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Abstract

Identification of chemical compounds with specific biological activities is an important step in both chemical biology and
drug discovery. When the structure of the intended target is available, one approach is to use molecular docking programs
to assess the chemical complementarity of small molecules with the target; such calculations provide a qualitative measure
of affinity that can be used in virtual screening (VS) to rank order a list of compounds according to their potential to be
active. rDock is a molecular docking program developed at Vernalis for high-throughput VS (HTVS) applications. Evolved
from RiboDock, the program can be used against proteins and nucleic acids, is designed to be computationally very
efficient and allows the user to incorporate additional constraints and information as a bias to guide docking. This article
provides an overview of the program structure and features and compares rDock to two reference programs, AutoDock
Vina (open source) and Schrödinger’s Glide (commercial). In terms of computational speed for VS, rDock is faster than Vina
and comparable to Glide. For binding mode prediction, rDock and Vina are superior to Glide. The VS performance of rDock
is significantly better than Vina, but inferior to Glide for most systems unless pharmacophore constraints are used; in that
case rDock and Glide are of equal performance. The program is released under the Lesser General Public License and is
freely available for download, together with the manuals, example files and the complete test sets, at http://rdock.
sourceforge.net/
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Introduction

The discovery of small molecules with biological activities is

important to probe biological mechanism in chemical biology and

to provide drug candidates as potential therapeutic agents. The

first step in this process is to identify compounds that bind to a

specific target (hits); experimentally this is usually achieved with

high-throughput (HTS) or fragment screening (FS). The resulting

hits are then optimised to higher affinity compounds, usually

guided by a model of how the compounds bind to the target,

increasingly with crystal structures of the target used to guide the

optimisation.

Computational methods are often used as a central part of this

process. Molecular docking can play an important role in the

optimisation, where a proposed position and conformation

(so-called pose) of the compound can be generated and provide

useful models for how the compounds are binding, in advance of

any experimental structure determination. However, if the

structure of the target is known and a druggable cavity has been

identified [1], molecular docking can also be used to screen virtual

chemical collections to identify those molecules that offer good

shape and chemical complementarity [2]. Such virtual screening

(VS) offers opportunities for small research groups without access

to HTS or FS to identify new hit compounds, as setting up a low-

throughput assay to test a few tens of compounds is relatively fast

and inexpensive. Such VS has been successful, but it requires a

docking program that is computationally efficient and can be

finely tuned to achieve optimal performance [3–5]. rDock is a

molecular docking platform which has been optimised for such

tasks.

rDock has its origins in the program RiboDock [6], designed

initially for VS of RNA targets. Developed at the company now

known as Vernalis (http://www.vernalis.com), the software,

PLOS Computational Biology | www.ploscompbiol.org 1 April 2014 | Volume 10 | Issue 4 | e1003571

http://rdock.sourceforge.net/
http://rdock.sourceforge.net/
http://creativecommons.org/licenses/by/4.0/
http://www.vernalis.com
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1003571&domain=pdf


scoring functions, and search protocols have been refined

continuously over a number of years to meet the demands of in-

house discovery projects on heat-shock proteins [7–9], kinases

[10–13] and other targets. The major components of the platform

now include fast intermolecular scoring functions (vdW, polar,

desolvation) validated against protein and RNA targets, a Genetic

Algorithm (GA)-based stochastic search engine, a wide variety of

external restraint terms (tethered template, pharmacophoric

restraints), and novel Genetic Programming-based post-docking

filtering [14]. In this paper we describe the platform, benchmark it

against two other state of the art docking programs for both

binding mode prediction and VS and discuss its use in high-

throughput VS (HTVS).

Design and implementation
The rDock platform is a collection of command-line programs

and scripts (Table 1 and Figure S1). The main tasks are carried out

by the programs rbcavity (cavity generation) and rbdock(docking).

rDock is written in ANSI C++ and compiles under the Linux

operating system using the GNU g++ compiler. Apart from the

C++ Standard Template Library (STL) there are minimal external

dependencies (e.g. OpenBabel bindings for running sdtether and

sdrmsd [15]). The core functionality is compiled into a single shared

library, which is linked with each of the (light-weight) command-

line applications. Scoring functions and docking protocols are

assembled at run-time from well-defined C++ object class

hierarchies, allowing for customisation at source code level by

extending the base classes. Ancillary scripts are provided for file

management and output processing and are described in the

manuals.

Preparation
The receptor is provided in Tripos MOL2 format with standard

atom typing. Amino acid ionisation states in the vicinity of the

cavity must be defined, as the rDock scoring functions depend on

formal charge assignments. Metal ions, cofactors and structural

water molecules can be included as part of the receptor. The user

should also resolve other structural issues such as alternate

locations or missing atoms. The docking volume is defined by

the rbcavity program which provides two mapping algorithms; the

accessible volume within a specific distance of a reference ligand,

and a two probe sphere method [6]. In the examples presented in

this paper, the reference ligand method is used with a distance of

6 Å.

Ligands to be docked are read in the MDL SDFile format (SDF)

and should have the correct topology and bond orders. The

program can protonate and deprotonate certain ionisable groups,

but pre-processing the ligands with a dedicated program is

preferable. Since the program only samples exocyclic dihedral

angles, a correct input geometry is required for bonds, angles and

rings. In the case of flexible rings, a variety of low-energy

conformers should be pregenerated by a suitable program. We

have used LigPrep [16] for all ligand preparation steps. The

execution of the programs is controlled by a series of parameter

(.prm) files; this allows user controlled tuning of the docking

protocol and scoring functions (described in more detail in the

Manual). The following sections describe the main characteristics

of the program and the available options.

Scoring
The rDock master scoring function (Stotal) is a weighted sum of

intermolecular (Sinter), ligand intramolecular (Sintra), site intramo-

lecular (Ssite), and external restraint terms (Srestraint). Sinter is the

main term of interest as it represents the protein-ligand (or RNA-

ligand) interaction score. Sintra reports the change in energy of the

ligand relative to the input ligand conformation. Similarly, Ssite

represents the relative energy of the flexible regions of the active

site. In the current implementation, the only flexible bonds in the

active site are terminal OH and NH3
+ bonds. Srestraint is a

collection of non-physical restraint functions that can be used to

bias the docking calculation in several useful ways (vide infra). Sinter,

Sintra, and Ssite are built from a common set of constituent

potentials, which are described in the Manual. Briefly, they mainly

consist of a van der Waals potential (vdW), an empirical term for

attractive and repulsive polar interactions, and an optional

desolvation potential that combines a weighted solvent accessible

surface area approach [17] with a rapid probabilistic approxima-

tion to the calculation of solvent accessible surface areas [18] for

computational efficiency. The vdW term can be calculated during

docking, or precalculated and stored on grid files by the ancillary

Table 1. List of main programs and utilities included in the rDock package.

Name Language Use Description

rbdock C++ Docking The main rDock docking engine

rbcavity C++ Cavity definition Cavity mapping and preparation of docking site (.as file).

rbcalcgrid C++ Preparation Calculation of vdW grid files (usually called by make_grid.csh
wrapper script)

sdtether python Preparation Prepares a ligand SD file for tethered scaffold docking,
annotating the atom indices of the tethered substructure.
Requires OpenBabel python bindings [15]

sdrmsd python Analysis Calculation of ligand Root Mean Squared Displacement (RMSD)
between reference and docked poses, taking into account ligand
topological symmetry. Requires OpenBabel python bindings [15]

sdfilter perl Analysis Utility for filtering SD files by arbitrary data field expressions.
Useful for simple post-docking filtering by score components.

sdsort perl Analysis Utility for sorting SD files by arbitrary data field. Useful for simple
post-docking filtering by score components.

sdreport perl Analysis Utility for reporting SD file data field values in tab-delimited or
CSV format.

doi:10.1371/journal.pcbi.1003571.t001
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program rbcalcgrid; this increases computational performance. Two

distinct scoring functions have been optimized using a binding

affinity validation set (described in the Manual). The default

scoring function (SF3) uses the repulsive polar term but not the

desolvation term, while the solvation scoring function (SF5) does

the opposite. The default SF3 is slightly faster and works better for

proteins while the solvation term is generally better for nucleic

acids. More importantly, the weighting terms of the scoring

function can be re-optimized with larger or more focused

validation sets to improve its performance.

Sampling
rDock uses a combination of stochastic and deterministic search

techniques to generate low energy ligand poses. The standard

docking protocol to generate a single ligand pose uses 3 stages of

Genetic Algorithm search (GA1, GA2, GA3), followed by low

temperature Monte Carlo (MC) and Simplex minimization (MIN)

stages. The GA stages are interdependent and are designed to be

used sequentially. Several scoring function parameters are varied

between the stages to promote efficient sampling of the starting

poses, whilst minimising the likelihood that the poses become

trapped early in the search. The variations are in the functional

form of the Sinter vdW potential (switched from 4–8 potential in

GA1/GA2 to 6–12 potential in GA3/MC/MIN), the tolerances

on the polar distance and angular functions (relaxed in GA1 and

progressively tightened in GA2/GA3/MC), and the weight of the

ligand dihedral potential (reduced in GA1 and progressively

increased in GA2/GA3/MC). All scoring function parameters are

at their final reported values for the final MC/MIN stages. The

GA chromosome consists of the ligand centre of mass (COM), the

ligand orientation, as represented by the Euler angles (heading,

attitude, bank) required to rotate the ligand principal axes from the

Cartesian reference axes, the ligand rotatable dihedral angles, and

the receptor rotatable dihedral angles. The initial population is

generated such that the ligand COM lies on a randomly selected

grid point within the defined docking volume, and the ligand

orientation and all dihedral angles are randomised. Mutations are

applied to a randomly selected degree of freedom and the

magnitude of the mutation is selected from rectangular distribu-

tions of defined width. A generation is considered to have passed

when the number of new individuals created is equal to the

population size. Instead of having a fixed number of generations,

the GA is allowed to continue until the population converges

(scoring improvement ,0.1 units over the last three generations).

This allows early termination of poorly performing runs for which

the initial population is not able to generate a good solution. Once

the GA converges, a low temperature Monte Carlo simulation is

used to refine the pose, followed by Simplex routine to generate a

minimised solution. A more detailed description of the sampling

protocol can be found in the Manual. In a typical docking

calculation, the whole process is repeated 10 to 100 times and the

overall lowest scoring pose is taken as the correct solution (see

below for discussion on convergence), but it is also possible to

access the minimisation stage directly or simply score a pre-docked

pose.

Biased docking
The main limitation in molecular docking is the quality of the

scoring functions. It is therefore usual to introduce empirical bias,

which can improve the quality of the results and also reduce the

search space, thus improving performance. rDock implements

several pseudo-energy scoring functions that are added to the total

scoring function under optimisation, and a restricted search

protocol.

Pharmacophoric restraints. This feature ensures that

pharmacophores (derived from known ligands or hot-spot

mapping methods) are satisfied by all generated poses. rDock

recognizes nine feature types: neutral hydrogen bond acceptor,

neutral hydrogen bond donor, hydrophobic, hydrophobic aliphat-

ic, hydrophobic aromatic, negatively charged, positively charged,

and any heavy atom. Each pharmacophore restraint is defined by

a combination of feature type and position, specified as a tolerance

sphere with coordinate (x,y,z), and radius (r). Restraints are

classified as either mandatory or optional, where the user can

specify how many optional restraints (Nopt) should be met. Ligands

that have insufficient quantities of the defined restraint feature

types are removed prior to docking. The penalty score for a single

pharmacophore restraint is proportional to the square of the

distance from the nearest ligand feature of the required type to the

surface of the tolerance sphere, and is zero when the nearest ligand

feature is within the tolerance sphere. The total pharmacophore

restraint score, Sph4, is the sum of all the mandatory restraints plus

the Nopt lowest scoring optional restraints.

Tethered template. Tethered template docking can be used

to enforce partial binding modes obtained from crystal structures

of related molecules or constituent fragments. The template is

defined by a reference bound ligand structure and a SMARTS

query string defining the substructure to be tethered. The sdtether

utility prealigns molecules with matching substructures with the

reference substructure coordinates prior to docking. Non-match-

ing molecules are rejected. Molecules that have more than one

substructure match with the query are replicated within the library

of compounds to be docked, and each replicate prealigned and

docked individually, thus ensuring that all possible substructure

alignments are examined. In this mode, the centre of mass and

principal axes of the tethered substructure, rather than the whole

molecule, define the ligand position and orientation. Dihedral

angle mutations operate exclusively on the free (untethered) end of

each ligand rotatable bond, ensuring the tethered substructure

coordinates remain unchanged. Some movement of the tethered

region is allowed up to user-defined maximum deviations from the

reference coordinates for ligand translation (typically 0.1 Å) and

ligand rotation (typically 1u). For greater sampling efficiency,

tethering in rDock is enforced absolutely during pose generation

by restricting the randomisation and mutation functions for the

tethered degrees of freedom, rather than through the use of an

external penalty function.

Other. 1) To ensure that all poses are contained wholly within

the defined docking volume, a cavity penalty function (Scavity) is

calculated over all non-hydrogen ligand atoms. If the atom is

within the docking volume this term is zero, else, it is proportional

to the square of the distance to the nearest docking volume grid

point.2) When experimental NMR distance limits (NOE or STD)

are known for a specific ligand, restraints can be used to ensure

that a minimum distance is fulfilled between an atom (or group of

atoms) of the ligand and an atom (or group of atoms) of the

receptor.

Results

Benchmarking
The performance of rDock was compared with that of Glide

(version 57111 [19]) and AutoDock Vina [20] for database

enrichment and binding mode prediction for various test sets. As

detailed in Supporting Information Text S1, all receptors, docking

cavities and ligands were prepared in the same manner and

running parameters modified to ensure exhaustive sampling by all

programs.

rDock: An Open Source Program for Ligand Docking
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Protein-ligand binding mode predictions. The CCDC-

Astex Diverse Set of 85 diverse protein-ligand complexes was

selected for comparing binding mode prediction [21]. The results,

represented by percentage of correct predictions (ligand RMSD

below 2 Å) can be seen in Table 2. rDock calculations converge

after 20–50 GA runs (Figure S2; convergence also discussed

below). The predicted binding mode is correct in approximately

80% of cases for rDock and Vina, while Glide’s performance is

close to 70%. Failures for rDock and Vina are due to scoring

errors, as a correct pose is nearly always generated (99% and 97%

of times, respectively). However, Glide fails to sample the correct

binding mode in 16% of cases. Figure S3 shows the docking

outcome for each system and program. Although no obvious trend

can be identified, it would seem that rDock and Vina have a

higher coincidence in the type of systems for which they succeed or

fail.

RNA-ligand binding mode predictions. We selected 56

RNA-ligand complexes from the original RiboDock [6] and

DOCK6 [22] sets to assess the performance of rDock with RNA as

the receptor. RNA structures are more challenging than proteins

(less closed cavities, less hydrophobic, featureless) and the ligands

themselves are larger and more flexible (7.764.3 rotatable bonds

vs. 5.163.1 for the Astex set). For this reason the success cut-off

criterion is an RMSD below 2.5 Å, relative to the crystal structure.

The scoring function SF5, which includes a solvation term, is

better for RNA than SF3, as independently assessed [23]. After

50 GA runs, the top-ranked docking solution is correct in 5463%

of the systems (Figure S4), and at least one correct pose is

generated in 98% of cases, confirming that as with proteins, errors

are attributable to scoring rather than sampling problems.

However, both SF3 and SF5 have been primarily optimized for

proteins suggesting that development of an RNA-specific scoring

function could result in improvements. Vina and Glide can work

with but have not been optimised for ligand docking to RNA. On

the same set of complexes, we obtain success rates of 2962 for

Vina and 17.8 for Glide.

Virtual screening (DUD). VS enrichment was assessed

using the DUD benchmark set [24] which consists of 39

protein-ligand complexes with crystal structure, with an average

of about 100 known active ligands per complex and 36 decoys per

active ligand. The decoys are physically similar but topologically

dissimilar to the ligands in order to avoid bias. The DUD-E

benchmark set [25] was published recently, adding more protein-

ligand complexes. For our test set, 20 of the original DUD sets

were substituted with DUD-E data with more ligands and decoys

per system. Figures S5 and S6 show the ROC curves for all

systems and the most relevant parameters are summarized in

Table S1. The results are summarised in Table 3. Using most

metrics, Glide outperforms the other programs in ,70% of the

systems, while rDock is better in ,20% of systems and Vina in the

remaining 10%. On average, rDock AUC is 11% lower than Glide

and 5% better than Vina. In terms of logAUC, on average, Glide

outperforms rDock by 30%, while rDock outperforms Vina by

8%.

Sampling exhaustiveness and computing performance
A distinctive feature of rDock is that the GA converges very

quickly. This behaviour was designed for VS, where it is important

to discard poor ligands early on. Multiple docking runs (which

includes GA optimisation followed by MC and Simplex mini-

misation) are necessary to reach the global minimum score (Smin),

but few docking runs are necessary to reach a similar score

(Figure 1). For instance, after 5 runs, approximately 80% of

ligands reach a score of 0.8*Smin, and the median value is

0.94*Smin. Convergence depends on the dimensionality of the

problem and fewer docking runs are necessary when the ligands

contain fewer rotatable bonds (Figure 1) or when the cavity has a

smaller size (Figure S7). System-specific multi-step HTVS

Table 2. Percentage of top-ranked poses with an RMSD below 2 Å.

% Correct (top 1) % Correct (all)

rDock 76631 9960.21

Glide 67.6 83.8

Vina 81.2621 9760.51

1Average and standard deviation taking 100 random sets of 100 docking poses out of a pool of 1000 solutions.
doi:10.1371/journal.pcbi.1003571.t002

Table 3. Average values of different VS performance metrics over the 39 DUD/DUD-E systems.

Program AUC1 logAUC2 EFmax3 EF 1%4 EF 20%4

rDock 0.69 0.26 98.7 11.4 2.5

(18%) (18%) (33%) (19%) (18%)

Glide 0.78 0.37 334.6 22.6 3.2

(69%) (72%) (41%) (69%) (72%)

Vina 0.66 0.24 124.3 8.9 2.2

(13%) (10%) (26%) (11%) (10%)

The values in parentheses indicate the percentage of systems for which the program provides the optimal performance on a given metric.
1Area Under the ROC Curve.
2Area Under the semilogarithmic ROC Curve.
3Maximal Enrichment Factor.
4Enrichment Factor when the top x% of the virtual collection is selected.
doi:10.1371/journal.pcbi.1003571.t003
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protocols (see section below and Manual) achieve optimal

performance with an average of 8–10 runs per ligand. Table 4

shows the average computing times per ligand on 4 DUD systems

[24]. Precalculating the van der Waals potentials on a grid saves

20% to 40% of docking computing time, depending on the system.

For exhaustive docking, rDock is approximately 5-fold faster than

Vina, but still 8-fold slower than Glide SP. HTVS protocols

achieve a further reduction of 5 to 8-fold in computing time,

bringing the performance of rDock to be very similar to Glide SP

with no negative impact on the results (Table S3). Using a

relatively modest 100-core computing facility, a VS campaign of 1

million compounds can be completed in less than 1 day and the 21

million commercially accessible compounds compiled in ZINC

database [26] could be screened in 10 to 20 days for most systems.

Considerations for real VS applications
Design of multi-step HTVS protocols. Different docking

protocols are required for different applications. For detailed

docking, where the user is interested primarily in high accuracy, a

suggested rDock protocol is to allow receptor flexibility, bypass the

pre-calculation of van der Waals potentials and perform exhaus-

tive sampling (50–100 GA runs). For HTVS applications, where

computing performance is important, the recommended rDock

protocol is to limit the search space (i.e. rigid receptor), apply the

grid-based scoring function and to use a multi-step protocol to stop

sampling of poor scorers as soon as possible. An example is for the

DUD system COMT, where the computational time can be

reduced by 7.5-fold without affecting performance by: 1) 5 GA

runs for all ligands; 2) ligands achieving a score of 220 or lower

run 10 further GAs; 3) for those ligands achieving a score of 225

or lower, continue until 50 GAs. The optimal protocol is specific

for each particular system and parameter-set, but can be identified

with a purpose-built script (see Manual).

Guided docking. Usually, VS applications exploit existing

information to optimize the cavity definition (e.g. choice of protein

conformation, displaceable water molecules) and to bias the

docking protocol with empirical restraints (e.g. pharmacophoric

points, shape similarity). This is an essential step common to all

successful docking-based VS undertakings [3,27]. For this reason,

we have compared the outcome of VS on Hsp90, a DUD system

for which we have developed and used optimal docking protocols

[7,8,28]. The cavity includes 2 interstitial water molecules and two

pharmacophoric points. As shown in Table 5 and Figures S8 and

S9, all VS performance metrics improve significantly, particularly

those related to early enrichment (logAUC, EF1%). As scoring

functions are supplemented with empirical information, perfor-

mance increases and the difference between programs reduce

(Table S2).

Availability and future directions
The program is released under the Lesser General Public

License and the source code, scripts, manuals, and test sets are

available at http://rdock.sourceforge.net/. The current version

has prototype code to sample fully the degrees of freedom and

occupancy of interstitial water molecules, as previously described

for GOLD [29], or to dock simultaneously to an ensemble of

receptor coordinates to simulate receptor flexibility in an efficient

way. These features require further validation. Future develop-

Figure 1. Relative score vs. the number of docking runs for all
the protein-ligand complexes in the CCDC-Astex set. The
boxplot indicates the median value (out of 1000 possible solutions)
and the first and last quartile, while the whiskers span the 10% to 90%
range. The whole set (black) has been sub-divided into ligands with 5 or
fewer rotatable bonds (green) and the rest (red).
doi:10.1371/journal.pcbi.1003571.g001

Table 4. Average computing times (in seconds per ligand) on 4 DUD systems.

Vina1 Glide SP1 rDock

Grid-based SF Indexed SF

VS2 Full1,3 VS2 Full1,3

ADA 86.4 4.2 4.2 27.0 5.4 33.0

COMT 77.4 3.0 3.0 22.5 5.0 31.8

PARP 54.0 1.5 3.9 16.5 5.7 29.1

Trypsin 372.0 6.0 14.1 53.1 20.1 82.5

Average 147.5 3.7 6.3 29.8 9.1 44.1

1Default program parameters were used.
2On HTVS mode, the average number of docking runs needed for these 4 systems is 10.
350 docking runs are used for default docking.
All figures were obtained on Intel Xeon X5660 CPUs at 2.80 GHz.
doi:10.1371/journal.pcbi.1003571.t004
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ments will aim at improving the scoring functions for both protein-

ligand and RNA-ligand interactions.

Supporting Information

Figure S1 Workflow summary of an rDock docking job. Shapes

in gray background are not covered with any rDock program and

must be carried out with independent software.

(TIF)

Figure S2 Binding mode prediction in the protein-ligand set

(CCDC-Astex): Percentage of top-ranked poses with RMSD below

2.0 Å as a function of the number of docking runs. The boxplot

indicates the median value (out of 100 possible solutions) and the

first and last quartile, while the whiskers span the 10% to 90%

range. The whole set (black) has been sub-divided into ligands with

5 or fewer rotatable bonds (green) and the rest (red).

(TIF)

Figure S3 Matrix representation of the docking outcome for each

system in the CCDC-Astex set for the three programs evaluated. A

black area indicates that the best-scoring pose for a particular

system-program combination has an RMSD below 2.0 Å.

(TIF)

Figure S4 Binding mode prediction in the RNA-ligand set:

Percentage of top-ranked poses with RMSD below 2.5 Å as a

function of the number of GA runs. The boxplot indicates the

median value (out of 100 possible solutions) and the first and last

quartile, while the whiskers span the 10% to 90% range.

(TIF)

Figure S5 Receiver Operating Characteristic (ROC) Curves of

all DUD systems. In the Y-axis, the true positive rate is the fraction

of true positives out of the total actual positives and, in the X-axis,

the false positive rate is the fraction of false positives out of the total

actual negatives. In gray, ROC curve in case of random results.

(TIF)

Figure S6 Semilogarithmic Receiver Operating Characteristic

(ROC) Curves of all DUD systems. In the Y-axis, the true positive

rate is the fraction of true positives out of the total actual positives

and, in the X-axis in logarithmic scale, the false positive rate is the

fraction of false positives out of the total actual negatives. In gray,

semilogarithmic ROC curve in case of random results.

(TIF)

Figure S7 Relative score vs. the number of docking runs for all

the protein-ligand complexes in the CCDC-Astex set. The boxplot

indicates the median value (out of 100 possible solutions) and the

first and last quartile, while the whiskers span the 10% to 90%

range. The whole set (black) has been sub-divided into systems

with relatively small cavities (green) and the rest (red).

(TIF)

Figure S8 ROC curve of HSP90 without pharmacophoric

restraints in normal (A) or semilogarithmic scale (B).

(TIF)

Figure S9 ROC curve of HSP90 with pharmacophoric

restraints in normal (A) or semilogarithmic scale (B). It should be

noted that using these settings, Glide only produces an output for

13 actives (out of 24) and 451 decoys (out of 864).

(TIF)

Software S1 Compressed file with the source code of the rDock

software for ligand docking to Proteins and Nucleic Acids.

(GZ)

Table S1 Summary of statistics for all DUD systems and

averages for each and all programs.

(DOCX)

Table S2 Spearman’s rank correlation coefficient (r) between

programs on the Hsp90 DUD set.

(DOCX)

Table S3 AUC for the 4 DUD systems used for calculating the

time performance.

(DOCX)

Text S1 Supporting Methods: Test set preparation, execution

and analysis.

(DOCX)
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Table 5. VS performance metrics for Hsp90 using an unbiased protocol with default parameters (rDock, Glide & Vina) or an
optimized cavity definition and empirical pharmacophoric restraints (rDock-guided & Glide-guided).

Program AUC logAUC EFmax EF 1% EF 20%

rDock 0.63 0.20 3.9 0.0 1.5

(0.8) (0.7) (0.5) (1.0) (0.7)

Glide 0.77 0.28 7.4 0.0 2.1

(1.0) (1.0) (1.0) (1.0) (1.0)

Vina 0.55 0.16 1.4 0.0 0.75

(0.7) (0.6) (0.2) (1.0) (0.4)

rDock-guided 0.92 0.46 36.9 12.3 4.3

(1.2) (1.6) (5.0) (–) (2.0)

Glide-guided 0.90 0.46 17.4 6.9 4.6

(1.2) (1.6) (2.3) (–) (2.2)

Note that Vina does not support pharmacophoric restraints. The numbers in parentheses indicate performance relative to the best non-guided result (Glide).
doi:10.1371/journal.pcbi.1003571.t005
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