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Abstract
The characterization and public release of genome sequences from thousands of organ-

isms is expanding the scope for genetic variation studies. However, understanding the phe-

notypic consequences of genetic variation remains a challenge in eukaryotes due to the

complexity of the genotype-phenotype map. One approach to this is the intensive study of

model systems for which diverse sources of information can be accumulated and integrat-

ed. Saccharomyces cerevisiae is an extensively studied model organism, with well-known

protein functions and thoroughly curated phenotype data. To develop and expand the avail-

able resources linking genomic variation with function in yeast, we aim to model the pan-ge-

nome of S. cerevisiae. To initiate the yeast pan-genome, we newly sequenced or re-

sequenced the genomes of 25 strains that are commonly used in the yeast research com-

munity using advanced sequencing technology at high quality. We also developed a pipe-

line for automated pan-genome analysis, which integrates the steps of assembly,

annotation, and variation calling. To assign strain-specific functional annotations, we identi-

fied genes that were not present in the reference genome. We classified these according to

their presence or absence across strains and characterized each group of genes with

known functional and phenotypic features. The functional roles of novel genes not found in

the reference genome and associated with strains or groups of strains appear to be consis-

tent with anticipated adaptations in specific lineages. As more S. cerevisiae strain genomes

are released, our analysis can be used to collate genome data and relate it to lineage-spe-

cific patterns of genome evolution. Our new tool set will enhance our understanding of geno-

mic and functional evolution in S. cerevisiae, and will be available to the yeast genetics and

molecular biology community.
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Introduction
The first completed eukaryotic genome sequence was that of the budding yeast Saccharomyces
cerevisiae strain S288C, completed through the effort of a worldwide sequencing consortium [1].
Since that time, many S. cerevisiae genomes have been sequenced, encompassing a wide variety
of commercial and laboratory strains, as well as wild isolates. With next-generation sequencing
methods becoming ubiquitous, whole genomes are now being analyzed en masse. This has led to
interesting work on the relationship between genotype and phenotype. For example, in the stud-
ies of the adaptive evolution of freezing tolerance, Fay et al. [2] determined that an isolate taken
from the soil beneath an oak tree in a natural woodland area in southern Pennsylvania (YPS163)
is freeze tolerant, a phenotype associated with its increased expression of aquaporin AQY2 [3, 4].
Similarly, Doniger et al. [3] studied an Italian vineyard isolate (M22), and confirmed the presence
of a reciprocal translocation between chromosomes VIII and XVI (relative to the laboratory
strain S288C); this translocation is common in wine strains, and results in increased sulfite resis-
tance, an adaptive trait for the yeast since vineyards are routinely dusted with elemental sulfur as
a fungicide [5]. Argueso et al. [6] determined that a widely used Brazilian bioethanol strain that
is resistant to heat and oxidative stress contains well-characterized alleles at several genes known
to be linked with thermotolerance and fermentation performance. Novo et al. [7] studied a well-
known commercial winemaking strain (EC1118) and found three unique regions on three differ-
ent chromosomes containing 34 genes related to key fermentation characteristics, such as metab-
olism and transport of sugar or nitrogen. They also noted that>100 genes in the reference strain
S288C are absent from the EC1118 genome. Comparative genomics work has revealed patterns
of genetic variation including single nucleotide polymorphisms, and large-scale insertions and
deletions in several wine and ale strain genomes [8]. Functional genomic analysis has also been
undertaken in a saké yeast strain (K7), which has two large inversions and dozens of novel open
reading frames (ORFs) compared to reference strain S288C [9].

Genomic variation in S. cerevisiae genomes, such as single-nucleotide polymorphisms
(SNPs), small insertions/deletions (indels), and structural variation, have been investigated
[10]. Despite much effort, the association of genomic variations with phenotype and functional
annotations remains challenging, partly due to difficulties gaining accurate phenotypic infor-
mation and obtaining genome sequences at high quality. Fortunately, because of its status as
both a model organism and as an important industrial organism, many different S. cerevisiae
strains have been intensively studied at the phenotypic, genetic and genomic levels and the re-
sulting information has been extensively curated in the Saccharomyces Genome Database
(SGD) [11, 12] (See S4 Table). Genomics studies using the standard S288C yeast reference ge-
nome have produced many informative and interesting results [13]. However, our understand-
ing of yeast genetics and systems biology will widen and deepen if we can integrate new data
into a pan-genome model to account for a greater proportion of the genetic and phenotypic
variation exhibited by the global population of S. cerevisiae. A pan-genome is defined as the set
of all genes in a species [14], and can be constructed from the union of gene sets over all S.
cerevisiae strains.

The development and rapid expansion in the use of Next-Generation Sequencing (NGS)
technologies has created an increase in the volume of high-throughput data. The expanding use
of targeted approaches such as DNA-seq, RNA-seq, and ChIP-seq has also increased the types
of data available. These developments allow questions and assumptions in population genetics
and evolutionary biology to be addressed directly, but fulfilling the potential of these approaches
depends on accurate and reproducible data analysis. Many computational methods are designed
to handle DNA-seq data for assembly, annotation, and variation detection. However setting up
a pipeline for these computational analyses is a non-trivial task. Existing analysis software often
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produces incongruent results even when addressing the same problems with the same data.
Pipelines for the pan-genome analysis of bacteria have been developed such as PGAP [15], but
these are not suitable for eukaryotic genomes, even for unicellular eukaryotes such as yeasts,
which exhibit more complex gene structures and non-genic regions than prokaryotes. The fre-
netic pace at which new genomes are being sequenced has laid the groundwork for great steps
forward in our understanding of chromosomal evolution and the extreme variability of the eu-
karyotic genome. However, the sheer volume of data presents a clear challenge because it has
been, and is being, produced by different research groups using different techniques for se-
quence assembly, feature annotation, and gene functional analysis. Before we can realize the full
potential of these new data and derive maximal benefit from the ever-increasing number of se-
quenced genomes generated by disparate groups, we must address the pressing need for a com-
mon standardized approach to genomic data analysis. To that end, we report here the
development of AGAPE: an Automated Genome Analysis PipelinE for S. cerevisiae. The pipe-
line includes assembly, annotation, and variation-calling steps for the genome sequence of a
given strain and generates integrative analyses among strains. We have sequenced, or re-
sequenced, and analyzed the genomes of 25 S. cerevisiae strains that are commonly used in yeast
laboratory research (S4 Table) to initiate analysis of the yeast pan-genome using AGAPE.

Simple eukaryotes such as fungi evolve rapidly and show presence or absence of genes in
different populations within a single species [16, 17]. Our initial work can accelerate the estab-
lishment of the yeast pan-genome using AGAPE as more genome sequences are released [17];
assembly and annotation data from new strains can be used to continuously update the pan-
genome, and the integrative analysis steps of the pipeline can be easily performed using the up-
dated pan-genome. AGAPE can also be useful for biologists with limited bioinformatics exper-
tise who can conduct computational analyses with their eukaryotic genomic data. Replacement
software for a specific computational step can be easily plugged into the pipeline. All analyses,
data, and the software pipeline reported here are freely available online, see Table 1.

Materials and Methods

Strain sequences and genome assemblies
Twenty-five strains were selected for analysis based in part on their frequent use in genetic re-
search (Table 2, S4 Table). The libraries were sequenced using Illumina HiSeq 2000, resulting
in paired-end reads of 101 nucleotides each.

Table 1. Location for the data, the software pipeline, and resources required for setting up the pipeline.

Location URL

AGAPE pipeline GitHub http://github.com/yeastgenome/AGAPE

Sequence raw reads in FASTQ NCBI GenBank (BioProject:
PRJNA260311)

http://www.ncbi.nlm.nih.gov/bioproject/PRJNA260311

Sequence assemblies and annotation data SGD download site—Sequence Strains
section

http://www.yeastgenome.org/download-data/sequence

All processed results found in this paper SGD download site—Published
Datasets section

http://www.yeastgenome.org/download-data/published-
datasets

S.cerevisiae protein dataset used for AGAPE
annotation

SGD Download site http://downloads.yeastgenome.org/sequence/S288C_
reference/orf_protein/

Expressed sequencing tag (EST) data used for
AGAPE annotation

FungiDB http://fungidb.org/common/downloads/

Fungi protein dataset used for AGAPE annotation Ensembl Fungi http://fungi.ensembl.org/

doi:10.1371/journal.pone.0120671.t001
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We sequenced the libraries to high coverage ranging from 60- to 330-fold. Reads with low
quality or ambiguous bases were discarded using the error correction program SGA (command
line ‘sga correct-k 41—discard—learn’ version 0.9.35) [35]. In this error correction step, on av-
erage 2–3% of the raw reads were removed. Note that the preprocessing step before running
the assembler program is important for assembly quality control [36]. The filtered reads were
assembled to contigs using the de novo assembler program ABySS (command line ‘abyss-pe
aligner = map k = 41’, version 1.3.4) [37]. The resulting contigs were extended to scaffolds
using an SGA scaffolding pipeline (command lines ‘sga-align; sga-bam2de.pl-n 5-m 100-mina
95; sga-astat.py-m 100; sga scaffold-m 100—pe; sga scaffold2fasta-m 100—write-unplaced—

Table 2. Short description and assembly statistics of the 25 S. cerevisiae strains explored in this study.

Name Description Fold
coverage

Number of
scaffolds

Assembly
size

Longest
scaffold

Scaffold
N50

Ploidy Refe-
rence

YS9+ Singapore baking strain 100 1972 11750421 142656 30314 Diploid [10]

YPS163+ Pennsylvania woodland
isolate

96 959 11692983 170627 39876 Diploid [2]

YPS128+ Pennsylvania woodland
isolate

95 1067 11608384 143401 39695 Diploid [10]

YJM339+ Clinical isolate 102 994 11683869 216801 47674 Diploid [18]

Y55* Laboratory strain 112 829 11700636 406493 107844 Diploid [19]

DBVPG6044+ West African isolate 176 819 11642411 134064 36171 Diploid [10]

SK1* Laboratory strain 261 978 11687249 326823 103064 Diploid [20]

BC187+ California wine barrel isolate 177 853 11539626 135217 36331 Diploid [10]

K11+ Saké strain 189 692 11532471 244353 47234 Diploid [21]

L1528+ Chilean wine strain 186 692 11640535 150051 42013 Diploid [10]

RedStar* Commercial baking strain 180 1812 12003693 319971 98298 Diploid URLa

UWOPS05_217_3+ Environmental isolate 57 1508 11398116 57541 13931 Diploid [10]

FY1679* S288C-derivative laboratory
strain

329 886 11701731 454382 122764 Diploid [22]

YPH499* S288C-congenic laboratory
strain

69 749 11721435 462932 125709 Haploid [23]

RM11–1A* Haploid derivative of California
vineyard isolate

197 615 11571262 540496 114595 Haploid [24]

10560–6B* Sigma1278b-derivative
laboratory strain

191 875 11642710 458709 109268 Haploid [25]

BY4742* S288C-derivative laboratory
strain

103 868 11674767 341843 108974 Haploid [26]

BY4741* S288C-derivative laboratory
strain

209 864 11678362 454112 112644 Haploid [27]

FL100* Laboratory strain 184 942 11667748 580633 118714 Haploid [28]

W303* Laboratory strain 301 967 11704989 336272 102309 Haploid [29]

CEN.PK2–1Ca* Laboratory strain 89 850 11651483 334215 115163 Haploid [30]

SEY6210* Laboratory strain 106 805 11664136 389964 122714 Haploid [31]

X2180–1A* S288C-derivative laboratory
strain

112 904 11693006 298290 105189 Haploid [32]

D273–10B* Laboratory strain 112 866 11708626 343062 108887 Haploid [33]

JK9–3d* Laboratory strain 154 933 11669230 320854 103867 Haploid [34]

+ Libraries made using 500–600 bp random shearing of genomic DNA

* Libraries made using Nextera tagmentation of genomic DNA
a http://lesaffre-yeast.com/

doi:10.1371/journal.pone.0120671.t002
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use-overlap’) [35]. If desired, alternative parameters can be specified for each program in this
assembly process.

Gene annotations
Predictions of protein-coding genes (ORFs) were made using a combination of two methods: a
homology-based approach and ab initio prediction. For the first approach we used the Chain
and Net program [38] to find all intervals in each strain that are homologous to the reference
genome. Next, for each matching interval we ran a modified version of the annotation utility
program included in CHAP2 (The Cluster History Analysis Package). CHAP2 [39] uses
LASTZ [40] for aligning the matching regions to the reference ORF sequences. We used the
thoroughly curated SGD reference annotations, and predicted gene structures of each homolo-
gous ORF using AUGUSTUS (http://augustus.gobics.de). We replaced a component of
CHAP2 (http://www.bx.psu.edu/miller_lab/dist/CHAP/README), the Wise2 (http://www.
ebi.ac.uk) program with AUGUSTUS, because Wise2 is no longer available.

AGAPE also includes an ab initio annotation pipeline, called MAKER [41]. Protein and ex-
pressed sequence tag (EST) data for S. cerevisiae, required for running MAKER, were down-
loaded from SGD (http://www.yeastgenome.org) and FungiDB (http://fungidb.org)
respectively (Table 1).

Results from the CHAP2 and MAKER methods were combined as follows: ORFs predicted
by either method were kept. Predicted ORFs that lacked start or stop codons were discarded.
Overlapping ORFs with the same stop coordinates but with potential alternative start sites
were treated as separate annotations. ORFs predicted to have multiple exons were verified to
include either the highly conserved splicing branch point 5’-UACUAAC-3’ or any of the un-
usual branch points CACUAAC, GACUAAC, UGCUAAC, AACUAAC, UAUUAAC, and
AAUUAAC [42]. If no branch point consensus sequence could be identified within an intron,
the ORF was discarded.

The nucleotide sequences of the predicted ORFs were compared against the S288C reference
protein database using BLASTX [43]. Protein matches with e-values less than 1E-6, no more
than 5% sequence length difference between the query and target ORFs, and sequence similari-
ty greater than 90% were categorized as bona fidematches and were used to annotate the pre-
dicted ORFs. Predicted ORFs not matching these criteria were considered potential novel
ORFs and were labeled ‘undefined’.

Regions within the contigs, which remained un-annotated or that were labeled ‘undefined’
in the initial phase of AGAPE were analyzed with the MAKER pipeline using all available fun-
gal proteins (downloaded from http://fungi.ensembl.org) and ESTs (downloaded from http://
fungidb.org). The resulting expanded dataset allowed us to capture more potential ORFs which
were labeled with corresponding gene names. We applied the same procedure described above
for predicted ORFs with potential alternative starts and for examining splicing branch point
consensus sites for predicted ORFs with multiple exons. The remaining predicted ORFs were
subjected to BLASTX analysis as above, but this time against all fungal proteins and ESTs, and
the cutoff stringency was reduced (similarity> 80%).

Predicted ORFs that remained ‘undefined’ were consolidated with overlapping ORFs, and
only ORFs greater than 300 bp were retained. All annotations are available in GFF3 format
(http://www.sequenceontology.org/gff3.shtml) and the BLASTX output is available as a text
file for each strain (http://www.yeastgenome.org/download-data/published-datasets).
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Identifying novel sequences and ORFs
Sequence reads for each strain in FASTQ format were aligned to the S. cerevisiae reference ge-
nome using Burrows-Wheeler Aligner (BWA) (‘bwa aln-q 15-l 35-k 2-n 0.04-o 2-e 6-t 1’ and
‘bwa sampe’) [44]. Unmapped reads were extracted using SAMtools programs ‘samtools sort’,
and ‘samtools view’ (with parameter settings of ‘-u-f 4-F 264’, ‘-u-f 8-F 260’, and ‘-u-f 12-F
256’). Unmapped reads were assembled using ABySS with the same parameters as set in the
whole genome assembly. The resulting contigs were aligned to the reference genome to confirm
that they were not present in the reference. Contigs shorter than 300 bp, which is the length
cutoff for predicted ORFs, were discarded because short contigs are more likely to be derived
from reads of low quality, composed of ambiguous bases, or represent spurious ORFs. We con-
sider the remaining contigs as new sequences that are not in the reference. These additional se-
quences were then aligned to their own strain’s whole genome assembly using LASTZ (version
1.03.02, with parameters ‘T = 2 Y = 3400’) to find the corresponding genomic region of each
additional sequence in the whole genome assembly. We created a set of non-reference ORFs
from each strain by collecting ORFs annotated for these additional genomic regions in the
whole genome assembly.

Integrative analyses of non-reference ORFs
The set of protein sequences of all the non-reference ORFs was aligned to itself to identify po-
tential homologs using BLASTP with cutoff values (e-value less than 1E-1, sequence identity
greater than 75%, and sequence length similarity greater than 75%, note we tested different cut-
off values to choose the most appropriate combination in S3 Table). We made a binary matrix
based on the pattern of presence or absence of each homologue group in each strain and used
the matrix to calculate distance among 18 of the strains. The matrix did not include all 25
strains because we found no non-reference ORFs in 7 strains that are very closely related to the
reference strain. Then we constructed a dendrogram of the 18 strains using ‘dist.gene’ and ‘nj’
functions in the ape R library (http://ape-package.ird.fr).

We also predicted molecular function associated with the non-reference ORFs using se-
quence similarity (BLASTP against NCBI Non-Redundant (nr) database, http://www.ncbi.
nlm.nih.gov) and conserved protein domains using InterProScan [45].

Variation identification and genome diversity
To identify SNPs and indels relative to the reference genome, we used the HugeSeq pipeline
that integrates multiple variant calling programs [46]. We used the Phylogenetic Tree Galaxy
tool (within Galaxy’s genome diversity section) [47] to infer a phylogenetic relationship and
population structure based on the SNP data obtained by HugeSeq. To run this Galaxy tool, the
SNP data was reformatted to gd_snp format and used as input for generating the phylogenetic
tree and population structure to estimate relationship of the strains. Note the Phylogenetic
Tree Galaxy tool includes filtering steps for discarding SNPs of low quality or SNPs that are in
low coverage regions and we used default settings for these options.

Tree construction of non-reference MAL gene family
The maltose catabolic, metabolic and transport genes (MAL) that are not part of the reference
annotations were extracted from our non-reference features, from Bergstrom et al.’s [17] data-
set, and from the NCBI Non-Redundant (nr) protein database using BLASTP with queries of
theMAL23,MAL43,MAL63, andMAL64 protein sequences. We constructed a maximum-
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likelihood tree of the non-reference MAL gene family using Phylogeny.fr with default parame-
ters [48].

Results and Discussion

Overview of AGAPE
We created an integrated pipeline to discover the full set of genomic features of the S. cerevisiae
species—the pan-genome—from whole-genome sequences of multiple strains. AGAPE con-
sists of three main parts: assembly, annotation, and variation calls. Given the raw sequence
reads of a given genome, a reference genome sequence, and reference genome annotations, the
pipeline generates de novo assembly scaffolds and contigs, ORF annotations including non-ref-
erence ORFs, and sequence variation calls such as additional newly inserted sequences in the
genome (not present in the reference genome) as well as SNPs relative to the reference. The
whole pipeline is performed automatically as shown in Fig. 1 (for a detailed breakdown see the
Materials and Methods section).

AGAPE was designed to generate genome assembly, annotation, and variation data, with
features extracted from newly analyzed genomes added cumulatively to previously generated
data. Integrative analyses can be done easily with the updated data and features. Although
some organisms may not have thoroughly annotated reference genomes available, AGAPE
can still generate the assembly and annotation data as long as a protein database is provided
for predicting gene structure. (Note: although the NCBI Non-Redundant (nr) protein data-
base can be attached to the AGAPE workflow, the speed of this annotation step is related
to the number of sequences; we therefore recommend selecting a smaller protein database
that includes only those proteins that are expected to be similar to the organism of interest).
For the variation-calling steps, users can treat a subset of their contig-level sequences as
the reference genome. The components of the pipeline can be easily substituted with alterna-
tive software as long as the input and output formats are similar to those used in the
original step.

Running the pipeline with the reference assembly for validation
We validated the annotation steps by running the pipeline with the reference assembly as input
(rather than FASTQ reads). These data were chosen because the reference assembly annota-
tions have been thoroughly curated and can therefore be used to evaluate the accuracy of our
predictions. We excluded true reference ORFs shorter than 300 bp to simplify the analysis (see
Materials and Methods). Since annotation steps are designed to predict at most one ORF per
locus, we also excluded some overlapping ORFs. When two ORFs have overlapping intervals
and either one is classified as Dubious [49], the Dubious ORF was excluded. If both overlap-
ping ORFs are Dubious, the shorter one was ignored. However overlapping ORFs are kept if
both are classified as Verified ORFs. In total, we used 5684 reference ORFs as the “true” set.
The annotation pipeline predicted 5638 ORFs, 5532 of which were identical to the reference
annotations (98.1%). The FDR (False Discovery Rate) was therefore 1.88% ((5638–5532) /
5638). Our approach outperformed the use of either MAKER alone or the homology-based
method alone (Fig. 2A), indicating that our pipeline can generate accurate annotation results if
assemblies are of high quality.

Genome sequences of 25 S. cerevisiae strains
To expand the S. cerevisiae pan-genome model, including those ORFs not present in the refer-
ence strain S288C, we sequenced strains that are commonly used in experimental yeast studies,
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including laboratory, wine, environmental, and clinical strains. (The strains are identified in
Table 2 and S4 Table and short descriptions may be found at http://wiki.yeastgenome.org/
index.php/Commonly_used_strains). Note that some of the strains in our list overlap with
strains analyzed in genotype- [10, 17] and phenotype-based studies [50]. Some strains are dip-
loid (Table 2). Diploidy may not influence the identification of new features in the pan-ge-
nome, but other types of variation analysis may be affected by heterozygosity. We subjected the
strain genomes to deep sequencing with coverage ranging from 60X to 320X. Although our as-
sembly contigs are still fragmented with gaps in some genomic regions composed of repeat

Fig 1. Pipeline overview of AGAPE for yeast. The pipeline consists of three parts; (a) assembly, (b) annotation, and (c) variation. Cylinder shapes indicate
data, shaded cylinder final result data, arrows data flows, rectangular shapes programs, and dotted rectangular external package tools that are not included
in our pipeline. After all ambiguous and low quality reads are discarded, the remaining reads are processed to generate assembly contigs (a). The assembly
contigs from (a) are used as the input to annotate their genomic features including both reference ORFs inferred by a homology-based method and non-
reference ORFs predicted by ab initiomethods (b). Fungal (including yeast) protein and EST databases are used to accurately predict annotations. In a post-
process annotation step, annotated ORFs are refined and corrected as shown in (b). For variation detections, the reads remaining after the error-correction
step are mapped to the reference genome in (c). The procedure (c) then forks into two branches; one for unmapped and another for mapped reads. The
unmapped reads are assembled in the manner described in (a) to contigs, then compared with the assembly contigs from (a) and annotation results from
(b) to identify newly inserted sequences and ORFs that are not present in the reference genome. For the mapped reads, the mapping information is used for
the HugeSeq pipeline that detects variations including SNPs relative to the reference. The SNP calls and the non-reference features identified in (c) can be
used for further variation analysis using external tools, e.g. the Galaxy genome diversity tool and various R packages.

doi:10.1371/journal.pone.0120671.g001
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elements such as rDNA and subtelomeres (S2 Fig.), this high coverage improved the resulting
assembly compared to previous yeast sequencing projects [10]. The assemblies yielded N50 val-
ues ranging from 30 kb to 125 kb (Table 2) with the longest scaffold reaching 580 kb.

Fig 2. Pipeline validation based on annotation results. (A) Annotation accuracy of the pipeline is
measured using the reference genome assembly as input. Whereas 80% of ORFs predicted by homology
only are correct and 85% by MAKER only, our combined method with refinement steps predicts 98% of ORFs
correctly. In terms of FDR, the combined method also shows better performance than the homology only or
the MAKER only methods alone. (B) Annotation comparison of our non-reference ORFs to Bergstrom et al.
[17] shows that 77% of 319 non-reference ORFs from Bergstrom et al. are commonly found in our results
from 18 non-S288C strains. We identify 40 non-reference ORFs that were not identified by Bergstrom et al.
[17] while Bergstrom et al. identify 72 non-reference ORFs not found in our study; these are presumably due
to the non-overlapping strains among the sets of strains used in the two studies.

doi:10.1371/journal.pone.0120671.g002

AGAPE for Pan-Genome Analysis of Saccharomyces cerevisiae

PLOSONE | DOI:10.1371/journal.pone.0120671 March 17, 2015 9 / 19



S. cerevisiae non-reference ORFs and their functional predictions
As expected, we did not observe any non-reference ORFs among the seven strains (BY4741,
BY4742, FY1679, SEY6210, JK9, W303, and X2180) known to be closely related to the S288C
reference genome (Fig. 3A). Among the remaining 18 non-S288C strains, however, we found a
total of 314 non-reference ORFs (Fig. 3A, S1 Table). We grouped the non-reference ORFs by
aligning their protein sequences to each other using BLASTP. As a result, we identified 80 ho-
mologue groups of non-reference ORFs, including 16 unique ORFs that appear only in single
strains (S1 Table). Eight ORFs out of the 80 non-reference groups were already annotated as
non-reference features in SGD:MEL1, RTM1,MPR1, BIO6, TAT3, XDH1,MAL64, and KHR1
(Fig. 4). Previous studies had shown the presence of the BIO6 gene in saké strains and the
TAT3 gene in RM11; our AGAPE results recapitulate these results, showing BIO6 occurring in
the saké strain K11, and TAT3 in RM11.

To predict functional association of the 80 non-reference ORF groups, we searched the
NCBI Non-Redundant (nr) protein database using BLASTP and used InterProScan with the
predicted protein sequences [28; S2 Table]. Comparing our set of non-reference ORFs to those

Fig 3. Variations in S. cerevisiae strains. (A) Number of non-reference ORFs in 25 S. cerevisiae strains.
(B) Number of SNPs relative to the reference. According the number of SNPs, BY4742, X2180, BY4741, and
FY1679 are essentially identical to the reference strain (S288C) and there are no non-reference ORFs in
these strains. This supports the notion that these four strains are the same as S288C within experimental
error. The variation patterns between non-reference ORFs and the number of SNPs show that strains that
have more SNPs tend to have more non-reference ORFs, but there are some strains that have different
patterns (e.g. K11 and YS9).

doi:10.1371/journal.pone.0120671.g003
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Fig 4. Known features not present in the reference genome. Annotations for 8 non-reference ORFs that were identified by our pipeline in 25 strains have
been maintained in SGD. (a)MEL1 in D273, FL100, JK9, and UWOPS. (b) RTM1 in D273 and FL100. (c)MPR1 in JK9, RedStar, and Y55. (d) BIO6 in K11:
K11 is a saké strain and this is consistent with the description that BIO6 is present in saké strains. (e) TAT3 in RM11_1A, SK1, UWOPS, YPS128, and
YPS163. (f) XDH1 in RedStar and YS9. (g)MAL64 in K11, UWOPS, YPS163, YPS128, and 10560–6B. (h) KHR1 in BC187, YS9, FL100, YJM339, Y55, K11,
YPS163, DBVPG6044, YPS128, and L1528.

doi:10.1371/journal.pone.0120671.g004

AGAPE for Pan-Genome Analysis of Saccharomyces cerevisiae

PLOSONE | DOI:10.1371/journal.pone.0120671 March 17, 2015 11 / 19



found by similar studies, such as Bergstrom et al. [17], was instructive in showing how much of
the pan-genome, as indicated by non-reference ORFs, our investigation has uncovered using
AGAPE. Since annotation accuracy can be influenced by the quality of the de novo assembly,
the comparison can also indirectly serve as an evaluation for the assemblies. Note that in the
Bergstrom et al. [17] study, additional data such as low coverage paired-end Sanger sequences
and genetic linkage were used to improve assembly while our pipeline used only de novo as-
sembly. Of the 319 non-reference ORFs from Bergstrom et al. [17], 77% are shared with the
non-reference ORFs identified by our pipeline (Fig. 2A). Forty non-reference ORFs from our
18 “non-S288C” strain genomes are not present in the Bergstrom et al. [17] analysis, while 72
ORFs from the Bergstrom et al. [17] study (coming from 14 strains that were mostly natural
isolates and not represented in this study) were not found by our analysis. This supports the
reasonable expectation that further sequencing will extend the pan-genome, especially if natu-
ral isolates are sequenced.

SNP variations in the S. cerevisiae strains
SNPs identified relative to the reference genome for our 25 strains are shown in Fig. 3B. Strains
BY4741, BY4742, FY1679, and X2180 all have less than 5 SNPs per 100,000 bp, indicating that
they are essentially identical to S288C (the SGD reference genome). This is particularly impor-
tant as FY1679 contributed roughly 50% of the initial chromosomal sequence released in 1996
[1]. Strains BY4741 and BY4742 are S288C-derivative strains were constructed to make an ORF
deletion collection [51]. The variation between these strains and S288C was known to be minis-
cule (T. Yamaguchi and F. Roth, personal communication), and our results confirm this. These
SNP-based results are also consistent with the fact that we did not find any non-reference ORFs
in these four strains (see above section). In general, strains that have more non-reference ORFs
also tend to contain more SNPs, especially in the laboratory strains (Fig. 3).

Interestingly, the two baking strains (YS9 and RedStar) have similar or lower numbers of
SNPs relative to the S288C reference, compared to strains isolated from more natural environ-
ments (UWOPS, YPS163, YPS128, and DBVPG6044), indicating that the baking strains are
less diverged from S288C than the natural environment strains (Fig. 3B). However, YS9 and
RedStar contain the most non-reference features (26 ORFs among the 2 strains), i.e. they have
more non-reference ORFs than any other environmental strains. A total of 15 non-reference
ORFs are shared by both baking strains, and are not present in any other strains (Groups 51–
64, S1 Table).

Phylogenetic inferences and population structure of S. cerevisiae
A binary matrix based on patterns of presence or absence of the non-reference ORF groups in
the 18 “non-S288C” strains that contained non-reference ORFs was used to calculate distance
and construct a tree of the 18 strains based on a neighbor-joining method. This tree displays
the relationships among the 18 strains based only on non-reference features (Fig. 5A). We also
generated a tree based on the genome-wide SNPs found in each strain (relative to the refer-
ence). This tree reflects genomic distance based on the divergence of each strain from the refer-
ence, within only reference-homologous regions (Fig. 5B).

In both trees, strains isolated from similar environments are generally located closely to-
gether. For instance, the two baking strains (RedStar and YS9) are grouped together, as are the
three vineyard/wine strains (RM11–1A, L1528, and BC187) and the two oak strains (YPS163
and YPS128). Lab strains that are close to S288C such as D273 and FL100 are grouped together
in both trees close to the tightly-grouped S288C-related strains. Non-S288C-based laboratory
strains, SK1 and Y55, used widely in studies of meiosis, appear as a branch off the lineage of
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environmental strain DBVP6044. Interestingly, K11 and YJM339 show different patterns in
the two trees. A structure plot suggests the existence of mosaicism in several strains, with SK1
sharing cluster identity over most of its genome with baking and wine strains (Fig. 5C). This
may be relevant to the unknown origin of laboratory strain SK1 and may indicate that SK1 has
been mixed with other strains.

Unlike the vineyard/wine strains RM11–1A, L1528, and BC187, which are grouped together
in both trees, the saké strain K11 appears close to laboratory strains CEN.PK and 10560–6B in
the non-reference ORF-based tree, but in the SNP-based tree it clusters more closely to other
environmental strains like YPS163 and YPS128, similar to results reported by Liti et al. [10].
Most non-reference ORFs of K11 are present in other environmental and wine strains.

Case study of non-reference ORFs in strain K11
The distribution of 314 non-reference ORFs into 80 putatively homologue groups enables an
exploratory analysis of ORFs that are absent from the reference strain.

As a means to link genotypes with phenotypes, strains used in the production of alcoholic
beverages are of particular merit given the intense interest in understanding the metabolism of

Fig 5. Phylogenetic inferences and population structure of S. cerevisiae strains from variation. (A) A neighbor-joining tree based on non-reference
ORFs among 18 S. cerevisiae strains. (B) A neighbor-joining tree based on SNPs relative to the reference among 25 S. cerevisiae strains. The origin of each
strain is indicated by the color of the enclosing circle. Strains that originated from similar sources appear close to each other in both trees, but there are some
differences (e.g. SK1, K11, and YJM339). (C) Population structure based on SNPs using the Genome diversity tool in Galaxy. Statistical scores were also
computed by the Galaxy tool in order to choose the most appropriate number of clusters (K). In our case, “K = 2 or 3” showed the lowest cross-validation error
scores among the K values tested (with scores of 0.90 and 0.95, respectively). Colors were generated automatically and are not congruent with colors used
in A and B.

doi:10.1371/journal.pone.0120671.g005
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fermentation in these strains. Saké is made from a rice ferment known as koji; before a saké
strain of S. cerevisiae can produce alcohols, the rice undergoes saccharification by a mold (or
filamentous fungus, viz. Aspergillus oryzae) that metabolizes complex carbohydrates (starch)
into sugars (glucose). Saké yeasts form a clade within S. cerevisiae [10, 52] and possess distinct
features such as the ability to synthesize biotin [53].

In strain K11, a saké yeast, we have identified 10 non-reference ORFs belonging to 9 homo-
logue groups (S1 Table). Consistent with biotin prototrophy in saké yeast strains, one of these
(K11.ORF10) is identical at the DNA level (over its full length) with BIO6 (GenBank
AB188681.1). The BIO6 gene is required for biotin biosynthesis and was identified in strain K7
from which K11 is derived [53].

At an intermediate stage of saké fermentation maltose is produced [54], potentially selecting
for the retention, evolution, or horizontal acquisition of maltose utilization genes. Mutagenized
strains of saké yeast with low maltose utilization appear to generate higher levels of malate
[55], an organic acid contributing to the flavor of the beverage. Genes for maltose permease
(GenBank BAB59002.1) and maltase (GenBank BAB59003.1) have been identified in Aspergil-
lus oryzae and appear to be in a gene cluster with a regulatory gene [56]. Several maltose gene
clusters are present in the S. cerevisiae pan-genome (Fig. 6). A maltose gene cluster such as
MAL6 typically consists of a maltose permease (MAL61), maltase (MAL62), and aMAL
regulatory/activator gene (MAL63). Constitutively active forms of the regulatory proteins
coded for by these genes have also been identified and appear to relate to loss of function
mutations affecting C-terminal residues responsible for negative regulatory function [57]. At
theMAL6 locus an additional activator geneMAL64 has been described [58]. A premature ter-
mination codon inMAL64 confers constitutive expression [57] although the function of the
wild-type allele is unclear.

One of the homologue groups identified by LASTZ is comprised of reading frames similar
toMAL activator loci (see S2 Table). In saké strain K11, two ORFs fall into this group. K11.
ORF1 shows partial similarity to maltose activator genes from multiple loci and its function
therefore awaits further investigation, while K11.ORF9 shows substantial similarity (~98% at
the DNA sequence level) toMAL64. An alignment (not shown) indicates that, across its length,
K11.ORF9 closely resembles wild-typeMAL64 in other S. cerevisiae, and a phylogenetic tree
(Fig. 6) indicates that the divergence betweenMAL63 andMAL64 regulatory genes preceded
the divergence of multiple strains.

Another interesting non-reference homologue group is represented in K11 by K11.ORF8
and in SK1 by SK1.ORF11, both of which have 100% sequence identity with an epoxide hydro-
lase-like protein previously identified in saké strain K7 (GenBank GAA21449.1; [9, 59]). This
ORF was previously identified in K7 and S. paradoxus and has a presumed bacterial origin [9],
thus representing a possible trans-kingdom horizontal transfer; it has also been identified in 2
commercial wine strains, a sourdough strain and a fuel ethanol strain [59, 60]. Given the toxici-
ty associated with reactive epoxide compounds and the presence of a seemingly non-homolo-
gous epoxide hydrolase in Aspergillus oryzae (GenBank XP_001727603.2), it is tempting to
suppose that this ORF is required in the saké environment.

Conclusion
Rapid evolution and the mosaic structure of genomes in microorganisms makes adequately
capturing the diversity of a taxonomic group a difficult task, and requires systematic analysis of
multiple genomes. Information from multiple bacterial isolates is frequently combined into a
pan-genome, which comprises all genes found within a particular taxon. We have adopted this
approach with yeast and have created a flexible pipeline, AGAPE, that uses a variety of tools
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and sources of information to construct and update a pan-genome. Although AGAPE gener-
ates assemblies that can be used to examine between-strain differences, a critical additional
output is non-reference ORFs, and AGAPE identifies these by combining prediction methods.

We have explored the utility of this approach in yeast by using AGAPE to identify non-ref-
erence ORFs through analysis of high-throughput sequencing data from 25 S. cerevisiae ge-
nomes. This examination of a small set of non-reference ORFs within S. cerevisiae
demonstrates that an updatable pan-genome model can be used as a starting point for analysis
of function. We also found that contrasting patterns in SNP- and ORF-based phylogenies,
combined with analysis of population structure, suggest that the dynamics of horizontal gene
transfer, recombination, or gene gain and loss may be fruitfully investigated as more strains are
sequenced and the pan-genome is expanded. Eventually it may be possible to characterize for a
particular strain whether ORFs that are not part of the “core” genome (i.e., the set of genes
shared by all S. cerevisiae strains) arose by retention and evolution (or duplication followed by
divergent evolution) of ancestral genes, or by horizontal acquisition of “novel” genes, e.g., by
mating with diverged S. cerevisiae strains or through interspecific hybridization.

Despite the difficulties in assembling complete chromosomes, which complicates determi-
nation of the presence or absence of some genomic loci, AGAPE provides an expandable pan-

Fig 6. Phylogenetic tree of the non-referenceMAL gene family. TheMAL23,MAL43,MAL63, andMAL64 genes are known non-reference features that
may be associated with maltose activator function. We included all non-referenceMAL activator genes identified in S. cerevisiae including sequences from
this study, sequences from Bergstrom et al. [17], and ones deposited in the NCBI protein database. TheMAL genes have been found in environmental and
saké strains, but have not been detected in baking and European wine strains. One group ofMAL genes in the upper part of the gene tree, detected in K11,
YPS128, YPS163, UWOPS87, UWOPS83, SK1, and DBVPG6044 strains, is clustered separately from the otherMAL genes.

doi:10.1371/journal.pone.0120671.g006
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genome. The process includes thorough annotation and variation steps, and thus opens a new
window to genotype-phenotype association studies. Analysis problems caused by the difficulty
of generating complete assemblies, particularly in examination of repetitive elements, can be
ameliorated by incorporating improved methods such as using mate-pair libraries and
genetic linkage.

Beyond yeast, the AGAPE pipeline can be used for genome analyses of other eukaryotes.
AGAPE can be modified to consider more complicated gene models and more sophisticated
assembly methods can be used to investigate genomes rich in repetitive sequences. In addition,
the steps defined in AGAPE can guide genomics studies for researchers who have little experi-
ence in computational biology. Our high-quality genome data and the analysis for 25 common-
ly studied strains are also important resources for furthering yeast genetics studies. The
AGAPE package, genome annotation data, and the ongoing expansion of the yeast pan-
genome model will facilitate genetic studies in this important model organism.

Supporting Information
S1 Table. 80 non-reference ORF groups.We classified 314 non-reference ORFs from the 18
non-S288C strain genomes into 80 homologue groups using BLASTX.
(PDF)

S2 Table. Functional predictions for 80 non-reference ORF groups. Functional association
of 80 novel ORFs were predicted using BLAST search and InterPro.
(PDF)

S3 Table. Choosing appropriate cutoff values for constructing the phylogentetic tree based
on presence or absence of novel genes. Different cutoff values were applied to construct the
non-reference based trees in Fig. 5(A). The tree for each combination of the cutoff values was
compared to the genome-wide SNP-based tree in Fig. 5(B) using Ktreedist. Lower K scores
from Ktreedist indicate that two trees are more similar in terms of differences of the relative
branch length and topology. BLAST E-value cutoff did not affect the tree topology. Similarity
higher than 75% and length cutoff of 75% showed the lowest K score, so we chose 75% for both
similarity and length cutoff values.
(PDF)

S4 Table. Phenotype count per strain.We counted the number of phenotypes per strain as re-
ported in SGD and chose to sequence those strains with the highest phenotype counts. Note
that we have grouped all four of the S288C-identical strains (BY4741, BY4742, FY1679 and
X2180) into one class called “S288C”. In addition to the strains listed in this table, we chose sev-
eral other strains to sequence as described in the main text.
(PDF)

S1 Fig. Copy number variants in S. cerevisiae. Copy number variants (CNVs) were called by
the program “CNVnator” based on read coverage depth of each strain genome relative to the
reference genome. Genomic intervals identified as CNVs in each strain were visualized as blue
boxes using the IGV (Integrative Genomics Viewer) tool.
(PDF)

S2 Fig. Assembly coverage in chromosome IV. All the assembly contigs of each strain genome
were aligned to the reference genome using LASTZ. The alignments were visualized using the
IGV tool. Since all the alignments for other chromosomes are available, users can easily view
assembly coverage in other chromosomes with IGV.
(PDF)
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