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ABSTRACT

With the advent of DNA sequencing technologies,
more and more reference genome sequences are
available for many organisms. Analyzing sequence
variation and understanding its biological import-
ance are becoming a major research aim. However,
how to store and process the huge amount of eu-
karyotic genome data, such as those of the human,
mouse and rice, has become a challenge to biolo-
gists. Currently available bioinformatics tools used
to compress genome sequence data have some limi-
tations, such as the requirement of the reference
single nucleotide polymorphisms (SNPs) map and in-
formation on deletions and insertions. Here, we
present a novel compression tool for storing and
analyzing Genome ReSequencing data, named
GRS. GRS is able to process the genome sequence
data without the use of the reference SNPs and other
sequence variation information and automatically
rebuild the individual genome sequence data using
the reference genome sequence. When its perform-
ance was tested on the first Korean personal genome
sequence data set, GRS was able to achieve
�159-fold compression, reducing the size of the
data from 2986.8 to 18.8 MB. While being tested
against the sequencing data from rice and
Arabidopsis thaliana, GRS compressed the 361.0
MB rice genome data to 4.4 MB, and the A. thaliana
genome data from 115.1 MB to 6.5 KB. This de novo
compression tool is available at http://gmdd.shgmo.
org/Computational-Biology/GRS.

INTRODUCTION

The development of new DNA sequencing technologies,
such as next-generation sequencing (NGS) and single-
molecule sequencing, has enabled the research of genomics
and functional genomics to advance to new levels (1,2).

Due to the dramatic reduction of sequencing cost and
increase of sequencing efficiency, these new high-throughput
sequencing technologies have become effective and routine
applications in the ‘resequencing’ of individual genomes for
detecting sequence variation between the individual and the
reference genome (3). Resequencing individual genomes
can facilitate the investigation of the relationship between
sequence and phenotypic variations. To date, several
personal human genome sequencing data have been
released (2,4–6). Sequencing of individual human genomes
is believed to provide molecular basis for personalized
medicine. Furthermore, more resequencing data are being
generated from various organisms. Individual genome
resequencing in animals such as mouse and pig, and in
plants such as rice, maize and soybean, has proven to be
extremely powerful in investigating genome variations,
such as single nucleotide polymorphisms (SNPs), deletions,
insertions and rearrangements.
However, how to store and manage the huge amount

of sequencing data has become a challenge to biologists.
For example, the storage of one 2009 human reference gen-
ome (i.e. UCSC hg19 assembly) requires up to 905MB
with the tar.gz compression format (7). Thus, a total of
90 500 MB (nearly 88.38 GB) hard disk storage space with
the tar.gz compression format would be required to store
data for 100 individuals in genetic disease studies. It is
noteworthy that different individuals within one species
share higher consensus nucleotide sequence; for example,
human has �99.9% common genome sequence with DNA
sequencing errors of 0.01% (8,9). Moreover, the electronic
transfer of sequencing data is a bottleneck, even though
some tools have been developed to compress the files and
increase the network bandwidth.
Currently, several methods for compressing genomic

sequence data have been reported (10–13). However, these
compression tools can not process the genome sequence data
without the reference SNPs map or information about
sequence variations, such as insertions or deletions.
Here, we present a general Genome ReSequencing

(GRS) tool for storing and managing the individual
genome resequencing data without having to rely on
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known reference SNPs maps or other information on
sequence variation. We demonstrate the power of this
GRS tool in processing genome resequencing data, using
whole genome sequencing data sets from human and the
model plants Arabidopsis and rice.

MATERIALS AND METHODS

Data set

Data sets used to test GRS include KOREF_20090131
and KOREF_20090224, two of the first Korean personal
genome sequences (4), and two different versions of the
reference genome sequence from Arabidopsis thaliana
(TAIR8 and TAIR9) and rice (TIGR5 and TIGR6)
(14–16), respectively.

Software availability

GRS is implemented in C and Shell. It will be freely available
for non-profit use. The source code and its executable file

are available at http://gmdd.shgmo.org/Computational-
Biology/GRS.

Architecture of the GRS tool

The main modules in GRS connect the input chromosome
file, the intermediate data and the final compressed file.
The architecture of GRS is shown in Figure 1. When an
individual genome sequence data needs to be compressed,
GRS first evaluates each chromosome varied sequence
percentage (�) based on the reference chromosome. Then
it filters the longest identical nucleotide sequence and
extracts the different sequence (�� 0.03), and precodes
the different sequence file that has been generated to
reduce the file size. Then, GRS uses the Huffman coding
strategy to compress the reduced different sequence file to
the bz2 type file and generates the command file to decom-
press the compressed file. If 0.03� �� 0.1, GRS will cut
chromosome into n pieces and calculate each different rate
�i ð1 � i � nÞ to find the position with minimal

P
�i, then

compress each piece with the same strategy as the one used
for �� 0.03. Individual genome sequence data that has

0.03 ≤ δ ≤ 0.1 δ ≤ 0.03 
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Figure 1. Architecture of the GRS Tool. The main modules in GRS connect the input chromosome file, the intermediate data and the final
compressed file. Details of the processing procedure are described in the text.

e45 Nucleic Acids Research, 2011, Vol. 39, No. 7 PAGE 2 OF 6



been compressed using GRS can be later decoded easily
with the GRS decoding tool.

Evaluation of individual genome sequence variation

Higher percentage of nucleotide sequence variation from
the reference genome leads to longer time to run GRS and
results in larger compressed file for an individual genome.
When the individual genome sequence data needs to be
compressed, GRS checks whether the users use the correct
reference chromosome data, quantifying the percentage of
varied nucleotide sequence in an individual genome is thus
required. Here we used the following method to calculate
�. We used the formula � ¼

P9
i¼0 ci=t, where ci means

the number of different nucleotide sequence between the
individual and the reference; i means the type of nucleo-
tide; including A, T, C, G, N, a, t, c, g and n; t means
the total DNA base number in the reference genome
sequence data.

Recording the longest common local nucleotide sequence
and the changed sequence

It is reported that finding and recording the varied nucleo-
tide sequence of two sequences equals to finding their
longest common local sequence (17). Using a matrix
graph, the longest common sequence can be extracted
effectively. Taking two sequences ‘gaNGCTA’ and
‘gNGTNA’ as an example, their longest common
sequence is ‘gNGTA’. That is to say that each nucleotide
of ‘gaNGCTA’ in x-axis is used to compare with the
whole sequence of ‘gNGTNA’ in y-axis, and each
common nucleotide in y-axis direction will be marked
with a red circle, after the base by base comparison the
longest common sequence will be marked in the whole
matrix (Supplementary Figure S1). GRS can find the
minimal changes between two genome sequences using
the modified UNIX diff program (18).

RESULTS

Huffman encoding for varied nucleotide sequence
information and individual genome sequence rebuilding

Figure 2a shows the module of presenting the raw infor-
mation on sequence difference between the individual and
the reference sequences generated based on the modified
UNIX diff program. When processing the varied sequence
information, the ‘>’, ‘<’ and the ‘\n’ between adjacent
nucleotides is removed by GRS (Figure 2b). Then ‘a’
(add) is converted to ‘i’ and ‘c’ (change) to ‘h’. In
addition, the base information below the ‘d’ (deletion)
can be removed since the deleted sequence information
can be extracted based on the sequence position such as
N5 and N6 (Figure 2a and b). Also, the ‘—’ and the high-
lighted bases can be removed because these sequences
can be recovered by using the sequence at N9 and N10
(Figure 2a and b).

Next, ‘,’ is changed to ‘\t’ and ‘\t’ is added to each side
of ‘i’, ‘d’ and ‘h’ by GRS to make the rebuilding language
more readable by the computer. If there are two numbers
at the side of ‘i’, ‘d’ or ‘h’, the second nucleotide position

will be recorded using the subtracted number of the first
nucleotide position to the second one. Therefore, at each
side of ‘i’, ‘d’ and ‘h’, the number N5, N7, N9 and N11 is
replaced by the subtracted number of their corresponding
nucleotide position N1, N3, N5 and N7 to reduce the file
size (Figure 2b and c). Eventually, the individual genome
sequence information can be recorded as the format
shown in Figure 2c using Huffman coding (19).
To encode the processed individual sequence data more

effectively, each nucleotide sequence and its relevant
number are recorded with the same binary value since it
can be decoded uniquely with the help of ‘i’, ‘d’ and ‘h’.
Table 1 shows an example of the encoding strategy using
the varied sequence information of A. thaliana chromo-
some 1 with TAIR8 as the reference and TAIR9 as
the individual genome, showing that the larger counts
of the symbol are reduced to the shorter encoding value.
Then the bit file is able to be generated to the char
code, for instance, the taken bits ‘01000001’ presents the
corresponding ASCII code ‘A’.

Performance of GRS

Performance of the GRS tool was tested in three cases.
When two Korean genome sequence data (KOREF_
20090131 and KOREF_20090224) were used (4), the raw
file with 2986.8 MB in size (KOREF_20090224) was
reduced to a 18.8-MB compressed file, achieving a
�159-fold compression rate (Table 2). In addition, we also
compressed the raw file of rice genome from 361.0 MB to 4.4
MB with the compression rate �82 fold (Table 3), and 115.1
MB of A. thaliana genome to 6.5KB with nearly 18 133 fold
of compression (Table 4). Furthermore, the good perform-
ance of GRS was revealed by the calculated compression
and decompression time of these three genomes
(Supplementary Table S1).

(a) (b)

(c)

Figure 2. Processing changes file of DNA base, genome position and
recover language. (a) Raw changes between two sequences generated
based on the modified UNIX diff program. N1 to N12 indicate the
nucleotide sequence position ranging from N1 to N12; ‘a’ is the inser-
tion of nucleotide(s); ‘d’ is the deletion of nucleotide(s) and ‘c’ is the
changed nucleotide(s). In addition, symbol ‘,’ between N1 and N2
means positions start from N1 to N2. Symbol ‘>’, ‘<’ and ‘—’ are
the keywords when the whole individual genome sequence is rebuilt on
basis of the reference genome sequence. (b) Changes file with redundant
information deleted. (c) Changes file generated based on the subtracted
number, which is more readable to the computer.
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DISCUSSION

With the advance of DNA sequencing technologies, more
and more genome resequencing projects, such as the
International HapMap Project and the 1000 Genomes
Project, have been initiated (20,21). As a result, compression
of the huge amount of genome sequencing data has become
an important issue (10,11). Currently available tools have
limitations in effectively processing the large amount
of genome reseqencing data. For example, tools developed
by Brandon et al. (10) and Christley et al. (11) are limited
by not only the known reference SNPs map, but also the
possible loss of sequence information, such as large struc-
tural variations (SVs) including sequence rearrange-
ments and segment duplications. Even though the advent
of sequencing technologies facilitates the processing of indi-
vidual genome sequence such as reassembling genome

Table 2. Performance of GRS in compressing the KOREF_20090224

human genome using KOREF_20090131 as the reference

Chromosome

number

Varied

sequence

percentage

(%)

Raw

file size

Compressed

file size

Compression

rate

1 0.656 929 239.7MB 1.3MB 184.4

2 0.716 863 235.6MB 1.3MB 181.2

3 0.630 572 193.4MB 987.4KB 200.6

4 0.762 314 185.5MB 1.1MB 168.6

5 0.711 956 175.4MB 964.9KB 186.1

6 0.649 071 165.7MB 884.9KB 191.7

7 0.912 855 154.0MB 1.0MB 154.0

8 0.639 359 141.8MB 746.4KB 194.5

9 0.774 539 136.0MB 844.0KB 165.0

10 0.705 819 131.3MB 750.4KB 179.2

11 0.720 238 130.4MB 738.0KB 180.9

12 0.638 779 128.3MB 685.6KB 191.6

13 0.550 377 110.7MB 508.4KB 223.0

14 0.529 220 103.1MB 473.4KB 223.0

15 0.589 095 97.3MB 484.6KB 205.6

16 0.808 032 86.1MB 554.7KB 158.9

17 0.818 430 76.4MB 494.1KB 158.3

18 0.666 472 73.8MB 399.0KB 189.4

19 0.744 553 61.9MB 390.4KB 162.4

20 0.493 781 60.5MB 276.0KB 224.5

21 0.579 505 45.5MB 221.2KB 210.6

22 0.632 448 48.2MB 256.3KB 192.6

M 0.108 715 16.5KB 183.0 B 94 543.8

X 3.299 049 150.2MB 3.1MB 48.5

Y 1.768 076 56.0MB 578.9KB 99.1

The whole

genome

0.804 282 2986.8MB 18.8MB 158.9

The verified sequence percentage of each chromosome, the size of raw
sequence file and compressed file, as well as the compression rate are
shown.

Table 1. Huffman encoding for DNA base, genome position and

recover language

DNA

base

Relevant

number

Counts Encoding

value

A 0 95 0110

T 1 155 000

C 2 132 1110

G 3 105 1100

N 4 101 1010

a 5 110 1111

t 6 98 0111

c 7 80 0010

g 8 106 1101

n 9 83 0011

d 31 101 110

h 15 101 111

i 54 10 110

\t 210 100

\n 168 010

Each DNA base and its relevant number are encoded with the same
binary value based on the Huffman encoding strategy. Shown here is
the encoding table for changes file generated for chromosome 1 of the
A. thaliana genome using TAIR8 as reference and TAIR9 as the
individual genome. Character d means delete sequence, h means
change sequence and i means insert sequence.

Table 3. Performance of GRS in compressing rice genome of TIGR6

using TIGR5 as the reference

Chromosome

number

Varied

sequence

percentage

(%)

Raw

file

size

(MB)

Compressed

file size

Compression

rate

1 0.757 801 42.0 1.4MB 30.0

2 0.013 898 34.8 1.4KB 25 453.7

3 0.168 381 35.3 46.6KB 775.7

4 0.096 345 34.2 35.3KB 992.1

5 0.069 046 29.0 6.0KB 4949.3

6 0.000 000 30.3 0

7 0.027 041 28.8 4.0KB 7372.8

8 0.479 452 27.6 115.5KB 244.7

9 0.000 000 22.3 0

10 1.128 503 22.4 770.1KB 29.8

11 0.188 992 27.6 2.3MB 12.0

12 0.000 000 26.7 0

The whole

genome

0.244 122 361.0 4.4MB 82.0

The verified sequence percentage of each chromosome, the size of raw
sequence file and compressed file, as well as the compression rate are
shown.

Table 4. Performance of GRS in compressing A. thaliana genome of

TAIR9 using TAIR8 as the reference

Chromosome

number

Varied

sequence

percentage

(%)

Raw

file

size

(MB)

Compressed

file size

Compression

rate

1 0.016 314 29.4 715.0 B 43 116.3

2 0.036 145 19.0 385.0 B 51 747.9

3 0.046 910 22.7 2.9KB 6709.0

4 0.000 301 17.9 1.9KB 9647.2

5 0.063 888 26.1 604.0 B 45 311.0

The whole

genome

0.032 712 115.1 6.5KB 18 132.7

The verified sequence percentage of each chromosome, the size of raw
sequence file and compressed file, as well as the compression rate are
shown.
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sequences using the sequencing reads on basis of the refer-
ence genome (3,4), the current sequence compression tools
are not very suitable for this purpose. Moreover, compre-
hensive reference SNPs maps are unavailable for many
organisms such as rice, A. thaliana and other species,
making it hard to compress these genome resequencing
data using the available tools. In this study, we show that
GRS is a de novo genome compression approach for
compressing resequencing data, which is applicable to the
genome data management of many species.

Varied sequence percentage plays a critical role in com-
pressing the genome resequencing data. GRS employs
a novel approach to deal with the resequensing data,
especially for those data sets with higher variation
between the reference genome and the individual
genome. The key point of GRS is to splice the reference
chromosome and the input chromosome into the same
intervals, and then calculate each corresponding pair
of the varied sequence percentage �i based on each nucleo-
tide frequency. Subsequently, concatenating piece i to
make the modified reference chromosome and modified
input chromosome creates the minimum varied sequence
percentage based on the �i value (Figure 3). Then the
minimum change file can be compressed using GRS and
the chromosome piece with a higher value of varied
sequence percentage can be compressed using the general
and routine file compression method such as 7-Zip. When
the chromosome size is too big or the computer memory
capability is limited, it is useful to splice the reference
chromosome and the input chromosome data. In this
study, GRS grouped each chromosome sequencing
data of the Korean genome (4), into 50, 25 or 10 million
per piece, respectively. Similar compression capabilities
were obtained (i.e. file size is �19 MB), demonstrating
the flexibility and reliability of GRS.

CONCLUSIONS

In this article, we designed and implemented a generic
tool, GRS, for de novo compression of genome
resequencing data. GRS is simple to use and does not
need the reference SNPs map, thus can be widely used
for many genomes, especially those without reference
SNPs. Case studies using the sequencing data of human,
rice and A. thaliana genomes have demonstrated the good
performance of GRS in sequencing data compression.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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