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ABSTRACT
A group of homologous nucleic acid modification enzymes called Dnmt2, Trdmt1, Pmt1, DnmA, and
Ehmet in different model organisms catalyze the transfer of a methyl group from the cofactor S-adenosyL-
methionine (SAM) to the carbon-5 of cytosine residues. Originally considered as DNA MTases, these
enzymes were shown to be tRNA methyltransferases about a decade ago. Between the presumed
involvement in DNA modification-related epigenetics, and the recent foray into the RNA modification
field, significant progress has characterized Dnmt2-related research. Here, we review this progress in its
diverse facets including molecular evolution, structural biology, biochemistry, chemical biology, cell
biology and epigenetics.
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Introduction

Dnmt2 orthologs were originally considered to be DNA meth-
ylating enzymes, based on their clear sequence homology with
other enzymes from a family designated with the abbreviation
“Dnmt” for DNA methyltransferase. These enzymes are known
for catalyzing cytidine methylation at the carbon-5 position
resulting in 5-methylcytosine, typically abbreviated as 5mC in
the DNA modification field. However, robust DNA methyl-
transferase activity, that was comparable to other Dnmt family
members, could not be observed using Dnmt2 preparations.
An extensive search for target DNA sequences within different
genomes led to a stunning discovery, when the Bestor group
showed that Dnmt2 enzymes are actually tRNA transferases1

catalyzing the methylation of position 38 in tRNAAsp
GUC

(1) to
yield 5-methylcytosine, which is abbreviated m5C in the RNA
modification field. From this discovery, many new questions
arose. Is tRNA methylation the only activity, or could Dnmt2
enzymes be multifunctional and promiscuous in their sub-
strates? Could there be other RNA targets, with or without
characteristics known from tRNAs? Are these enzymes consti-
tutively active, or do they change substrate specificity under
certain conditions and upon interaction with partners? How
are substrates recognized? What are the biological consequen-
ces of Dnmt2-mediated RNA methylation on protein biosyn-
thesis and other cellular functions?

Meanwhile, various new findings and developments have
excited the tRNA field, many of them relating to RNA modifi-
cations, which placed the unusual activity of Dnmt2 enzymes

toward tRNA substrates well in the center of attention. For one,
the view of tRNA modification has changed from that of a con-
stitutive, and essentially static, posttranscriptional feature to
include a notion of dynamic regulation of the modification sta-
tus of RNAs.2 The extent of tRNA modification, and tRNA
itself, were shown to respond to extrinsic stimuli such as stress,
suggesting participation in the regulation of molecular
responses to such insults.3 Furthermore, tRNA fragments
(tRFs), long thought to be artifacts from RNA preparation pro-
cedures, were revealed to be generated by specific enzymes and
to have biological impact.4-6

In the light of these issues, yet another set of questions
applied to Dnmt2-related enzymes. To what stimuli do their
activities respond? Do they regulate a cellular response, and if
yes, how? How does tRNA methylation mediate such a
response? Are tRNA substrates subject to RNA cleavage, and
does tRNA methylation affect this process? What are the down-
stream effects of tRFs?

Over the last decade, the authors of this review article have
cooperated as a group on the topic of Dnmt2 enzyme research
using various organisms and experimental systems. Accord-
ingly, we here review the field with special emphasis on the
developments that have occurred since the seminal paper by
Goll et al. in 2006,1 laying out the current state of knowledge
with respect to the above-cited questions. Most of the recent
progress on understanding Dnmt2 function was made in
mammals (human and mouse), Drosophila melanogaster
Dictyostelium discoideum, Entamoeba histolytica, and
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Schizosaccharomyces pombe. The latter 4 are also called
“Dnmt2-only” organisms, as they do not encode any other
enzymes of the Dnmt family. Further interesting insights into
Dnmt2 function were obtained using Geobacter sulfurreducens,
one of the very few bacteria containing a Dnmt2 homolog.

Part 1: Phylogeny, structure, and biochemistry
of Dnmt2

Evolution of Dnmt2 enzymes

The group of Dnmt2 orthologs presents an unusual evolution-
ary history. Initially, Dnmt2 enzymes were assigned as putative
DNA methyltransferase due to their sequence similarity to
other mammalian and bacterial 5mC DNA methyltransfer-
ases.7,8 The Dnmt2 enzymes are highly conserved and are pres-
ent in almost all eukaryotic organisms9,10 and a handful of
bacterial species, which most likely acquired them via horizon-
tal gene transfer from a eukaryote.11

Despite the high sequence and structure similarity of
Dnmt2 enzymes and canonical DNA methyltransferases,12

early biochemical analyses identified at best only very weak,
residual DNA methylation activity on DNA in vitro and
often no activity was reported.13 This lack of robust DNA
methylation activity spurred new searches for potential
other substrates, which led to the identification of tRNAAsp-
GUC C38 as a target of Dnmt2 in Arabidopsis thaliana,
mouse and Drosophila melanogaster.1 It was suggested by
the Bestor group that other eukaryotic DNA

methyltransferases (Dnmt1 and Dnmt3) may have evolved
from a Dnmt2-like RNA methyltransferase ancestor that
changed its target specificity from RNA to DNA. To investi-
gate this possibility, a phylogenetic analysis of the evolu-
tionary relationship between the Dnmt2 family, and other
known prokaryotic and eukaryotic DNA and RNA C5-
pyrimidine MTases was performed.9

The phylogenetic analysis indicated that Dnmt2 is separated
from Dnmt3a, Dnmt1 and Masc1 clades by numerous prokary-
otic DNA methyltransferase enzymes, suggesting that these
families of enzymes separately evolved from prokaryotic DNA
methyltransferase ancestors. Moreover, in a clustering analysis,
the RNA m5C methyltransferases formed a well-defined
sequence cluster clearly separated from all the other DNA 5mC
methyltransferases, indicating that neither Dnmt2 nor 5mC
DNA methyltransferases are closely related to other RNA
methyltransferases (Fig. 1).

Importantly, the RNA and DNA m5C/5mC methyltransfer-
ases differ in their catalytic mechanism and the residues that
are employed for the catalysis. As detailed below, Dnmt2
enzymes use catalytic motifs that are characteristic for a DNA
methyltransferases mechanism,14 despite the fact that they
methylate RNA molecules. Taken together, the biochemical
data, as well as phylogenetic and clustering analyses suggest
that the ancestor of Dnmt2 was a DNA methyltransferase,
which changed its substrate preference from DNA to RNA.
There is no phylogenetic evidence that Dnmt2 was the precur-
sor of the eukaryotic Dnmt1 family and the preferred hypothe-
sis is that Dnmt2, Dnmt1 and Dnmt3 families had an

Figure 1. Consensus model of the phylogeny of DNA 5mC / RNA m5C methyltransferases. Dnmt1 and Dnmt2/Dnmt3 enzymes have independent origin in the prokaryotic
DNA methyltransferases. The putative precursor of the Dnmt2 family changed its substrate preference from DNA to RNA (indicated with �). Green shading denotes DNA
methyltransferases, pink denotes RNA methyltransferases.
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independent origin in the prokaryotic DNA methyltransferases
sequence space.

Structures of Dnmt2 enzymes

To date, crystal structures of 3 Dnmt2 enzymes have been
deposited in the protein database (PDB), namely from human
(entry 1G55),12 Spodoptera frugiperda15 (4H0N) and from Ent-
amoeba histolytica (3QV2).16 The latter structure is shown in
Fig. 2, next to a structure of tRNAAsp

GUC (1VTQ). All enzyme
structures were obtained with SAH (S-adenosyl-homocysteine),
the product resulting from the canonical cofactor SAM (S-
adenosyL-methionine) after methyl transfer. However, no
Dnmt2 structure includes any nucleic acid substrate. The first
structure from the Cheng lab has arguably been the most
influential, since it was published more than a decade earlier
than the others, and concerns the human enzyme. However,
in addition to lacking a defined nucleic acid binding site, a
loop from catalytic motif IV (vide infra) and other parts of the
catalytic center were disordered. In the unrelated DNA meth-
yltransferase M. HhaI, the corresponding loop has been
shown to interact with DNA.17 These missing features are
more clearly discernible in the S. frugiperda structure, but this
enzyme contains a significantly shorter loop. The active site
loop (residues 80–100) is better defined in the third structure
of Ehmeth, the Dnmt2 homolog of E. histolytica,16 which was
solved by the Ficner and Ankri groups. Specifically, the crystal
structure of Ehmeth revealed that this loop adopts an a-helical
conformation. However, the conformation of the active site
loop in Ehmeth is stabilized by crystal packing contacts to
neighboring molecules. Therefore, it is conceivable that it
might adopt a different conformation in a complex with a
nucleic acid substrate. Since the sequences of the active site
loops are almost identical in Dnmt2 enzymes, it is tempting to
speculate that the active site loop of human Dnmt2 and
Ehmeth are both flexible to accommodate either DNA or
RNA substrate binding. In summary, while an understanding

of the interplay of the catalytic motifs is rather advanced, the
currently most burning question as to how the enzymes bind a
nucleic acid substrate, still awaits clarification from structural
biology approaches.

RNA substrates of Dnmt2 enzymes

With the detection of tRNAAsp
GUC methylation at C38 by

Dnmt2 homologues,1 the search for Dnmt2 substrates (Fig. 3)
took an entirely new turn. Several organisms were scrutinized
for new RNA substrates, both tRNA and others. In addition to

Figure 2. Structure of Entamoeba histolytica methyltransferase EhMeth (3QV2) and structure of tRNAAsp from S. cerevisiae (1VTQ) drawn in same scale. Dnmt2 is shown in
schematic drawing in orange with SAM in yellow.

Figure 3. Substrate spectrum of Dnmt2. Dnmt2 has been shown to methylate
tRNA-Asp and depending on the species tRNAGly, tRNAVal, and tRNAGlu. Whether
other tRNAs, RNAs or DNA are methylated by this enzyme is an open question.
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tRNAAsp
GUC, several other tRNA substrates were identified in

flies, mice, and amoeba. An overview is given in Table 1. In
addition to tRNAAsp

GUC, specific isoacceptors for tRNA
Gly, and

tRNAVal are also targets for the mouse and Drosophila
enzymes.5 The evolutionary trend is quite surprising: in D. mel-
anogaster, tRNAAsp

GUC, tRNAGly
GCC and tRNAVal

AAC are
methylated in vivo,5 but in S. pombe tRNAGlu

UUC is also meth-
ylated when the enzyme is artificially overexpressed.18 In D. dis-
coideum, tRNAGlu

UUC/CUC substrates are only modified in vitro
but not in vivo.19 A particular substrate choice was described
for the prokaryote Geobacter sulfurreducens (vide infra).

During the search for additional Dnmt2 substrates, a variety
of conventional methods was employed, and existing methods
were modernized. Furthermore, entirely new approaches
emerged that revolutionized not only the search for, and map-
ping of, m5C in RNA, but contributed to the increased interest
in the RNA modification field that we see today. Among the
more traditional methods, tritium incorporation assays that
trace the transfer of 3H-labeled methyl groups from the SAM
cofactor to the nucleic acid substrate have remained indispens-
able. Detection relies on scintillation-augmented detection of
radioactivity of precipitated samples or in gels.19 Depending on
the purity of protein and nucleic acid preparations, these assays
are potentially the most sensitive, but also those most prone to
erroneous interpretation, since the formation of 5mC (in
DNA) or m5C (in RNA), respectively, is not confirmed by
chemical or biophysical means, leaving room e.g. for inadver-
tent measurement of contaminating methyltransferase activi-
ties. Methods that do confirm the identity of a given modified
nucleoside by biochemical or biophysical means have shifted
from the use of thin-layer chromatography (TLC,20) to high
performance liquid chromatography coupled to mass spec-
trometry (LC-MS,21). Moreover, powerful methods have
emerged that use the specific chemical properties of m5C to
detect its occurrence in a transcriptome-wide sequence context.
Foremost among these is the adaptation of bisulfite sequencing
from DNA to RNA by Sch€afer and Lyko,22 an accomplishment
that has opened up the field to several such methods targeted
to the high throughput detection of other RNA modifications,
including e.g., m1A23-26 and pseudouridine.27 With RNA bisul-
fite sequencing meanwhile having been applied to numerous
RNA preparations (e.g.28-30), it appears that consistent methyl-
ation signals are typically obtained from abundant RNAs such
as tRNA and rRNA, while signals in reads from low abundance
RNAs tend to be close to noise levels (deamination artifacts).
Although m5C candidate sites outside tRNA and rRNA were
reported in transcriptome-wide studies,31,30 including also
alleged Dnmt2 dependent m5C sites28,30,32 validation by inde-
pendent methods or by other groups using the same approach
has yet remained elusive. Another transcriptome-wide
approach for the mapping of m5C sites utilizes azacytidine, a

potent inhibitor of m5C:methyltransferases, which forms com-
plexes between a potential methylation target cytidine and the
cognate methyltransferase, allowing an enrichment of target
sequences by immunoprecipitation and subsequent identifica-
tion of turned-over residues by misincorporation in the cDNA
sequences.32 As expected, the known tRNA substrates of
Dnmt2 were detected by this method. Interestingly, while 2
potential non-tRNA, Dnmt2-dependent sites were reported,
these do not overlap with any of the previously reported ones.28

Experiments using cross-linking immunoprecipitation
(CLIP) of the Dnmt2 homolog in D. discoideum, DnmA,
yielded sequence fragments mapping to tRNAAsp

GUC as well as
to tRNAGlu

CUC/UUC and tRNAGly
GCC. This prompted the sug-

gestion that DnmA may have additional, non-enzymatic func-
tions which are exerted by binding and not necessarily by
target methylation.19 Further sequences included snoRNAs,
some intergenic non-coding RNAs and the spliceosomal RNAs
U1, U2 and U4. U2 is known to contain 2 tRNA like stem-loop
structures which contain a C38 equivalent in a sequence con-
text similar to tRNAAsp

GUC. Out of several candidates tested,
U2 was the only one which could be weakly methylated by
DnmA and human Dnmt2 in vitro. In vivo methylation by
bisulfite sequencing was not detected. Like for tRNAGlu

UUC and
tRNAGly

GCC, it may be that the protein binds to U2 in vivo but
has a different function than methylation of the substrate.33

Hence, currently validated in vivo Dnmt2 substrates remain
restricted to tRNAs.

Function and specificity of the Dnmt2 homolog found
in Geobacter species

As described above, Dnmt2 is widely distributed in eukaryotes,
but only very few Dnmt2 homologs were identified in bacteria,
one of them in Geobacter species.9 An investigation of the activ-
ity of theGeobacter sulfurreducensDnmt2 homolog (GsDnmt2),
which was conducted by in vitro methylation analyses, showed
that GsDnmt2 methylates tRNAAsp

GUC from flies and mice.11

Unexpectedly, it had only a weak activity toward the Geobacter
tRNAAsp

GUC but instead methylated Geobacter tRNAGlu
UUC

with good activity. In agreement with this result, RNA bisulfite
methylation analysis showed that tRNAGlu

UUC was methylated
in Geobacter cells while the methylation was absent in tRNAAsp-
GUC. The activities of Dnmt2 enzymes from Homo sapiens, D.
melanogaster, Schizosaccharomyces pombe and Dictyostelium
discoideum for methylation of the Geobacter tRNAAsp

GUC and
tRNAGlu

UUC were determined showing that all these enzymes
preferentially methylate tRNAAsp

GUC. Hence, the GsDnmt2
enzyme has a uniquely swapped tRNA specificity. This finding
can be interpreted in the context of the acquisition of Dnmt2 by
Geobacter through horizontal gene transfer. After this event, a
coevolution of Geobacter Dnmt2, tRNAAsp

GUC and tRNA
Glu

UUC

Table 1. Confirmed tRNA substrates of Dnmt2 enzymes.

M. musculus D. melanogaster D. discoideum S. pombe G. sufurreducens

tRNAAspGUC yes yes yes yes, depends on Q or Pmt1 overexpression no
tRNAGluUUC no no in vitro only weak, only with Pmt1 overepression Yes
tRNAGlyGCC yes yes in vitro only no no
tRNAValAAC yes yes no no no
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might have occurred, which for currently unknown reasons
resulted in a situation where tRNAAsp

GUC is no longer methyl-
ated but tRNAGlu

UUC has become a very good substrate of
Dnmt2 inGeobacter sulfurreducens.

By comparing substrate and non-substrate tRNAs of
GsDnmt2, it became apparent that all non-substrates contain a
GG dinucleotide in the variable loop as a characteristic feature.
Indeed, introduction of this sequence into murine tRNAAsp

GUC

and Geobacter tRNAGlu
UUC drastically reduced their methyla-

tion by GsDnmt2. This result strongly suggested that the vari-
able loop in GsDnmt2 has a role as an important specificity
determinant. Interestingly, the same loss of activity was observed
with human Dnmt2, indicating that the variable loop might
function as a specificity determinant for tRNA recognition by
Dnmt2 enzymes. However, introduction of a favorable variable
loop into murine tRNAGlu

UUC did not increase its methylation,
indicating that Dnmt2 uses further tRNA-specific sequence
determinants in the anticodon stem/loop for RNA recognition.

Dnmt2-mediated DNA methylation

Until the description of tRNA methylation by Dnmt2 enzymes,
Dnmt2-dependent DNA methylation was found to be very low
or absent both in vitro and in vivo.1,34,35 In D. melanogaster and
D. discoideum, retrotransposons were reported to be methylated
but the data are disputed.36-39 Curiously, the issue whether
Dnmt2 enzymes are also DNAmethyltransferases is not yet ulti-
mately clarified, even as of today. Recent reports of Spodoptera
frugiperda Dnmt2-dependent DNA methylation by Dnmt2 in
vitro,15 or the trace detection of 5mC in Dnmt2-only organisms
still fuel the ongoing debate.35,40,41 One possible explanation for
the contradictory reports of Dnmt2-dependent DNA methyla-
tion might lie in the low expression levels of Dnmt2 enzymes in
organisms lacking reproducibly detectable DNA methylation.
Indeed, lab strains of D. discoideum, D. melanogaster and E. his-
tolytica were found to lose Dnmt2 expression upon prolonged
culture under laboratory conditions(19 and G.R., A.S. unpub-
lished results). As an example, theD. discoideum wild type strain
NC4 produces approximately 4-fold more DnmA mRNA com-
pared to the NC4 derived laboratory strain AX2.19 With the
exception of zebrafish, which display developmental perturba-
tions42 upon DNMT2 depletion by an antisense technique,
Dnmt2 knock-outs or gene disruptions in most organisms stud-
ied this far cause mutant phenotype which are indiscernible by
superficial analysis on the macroscopic level.1,34 Only upon
closer and prolonged inspection of both macroscopic features
and molecular details, subtle differences were detected in Dnmt2
mutant organisms (vide infra). From these combined observa-
tions it may be concluded that Dnmt2 enzymes are not required
for normal development under laboratory conditions. In con-
trast, the ever-changing conditions in variable environments
might make the functions, including RNA and even DNAmeth-
ylation, of these ancient enzymes advantageous for organismal
survival, thus explaining their evolutionary conservation.

Catalytic mechanism of Dnmt2

As described above, the amino acid sequence and 3D structure
of Dnmt2 closely resembles DNA (cytosine-C5)

methyltransferases12,43,44 Stimulated by this, it was studied how
an enzyme that looks like a DNA methyltransferase could
methylate RNA.14 Mechanistically, the C5 methylation of cyto-
sines is not a trivial reaction, because cytosine is an electron-
poor heterocyclic aromatic ring and the C5 of cytosine cannot
easily perform a nucleophilic attack on the methyl group of
SAM without activation. Therefore, the reactions catalyzed by
RNA- and DNA (cytosine-C5) methyltransferases follow a
reaction pathway involving activation by a Michael addition.
DNA methylation is initiated by a nucleophilic attack of a cata-
lytic cysteine residue located in a conserved amino acid
sequence motif (motif IV PCQ) on the C6 position of the target
cytosine.44 The enzyme facilitates the nucleophilic attack by a
transient protonation of the cytosine ring at the endocyclic
nitrogen atom N3, which is stabilized by the glutamate residue
from another highly conserved motif (motif VI ENV). The
attack of the Cys on the cytosine C6 leads to the formation of a
covalent protein-DNA complex. Thereby, the C5 position of
the cytosine is activated and performs a nucleophilic attack on
the SAM methyl group. The covalent protein-DNA complex is
resolved by deprotonation at the C5 position, which leads to
the elimination of the cysteine SH group and the reestablish-
ment of aromaticity. Then, the methylated base together with
the cofactor product, S-adenosyl-L-homocysteine, is released.
In addition to the residues already mentioned, a second argi-
nine residue in motif VIII (RXR) plays an important role in the
catalytic mechanism of DNA (cytosine-C5) methyltransfer-
ases.45 Unexpectedly, Liu and Santi showed that RNA (cyto-
sine-C5) methyltransferases do not use a cysteine from motif
IV for the initial attack on the base, but instead use one located
in motif VI (TCS in RNA MTases).46 Moreover, instead of
using the glutamate residue located in motif VI of DNA meth-
yltransferases (ENV), RNA methyltransferases use an aspartate
residue from motif IV (DAPC) to stabilize the transition state
of the reaction.47

Dnmt2 proteins contain all the conserved residues that are
used for catalysis by DNA-(cytosine C5)-methyltransferases.
Using a radioactive in vitro tRNA methylation assay and tRNA
isolated from biological sources as well as in vitro transcribed
tRNAAsp

GUC the mechanism of human Dnmt2 was studied.14

Using site directed mutagenesis, it was shown that Dnmt2 has
a DNA methyltransferase-like mechanism, because similar resi-
dues from motifs IV, VI and VIII are involved in catalysis as
identified in DNA-(cytosine C5)-methyltransferases. Exchange
of C292, which is located in a CFT motif conserved among
Dnmt2 proteins, reduced the catalytic activity of Dnmt2, but it
showed clear residual activity, suggesting that this residue has
no direct role in catalysis. Additional cysteine residues in
Dnmt2 had no role in catalysis. These results showed that
Dnmt2 represents the first example of an RNA methyltransfer-
ase using a DNA methyltransferase type of mechanism. It
relates to the evolutionary background of Dnmt2 as outlined
above.

Mapping of the tRNA binding site

Since there is no tRNA/Dnmt2 co-crystal structure available, it
was attempted to map the tRNA binding site of human Dnmt2
by systematically mutating 20 surface exposed lysine and
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arginine residues to alanine (as shown in Fig. 4) and studying
the tRNA methylation activity and binding of the correspond-
ing variants.48 The rationale behind this approach was that
nucleic acid binding pockets in proteins usually contain basic
residues that are engaged in electrostatic interactions with the
phosphodiester backbone. Eight basic residues were identified
that caused a strong (more than 4-fold) reduction in catalytic
activity but no large changes in SAM binding (R95, R84, R275,
K367, R371, R289, K122, and K295, in the order of increasing
residual activity). These residues cluster within and next to a
cleft on the surface of Dnmt2, which is located next to the SAM
binding pocket, and the catalytic residues of Dnmt2 are posi-
tioned at its walls. Manual placing of tRNA into the structure
suggests that Dnmt2 mainly interacts with the anticodon stem-
loop, which is in agreement with other data, for example the
recognition of the queuosine base at position 34 of tRNAAsp

GUC

by Dnmt2 proteins from some species (vide infra). Also, a role
of the extra loop described above is in accordance with this
model.

Another interesting result from this study was that many of
the Dnmt2 variants with strongly reduced catalytic activity
showed only a weak loss of tRNA binding or bound even better
to tRNA than wild-type Dnmt2, indicating that these residues
do not have a major role in ground-state tRNA binding. As the
kinetic data implicate an important role of these residues in
transition state binding, this result suggests that the enzyme
induces conformational changes of the tRNA substrate during
the catalytic cycle.

Part 2: Effects of tRNA methylation by Dnmt2 enzymes

The role of Dnmt2 in protein translation

As outlined above (Table 1), Dnmt2-dependent tRNA methyla-
tion is largely specific for the C38 residue of 3 tRNAs: tRNAAsp-
GUC, tRNA

Gly
GCC and tRNAVal

AAC in human and Drosophila
cells.5,39 As such, Dnmt2-mediated tRNA methylation is tar-
geted to a position that is close to the wobble base,49 which is
subject to various modifications that affect protein transla-
tion.50 Together, these findings raised the possibility that
Dnmt2 might also be involved in the regulation of protein
translation.

First insight into the function of Dnmt2 in protein transla-
tion came from the analysis of transgenic mice that lacked both
Dnmt2 and NSun2, another cytosine-5 tRNA methyltransfer-
ase in mammals.51 tRNA methylation analysis demonstrated
complementary target-site specificities for Dnmt2 and NSun2
and a complete loss of cytosine-5 tRNA methylation in double-
knockout mice.52 While mRNA levels were not detectably
changed, steady-state levels of unmethylated tRNAs were sub-
stantially reduced, resulting in significantly reduced rates of
protein synthesis.52 These findings demonstrated that a com-
plete loss of cytosine-5 tRNA methylation has dramatic conse-
quences for the stability of certain tRNAs and established a role
of tRNA methylation in protein translation.

Interestingly, two more recent studies revealed additional
mechanistic details about the interplay between Dnmt2-medi-
ated C38 methylation and protein translation. As the addition

Figure 4. Different views of DNMT2 in surface representation. The residues subjected to mutagenesis are colored according to their residual activity. The cofactor product
S-adenosyl-L-homocysteine is colored blue. Panel A shows that residues which strongly interfere with catalysis (colored red here) cluster on the “front” face of the enzyme
and surround a cleft that also contains the SAM binding pocket and the catalytic residues. Panel B represents a view of the “back side” of the enzyme after a 180� rotation
of the view shown in panel A about the vertical axis. Reproduced from48 with permission. Copyright (2012) American Chemical Society.
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of methyl groups often has a role in modulating the specificity
of protein-nucleic acid interactions, the role of C38 methylation
in the charging of tRNAAsp

GUC was investigated in vitro.53 This
approach was based on the fact that C38 has been identified as
a key identity element of aspartyl-tRNA-synthetase (AspRS) in
bacteria, archea and eukaryotes.54 Using recombinant mouse
AspRS and synthetic tRNAAsp

GUC which was methylated or
unmethylated, respectively, at C38 for in vitro aminoacylation
assays, it was shown that AspRS had a clear preference for the
C38 methylated tRNAAsp

GUC (Fig. 5A). In agreement with this,
the charging level of tRNAAsp

GUC in Dnmt2 knockout murine
embryonic fibroblast cells was reduced. An expression analysis
with fluorescent reporter proteins fused to an N-terminal poly-
Asp sequence showed that protein synthesis of poly-Asp tagged
reporter proteins was markedly reduced in Dnmt2 KO cells.
The same effect was observed with endogenous proteins con-
taining poly-Asp sequences indicating that Dnmt2 mediated
C38 methylation of tRNAAsp

GUC regulates the translation of
proteins containing poly-Asp sequences.

The selective reduction in translational efficiency of
poly-Asp proteins observed in that study represented a novel
mechanism of post-transcriptional regulation mediated by
methylation of tRNAAsp

GUC. Gene ontology analyses showed
that poly-Asp proteins tend to have nuclear localization and
that they have roles in gene expression and transcription

regulation. Based on these results, it was proposed that Dnmt2
mediated tRNAAsp

GUC methylation represents a novel mecha-
nism of translational fine tuning of groups of proteins contain-
ing poly-Asp sequences. Moreover, homo-polymeric stretches
of amino acids other than poly-Asp are widespread in the
human proteome and could have a similar regulatory role. This
translational regulation pathway could participate in the
Dnmt2-mediated stress response together with other Dnmt2
mediated effects on protein biosynthesis. A similar concept
emerged from an independent study which showed that sys-
tematic differences in protein expression of Dnmt2-deficient
mice were due to specific codon mistranslation by tRNAs lack-
ing Dnmt2-dependent methylation.55 These findings demon-
strated a novel and highly interesting function of C38 tRNA
methylation in the discrimination of near-cognate codons and
in the maintenance of accurate polypeptide synthesis.55

Of note, several post-transcriptional modifications in the
anticodon loop of tRNAs have been shown to be important for
the fine-tuning of protein translation and for the maintenance
of proteome integrity in yeast and in C. elegans.56-58 In Dnmt2-
deficient mice, ribosome profiling showed a decrease of codon
occupancy in the ribosome A-site for all Dnmt2 target
codons.55 This was explained by a model where the absence of
C38 methylation in the anticodon loop reduces the available
time for the discrimination between the near-cognate

Figure 5. (A) Function of Dnmt2. Methylation of tRNAAspGUC enhances its charging by AspRS. This stimulates the translation of Asp-rich proteins. (B) Function of Dnmt2.
Methylation of tRNAs protects them from cleavage into tRNA fragments and increases overall translation. Massive production of tRNA fragments after loss or downregula-
tion of Dnmt2 affects Dicer dependent processing of small RNAs. C) Function of Dnmt2. Depending on nutrition or other signals, Queuosine is incorporated into tRNAAsp-
GUC at position 34. This stimulates Dnmt2 mediated methylation and triggers downstream effects.
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tRNAAsp
GUC and tRNAGlu

UUC codons, thereby reducing trans-
lational fidelity. Dnmt2-mediated tRNA methylation could
therefore play an adaptive role in codon usage, thus functioning
as a modulator of protein translation. This hypothesis is further
supported by recent findings that link Dnmt2-mediated C38
methylation to queosinylation, a nutrient-dependent modifica-
tion of the wobble base,59 which will be discussed below in
more detail.

Taken together, these findings suggest a direct mechanism
for nutrient-, or stress-dependent recoding of entire genomes,
which could facilitate cellular and/or organismal adaptation to
changing environments.

tRNA methylation affects processing into tRNA
fragments (tRFs)

The absence of strong Dnmt2 developmental phenotypes in
most organisms suggested biological roles under non-standard
laboratory conditions. Based on detailed analyses of Dnmt2
mutants in Drosophila reduced viability under heat and oxidative
stress conditions was detected.5 In addition, tRNA fragmentation,
which is a conserved response to various stresses, was increased
in Dnmt2 mutant Drosophila. Using biochemical assays, it was
shown that the absence of m5C at position 38 of 3 tRNAs
(tRNAAsp

GUC, tRNA
Gly

GCC and tRNAVal
AAC) affected their frag-

mentation by stress-induced tRNA endonucleases5 (Fig. 5B).
These findings uncovered a previously unknown molecular func-
tion for Dnmt2-mediated methylation, which influences the
production of specific stress-induced tRNA-derived small RNAs
through methylation of the anticodon loop. It is presently
unclear whether the missing modification affects the folding of
the tRNA, which in turn might allow increased access to the
anticodon loop, or if m5C changes the sequence recognition of
stress-induced endonucleases. Importantly, these results also
sparked interest in studying the influence of m5C at other tRNA
positions on stress-related tRNA stability.60 In addition, these
observations were crucially important for the realization that cer-
tain aspects of Dnmt2 function can be uncovered when perform-
ing experiments under non-standard laboratory conditions.

It has been shown that tRFs inhibit translation without the
need for complementary of tRF sequences to target sites in
mRNA.61 In addition, tRFs could serve as long-distance signals.
For instance, tRFs have been found in the roots of Arabidopsis
thaliana , where their levels are increased upon phosphate star-
vation.62 Importantly, tRFs are present in various body fluids63

where they are thought to be constituents of exosomes. Inter-
estingly, tRFs have also been found in mouse sperm and have
been discussed as information carriers for diet-induced meta-
bolic syndromes between generations.64,65 These observations
indicate that tRFs are part of a repertoire of small RNAs that
acts at a distance, thereby affecting other cells or tissues in
response to stress such as changing nutrient availability, infec-
tion or other environmental stimuli. While stress-induced
tRNA fragmentation is widely conserved, the scope of the bio-
logical impact of tRNA-derived small RNAs during stress but
also in individuals with aberrant tRF production remains
unclear. Most importantly, the mechanistic details of tRF inter-
actions and activities are ill-defined and are a matter of active
debate.66,67-69

Intriguingly, a Dicer-dependent class of human tRFs was
identified, which exerted down-regulating activity on target
genes in trans through differential Argonaute protein associa-
tion, implying regulatory cross-talk of tRFs with siRNA path-
ways.4 Because tRNA fragments have repeatedly been found in
association with small-interfering RNA (siRNA) components,
it was tested whether increased tRNA fragmentation in Dnmt2
mutants affected the activity of siRNA pathways in Drosophila.
Using RNA-immunoprecipitations it was found that Drosoph-
ila Dicer-2 (Dcr-2) and Argonaute-2 (Ago-2) protein com-
plexes contained tRNA fragments from Dnmt2 substrate
tRNAs that were not only halves (ca. 35 nucleotides) but also in
the size range of siRNAs (18–21 nucleotides).70 Assays for Dcr-
2 activity showed that Dcr-2 bound and degraded tRNA frag-
ments into siRNA-sized RNAs. Importantly, tRNA fragments
were able to inhibit Dcr-2 activity on exogenous long double-
stranded RNAs (dsRNAs) in vitro experiments. Dcr-2 activity
was also affected in vivo, causing not only the accumulation of
endogenous dsRNAs but also reduced siRNA production and
the mis-regulation of Dcr-2-dependent gene expression in
Dnmt2.70 These findings revealed the impact of increased
tRNA fragmentation in Dnmt2 mutants on small RNA path-
ways and indicated that Dnmt2/Trdmt1 function affects the
regulation of small RNA homeostasis and gene expression,
especially during stress conditions.

Part 3: Expression and regulation of Dnmt2 enzymes

Dnmt2 expression and sub-cellular localization

Although Dnmt2 enzymes are highly conserved, very little
information exists about the expression patterns and sub-cellu-
lar localization of these proteins. Interestingly, all published or
commercially available antibodies against Dnmt2 enzymes are
only partially useful because they only detect Dnmt2 polypepti-
des in the denatured state (i.e. by Western blotting) but proved
to be insufficient for in situ detection by, for instance, immuno-
fluorescence approaches. Early experiments using Northern
blotting and RNA in situ hybridization in flies indicated high
expression of Dnmt2 in female germ line tissues and in
embryos.71 Overexpression of an epitope-tagged human
Dnmt2 in cell culture showed both cytoplasmic and nuclear
localization.1 Biochemical fractionation experiments in Dro-
sophila showed that Dnmt2 is mostly a cytoplasmic protein
with a minor nuclear fraction tightly attached to the nuclear
matrix.72 Furthermore, Drosophila Dnmt2 is ubiquitously
expressed throughout embryonic development into adulthood,
where the protein is enriched in female germ line tissues. Using
Dnmt2-EGFP constructs that express a fusion protein under
the minimal Dnmt2 promoter and immunofluorescence detec-
tion it was found that Dnmt2-EGFP is strongly expressed in
highly proliferating or metabolically active cells/tissues such as
the neuroblasts of the developing embryonic or larval central
nervous systems as well as in specific regions of the adult germ
line.72 Of note, using Dnmt2-EGFP and live cell imaging in
synchronously dividing embryonic nuclei a cell cycle-depen-
dent re-localization of the protein from cytoplasmic speckles
during interphase to spindle-like structures during mitoses was
detected.72 Importantly, larval mitotic cells allowed Dnmt2
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access to nuclear sequences as evidenced by a trans-activating
reporter system that involved Dnmt2-GAL4 fusion proteins
mediating the activation of UAS-EGFP sequences in the
nucleus.72 These results suggest a function of Dnmt2 enzymes
during the cell cycle in actively dividing cells, which includes
access of Dnmt2 to DNA sequences.

Support for a cell cycle-dependent function of Dnmt2
enzymes comes from studies in Dictyostelium. Of note, DnmA
in the Dictyostelium laboratory strain AX2 is very low and not
detectable by Northern blots. On the other hand, the parental
wild type isolate, NC4, which is recalcitrant to routine molecu-
lar experimentation, shows a 5-fold higher DnmA expression
in growing cells and a 30-fold increase of expression during
specific stages of development as detected by quantitative PCR.
DnmA mRNA expression in AX2 peaks at 16 hours of the
24 hour long developmental life cycle.19 Exactly at this time in
the development of Dictyostelium mostly synchronous mitotic
cell divisions occur. This peak of DnmA expression corre-
sponds to a 5-fold increase over basal expression levels in vege-
tative growing cells. When examining DnmA expression levels
during the cell cycle in experimentally synchronised cells, an
approximately 6-fold increase in mRNA levels in late mitosis
or early S-phase was found. Since no suitable antibodies against
DnmA were available, DnmA localization was examined after
overexpressing GFP-tagged DnmA, and it was found that the
protein localized mostly to the nucleus. Time-lapse fluores-
cence microscopy showed that DnmA was rapidly lost from
nuclei shortly before mitosis and re-accumulated after the com-
pletion of cell division during S-phase. Since Dnmt2-mediated
RNA methylation impacts tRNA stability during stress condi-
tions, DnmA expression after temperature shock or oxidative
stress was examined. It was found that neither heat shock nor
oxidative stress changed DnmA mRNA levels. However, during
recovery from cold shock, DnmA mRNA levels increased tran-
siently about 40-fold indicating that DnmA expression
responds to particular stresses. Importantly, increased DnmA
mRNA expression during NC4 development was accompanied
by significantly higher tRNAAsp

GUC methylation at the DnmA
target site C38.19 However, no increased enzymatic activity was
observed for DnmA during the recovery from cold shock indi-
cating that mRNA expression and enzyme activity are not nec-
essarily strictly correlated. Taken together, the available
information indicates that developmental timing, the cell cycle,
the nature of the model organism (lab strain or wild type iso-
late) as well as stress conditions all affect the expression, sub-
cellular localization and, ultimately, the activity of Dnmt2
enzymes. Especially, the involvement of Dnmt2 enzymes in
stress-related cellular mechanisms raises the possibility that the
high evolutionary conservation of Dnmt2 proteins might be
explained by partaking in biological responses to environmen-
tal challenges (i.e., stress) that facilitate, for instance, nucleo-
tide-based pathogens to enter cells, including varying RNA and
DNA substrates, a situation that is not easily recapitulated
under standard laboratory conditions.73

Regulation of Dnmt2 activity by the micronutrient queuine

Until recently, relatively little was known about how Dnmt2
activity is regulated in order to modulate the effect of C38

methylation on the diverse aspects of tRNA biology, both in dif-
ferent cell types and under varying environmental conditions.
Insight into this question comes from work on the Dnmt2
homolog from fission yeast (Schizosaccharomyces pombe, Pmt1).
A first surprising observation was that in vivo Dnmt2-dependent
tRNAAsp

GUC methylation in S. pombe was induced by the pres-
ence of peptone in the growth medium.18 The realization that
peptone contains the modified guanine base queuine led to the
discovery that in vivo Dnmt2 activity shows a striking enhance-
ment on tRNAAsp

GUC after prior incorporation of queuine into
the tRNA59 (Fig. 5C). Queuosine (Q, which designates the nucle-
oside; the respective base is called queuine, q) is a hyper-modi-
fied 7-deaza-guanosine that replaces guanosine at the wobble
position (position 34) of tRNAs with a GUN anticodon
(tRNAAsn

GUU, tRNAAsp
GUC, tRNAHis

GUG and tRNATyr
GUA

74).
Although queuosine was first reported not to alter the codon-
recognizing properties of guanosine,75 its presence in tRNAs
may yet alter decoding of mRNA. Interestingly, queuosine is
present in prokaryotic as well as eukaryotic tRNAs. Remarkably,
only bacteria can synthesize queuine de novo, whereas eukaryotes
depend on scavenging the precursor queuine from the antico-
dons of bacterial tRNAs that are obtained from nutritional sour-
ces and/or are maintained in microbiomes. Queuine is
incorporated into eukaryotic tRNAs by the tRNA-guanine trans-
glycosylase (TGT).76

The initial observation was an increase in vivo of C38 meth-
ylation of tRNAAsp

GUC from 14% to 100% when S. pombe was
cultivated in the presence of queuine.59 This stimulation
depended on the incorporation of queuine into the tRNA, since
it was abrogated when the genes encoding components of the
TGT were deleted. However, S. pombe Dnmt2 was found to not
be strictly dependent on the queuosine modification, because
unmodified tRNAs that were obtained from in vitro transcrip-
tion were good methylation substrates for Pmt1 in vitro. Yet,
the in vitro activity was stimulated on a queuosine-containing
substrate. This argues for a direct activation of Dnmt2 by the
queuosinylated target, but also suggests additional regulatory
mechanisms for Dnmt2 in vivo that were not recapitulated in
vitro. It will be interesting to see whether queuosine in the
tRNA increases Dnmt2 activity by increasing the affinity of the
enzyme for its substrate. In this regard, structural information
of Dnmt2 with the queuosinylated substrate may allow insights
into the mechanism of activation.

Sequential modification of tRNAs has been previously
described. The characterization of mitochondrial tRNAAsp-
GUC species isolated from opossum revealed that queuosine
modification (Q34) occurs subsequent to methylation at
positions A9 and G10, pseudouridine conversions and edit-
ing of the anticodon (C to U). Interestingly, however, C38
methylation of tRNAAsp

GUC was not described in this
study.77 Furthermore, the efficient formation of wybutosine
at G37 of tRNAPhe in yeasts depends on prior 20-O-methyl-
ation events imparted by Trm7.78 Also, the SPOUT methyl-
transferase TrmL from E. coli introduces a 20-O-methyl
group of tRNALeu

CAA and tRNALeu
UAA only after prior N6-

isopentenyladenosine modification at position 37.79 An
important future goal will be to determine whether the
queuosine modification regulates other tRNA modifications
apart from C38 methylation.
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Queuosine incorporation and C38 methylation are both
modifications of the tRNAAsp

GUC anticodon loop, raising the
question of whether they affect translation. One scenario is that
the 2 modifications co-ordinately regulate the interaction
between codon and anticodon during translation. Queuosine is
present at the wobble position (Q34) of tRNAAsp

GUC. Two syn-
onymous codons for aspartate exist, GAC and GAU, and they
are distributed with a ratio of 0.4 (GAC : GAU) in the S. pombe
genome.80 However, since S. pombe tRNA genes only encode
tRNAAsp

GUC, this tRNA must decode both Asp codons.
Conflicting data exist regarding the effect of Q on translation.

Queuosinylation of tRNAHis
QUN when injected in Xenopus oocytes

improved translation of NAU codons more than that of NAC
codons, thus providing a means of “equalization” between the 2
codons.81 Conversely, Q-modified tRNA bound C-ending codons
more stably than U-ending codons.82 Also, Q-modified tRNA had
a higher apparent affinity for ribosomes than the equivalent G-
containing tRNA.81,83 The proximity of C38 to the anticodon sug-
gests that C38 methylation may also be implicated in decoding.
The combined modifications queuosine34 and m5C38 may mod-
ify the decoding of aspartate codons, and thus fine-tune the speed
of translation, across the S. pombe genome, which is expected to
be particularly relevant for proteins with a high aspartate content53

(see above). Furthermore, the modifications may coordinately sup-
press the misincorporation of amino acids into proteins and may
thus improve the accuracy of translation.

An alternative hypothesis for the biological function of
queuosine and C38 methylation is that either one, or both in
cooperation, protect tRNAAsp

GUC from cleavage in the antico-
don loop by ribonucleases, which generate tRNA halves that
may have regulatory roles outside of translation (see other parts
of this review). Such a protection from cleavage and concomi-
tant stabilization of tRNAAsp

GUC by Dnmt2-dependent methyl-
ation has been documented in flies and mice.5,39,55

Interestingly, the bacterial ribonuclease colicin E5 was reported
to selectively cleave all tRNAs with a Q34,84 though it is not
clear whether the presence of queuosine would affect cleavage.
We speculate that Q34 and C38 methylation might cooperate
to provide protection of tRNAAsp

GUC from cleavage, and that
they thus limit the production of tRNA fragments.

Evolutionary conservation of queuine-mediated
Dnmt2 stimulation

An important question that was immediately raised by the dis-
covery of a queuosine dependence of Dnmt2 in S. pombe is
how universal this activation is across evolution. Has the
queuosine dependence in other organisms not been observed
previously, because they are routinely cultivated in high
queuine conditions? Or are other Dnmt2 homologs refractory
to queuosine? Intriguingly, a stimulation of Dnmt2 in D. discoi-
deum upon cultivation in the presence of queuine was
observed,59 arguing for at least some level of evolutionary
conservation of this mode of activation.

A further promising candidate for Q-dependent stimulation
is Ehmeth, the Dnmt2 homolog from E. histolytica. The fact that
queuine in mammals is taken up in the gut from microbiome
sources,74 lends support to the idea that the pathogenicity of this
parasite might be linked to queuine, since it has become evident

over the last few decades that its pathogenicity is related to its
interaction with the gut microbiota. The composition of the gut
flora in patients suffering from amebiasis showed a significant
decrease in the population size of bacteroides, Clostridium coc-
coides, Clostridium leptum, Lactobacillus and Campylobacter
and an increase in Bifidobacterium, while there was no change
in Ruminococcus compared to healthy patients.85 These findings
suggest that the pathogenesis of amebiasis might be driven by a
dysregulated microbiome or crosstalk between enteropathic
bacteria, the parasite, and the intestinal immune system. This
crosstalk may be modulated by chemical signaling molecules,
such as short-chain fatty acids (SCFAs), which are released by
the bacteria.86 The discovery of a queuosine dependence of
Dnmt2 in S. pombe opens up the possibility that the biology of
the parasite may be affected by queuine.

Significantly, preliminary work indicates that queuine
metabolism and methylation of C38 in tRNAAsp

GUC by Ehmeth
are in fact linked: the methylation level of C38 in tRNAAsp

GUC

of queuine-cultivated trophozoites is significantly higher than
the level in control trophozoites (trophozoites cultivated in
absence of queuine). This may alter the physiology of the para-
site, since the trophozoites that were cultivated in the presence
of queuine were more resistant to OS and NS than those that
were cultivated in its absence (S. Ankri, unpublished).

Given the 3 documented cases of S. pombe, D. discoideum
and A. histolytica, how conserved is the queuine dependence of
Dnmt2 in metazoans, including mammals? The involvement of
the micronutrient queuine in Dnmt2 regulation potentially has
far-reaching implications. Since eukaryotes, including humans,
incorporate queuine from bacterial sources into their tRNA,74

this raises the question whether mammalian Dnmt2 is also
stimulated by the presence of queuosine in the target tRNA. If
true, this would be a possibility for the environment in the
broadest sense, and in particular nutrition and the microbiome
in the mammalian gut, to manipulate translation and proteome
composition of the host. Thus, differences in the composition
of the microbiome, which have been associated with obesity,
cancer and inflammatory diseases,87 could cause altered trans-
lation and thus affect disease states both positively and nega-
tively due to differences in queuosine production by the
microbiota.

An interesting further question will be whether the queuo-
sine content is equal in all tissues and at all developmental
stages, or whether differences in queuosine levels differentially
affect translation in different cell types. In Drosophila, the
queuosine content of tRNAs varies across development, being
lowest in fast growing third-instar larvae and highest in adult
flies.88,89 Interestingly, these queuine levels may explain codon
preference in genes that are differentially expressed during
development as well as across different Drosophilid species.90 It
will thus be important in the future to assess the in vivo effect
of queuosine in mammals and the sensitivity of mammalian
Dnmt2 to queuosinylated tRNAs.

Between nutrition and stress: Extrinsic stimuli affect
activity of Dnmt2

While tRNA methylation in dependence on glucose may argu-
ably be perceived in a nutritional context, glucose starvation
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(GS) is one of the most studied metabolic stresses and particu-
larly relevant to E. histolytica. This pathogenic single cell
eukaryote lives in the colon, a niche where the amount of avail-
able glucose for fermentation is usually small due to the high
absorptive capacity of the glucose transporters in the small
intestine.91,92,93 On rare occasions, it has been reported that E.
histolytica trophozoites leave the colon, possibly as a reaction
to low glucose levels, and migrate to the liver, where the con-
centration of glucose was estimated to be twice that of perfusing
blood.94 It was found that E. histolytica is capable of responding
to changes in its surrounding glucose concentration: short term
glucose starvation (12 hours) led to the accumulation of eno-
lase, a glycolytic enzyme, in the nucleus. Enolase interacted
with the catalytic site of Ehmeth, subsequently inhibiting its
tRNA methyltransferase activity.95 Up to this day, enolase is
the only identified protein partner for Ehmeth. Extending the
condition of glucose starvation beyond 12 hours led to the pro-
gressive death of most of the parasite’s population. Surprisingly,
some individual clones survived and adapted to this absence of
glucose in the media. Adaptations included a number of meta-
bolic changes including expression changes of various catabolic
enzymes involved in amino acid regulation. The Ankri and Fic-
ner groups recently solved the crystal structures of both E. his-
tolytica enolase96 and of Ehmeth.16 Concerning E. histolytica
enolase, it displays a disulfide bond formed between Cys147
and Cys169 in each monomer despite the presence of 1 mM
dithiothreitol during the purification. This disulfide bond has
not been observed in any other enolase structures solved
to date. Therefore, the relevance of this disulfide bond in the
redox-regulation of E. histolytica enolase needs still to be deter-
mined. Despite these interesting molecular details on Ehmeth
and enolase, the structure of the Ehmeth-enolase hybrid
remained elusive.

The above insights on nutritional stimulation of Ehmeth in
E. histolytica are reminiscent of observations in S. pombe that
indicate stimulation of Dnmt2 activity by other factors than
queuosine. Specifically, growth of S. pombe cells in minimal
rather than full medium stimulated tRNAAsp

GUC methylation
to approx. 23% in the complete absence of queuosine, thus
revealing a queuine-independent mode of Dnmt2 stimulation.
Furthermore, nitrogen depletion also increased tRNA methyla-
tion in vivo. Interestingly, Dnmt2-dependent tRNA methyla-
tion in S. pombe is regulated by the nutrient signaling kinase
Sck2, a homolog of S. cerevisiae Sch9, which is a major target of
the Tor pathway.18 Nutrient sensing thus leads to the activation
of a signaling pathway that also activates Dnmt2-dependent
tRNA methylation, possibly by direct phosphorylation of
Dnmt2. Alternatively, some of the induction may be due to
transcriptional regulation of the Dnmt2 gene in S. pombe. As
for any Dnmt2-related observations, it will be important to
determine how evolutionarily conserved the regulation of
Dnmt2 by nutritional cues is.

Involvement of Ehmeth in resistance to oxidative
and nitrosative stress

Passage of E. histolytica from the anoxic luminal colon into the
tissues/bloodstream of the human host brings about a dramatic
change in environmental pO2. Moreover, the parasite must

now withstand the assaults of the human immune system,
including oxidative bursts of superoxide anions. The role of
Dnmt2 in the resistance to oxidative stress (OS) was first inves-
tigated in D. melanogaster. Dnmt2 overexpression induced
small Heat Shock Protein (HSP) expression in D. mela-
nogaster.97 This facilitated the stabilization/sequestration of
damaged or misfolded proteins that result from oxidative dam-
age.98 Similarly, it was demonstrated that Ehmeth overexpress-
ing trophozoites exhibited significantly greater resistance/
survivability to H2O2 (an inducer of OS) exposure. This resis-
tance is correlated with an upregulation of HSP70 expression.99

Ehmeth expression did not directly induce HSP70 expression
via methylation of its promoter, implying that there might be
other players or mediators involved in the process.99 Further-
more, it was recently reported that overexpression of Ehmeth
confers resistance to nitrosative stress (NS).100 Ehmeth-medi-
ated resistance to NS was found to be associated with (i) high
level of tRNAAsp

GUC methylation, (ii) persistence of protein
synthesis under NS and (iii) specific expression of proteins like
ADH2 and peroxyredoxin, which are involved in protein trans-
lation, protein transport, vacuolar sorting protein signaling and
resistance to OS and NS.100 Since hypermethylation of C38 in
tRNAAsp

GUC was associated with OS and NS resistance,99,100 it
was posited that C38 methylation in tRNAAsp

GUC might lead to
selective translation of proteins that are encoded by GAC-
enriched genes and that these proteins might be involved in the
parasite’s resistance to OS and NS. In support of this postulate,
it was found that, of the 2 codons for Asp (GAT, GAC) in E.
histolytica, GAC is rarely used (see http://www.kazusa.or.jp/
codon/cgi-bin/showcodon.cgi?species=5759). It was also found
that 21 genes exclusively use GAC to code for Asp and 5 of
these genes encode ribosomal proteins. Three of these ribo-
somal proteins were upregulated in Ehmeth-overexpressing
trophozoites which were exposed to NS.100 These responses are
similar to those found when Saccharomyces cerevisiae was
exposed to OS, where Trm4-dependent increases in tRNALeu-
CAA methylation and a consequent increased translation of
ribosomal proteins from TTG-enriched genes were reported.101

These findings suggest that C38 methylation in tRNAAsp
GUC

might lead to selective translation of proteins from GAC-
enriched genes, and that these proteins might be involved in
the response of oxidatively- and nitrosatively-stressed E. histo-
lytica trophozoites.

Part 4: Potential implications of Dnmt2 enzymes in
cancer, retrotransposon silencing, and epigenetic
heredity

Functional role of somatic cancer mutations in Dnmt2

Recent data indicate that the expression levels of tRNA methyl-
transferases are frequently altered in cancer cells.102 In correla-
tion with this finding, Dnmt2 was found up-regulated in
hundreds of tumor samples listed in the COSMIC data base103

and more than 60 somatic mutations in Dnmt2 were found in
tumors originating from various tissues. Based on this data,
Dnmt2 is not among the most frequently mutated genes, but
mutations occur frequently and regularly. The distribution of
mutations found in the dnmt2 gene were compared and
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recurrent exchanges at some specific residues were observed,
which suggests potential significance of functional effects
resulting from the mutations.104 To investigate this further, 13
mutations (out of the 48 missense mutations at 37 amino acid
residues reported in the database in spring 2014 when that
study was initiated) were selected, and the mutant genes were
generated, followed by expression and purification of the
mutated Dnmt2 proteins.104 All proteins were properly folded
as determined by circular dichroism spectroscopy. Their RNA
methylation activity was tested using in vitro generated
tRNAAsp

GUC. Two exchanges led to a strong decrease in activity
(G155S and L257V) and 2 more mutant proteins were almost
inactive (R371H and G155V). On the other hand, one of the
somatic cancer mutations (E63K) caused a twofold increase in
activity. The observed effects of the somatic mutations can be
interpreted with respect to structure-function relationship in
some cases, indicating a good level of understanding in this
respect. R371 is located next to the active center and part of the
conserved motif X, which has a role in the substrate interaction.
A similar decrease of methylation activity was previously
observed after an exchange of R371 to Ala which was shown to
be caused by reduced tRNA binding.48 G155 is a hotspot of
somatic cancer mutations in Dnmt2. This residue is located on
the back-side of the protein, but it is located right in front of
motif VIII, which has an important catalytic role in DNA-
(cytosine C5)-methyltransferases and Dnmt2.14 L257 is located
on the back-side of Dnmt2 in a non-conserved part of the
amino acid sequence and it is unclear why a relatively conserva-
tive exchange of this residue by Val caused a strong reduction
of activity. The E63 residue, exchange of which to K caused an
increase in activity, is also located on the back-side of Dnmt2.
It is interesting that Dnmt2 enzymes from other eukaroytic
species like S. pombe, E. histolytica or D. melanogaster carry a
Lys at the position corresponding to E63. It has been shown
previously that mutations changing a position to the phyloge-
netic consensus residue at this place often increase protein sta-
bility and activity105 which may also explain the stimulatory
effect of the E63K mutation.

Potential involvement of Dnmt2 in the control
of silencing processes

Lower expression levels of Dnmt2 in “domesticated” laboratory
strains compared to wild type populations, as discussed above,
might also depend on possible differences in content and orga-
nization of specific sequences including intact retrotransposons
or tandem and dispersed repetitive elements. Consequently it
was important to identify putative DNA target sequences of
Dnmt2. In Drosophila, Dnmt2 loss-of-function mutations were
isolated either by gene knockout1 or after re-mobilization of a
P-element transposon inserted upstream of the Dnmt2
gene.38,39 Homozygotes mutants isolated after imprecise P-ele-
ment excision do not express Dnmt2 protein. Like Dnmt2
knockouts or gene disruptions in other organisms, also in Dro-
sophila the Dnmt2 mutations are viable, fertile and without
obvious phenotypic defects.34,37 Only upon closer inspection,
subtle molecular differences were detected in Dnmt2 mutant
animals.5 Importantly, utilizing genetic systems monitoring
heterochromatic silencing processes identified an essential

role for Dnmt2 in the control of retrotransposons and
repeat- dependent gene silencing. Most silencing monitoring
systems in Drosophila depended on juxtaposition of the white
marker gene to genomic regions of heterochromatic chromatin
conformation resulting in a white variegated phenotype.106 In
about 40 white variegated transgenes inserted into LTR regions
of Invader4, HeT-A, Doc and Copia retrotransposons, the
Dnmt2 mutation caused dominant suppression of gene silenc-
ing at the white gene.38 In addition, RT-PCR analysis revealed
significant over-expression of retrotransposons in Dnmt2
mutant embryos suggesting a genome-wide role of Dnmt2 in
retrotransposon silencing. Dnmt2 mutations also strongly sup-
pressed silencing at a tandemly repeated white transgene.107

However, Dnmt2 mutations showed no effect on gene silencing
associated with pericentric heterochromatin. Two different
Dnmt2-dependent silencing pathways could be identified. Ret-
rotransposon silencing includes, beside Dnmt2, the H4K20
methyltransferase SUV4-20 and the JIL1 H3S10 phosphatase
whereas repeat-dependent gene silencing was controlled by
Dnmt2, the histone H3K9 methyltransferase SETDB1, the het-
erochromatin protein HP1a and the JIL1 H3S10 phosphatase.38

Currently it still remains to be resolved whether site-specific or
transient DNA methylation or other molecular processes that
include RNA methylation are associated with the epigenetic
function of Dnmt2.

Dnmt2 is involved in RNA-mediated epigenetic heredity

Evidence for a role of Dnmt2 in the transgenerational inheri-
tance of epigenetic signals was provided in mice. It was
reported that Dnmt2 is required for both the KittmAlf-induced
and miR-124-induced Sox9 paramutations,108,109 suggesting
that RNA methylation is an essential step for paramutation
establishment and/or transmission. Although details of the
mechanism are not known, some evidence connects the effect
to RNA present in sperm. Microinjection of such RNA into
oocytes can emulate the observed epigenetic heredity, and the
presence of m5C in microinjected RNA was reported to be cru-
cial for such an effect. A recent report of epigenetic heredity
mediated by tRNA derived small RNAs, akin to tRFs, also men-
tions an altered modification status of the latter.65 Finally, a
report on transgenerational inheritance of altered mouse phe-
notypes specifically implies fragments of the Dnmt2 substrate
tRNAGly

GCC.
64,65 Although these latter reports do not directly

concern Dnmt2, their association with tRFs, their modification
status, and epigenetic heredity clearly may suggest a role of
Dnmt2, particularly considering that the generation of tRFs has
been shown to be impeded by Dnmt2-mediated tRNA
methylation.5

Conclusions

Since the initial discovery of Dnmt2 as a tRNA methyltransfer-
ase, knowledge on the functional consequences of tRNA meth-
ylation has significantly increased. Although our understanding
is far from complete, Dnmt2 has advanced to be one of the
most studied and best understood tRNA methyltransferases.
This in part, is due to the fact that few modification enzymes
have been examined in a comparative fashion in several
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organisms. The effects of extrinsic stimuli, including nutrition
and stress, on tRNA methylation and its downstream effects
are a new field, and the same is true for tRFs, in particular
where the impact of tRNA modification on tRNA cleavage is
concerned. Next to these new and exciting findings, some old
questions remain open. Dnmt2 mediated methylation of RNA
other than tRNA still awaits verification and functional analy-
sis, as does DNA methylation. Certainly, regulation of Dnmt2
activity has not been exhaustively analyzed yet, and only an
advanced understanding of these features will allow an assess-
ment of its function in epigenetic heredity.
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