is proportional to the binarization threshold distance. 
Consequently, misclassification of cell lines close to the binarization threshold does not affect the 
optimization criterion, whereas there is a large penalty for misclassifying cell lines that are extremely 
sensitive or resistant to the drug. The total weight of each class is normalized in order to balance class 
importance. LOBICO was constrained to find solutions with a specificity of 0.8 or higher and applied with 
the same eight different complexities as in (Knijnenburg et al., 2016) ranging from simple single-predictor 
models to multi-input AND and OR models. 
 



	

Note that the IC50s were recorded as the natural logarithm of the half-maximal inhibitory µM 
concentrations. Although LOBICO uses the continuous IC50 values, it is necessary to define a binarization 
threshold. This threshold is used to divide the cell lines into two classes: the sensitive cell lines and the 
resistant cell lines. We employed the procedure described in (Knijnenburg et al., 2016) to find the 
binarization threshold for each of the drugs. The binarization threshold for each of drugs was determined 
using all cell lines in the pan-cancer dataset.  
 
There is one minor change in the ‘upsampling’ step of this procedure with respect to (Knijnenburg et al., 
2016): In (Knijnenburg et al., 2016), the standard deviation of an IC50 was derived from the confidence 
interval of the IC50. Here, the standard deviation of an IC50 was set 0.2, which was the typical across all 
IC50s. This adjustment was made because we employed a different curve fitting algorithm compared to our 
previous work (Garnett et al., 2012). The new curve fitting algorithm does not provide a confidence interval 
per IC50. Additionally, parameter t was set to 0.03 instead of 0.05 in (Knijnenburg et al., 2016).  
 

19. LOBICO: cross-validation and feature importance scores 
For each LOBICO analysis, a stratified 5-fold cross-validation (CV) strategy was employed. The 5-fold CV 
was repeated 10 times for the cancers-specific datasets and 5 times for the pan-cancer dataset with different 
random seeds for assigning samples to test and training folds. We derived feature importance (FI) scores 
for each of the binary features for each inferred logic model of a certain model complexity. Additionally, 
we computed aggregated FI scores, which are based on all models complexities that have a CV error equal 
or smaller than the CV error for the single-predictor model.  
 

20. LOBICO: statistical test to identify predictive models 
We implemented a straightforward statistical test to decide whether an inferred logic model performed 
significantly better than random. First, we selected the optimal model complexity of the employed logic 
model, i.e. the model complexity with the lowest average CV error. Then, we took the inferred class labels 
(sensitive (1) and resistant (0)) of the inferred logic model (with the optimal complexity) when applied to 
the test folds in the CV. We did this for each of the repeats, and counted the average number of predicted 
sensitive (1) cell lines across the repeats, say x. We created 1,000,000 binary vectors with the original 
length (number of cell lines) with ones in x random positions and recorded the error (i.e. the sum of the 
weighted misclassified cell lines) associated with each permutation. The permutated errors, the mean of 
which is 0.5, were compared to the original CV error. The permutation test P-value was computed using 
EPEPT (Enhanced P-value Estimation for Permutation Tests) (Knijnenburg et al., 2011; 2009). This was 
done for all 1112 logic models. We derived Q-values for each of the 1112 P-values. A logic model was 
called ‘predictive’ when both its p-value and q-value (FDR) were smaller than 0.05. The performance of 
the inferred logic models was measured using the normalized CV error. This error is between 0 and 1, and 
is 0.5 in the case of randomly predicting the sensitivity of cell lines. 
 

21. LOBICO: finding interesting pairwise AND and OR combinations 
We identified relevant AND and OR combinations of CFEs that explain drug sensitivity. We considered 
the AND and OR pairs that met the following constraints across all repeats (5 repeats for the pan-cancer 
dataset and 10 repeats for the cancer-specific datasets): 

• The pairwise combination should be present in the logic formula of the optimal or sub-optimal 
solution of a predictive model (p-value < 0.05, q-value <0.05), either in the logic formulas 
associated with the optimal model complexity (according to CV) or in logic formulas with lower 
model complexity. 

• The pairwise combination should be present in the predictive model of a drug in at least 4 of the 6 
folds (the 5 CV training folds plus the model on the complete dataset).  

• The pairwise combination should be found across at least 2 drugs in the same drug class. 
• The feature importance (FI) score of each member of the pair should be higher than 0.03. 
• The sum of the feature importance scores of both members of the pair should be higher than 0.10. 

 



	

22. LOBICO: plotting a selected group of AND and OR combinations 
The arrows that are highlighted in color and annotated with text in Figure 5C meet the following constraints 
(applied in this order): 

• The drug associated with the arrow is clinically approved as notated in Table SF1. 
• The difference in the F-measure (harmonic mean of precision and recall) when going from the 

single predictor model to the combination is at least 0.04. 
• The improvement in precision or recall when going from the single predictor model to the 

combination is at least 0.10. 
• At most one feature in a combination can be a binarized pathway activity (SPEED signature).  
• Per quadrant, a combination cannot occur more than twice. (The same combination can occur for 

different drugs and different cancer types.) In case of more than two instances of the same 
combination, we selected the two with the highest differential F-measure. 

• Per quadrant, a drug cannot occur more than once per cancer type. In case of more than one 
instance of the same drug for a particular cancer type, we selected the one with the highest 
differential F-measure. 

• Per quadrant, a drug cannot occur more than three times. In case of more than three instances of 
the same drug, we selected the three with the highest differential F-measure. 

• Per quadrant, no more than two colored arrows per cancer type are allowed. In case of more than 
two instances of the same cancer type, we selected the two with the highest differential F-measure. 

 
The grey arrows in the background represent all combinations mentioned in the main text and are available 
in Table S5F. However, for clarity at most 10 grey arrows were plotted per cancer per quadrant based on 
the differential F-measure. 
 

23. Model selection, filtering and projection on primary tumor data 
The models shown in Figure 7B have been selected as follows: from the whole list of predictive models in 
Table S5E, we selected those (i) obtained in cancer-specific analyses, (ii) guaranteeing a cross-validation 
error lower than 0.25, (iii) not including SPEED pathway activity scores, (iv) not including negations only 
as terms, (v) not including (for the cancer type under consideration) not-cancer-specific cancer genes, (vi) 
referring to cancer types for which primary tumor samples with both mutations and copy number alteration 
data were available. 
 
From the selected models we removed terms containing features whose relative importance is lower than 
0.05, and dropped out the resulting filtered models with only one input feature in input. 
The final list of selected models is contained in Table S7C. From this list, those models for which the 
difference between the percentage of primary-tumor and cell-line samples satisfying them was greater than 
25 were not visualized in Figure 7B. 

 

24. Validation of the ANOVA interactions and LOBICO models on independent datasets 
 
Drug response data in the Cancer Cell Line Encyclopaedia (CCLE) (Barretina et al., 2012) dataset (latest 
version) was downloaded from the CCLE web-portal: 
http://www.broadinstitute.org/ccle/data/browseData?conversationPropagation=begin 
 (file: CCLE_NP24.2009_Drug_data_2015.02.24.csv: Pharmacologic profiles for 24 anticancer drugs 
across 504 CCLE lines, 24-Feb-2015). 
 
Drug response data in the Cancer Therapeutic Response Portal version 2 (CTRP) dataset (Seashore-Ludlow 
et al., 2015) was downloaded from the supplementary information files of the corresponding main 
publication, available online on the Cancer Discovery journal web-site at: 
http://cancerdiscovery.aacrjournals.org/content/early/2015/10/14/2159-8290.CD-15-0235/suppl/DC1 
(Supplemental Tables S1 – S7, file: 145780_2_supp_3058746_nrhtdz.xlsx). 
 



	

From these files, identifiers of screened cell-lines and compounds in the two studies were extracted and 
mapped to the cell-lines and compound identifiers of our study (refered to as GDSC). This resulted in 389 
overlapping cell-lines, the CLGDSC-CCLE set (Table S4E), and 15 overlapping compounds for the CCLE, the 
DGDSC-CCLE set (Table S4F), and 466 overlapping cell-lines, the CLGDSC-CTRP set (Table S4I), and 76 
overlapping compounds for the CTRP, the DGDSC-CTRP set (Table S4J). All the available drug response 
indicators included in the CCLE and CTRP where extracted for all the cell-lines and compounds in CLGDSC-

CCLE and DGDSC-CCLE from the CCLE file mentioned above, and for all the cell-lines and compound in 
CLGDSC-CTRP and DGDSC-CTRP from the CTRP file mentioned above. For CCLE, the drug response indicators 
are the half-maximal inhibitory concentrations (IC50s) and the Compound Activity Areas, defined as 1 – the 
area under the drug/cell-line dose response curve (AUC). For the CTRP the drug response indicators are the 
AUCs; IC50 values were not available for the CTRP study. These drug response indicators are contained in 
Table S4G and Table S4K, side-by-side with corresponding IC50s and AUCs from the GDSC, together with 
information on the range of tested concentrations across the considered screenings. 
 
To validate the pan-cancer and cancer-specific interactions identified through ANOVA we took the 
following strategy: 
 
For each of the studies CCLE and CTRP, here denoted by S: 
 

i) Pan-cancer and cancer-specific high-confidence pharmacogenomic interactions IGDSC-S were 
extracted from those originally identified in the GDSC (Table S4C). This subset IGDSC-S included 
only interactions involving compounds in the DGDSC-S set, with an ANOVA p-value < 10-3, both 
Glass Δs (measures of the effect size of the interaction) > 1, and FDR < 25%. This resulted in a 
subset of 32 interactions for IGDSC-CCLE and 106 interactions for IGDSC-CTRP. 

 
ii) Each interaction i = (CFE, Compound) in IGDSC-S was retested two times on the subset of cell 
lines in CLGDSC-S using IC50 values from the GDSC, and the drug response indicator from the study 
S, i.e. IC50 values if S = CCLE, and AUC values if S = CTRP. These newly performed ANOVA 
tests were executed using the same settings of the GDSC ANOVA described in SEP 15. 
Specifically, we used tissue of origin, screening medium, micro-satellite instability (MSI) in 
addition to the cancer functional event (CFE) under consideration as co-factors for pan-cancer 
interactions, and only MSI in addition to the CFE under consideration for cancer-specific 
interactions. In the case that in the GDSC or in S, there were not sufficient drug response 
observations were available for the cell lines in CLGDSC-S (threshold values for the ANOVA factors 
described in SEP 15) then i was deemed not-testable on the study under consideration, i.e. GDSC 
or S. For S = CCLE, 22 out of 32 interactions in IGDSC-S were re-testable on both GDSC and 
CCLE. For S = CTRP, 70 out of 106 interactions in IGDSC-S were re-testable on both GDSC and 
CTRP. In each test, the status of the CFE under consideration was determined using data from the 
GDSC. 
 
iii) Each of the interactions in IGDSC-S that was re-testable on both the GDSC and S when restricting 
the analysis on CLGDSC-S, was considered validated on S if both the re-performed ANOVA tests 
yielded a p-value smaller than a given threshold P and the test had the same ‘interaction sign’, i.e. 
increased drug sensitivity or drug resistance. Different threshold values for P values were used: 1 
(i.e. concordance of the interaction sign only), 0.25 (lax threshold), and 0.05 (stringent threshold). 

 
iv) To assess the overall reproducibility of significant ANOVA associations in GDSC and S, we 
built and analyzed contingency tables that compare counts of significant interactions in GDSC and 
S. Specifically, for each threshold value of P, we assembled a 3x3 table as follows. The rows of a 
3x3 contingency table accounted for the total number of testable interactions that were 
significantly sensitive (1st row), non-significant (2nd row), and significantly resistant (3rd row), on 
CLGDSC-S when using IC50 values from the GDSC, whereas the columns accounted for the total 
number of testable interactions that were significantly sensitive (1st column), non-significant (2nd 
column), and significantly resistant (3rd column), on CLGDSC-S when using the drug response 
indicator values from S. Additionally, we derived 2x2 contingency tables from the 3x3 matrices by 
discarding the central row and column, i.e. accounting only for significant interactions in both the 



	

studies. Fisher exact tests were performed on these contingency matrices for all the considered 
threshold P values. 
 
v) Finally, a Pearson correlation test was performed between the two patterns of ANOVA –log10 p-
values resulting from the two re-performed tests described in ii, across all the testable interactions 
in IGDSC-S. 
 

Results from this analysis have been assembled in Table S4H and Figure S4J for S = CCLE, and Table S4L 
and Figure S4K for S = CTPR. 
 
To validate the LOBICO models we followed a similar strategy. Here, we focused solely on the CTRP 
dataset, since the CCLE has only 15 drugs in common with the GDSC. Specifically, we ran LOBICO for 
the 466 common cell lines between the GDSC and the CTRP (Table S4I) for each of the 76 common 
compounds (Table S4J) using the same settings as for the original analysis (described in paragraphs 18 to 
22). Of note, the GDSC contains rescreens or duplicate screens for 10 of the 76 compounds resulting in a 
total of 86 LOBICO analyses.  
 
For each of the 86 analyses, we selected the best model according to cross-validation (CV) and applied that 
model to the cell lines dividing them into a group that is predicted to be sensitive and a group that is 
predicted to be resistant. Then, we performed a t-test comparing these two groups both for the GDSC IC50s 
as well as for the CTRP AUCs.  The t-test was only performed when both groups had at least 5 cell lines. 
 

25. Machine learning models 
Predictive models of drug activity (i.e. IC50) for each compound, using 4 different molecular data types and 
their combinations, were built across 18 cancer types and across a pan-cancer setting with Elastic Net (EN) 
and Random Forests (RF), for a total of 137,726 models. All models were 1,000 times bootstrapped, with 
80% of the data used for training, 10% for cross-training (determining model parameters) and the 
remaining 10% exclusively for testing. Based on the cross-training the EN mixing parameter (between 0 
and 1, in intervals of 0.1) and number of input features were fitted for the EN regression, using the R-
package ‘glmnet’ version 2.0-2. The RF implementation was based on R-package ‘randomForest’ version 
4.6-10 and during cross training the number of trees was determined (between 10 and 1000, in intervals of 
10). Using the test set, we estimated predictive power by calculating Pearson correlation between the 
predicted and observed drug activity. Models are assumed predictive if their observed Pearson correlation 
has a likelihood of over 90% to be derived from the informative versus the non-informative distribution 
across all models, which for pan-cancer and cancer-specific setting are ~0.2 (Figure S6G) and ~0.26 
(Figure S6H), respectively. 
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Supplemental Data S1 

A. Cancer functional events covered by the cell lines 
 
The median percentage of cancer-type specific (C-S) driver genes (CGs) found mutated in at least one 
cell line sample across individual cancer types was equal to 80% (min = 0% for CLL and max = 100% 
for LUAD, BRCA, GBM, OV, NB, ALL, LIHC) when considering CGs mutated in at least 5% of the 
tumor samples from the cancer type under consideration (Figure 2A). The median value was 22% (min 
= 3% for CLL, max = 83% for ALL) (Figure S2B) when considering all the CGs. 
 
When considering C-S RACSs amplified in at least 5% of the primary tumor samples from the 
corresponding cancer type, the median coverage across cancer types was equal to 88% (Figure 2A) 
(min = 0% for ACC, THCA, LAML, KIRC and MESO, max = 100% for CESC, DLBC, ESCA, BRCA, 
LUAD, and PAAD). The median value was equal to 80% (min = 0% for ACC, LAML, KIRC and 
MESO, max = 100% for DLBC, BRCA, ESCA, and PAAD), when considering all the C-S RACSs 
(Figure S2B). 

  
Similarly, the median percentage of coverage for C-S recurrently deleted RACSs (i.e. deleted in at least 
5% of the tumor samples from the corresponding cancer type), was equal to 78% (Figure 2A) (min = 
0% for ACC, max = 100% for PAAD, LUAD and MESO). The median value dropped to 70% when 
considering all the deleted RACSs (Figure S2B) (min = 0% for ACC, and max = 100% for PAAD, 
LUAD, and MESO, in both the cases). 
 
All the C-S sets of informative CpG islands (iCpG) with a finite discretization threshold (computed as 
detailed in the SEP) were observed as hypermethylated in at least one cell line sample from the cancer 
type under consideration (according to the same threshold), but for LGG (83%) and PRAD (90%). 
 
In many of the cases where cancer functional event (CFE) coverage in the cell line panel was modest, a 
CFE was either altered at a very low frequency in patient tumors of the relevant cancer type, or few cell 
lines of the relevant cancer type were available. For example, CGs absent in the corresponding cell 
lines had a median frequency of 1.30% in primary tumor samples (Table S2K) (min median = 0.35% 
for BRCA specific CGs missing in BRCA cell lines, max median = 11% for for DLBC specific CGs 
missing in DLBC cell lines) (Table S2K). Similarly, the majority of C-S RACSs absent in cell lines 
had a low alteration frequency in the primary tumors (median average alteration frequency across 
cancer types = 4.3%, min = 0.04% for LUAD, max = 7.11% for PRAD) (Figure S2B and Table S2K). 
Furthermore, many CGs absent in the cell lines are associated with less strong evidence for positive 
selection (56% classed as Level C, 23% classed as Level B), with the median composition of the three 
confidence levels across cancer types = 54% C, 24% B, 23% A (Figure S2B and Table S2K). 

B. Classes of cancer functional event and enrichment analysis 
 
By applying the method described in (Ciriello et al., 2013) to our integrated dataset of tumor and cell 
lines, as described in the experimental procedures and the extended experimental procedures (SEP) 11, 
we identified 4 classes of Cancer Functional Events: M, CD, CA, and H. 
 
Class M is enriched for Cancer Genes (CGs) mutations, classes CD and CA for recurrently altered 
chromosomal segments (RACSs) copy number alterations, and class H for hypermethylated 
informative CpG islands (iCpGs). All these feature types are defined in the experimental procedures 
and the SEP3, 5, and 7. 
 
The M class represented 34% of samples (36% of the primary tumors and 28% of the cell lines). It was 
enriched for CG mutations (Fisher exact test (FET) p-value = 5.41 x 10-130) and was dominated by cell 
lines and tumors from THCA (95% of the tumors and 63% of the cell lines), SKCM (73% of the 
tumors and 73% of the cell lines), and COAD/READ (80% of the tumors and 86% of the cell lines) 
(Figure 3C, Table S3D, and Table S3E). 
 



When looking at enrichments of individual CFEs in class M (as detailed in the SEP12), we found that 
the top enriched 10 mutations involved: BRAF, APC, PTEN, ANK3, KRAS, CTNNB1, NF1, ARID1A, 
ATM and MLL3 (Table S3F). Class M included, as individually enriched, deleted segments containing 
ZNF3, and ARFGAP3 (Figure S3 and Table S3F) and hypermethylated CpG islands in the promoter 
regions of DUSP22 and ARL17A.  
 
Class CD represented 15% of the samples (15% of the tumors and 13% of the cell lines) and was 
enriched for RACSs copy number alterations (CNAs) (FET p-value = 5.12 x 10-36), particularly for 
RACSs deletions (FET p-value = 2.04 x 10-15). It was dominated by, consistently across cell lines and 
tumors, the LAML (68% of the tumors and 79% of the cell lines), KIRC (38% of the tumors and 53% 
of the cell lines), and GBM (70% of the tumors and 17% of the cell lines) samples, and partially 
covered PRAD, SKCM, and LUAD samples, consistently across cell lines and tumors (Figure 3C, 
Table S3D, and Table S3E). 
 
The most significantly enriched RACS alterations in the CD class involved deletions of segments 
containing RET, ANK3, PTEN, CUL2, ABL1, JAK1 and MAP3K4. Class CD included 5 individually 
enriched mutations involving, NPM1, PBRM1, IDH2, IDH1, and U2AF1. Thus making the AML 
samples highly representative of this class and its underlying signature. A small number of iCpG 
hypermethylations were enriched as well, for example in the promoters of FAM115A and PIK3R1 
(Figure S3 and Table S3F). 
 
Class CA was enriched for copy number alteration CFEs (FET p-value =  2.95 x 10-12) and represents, 
consistently across cell lines and tumors, most of the BRCA (99% of the tumors and 100% of the cell 
lines), HNSC (95% of the tumors and 100% of the cell lines), LUAD (51% of the tumors and 89% of 
the cell lines) and LUSC (61% of the tumors and 80% of the cell lines) (Figure 3C, Table S3D, and 
Table S3E). 
 
Class CA was prominently enriched for amplified RACSs (FET p-value = 2.38 x 10-16, Table S3H). 
Among these we found amplifications of regions containing MYC (the most significant amplified gene), 
RAD21, PABPC1, FGFR1, PIK3CB, ERBB2, and KRAS, and deletions of segments including CDKN2A 
and TP53; consistently with this, enriched hypermethylated iCpGs were found in the promoters of 
CDKN2A and CDKL2 (among the others). 7 mutations were enriched at the individual level and 
included alterations in TP53, PIK3CA, NOTCH1, GATA3, CASP8 and NFE2L2 (Figure S3 and Table 
S3F). 
 
Finally, the H class was enriched for hypermethylated iCpGs (p-value = 2.19 x 10-48) and was 
exclusively composed by LGG samples (80% of the tumors and 59% of the cell lines), consistent with 
the hypermethylation phenotype of glioma (Turcan et al., 2012). 
 
Using this classification of tumor samples, we observed a good concordance between the contributions 
of each our 4 classes to the considered 15 cancer types and that reported in the previous study: 70% of 
M-to-M and C-to-CA/CD matching classifications, including BLCA and LUAD partially belonging to 
M and C in both cases with ratios close to 50% (Ciriello et al., 2013). Additionally, in our case, a clear 
partition of the C class into two subclasses (CD and CA, respectively enriched for copy number 
deletions and amplifications) emerged unsupervised from the data and correctly covered samples from 
relevant cancer types. Finally, due to the inclusion of a larger epigenomic dataset, we were able to 
detect an additional class (enriched for hypermethylated CpG islands) correctly classifying most of the 
LGG samples to this. 
 
Finally, we observed concordance using these 4 classes when applied to primary tumors and cell lines 
of the same tissue type (the predominant CFE type, i.e. mutations, copy number alterations and 
hypermethylation) is consistently detected for 100% of the cancer types. For 12 out of 15 cancer types, 
80% are consistently classified even when distinguishing between CA (associated to amplifications) 
and CD (associated to deletions). Collectively, these data demonstrate that in addition to concordance 
between primary tumor samples and matched cell lines at the level of CFE frequencies, this is also 
evident when looking at more global signatures of functional events (Table S3G). 
 



C. Validation of the LOBICO models on an independent dataset 
 
LOBICO was successfully run for 83 out of the 86 compounds in common between our study and the 
CTRP (2nd version, (Seashore-Ludlow et al., 2015)) (see Supporting Experimental Procedure, 
paragraph 24). For the remaining 3 compounds, fewer than 5 cell lines were sensitive according to the 
automated procedure to binarize the IC50s, and thus LOBICO analysis was not performed. Table S5G 
provides details of all models. For 80 of the 83 models the groups of predictive and sensitive cell lines 
contained at least 5 cell lines. The p-values for the t-tests on the GDSC IC50s and CTRP AUCs for the 
81 models were highly correlated (Figure S5E) (Pearson correlation: 0.96, p-value = 2.0x10-43). When 
the 10 rescreens are removed the correlation is similar (0.95), but with a higher, yet still very 
significant p-value of 4.8x10-37. Selection of significant t-test p-values using a Bonferroni corrected p-
value of 0.01 as a cut-off showed significant overlap between GDSC and CTRP (Fisher exact test, p =  
1.7x10-6). This value drops to p = 1.5x10-5 in case the rescreens were not considered. 
 
We applied a further filter to focus on interesting results. Particularly, we considered the 44 ‘predictive’ 
LOBICO models. These models have a p-value < 0.05 and FDR < 5% according to the permutation 
tests (See SEP Section 20). Note that these are different from the t-test p-values. Of these 44 models, 7 
were single-predictor models and 37 were multi-predictor models according to CV. For 43 of these 44 
models the groups of predictive and sensitive cell lines contained at least 5 cell lines. The t-test p-
values for these 43 models for GDSC and CTRP are depicted in Figure S5F. Also from this figure, 
there is clearly a large agreement between the two studies; LOBICO models inferred on GDSC data 
show separation between drug response measurements both for the GDSC IC50s as well as the CTRP 
AUCs. Specifically, 9 out of the 10 best GDSC models were also significant in CTRP. (Here, we used 
a P-value cutoff of a 0.023, i.e. 1/43, corresponding to a FWER of 1 and a corresponding FDR smaller 
than 1%, to decide upon significance). In total, there were 39 models that were statistically significant 
for the GDSC data, 17 (44%) of which also showed significance in the CTRP dataset. We have created 
violin plots with the underlying drug response data for these models (available at: 
http://www.cancerrxgene.org/gdsc1000/Logic_models.html). 
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