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The testicular spermatozoa of all mammalian species are considered functionally imma-
ture owing to their inability to swim in a progressive manner and engage in productive 
interactions with the cumulus–oocyte complex. The ability to express these key func-
tional attributes develops progressively during the cells’ descent through the epididymis, 
a highly specialized ductal system that forms an integral part of the male reproductive 
tract. The functional maturation of the spermatozoon is achieved via continuous inter-
actions with the epididymal luminal microenvironment and remarkably, occurs in the 
complete absence of de novo gene transcription or protein translation. Compositional 
analysis of the luminal fluids collected from the epididymis of a variety of species has 
revealed the complexity of this milieu, with a diversity of inorganic ions, proteins, and 
small non-coding RNA transcripts having been identified to date. Notably, both the 
quantitative and qualitative profile of each of these different luminal elements display 
substantial segment-to-segment variation, which in turn contribute to the regionalized 
functionality of this long tubule. Thus, spermatozoa acquire functional maturity in the 
proximal segments before being stored in a quiescent state in the distal segment in 
preparation for ejaculation. Such marked division of labor is achieved via the combined 
secretory and absorptive activity of the epithelial cells lining each segment. Here, we 
review our current understanding of the molecular mechanisms that exert influence 
over the unique intraluminal environment of the epididymis, with a particular focus on 
vesicle-dependent mechanisms that facilitate intercellular communication between the 
epididymal soma and maturing sperm cell population.

Keywords: epididymis, sperm maturation, intracellular communication, protein trafficking, apocrine secretion, 
merocrine secretion, epididymosome, dynamin

iNTRODUCTiON

The mammalian epididymis is an exceptionally long, convoluted ductal system that serves to 
connect the ductuli efferentes, which drain the testes, to the ductus deferens. Anatomically, this 
highly specialized organ is generally divided into four broad segments: the initial segment, caput, 
corpus, and cauda epididymides (Figures  1A,B) (1); although this demarcation is not strictly 
adhered to in all mammalian species (2). Irrespective, the epididymis is responsible for the 
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FigURe 1 | Regionalized structure and schematic distribution of the major cell types in the mouse epididymis. (A,B) The mouse epididymis is generally broadly 
divided into four unique anatomical segments: the initial segment, the caput, corpus, and cauda epididymis. The initial segment is a loosely coiled tubule with a wide 
diameter and a low concentration of spermatozoa. Epithelial cells in this segment are elongated and possess high stereocilia. The caput segment is characterized by 
a narrow luminal diameter, while both the luminal diameter and the sperm concentration increase distally within the corpus and cauda epididymis. Differing cell types 
within these segments are responsible for the creation of a specialized luminal microenvironment that promotes the sequential maturation of spermatozoa (caput 
and corpus epididymis) and their subsequent storage (cauda epididymis). (C) Principal cells dominate the soma along the entire length of epididymis and are 
particularly active in terms of protein biosynthesis and secretion in the proximal epididymal segments. In this context, an apocrine pathway of secretion, featuring the 
formation and eventual shedding of large bleb-like structures from the apical margin (i.e., apical blebs) of principal cells, appears to be a dominant secretory 
mechanism operating in all epididymal segments. Upon degradation within the epididymal lumen, apical blebs release a heterogeneous population of membranous 
extracellular vesicles, termed epididymosomes, which have been implicated in intracellular communication with spermatozoa and downstream epithelial cells. Aside 
from principal cells, clear cells are distributed sporadically throughout the epithelium of the caput, corpus, and cauda segments in most studied species and are 
primarily responsible for selective absorption of luminal components and conversely, the regulation the luminal pH. A suite of additional cell types have been 
described in the epididymis, including basal cells, apical cells, halo cells, narrow cells (only found in initial segment and intermediate zone), and immunological cells.
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provision of an optimal environment to promote the functional 
transformation of spermatozoa and their subsequent storage in 
viable state in readiness for ejaculation. Functional profiling 
studies indicate that the epididymis displays highly regionalized 
characteristics. Thus, the initial segment and upstream ductuli 
efferentes are responsible for the absorption of the majority 
of testicular fluid entering the duct leading to a pronounced 
concentration of the luminal spermatozoa (3). Thereafter, the 
caput epididymis is most active in terms of protein synthesis 
and secretion, and a small portion of the sperm passing through 
this region begin to exhibit the ability to swim in a progressive 
manner and to recognize an oocyte (4–6). These functional 
characteristics continue to develop in the corpus epididymis 
before reaching an optimal level in the distal caudal segment. 
This latter region is characterized by a relatively large lumen 
and its surrounding epithelial cells exhibit strong absorptive 
activity (7, 8). Such attributes align with the dominant function 

of the cauda epididymis in terms of the formation of a sperm 
storage reservoir.

It is well established that the combined secretory and absorp-
tive activities of the epididymal epithelial cells are responsible for 
the creation of the highly specialized luminal microenvironment 
that promotes the gradient of increasing fertility in the sperm 
population held therein (9). Systematic analysis of the composi-
tion of these luminal fluids has revealed a complex macromo-
lecular landscape encompassing a myriad of soluble factors in 
addition to non-pathological amyloid matrices and exosome-like 
vesicles termed epididymosomes. The latter of these have come 
under increasing scrutiny owing to their potential to facilitate 
the efficient transfer of a variety of protein and small non-coding 
RNA cargo to the maturing sperm cells. Furthermore, there is 
emerging evidence that the epididymosome payload may be 
dynamically altered in response to paternal exposure to environ-
ment stressors. The implications of such changes in terms of 
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TABLe 1 | Gene knockout or deletion strategies that impact the intraluminal environment of the mouse epididymis.

gene knockout Fertility phenotype Changes to epididymal environment References (PMiD)

Sed1 Infertile Hypo-osmotic and alkaline epididymal fluid, disrupted fluid  
reabsorption, increased intracellular vesicles

20122713

Esr1 Infertile Hypo-osmotic fluid 20130266
C-ros Infertile Defective initial segment development, increased luminal pH 10645273, 15095336
Dicer1 Subfertile Imbalanced lipid homeostasis in proximal segments. Dedifferentiation  

of the epithelium and imbalance in sex steroid signaling
25366345, 22701646

Rlx Subfertile Delayed maturation and growth associated with increased collagen deposition 15956703
He6 Infertile Reduced in size and dysregulation of fluid reabsorption 15367682
Lur (testosterone 
treatment)

Subfertile Inflammation in epididymis 15514086

Erα Infertile Disruption in Na+ reabsorption and passive water transport,  
abnormal epithelial ultrastructure

11698654

Nhe3 Infertile Disruption in Na+ reabsorption and passive water transport 11698654
Lxr Infertile Abnormal accumulation neutral lipids 15525595
Apoer2 Infertile Dysfunction of clusterin and PHGPx protein impacting sperm maturation 12695510
Fsh-r Subfertile Smaller epithelial surface area in caput and corpus segments 15973687
Gpx5 Higher incidence of 

miscarriages and 
developmental defects

Excess of reactive oxygen species in the cauda segment leading  
to oxidative damage of spermatozoa

19546506

Hoxa10
Hoxa11

Subfertile
Infertile

Epididymis characterized by homeotic transformation
Epididymis characterized by homeotic transformation

8787743
7789268

Hexa Infertile (age dependent) Inability to degrade endocytosed substrates 12617783
Tmf Infertile Epithelial apoptosis and sperm stasis in the cauda segment 23000399
Trpv6 Subfertile Defects in epididymal Ca2+ absorption 22427671
Slc9a3 Infertile Abnormally abundant secretions and calcification in the lumen 28384194
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establishing the sperm epigenetic and proteomic signatures, and 
their potential to influence the downstream health and develop-
mental trajectory of offspring, are only just beginning to be realized. 
It is therefore timely to review the changes associated with sperm 
maturation in the epididymal tract and the molecular mecha-
nisms by which such changes are brought about. Here, we focus 
on the regulation of the epididymal luminal microenvironment 
and place particular emphasis on vesicle-dependent mechanisms 
that facilitate intercellular communication between the lining 
epididymal soma and the maturing sperm cell population.

THe LUMiNAL MiCROeNviRONMeNT  
OF THe ePiDiDYMiS

The process of post-testicular sperm maturation is reliant on 
the highly specialized intraluminal microenvironment of the 
epididymis, arguable one of the most complex milieus produced 
by any endocrine gland. Accordingly, the selective ablation of 
genes that lead to dysregulation of the epididymal microenviron-
ment commonly results in male infertility/subfertility phenotypes 
(Table 1). The origin of these fluids rests with the pseudostratified 
epithelium lining the duct. This epithelium comprises a number 
of different cell types (Figure  1C) including, populations of 
principal, clear, narrow, apical, basal, halo, and immunological 
(macrophage and dendritic) cells; the abundance of which var-
ies considerably between different epididymal segments (10). 
Detailed functional studies have confirmed spatial differences in 
the profile of each cell type and revealed that, under the precise 
control afforded by androgens and various other factors of 
testicular origin, they each make unique contributions to sperm 
maturation, protection, and storage (10).

epididymal epithelium
Principal cells represent the major cell type throughout the 
entire epididymis, constituting as much as 80% of the peritubu-
lar interstitium (11). These cells are characterized by abundant 
secretory apparatus [endoplasmic reticulum (ER), Golgi and 
secretory granules] reflecting their high exocytotic activity, 
especially in the proximal portions of the epididymis (caput and 
corpus) (8, 12, 13). In more distal segments (cauda), the prin-
cipal cells take on a predominantly endocytotic role in which 
they are actively responsible for the reabsorption of various 
components from the epididymal fluid, a function that is also 
shared with that of the clear cell population (12). Clear cells are 
the second most abundant cell type, being widely distributed 
in the caput and corpus segments but displaying most enrich-
ment in the cauda. The apical domain of clear cells is replete 
with endocytotic apparatus and accordingly, these cells have a 
tremendous capacity for endocytosis (7, 12). This is particularly 
true of the clear cells that populate the distal epididymal seg-
ments, which have been implicated in the uptake and disposal 
of the cytoplasmic droplets that are shed from the maturing 
sperm cell population (7), as well as the recycling of various 
other luminal components. Also within their apical domain, 
clear cells possess key elements of the machinery [vacuolated 
(V)-ATPase, carbonic anhydrase II, and soluble adenylate 
cyclase] necessary for acidification of the luminal environ-
ment, thus highlighting their role in regulation of the pH of 
the epididymal environment (8, 14). Narrow and apical cells 
are mainly found within the initial segment (15, 16). However, 
their function is yet to be fully resolved (8). Basal cells display 
a hemispherical morphology and form intimate contact with 
the basement membrane and principal cells on both sides (8). 
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Ligation experiments in the rat have shown that basal cells pos-
sess the ability to change shape in order to adjust the luminal 
volume and pressure; features that are suggestive of a protective 
role in preserving the structural integrity of the lumen (17).

The remaining cell types comprising the epididymal epithe-
lium are predominantly related to immune functions (8), an 
important consideration given the highly antigenic nature of 
the male germ cell. Indeed, the epididymal luminal environ-
ment and thus maturing spermatozoa are shielded from immune 
surveillance behind a blood–epididymal barrier. This barrier 
consists of a network of tight junctions that form between 
adjacent epithelial cells. The ductal system so created is further 
characterized by connective septa to form a number of distinct 
segments and thus facilitate the formation of successive, region-
ally distinct luminal microenvironments (18–20). Since a major-
ity of testicular fluid is reabsorbed before reaching the proximal 
segments of the epididymis, most of the luminal components, 
other than the sperm cells themselves, originate from the secre-
tory activity of the pseudostratified epithelial cells comprising 
the duct. Detailed compositional analysis of the epididymal fluid 
has revealed it contains a complex array of proteins, ions, and 
small non-coding RNA species (21, 22). While these molecules 
are present in all the epididymal segments, they nonetheless 
display an extraordinary level of regionalization, which reflect 
differential secretory and absorptive activity of the epithelial 
cells.

Luminal Components
As previously mentioned, the proteome of maturing sperma-
tozoa is substantially modified via the uptake, repositioning, 
and posttranslational modification of a significant portion of 
proteins. Such changes are mediated by direct exposure to the 
proteins secreted into the epididymal luminal environment, with 
a majority of these originating in the proximal segments of the 
caput and corpus epididymis (23). By contrast, proteins involved 
in the preservation of sperm viability, such as antioxidant enzyme 
defenses, and those responsible for suppression of humoral 
immune responses, tend to be enriched in the cauda epididymal 
secretome (23). Furthermore, detailed transcriptomic analysis 
in the mouse epididymis has identified a prominent theme of 
segment-dependent regulation, with the expression of 12.8% of 
the total 17,000 epididymal genes being characterized by changes 
of at least fourfold between any two segments (21). This ratio 
increases to 35.8% if the criterion is relaxed to include transcripts 
that vary by at least twofold. Consistent with these data, it has also 
been shown that protein and gene expression patterns display 
very discrete profiles that closely align with the borders of septa 
demarcating anatomically different segments of the epididymis 
(24–26). How this precise regulation is imposed is still unclear, 
but it is perhaps notable that grossly similar profiles of epididymal 
protein expression have been documented along the epididymal 
tract of many mammalian species, including large domestic spe-
cies (27) and humans (28). One possible explanation rests with 
evidence for the expression of a myriad of small non-protein 
coding RNA transcripts in the epithelial cells (22, 29–33).

In this context, the focus for most investigations has been 
the microRNA (miRNA) class of RNA molecules (~21–25 

nucleotides) that hold a key regulatory role in the repression 
of mRNA translation. Indeed, the use of microarray and next 
generation sequencing methodologies has led to the identifica-
tion of a total of 545 and 370 miRNAs in the human and mouse 
epididymis, respectively (22, 29). A large portion of these miR-
NAs are conserved among different epididymal segments (75% in 
the mouse epididymis) and even between different species (31% 
between mouse and human), suggesting housekeeping roles in 
the regulation of epididymal homeostasis (22). In contrast, 
other miRNAs are characterized by pronounced segmental 
patterns of expression (15% in mouse epididymis). For exam-
ple, miR-204-5p and miR-196b-5p are down and upregulated 
significantly, with approximately 39- and 45-fold differences 
in expression having been recorded between caput and caudal 
segments of the mouse epididymis (22). The biological implica-
tions of such differences are highlighted by the potential for 
each miRNA species to exert regulatory control over multiple 
targets. By way of illustration, target prediction algorithms indi-
cate that an estimated 530 and 160 genes are putatively able to 
be targeted by miR-204-5p and miR-196b-5p, respectively (34). 
Thus, the differing miRNA expression profiles documented in 
each epididymal segment impose a daunting level of complex-
ity to the regulation of unique segmental environments in the 
epididymis. The precise mechanisms responsible for differential 
miRNA expression profiles remains poorly understood but are 
undoubtedly influenced by androgens and other lumicrine fac-
tors of testicular origin (35). Alternatively, it has been proposed 
that epididymosomes may serve as vectors to selectively traffic 
miRNA cargo between their sites of production in the proximal 
epididymal segments to recipient epithelial cells lining down-
stream segments (36).

In any case, it is therefore perhaps not surprising that intralu-
minal proteome of the epididymis ranks among the most com-
plex produced by any endocrine gland. In addition to a diversity 
of soluble proteins, electron-dense proteinaceous complexes 
have also been described in the epididymal lumen of rodents, 
rams and, recently humans (37–40). These are apparently non-
pathological structures, with a diameter ranging from 500 nm to 
1.2 µm, which lack any obvious organelles, and similarly, are not 
delineated by a lipid bilayer (39). Despite these features, the for-
mation/maintenance of these extracellular matrices appears to 
be a selective rather than stochastic process as evidenced by the 
conservation of their protein profile across several taxa. In this 
regard, the highly amyloidogenic cystatin-related epididymal 
spermatogenic (CRES) family appear to be critical constituents 
of these entities (41). Thus, a potential mechanism for formation 
is through self-assembly brought about by interaction of CRES 
subgroup members, small hydrophobic proteins and/or prion 
proteins (37, 41). Accordingly, pioneering work by the Cornwall 
laboratory has established that these extracellular matrices do 
possess amyloid structural properties, which change along the 
length of the epididymal tubule. Indeed, immature amyloid 
forms prevail in the proximal epididymis before taking on thin-
ner “film-like” characteristics in the distal epididymis (41, 42).  
Notably, these changes in amyloid matrix structure parallel 
changes in epididymal function with proximal segments respon-
sible for promoting sperm maturation and distal segments serving 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


5

Zhou et al. Epididymis and Sperm Maturation

Frontiers in Endocrinology | www.frontiersin.org February 2018 | Volume 9 | Article 59

primarily as a storage site for mature spermatozoa (please see 
Introduction). On the basis of these data, it has been suggested 
that epididymal amyloids are formed for functional purposes in 
sperm maturation and/or protection by coordinating interac-
tions between the luminal fluid and spermatozoa. Interestingly, 
a similar role has also been proposed for “dense bodies” that 
have been documented in the lumen of the rodent epididymis 
(39, 43, 44), although at present it remains to be established 
whether these amorphous entities do equate to amyloid matrices. 
Irrespective, dense bodies are replete with proteins such as those 
of the molecular chaperone family (HSPD1 and HSP90B1) (39), 
bactericidal/permeability-increasing protein (43), and glycogen 
synthase kinase 3. While the precise function of the chaperone 
cargo remains obscure, it has been suggested that, similar to 
CRES, these proteins may assist in the aggregation of luminal 
proteins into large discrete entities, and thus increase the effi-
ciency with which they are able to be delivered to the sperma-
tozoa. In keeping with this notion, ultrastructural analyses have 
provided evidence that dense bodies form intimate contact with 
epididymal spermatozoa, and thereafter mediate the transfer of 
associated cargo (44). Further dissection of the structural and 
functional properties of these extracellular matrices promises 
to shed new light on the mechanisms by which the epididymal 
soma communicates with sperm to coordinate their maturation 
and storage.

In addition to amyloids/dense bodies, the epididymal lumen 
also features an impressive population of extracellular vesicles. 
Indeed, as early as 1985, Yanagimachi identified a population of 
small membranous vesicles residing near the surface of epididy-
mal spermatozoa in the Chinese hamster, and subsequently 
predicted their potential role in cholesterol transfer to the 
maturing spermatozoa (45). The existence of these vesicles, now 
commonly referred to as “epididymosomes,” has subsequently 
been confirmed in the epididymal fluid of a variety of other 
mammalian species such as mice (46), rats (47), bull (48, 49), and 
human (50). With defining characteristics of a relatively small 
size (varying from 50–500 nm), a heterogeneous cargo of macro-
molecules, and a membrane that is highly enriched in cholesterol 
(51), epididymosomes have since been implicated in promoting 
various aspects of sperm maturation. Such influence is mediated 
through either direct interaction with the sperm themselves or 
via indirect mechanisms involving delivery of regulatory cargo 
(e.g., miRNAs; see below) to epithelial cells downstream of their 
site of genesis.

Proteomic analysis of bull and human epididymosomes 
has revealed they contain a complex cargo of several hundred 
proteins encompassing key classes of enzymes, chaperones, 
structural proteins, and many more with hitherto unknown 
function (52, 53). Some of these proteins have been shown to be 
directly transferred to specific sperm domains during their transit 
through the epididymis and are, in turn, essential for promoting 
the functional maturity of these cells. Notable examples include 
macrophage migration inhibitory factor (MIF), a cytokine with 
a broad distribution and diverse functions in multiple tissues. 
During epididymal transit in the rat and bovine, MIF is trans-
ferred from epididymosomes to the fibrous sheath of the sperm 
flagellum and subsequently influences the motility characteristics 

of these cells (54, 55). Alternatively, P26h/P34H family members 
(P26h in hamster, P25b in bovine, and P34H in humans) are a 
group of glycosyl-phosphatidylinositol (GPI)-linked proteins 
that are initially found within epididymosomes before becom-
ing firmly anchored to the surface of the sperm acrosomal 
domain. Functional studies have revealed that these proteins are 
indispensable for zona pellucida binding, which is a prerequisite 
for successful fertilization (56–58). Other transferred proteins 
include membrane-associated, transmembrane, and GPI-linked 
candidates, and it is likely that the epididymosomes afford an 
important mechanism for the bulk delivery of this cargo, pos-
sibly in the form of already assembled protein complexes to the 
sperm cell. Direct evidence for this form of transport has been 
provided through in  vitro co-incubation studies between sper-
matozoa and epididymosomes focusing on protein complexes 
such as the MCA4a–PMCA4b–CASK complex, which has been 
directly co-immunoprecipitated from epididymosomes (59). This 
protein complex has been shown to be transferred to the acro-
somal region and mid-piece of the flagellum (which are two key 
functional domains in the male gamete) under optimized in vitro 
incubation conditions featuring the physiologically relevant pH 
of 6.5 and a high concentration of zinc (60, 61).

In this sense, the ionic composition of epididymal fluids 
is markedly different from that documented in other bodily 
fluids (62). Thus, the epididymal fluid contains a lower overall 
concentration of Na+, Cl−, Ca2+ (except for human), and HCO3

− 
ions than those that have been reported in blood plasma (62–65). 
These particular ionic concentrations are, in turn, tightly associ-
ated with the regulation of luminal acidification that helps keep 
spermatozoa in a dormant state (66, 67). Within the epididymal 
lumen, events such as sexual arousal stimulate principal cells 
to secrete HCO3

− and Cl−. This change is sensed by purinergic 
receptors in adjacent clear cells where it leads to activation of 
bicarbonate-sensitive adenylyl cyclase and the downstream re-
localization of proton pumping ATPases to the apical region of 
these cells. These pumps subsequently secrete H+ (66) leading to 
further acidification of the epididymal luminal environment. This 
cell–cell cross talk is mediated by several membrane receptors 
including cystic fibrosis conductance transmembrane regulator 
positioned in the principal cells and cognate sodium bicarbonate 
cotransporters (NBC) in the clear cells. Intracellular Ca2+ is also 
required for ATPase sequestration within the apical domain 
of clear cells owing to its ability to dynamically modulate the 
actin cytoskeleton (68). Ca2+ also plays a more direct role in the 
regulation of sperm functionality by virtue of its ability to enter 
the cell through cation channels (CATSPER) that are located in 
the principal piece of the sperm flagellum. Accordingly, blocking 
Ca2+ influx via CatSper knockout strategies leads to impaired 
sperm motility (69).

Finally, in addition to the more well-studied proteomic and 
ionic components of the epididymal luminal fluids, a number of 
recent studies have provided compelling evidence for the exist-
ence of myriad of small non-protein coding RNA transcripts in 
epididymal fluid (29–33). Such entities appear predominantly,  
but perhaps not exclusively, to be associated with epididymo-
somes (33, 70–72). In the mouse model, we have con-
firmed that epididymo somes encapsulate >350 different 
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miRNAs. This inventory includes many miRNAs that are found 
in epididymosomes and epididymal spermatozoa but are appar-
ently absent, or detected at significantly reduced levels, in the 
surrounding soma. Such findings are sugges tive of selective 
packaging of the epididymosomes cargo (52). In keep ing with this 
notion, substantial qualitative and quantitative changes have been 
documented in the epididymosome cargo along the length of the 
epididymis; including significant fold changes in the accumula-
tion of almost half of their encapsulated miRNAs (70). These data 
accord with similar findings in the bull (33), and take on added 
significance in view of evidence that epididymosomes can convey 
their macromolecular payload to spermatozoa and downstream 
epididymal epithelial cells (33). Epididymosomes thus represent 
key conduits for the selective modification of the sperm proteome 
and epigenome during their post-testicular maturation (71, 73). 
A challenge for future studies will be to determine the extent to 
which this novel form of intercellular communication underpins 
the perturbation of the sperm epigenome arising in response to 
paternal environmental exposures (74).

RegULATiON OF THe ePiDiDYMAL 
LUMiNAL eNviRONMeNT

Sequential modification of the epididymal luminal milieu 
demands the interchange of components between the lining 
epithelium and the lumen. As described previously, this form 
of intercellular communication is carefully orchestrated by the 
secretory and absorptive activity of the differing populations of 
epithelial cells (8). Logically, the interface for a majority of these 
interactions is the sperm plasma membrane, a structure that is 
known to undergo dramatic maturational changes mediated by 
either direct contact with the epithelial margin or by physical 
exchange of luminal components. Although such exchanges 
undoubtedly rely on membrane trafficking activity, the precise 
mechanisms and the machinery involved in these events remains 
to be fully elucidated.

epithelial Secretion: Merocrine versus 
Apocrine Secretory Pathways
Merocrine secretion is a classical pathway operative in glandular 
tissue whereby the endosomal network generates, packages, 
and finally exports cargo via exocytosis (Figure 2). The diverse 
proteins secreted in this fashion share the general properties 
of being soluble and containing a signal peptide sequence that 
directs them toward the ER in preparation for trafficking to 
the membrane (75). In the mammalian epididymis, merocrine 
secretion is believed to be one of the major pathways through 
which principal cells are able to regulate the composition of the 
intraluminal milieu. Accordingly, morphological characteriza-
tion of this cell population has revealed they possess extremely 
long microvilli accompanied by numerous vesicles extending 
from the Golgi apparatus to the adluminal cell border; this is par-
ticularly true of the proximal caput segment, which is most active 
in terms of protein secretion into the lumen (76). Among the 
epididymal proteins secreted via the merocrine pathway, many 
have been implicated in forming loose electrostatic associations 

with the periphery of the sperm surface (77). This appears to be 
true of proteins such as those implicated in holding sperm in a 
decapacitated state, i.e., the so-called decapacitation factors (77).

The precise mechanisms controlling merocrine secretion are 
still relatively poorly understood. Some studies have impli cated 
regulatory elements of classical membrane trafficking machin-
ery, such as the Rab superfamily of monomeric GTPases (78). 
Although various Rab proteins are highly, and differentially, 
expressed in the epididymal epithelium, their ability to exert 
similar regulation to that described in other somatic systems 
remains to be verified. Alternatively, recent work in our own 
laboratory has focused on the characterization of the temporal 
and spatial expression of the dynamin family of mechanoen-
zymes in the mouse epididymis (79). This family of proteins 
is of potential interest owing to their ability to couple both 
exo- and endocytotic processes. Indeed, while dynamin has 
been best studied in the context of clathrin-coated endocytosis 
from the plasma membrane, it is also implicated in formation 
and budding of transport vesicles from the Golgi network  
(80, 81), vesicle trafficking (82), orchestrating exocytotic 
events (83, 84), and in the regulation of microtubular and actin 
cytoskeletal dynamics (84, 85). Moreover, dynamin also has the 
potential to fine-tune exocytotic events by virtue of its ability to 
control the rate of fusion pore expansion, and thus the amount 
of cargo released from an exocytotic vesicle. In our analysis 
we found that, the dynamin 2 isoform is positioned within the 
vicinity of the Golgi apparatus of principal cells of the caput 
epididymis. Further, pharmacological inhibition of dynamin 
2 selectively compromised the profile of proteins secreted 
from an immortalized caput epididymal cell line (79). On the 
basis of these data, we infer that dynamin 2 may contribute 
to the regulation of merocrine secretion by the mouse caput 
epithelium.

In addition to participating in merocrine secretion, there is 
also compelling evidence that the epididymal epithelium is heav-
ily reliant on apocrine secretory pathways. Notably, apocrine 
secretion appears to underpin the transportation and release 
of epididymosomes into the epididymal lumen (Figure  2). 
This pathway, in turn, provides a mechanism for the release 
of proteins lacking an ER signal peptide and/or containing a 
glycosyl-phosphatidylinositol (GPI) anchor (86, 87); neither of 
which could be delivered to the epididymal luminal environ-
ment via the merocrine secretory pathway. As documented 
above, the epididymosomes released via apocrine secretion also 
contain a comprehensive profile of miRNAs and other sncRNAs, 
that themselves display marked segment specific differences 
(70). During intracellular transfer, the small epididymo some 
vesi cles are first sequestered into large bleb-like structures 
that protrude from the apical margin of principal cells. The 
apical blebs eventually detach and disintegrate to release their 
encapsulated cargo within the lumen (11, 88). At present, the 
precise mechanisms by which the blebs are formed and detached 
remain to be determined. However, performed under condi-
tions of stringent fixation, ultrastructural electron microscopy 
has revealed that the attachment of the apical blebs progressively 
narrows to form a stalk-like process that eventually undergoes 
scission to release the bleb into the lumen (88). This process 
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FigURe 2 | Schematic of vesicle-dependent mechanisms that contribute to the creation of the highly specialized epididymal intraluminal milieu. Principal cells 
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active secretory pathways have been documented in these cells, namely classical merocrine secretion and an alternative apocrine secretory pathway. The former  
is characterized by secretory vesicles formed by the Golgi apparatus and leads to the release of a myriad of soluble proteins. In contrast, apocrine secretion 
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communication, thereby enabling the delivery of a complex macromolecular payload to recipient cells in the form of luminal spermatozoa and/or downstream 
epithelial cells. Such cargo are known to include several hundred proteins as well as various species of small non-protein coding RNA (sncRNA). At present, the 
mechanisms by which epididymosomes are tethered, and deliver their cargo, to recipient cells remains to be equivocally determined although various proteins have 
been implicated in this process. Principal cells may also participate in endocytosis, involving the uptake of epididymal luminal contents via receptor (e.g., LRP2) 
mediated mechanism(s). A similar function has also been assigned to the clear cell population, which is mainly responsible for the recycling of luminal components.
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appears to involve reorganization of cytoskeletal proteins such 
as myosin and β-actin (46, 89). In any case, the release of the 
epididymosomes into the luminal environment ideally posi-
tions this heterogeneous vesicle population to interact with the 
maturing spermatozoa.

epithelial Absorptive Pathways
The epithelial cells lining the initial segment of the mature mam-
malian epididymis have been shown to be very active in the uptake 
and recycling of the testicular contributions that enter the tract 
(3). One putative pathway for this absorption has been alluded 
to on the basis of apolipoprotein (apo) E receptor-2 (APOER2) 
expression in the principal cells of the initial segment. In this 
position, the APOER2 receptor is responsible for the clearance 
of clusterin, a glycoprotein implicated in lipid transport from 
spermatozoa to the principal cells. Accordingly, the inhibition of 

APOER2 leads to the accumulation of clusterin in the epididy-
mal fluid (90). Additional luminal components such as andro-
gen binding protein, transferrin, and alpha2-macroglobulin also 
appear to be recycled following selective adhesion to receptors 
located in the adluminal domain of principal cells; a portion of 
which are located in the initial segment, while others present 
with more diffuse localization throughout the downstream 
segments of the epididymis. While a portion of these proteins 
appear destined for disposal (91–93), others such as androgen 
binding protein have proven to be indispensable for the normal 
functioning of the epididymal principal cells (91). The balance 
of evidence indicates that, in contrast to the initial segment, 
the bulk of the absorptive and recycling activity of the distal 
epididymal regions (and in particular the cauda epididymis) 
resides in clear cells. This is certainly the case for immobilin, 
a large glycoprotein that is responsible for the creating of the 
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viscoelastic luminal environment that serves to mechanically 
immobilize spermatozoa (94, 95). Immobilin is predominantly 
secreted into the proximal caput epididymis prior to the acquisi-
tion of the potential for sperm motility. Thereafter, immobilin 
forms an intimate association with the maturing sperm cells and 
physically restricts the propagation of a flagellar beat. In con-
trast, the principal cells of more distal segments secrete minimal 
immobilin, while the corresponding population of clear cells 
begins the task of absorbing excess immobilin (95). Differing 
patterns of absorption have been documented for alternative 
proteins such as that designa ted as epididymis-specific Inactive 
ribonuclease-like protein 10 (Protein Train A) (96); a protein 
that is secreted into the anterior segment of the bull epididymis 
via a classical merocrine pathway. Thereafter, Train A experi-
ences a rapid reabsorption, such that this protein is unable to be 
detected in the epididymal lumen immediately adjacent to its 
site of secretion (96).

Receptor-mediated absorption is also involved in the 
recycling of the epididymal luminal contents (Figure  2). In 
this context, clusterin again serves as an interesting example. 
Indeed, in addition to the clusterin isoform that originates in 
the testes (and is subsequently absorbed by principal cells of the  
initial segment), an alternative isoform is abundantly secreted 
into the lumen of the proximal epididymis, whereupon it has 
been implicated in sperm maturation. Both in vivo and in vitro 
studies have revealed that epididymal sourced clusterin is 
recycled by downstream principal cells via interaction with 
low density lipoprotein receptor (LRP-2) (97). Accordingly, 
clusterin and LRP-2 are both found in association with the apical 
surface, coated pits, endocytic vesicles, and early endosomes of 
principal cells. Subsequently, only clusterin is detected in late 
endosomes and lysosomes, suggesting that LRP-2 is recycled 
back to the apical surface while clusterin is delivered to the 
lysosomes for degradation (97). This process can be prevented 
by presenting the cells with an excess of protein substrates 
that competitively bind to LRP-2. Such receptor-dependent 
recycling of luminal components is a commonly encountered 
phenomenon within the epididymis, with additional examples 
including transferrin and α2-macroglobulin (93). Epididymal 
epithelial cells also possess the ability to monitor the luminal 
environment and adjust their absorptive ability accordingly.  
In this context, the estrogen receptor α (ERα) has been identified 
as key sensor involved in the regulation of fluid reabsorption 
in the efferent ducts and initial segment of the epididymis. 
This system is apparently fine-tuned by a ubiquitin-dependent 
proteasome pathway that affords precise control over ERα 
turnover and degradation (98). Another interesting example of 
this phenomenon has been afforded by the analysis of an MFGE8 
(formerly known as SED1) knockout mouse model (Table  1). 
The epididymal epithelial cells of these mice are characterized 
by increased accumulation of intracellular vesicles and an api-
cal distribution of VATPase. Such changes are, in turn, reflected 
in epididymal luminal environment, which displays abnormal 
osmolarity (i.e., hypo-osmotic) and alkalinity; suggestive of the 
existence of a positive feedback loop responsible for regulating 
the behavior of the epithelial cells in response to changes in the 
luminal environment (99).

Membrane Trafficking Machinery involved 
in the Regulation of the epididymal 
environment
Despite recognition of the importance of bidirectional epithelial 
transport in regulating the epididymal luminal environment, 
little is currently known about the molecular machinery that 
controls these complementary pathways. Key elements are likely 
to include Soluble NSF Attachment Protein Receptor (SNARE) 
proteins, which have well-described roles in the regulation of 
membrane fusion activity in alternative tissue models. This 
activity requires the complementary action of different SNARE 
proteins contributed by vesicles (v-SNARE proteins) and target 
(t-SNARE proteins) membranes. Initiated by nucleation of the 
SNARE complex in response to calcium fluxes, the two opposing 
membranes are brought into close apposition and are thereafter 
able to engage in membrane fusion (100). The first evidence 
implicating SNARE proteins in the regulation of membrane 
fusion events in the epididymis arose from studies of the clear 
cell population (101). Functional analysis of these cells revealed 
that cellubrevin, a v-SNARE, is essential for acidification of the 
luminal environment. Accordingly, tetanus toxin-mediated cleav-
age of cellubrevin is able to inhibit proton secretion into the lumen 
(101). In addition to the lining epithelial cells, it is known that 
spermatozoa also harbor several t-SNARE and their cognate 
v-SNARE counterparts, which are localized to the plasma mem-
brane and underlying outer acrosomal membranes, respectively. 
Such a location accords with the proposed role of SNARE pro-
teins in regulating the membrane fusion events that underpin 
sperm acrosomal exocytosis (102–104). Notably however, this 
also ideally positions SNAREs to participate in the tethering of 
epididymosomes to the sperm surface and thereby facilitate the 
transfer of their cargo to the maturing cells. In agreement with 
this model, the requisite SNARE proteins necessary for con-
structing a functional membrane fusion complex have also been 
documented in epididymosomes (53, 101, 102). Nevertheless, 
there is currently limited experimental evidence to support the 
role of SNARE complexes in the regulation of sperm maturation.

Aside from SNARE proteins, recent proteomic analyses of 
luminal fluids obtained from the bovine epididymis have revealed 
the presence of at least 13 proteins implicated in clathrin-mediated 
endocytosis. Since this form of endocytosis is unlikely to occur in 
spermatozoa, these proteins may instead contribute the recycling 
of epididymal components via uptake into the surrounding epi-
thelial cells (105). In this context, alternative regulators of mem-
brane trafficking belonging to the Rab superfamily of GTPases 
have also been documented within epididymal luminal fluid, and 
more specifically, as part of the proteome of both human and bull 
epididymosomes (53, 106). Such findings are of interest as the 
Rab superfamily, which consists of some 30 members, have been 
implicated in regulating various membrane trafficking events 
including vesicle formation, sorting, release, and cargo transfer 
to recipient cells (100, 107). It is therefore tempting to speculate 
that Rab proteins may participate in epididymosome–sperm 
interaction/cargo transfer.

An additional family of membrane-trafficking proteins 
that warrant further investigation in the context of regulating 
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epididymal function is that of the dynamin family of large GTPases. 
Indeed, our recent studies have shown that canonical dynamin 
isoforms display both cell, and segment-specific, differences in 
their profile of expression in the mouse epididymis. Specifically, 
dynamin 1 and 3 are mainly expressed in the corpus and cauda 
segments where they localize within the clear cell and principal 
cell populations, respectively. Of note, the differential localiza-
tion of these dynamin isoforms contrasts the overlapping and 
redundant roles they display in neuronal tissues (108), suggesting 
that they may fulfill discrete functions in the epididymal tubule. 
Moreover, dynamin 1 was shown to be delivered to human 
spermatozoa during epididymal transit, in a mechanism that 
may involve epididymosomes (109). This compares favorably 
with the mouse in which caput and cauda spermatozoa display 
different patterns of dynamin 1 labeling (79). At present however, 
it remains to be determined whether dynamin 1 forms part of the 
cargo transferred between epididymosomes and maturing sper-
matozoa, or alternatively if it is instead involved in the regulation 
of epididymosome docking/fusion with spermatozoa. In contrast 
to dynamin isoforms 1 and 3, dynamin 2 localizes strongly to 
the Golgi apparatus in principal cells of the proximal epididymal 
segments, consistent with a role in mediating post-Golgi vesicle 
trafficking in the most active secretory cells of the tract. In more 
distal segments, dynamin 2 is detected in the microvilli and apical 
blebs lining the luminal border, suggesting it may be participate 
in the regulation of apocrine secretion (79).

epididymosome-Mediated Sperm-Soma 
intracellular Communication
Among the varied molecular mechanisms that exert influence 
over the unique intraluminal environment of the epididymis, 
vesicle-dependent pathways of intercellular communication 
have emerged as being of fundamental importance. An obvious 
advantage afforded by the production of epididymosomes is the 
prospect of delivering macromolecular cargo to spermatozoa  
en masse. Additionally, the encapsulation of such cargo within a 
relatively stable membrane-bound structure could afford stability 
and protection against the potentially deleterious extracellular 
environment of the epididymal lumen. It is therefore perhaps not 
surprising that, in addition to their protein cargo, epididymosomes 
also comprise a heterogeneous population of small non-coding 
RNAs (sncRNA) including miRNA and tRNA fragments (70, 72).  
Like that of their protein cargo, these sncRNAs are available 
for direct transfer to the maturing spermatozoa. Accordingly, 
emerging work has shown that exposure of male mice to dietary 
perturbations (e.g., low protein diets) can markedly influence the 
sncRNA profiles of detected in the epididymis of these animals. 
Moreover, these changes are subsequently manifest in altered 
sperm sncRNA profiles, with epididymosomes having been 
implicated as the vector for delivery of this cargo to the maturing 
epididymal spermatozoa. Of some concern is the recognition 
that spermatozoa are subsequently able to relay these sncRNA to 
the oocyte during fertilization, whereupon they exert epigenetic 
control over early embryo development through targeting of a 
specific subset of genes (72). Such findings encourage a deeper 

understanding of the mechanisms underpinning the selective 
packaging of epididymosome cargo, the way in which this cargo 
is delivered to recipient cells (i.e., maturing spermatozoa and/
or downstream epithelial cells) and the degree to which these 
vectors regulate the acquisition of functional competence in 
maturing spermatozoa.

This field of research is somewhat confounded by the fact that 
epididymosomes represent a heterogeneous population of vesicles. 
In this context, it has been shown that bovine epididymosomes 
collected from different epididymal segments are capable of 
transferring differing protein repertories to spermatozoa. Further, 
an excess of one population of epididymosomes (collected from 
caput segment) does not overtly influence the transfer efficacy 
of the alternative population (collected from cauda segment) 
during simultaneous co-incubation with spermatozoa (49). As 
an extension of this work, it has also recently been shown that 
epididymosomes can be subdivided into two discrete subpopula-
tions owing to their size and molecular composition. The smaller 
of these populations measure ~10–100 nm in diameter and are 
distinguished based on the presence of tetraspanin-enriched 
microdomains containing both CD9 and its cooperative partner 
CD26. These epididymosomes also contain a relatively high 
concentration of proteins such as MIF and P25b, and display a 
preference to interact with live spermatozoa. These collective 
properties implicate this sub-class of epididymosomes in sperm 
maturation (110). The alternative subpopulation is characterized 
by the presence of epididymal sperm binding protein 1, and also 
by their propensity to interact with dead spermatozoa (52, 111). 
The overall heterogeneity of epididymosomes and their capacity 
to selectively interact with different sub-populations of spermato-
zoa suggests these interactions may be tightly regulated.

At present, however, the molecular mechanisms underpin-
ning the biogenesis of different populations of epididymosomes, 
as well as those responsible for their interaction with sperma-
tozoa remain to be established. Recent work has suggested the 
latter process may be initiated via the docking of GPI anchor(s) 
to the outer leaflet of the sperm surface lipid bilayer (87). Such 
docking is putatively followed by membrane fusion between the 
epididymosome and sperm membrane. In this regard, the adhe-
sive/fusion properties of CD9 have identified this tetraspanin as 
a likely candidate in regulation of this fusion event (112, 113). 
Such a model is commensurate with the demonstration that 
anti-CD9 masking antibodies are able to reduce the efficacy of 
protein transfer from epididymosomes to spermatozoa (110). 
Notably, however, CD9 is unlikely to be the sole candidate since 
epididymosome–sperm interaction is characterized by a degree 
of selectivity in terms of the relayed content and their ability 
to discriminate between different populations of spermatozoa. 
As mentioned above, this is particularly the case in the bovine 
model where a subset of epididymosomes has been identified 
that do not possess CD9 and yet are still able to interact with 
spermatozoa (52). Owing to their role in receptor sequestration, 
lipid rafts have also been recently proposed as a “platform” to 
facilitate docking of the epididymosome and sperm mem-
branes. Highly enriched in cholesterol and sphingolipid (114), 
these microdomains also compartmentalize GPI-anchored 
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proteins such as P25b and SPAM1 (87) that themselves have 
been implicated in epididymosome-sperm adhesion. Thus, the 
release of P25b and SPAM1 proteins from sperm lipid rafts, via 
trypsin/pronase proteolysis, leads to a significant reduction in 
the efficacy of epididymosome cargo transfer to the sperm cells 
(115). However, it remains to be determined if the disruption 
of lipid raft integrity (e.g., through cholesterol sequestration 
using methyl-β-cyclodextrin) also compromises the docking of 
epididymosomes to the sperm surface.

Adding to this controversy is the suggestion that the interac-
tion between epididymosomes and spermatozoa may not involve 
a complete fusion of their respective membranes (116). Rather, 
epididymosome adherence may be followed by creation of a tran-
sient fusion pore and subsequent release of the epididymosome 
once delivery of their cargo is complete. Accordingly, proteomic 
analyses of epididymosomes, and spermatozoa themselves, 
have identified a myriad of complementary trafficking proteins  
(e.g., SNARE proteins, Ras-like proteins, and dynamins) (53) 
that could regulate this form of intercellular communication. 
An intriguing aspect of this “kiss and run” model is that it could 
potentially facilitate bi-directional exchange of proteins and 
other macromolecules both into, and out of, the maturing sperm 
cell. It may also account for why a portion of epididymosomes 
persist in seminal fluids rather than being completely absorbed 
by spermatozoa within the duct. To the best of our knowledge, 
however, there is presently limited functional evidence link-
ing any of the abovementioned trafficking proteins to a role 
in sperm-epididymosome interaction, and no evidence that 
epididymosomes can sequester proteins from spermatozoa. 
Irrespective, it has been shown that lipid labeled (Dilc12) 
epididymosomes originating from the median caput segment are 
able to be incorporated into distal caput epithelial cells in vitro 
(33). Such incorporation is time-dependent, with fluorescence 
imaging revealing a punctate distribution of Dilc12 within the 
epithelial cells after epididymosome interaction. This pattern of 
labeling is reminiscent of that observed after exosome interaction 

with somatic cells in other tissue models (117), thus indicating 
that sperm are not the sole recipients of epididymosome cargo.

CONCLUSiON

The epididymal milieu is undoubtedly crucial for promoting 
sperm maturation as well as supporting their storage. Indeed, 
since sperm are transcriptionally and translationally silent cells, 
their functional transformation relies entirely on the creation and 
maintenance of a highly specialized epididymal luminal milieu. 
The establishment of this unique epididymal microenvironment 
features the varied endocytotic and exocytotic contributions of 
the epithelial cells that line the duct. Unfortunately, our under-
standing of the molecular machinery the epididymal epithelial 
cells employ to facilitate these processes remains incomplete, as 
does our knowledge of how these cells are precisely regulated in 
different segments. Resolving these questions promises to inform 
our understanding of male fertility regulation with implications 
for contraceptive intervention and infertility diagnostics.
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