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Aluminum (Al) is the most abundant metal in the earth’s crust, but its availability depends
on soil pH. Despite this abundance, Al is not considered an essential element and so
far no experimental evidence has been put forward for a biological role. In plants and
other organisms, Al can have a beneficial or toxic effect, depending on factors such
as, metal concentration, the chemical form of Al, growth conditions and plant species.
Here we review recent advances in the study of Al in plants at physiological, biochemical
and molecular levels, focusing mainly on the beneficial effect of Al in plants (stimulation
of root growth, increased nutrient uptake, the increase in enzyme activity, and others).
In addition, we discuss the possible mechanisms involved in improving the growth of
plants cultivated in soils with acid pH, as well as mechanisms of tolerance to the toxic
effect of Al.

Keywords: acid soils, aluminum, aluminum toxicity, beneficial effect of aluminum, mechanisms of tolerance,
metal, plant growth stimulation

INTRODUCTION

Acid soils, also called ultisols or oxisols, have a pH of 5.5 or lower; they are widely distributed in
tropical and subtropical regions, constituting approximately 30% of the total area of the planet
and 50% of the arable land in the world, as well as providing between 25 and 80% of vegetable
production (Sade et al., 2016). Soil acidification can occur due to natural and/or anthropogenic
processes (Figure 1). Most acid soils occur in the tropics and subtropics, where acidification is a
natural process. This situation can be worsened by environmental contamination through the use
of fertilizers and acidifying substances, as well as the use of fossil energy sources such as coal and
oil which release nitrogen dioxide (NO2) and sulfur dioxide (SO2) into the atmosphere and which,
in the presence of oxidizing agents, give rise to nitric acid (HNO3) and sulfuric acid (H2SO4),
thereby increasing the precipitation of acid rain and acidification of the bodies of water and the soil.
Moreover, organic material in decomposition, imbalance in N, S, and C cycles, excessive uptake of
cations over anions and the uptake of nitrogen by leguminous crops all increase the concentration
of H+ and reduce soil pH (Figure 1). Acid soils are characterized by a deficiency in nutrients and
toxicity by metals, such as manganese (Mn), iron (Fe) and Al; with toxicity by Al being the main
factor limiting plant growth in acid soils (Kochian et al., 2004; Gupta et al., 2013; Bose et al., 2015).

Aluminum is the most abundant metal on earth and it is the third most abundant element (after
oxygen and silicon) in the earth’s crust, representing approximately 8.1% of its content in weight
(Figure 2A). Despite being ubiquitous and available during the life cycle of plants, Al has no specific
biological function (Poschenrieder et al., 2008). Organisms are not usually exposed to relevant
concentrations of Al in the soil as it is mainly found in the form of a mineral (aluminosilicates
and aluminum oxides); however, in aqueous solutions and at different pH, Al hydrolyzes water
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FIGURE 1 | Soil acidification is a phenomenon determined by natural and
anthropogenic factors. The decomposition of the organic matter, the
imbalance of the N, S, and C cycles, the excess in the cation uptake on
anions and the N fixation by the legumes influence the concentration of
protons [H+] in the soil solution. Anthropogenic factors such as the use of
fertilizers (nitrogen, phosphorus, and potassium, NPK), the use of acidifiers
and aerosols (H2S, H2SO4, HF, and Cl2), and the emission of gasses (CO2,
NO2, and SO2) into the atmosphere by use of fossil energy give rise to
environmental pollution. Such molecules find their way into soil and water
bodies in the form of acid rain, causing acidification of soils and the release of
Al ions in a form easily absorbed by the plant root system, which is extremely
toxic. Also, nutrient deficiency (P, Mg, and K) and toxicity by other metals (Mn
and Fe) may occur.

molecules to form aluminum hydroxide (Figure 2A). Total Al
concentration in the soil and the speciation of Al depend on the
pH and the chemical environment of the solution (Kisnieriené
and Lapeikaité, 2015). The toxic effect of the different forms
of Al (speciation) on plant growth diminishes in the following
order: Al, Al(OH)2+, Al(OH)2

+, Al(OH)4
− (Figure 2B). At a low

pH (about 4.3) trivalent aluminum (Al3+) is the most abundant
form and has the greatest impact on plant growth. In contrast,
precipitated or chelated Al with organic compounds is not toxic
for plants (Nogueirol et al., 2015).

It was recognized for the first time, over 100 years ago, that
concentrations of soluble Al increase in acid soils (Veitch, 1904)
and that this soluble Al is toxic for plant growth, the main effect
of Al toxicity being inhibition of root growth (Daikuhara, 1914;
Miyake, 1916; Magistad, 1925; Kopittke et al., 2016). Surprisingly,
stimulation of root growth is one of the beneficial effects of Al.
The impact of Al on plant growth, both toxic and beneficial,
depends on the concentration of the metal and varies according
to the plant species, which includes the genotype within the same
species, physiological age, growth conditions and the duration of
exposure to the metal. According to Barcelo and Poschenrieder
(2002) and Zhou et al. (2011), with respect to root growth,
three responses can be observed depending on the concentration
of Al. (1) Root growth is not affected at low concentrations
of Al; however, at a higher concentration it is diminished; (2)
root growth is stimulated at low concentrations of Al, but it is

affected at high concentrations; (3) inhibition of root growth
at low concentrations or short time periods, but little or no
effect at high concentrations or long time periods. A fourth
response is presented in genotypes where root growth is not
affected even at very high concentrations of Al, indicating that
different plant species differ in their response mechanisms to
stress by Al at cellular and tissue levels, as well as whole-plant
level.

BENEFICIAL EFFECT OF ALUMINUM IN
PLANTS

Since Maze (1915) and Stoklasa (1922) reported, for the first
time, on the possible role of Al in plant growth and development,
considerable interest has been shown in studies on the beneficial
effect of Al on plants. In recent years, an increasing number of
articles dealing with this topic have been published. However, to
date, no evidence has been put forward as to the essentiality of
this metal. Although the exact mechanism causing the beneficial
effect of Al is still unknown, a few possible mechanisms have been
suggested to explain it (Figure 3).

Plant Growth Stimulation by Aluminum
Growth stimulation induced by Al has been observed frequently
in native plants, or plants which have adapted to acid soils when
Al is mainly administered at low concentrations (Yoshii, 1937;
Osaki et al., 1997; Pilon-Smits et al., 2009). In the case of the
Tabebuia chrysantha tree, low levels of Al stimulated the synthesis
of root biomass; in contrast, a high level of Al had an inhibitory
effect (Rehmus et al., 2014). According to Poschenrieder et al.
(2015) two patterns of growth stimulation resulting from the
administration of Al can be observed in plants: a transitory
increase (short term) in growth, observed mainly in laboratory
studies, and a permanent increase in productivity induced by
Al in the highly tolerant plants. For example, prevention of
H+ toxicity and an increase in root elongation induced by Al
is a transitory effect which occurs for short periods (Kinraide
et al., 1992; Llugany et al., 1995; Kinraide, 1998). However, in
an in vitro culture of coffee (Coffea arabica) seedlings, growth
stimulation of the primary root induced by Al occurred from
day 10 to day 30 of culture (Bojórquez-Quintal et al., 2014).
In Betula pendula and Quercus serrata trees, growth increase
(roots and leaves) induced by Al has been observed in the long
term, even after 28 days and 17 months, respectively (Kidd and
Proctor, 2000; Tomioka and Takenaka, 2007). Similar results
were reported in Conostegia xalapensis after 24 days of treatment
with 0.5 and 1 mM of Al. The treatment with Al increased root
biomass and the number of lateral roots. C. xalapensis is a shrub,
hyperaccumulator of Al, which is common to Mexico and Central
America, and colonizes pollution-perturbed areas. A possible
role as an indicator species for toxicity and contamination of
Al has been suggested for this species (González-Santana et al.,
2012).

Camellia sinensis, Miscanthus sinensis, Quercus serrata,
and Melastoma malabathricum are tropical species,
hyperaccumulators of Al, which grow in acid soils (Yoshii,
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FIGURE 2 | Aluminum abundance and speciation in the earth’s crust. (A) Different forms of Al in the soil and water. Aluminum is mainly found in the mineral form
(aluminosilicates and aluminum oxides). In addition, Al can be found as precipitates or conjugated organic and inorganic, and molecular ions depending on the soil
pH. (B) Al-speciation in soil solution. Al concentration and the speciation of Al depend on the pH and the chemical environment of the soil solution. However, a very
toxic polynuclear Al species (∗Al13) depends on the total concentration of Al. Molecular aluminum (mononuclear) exists as hydroxyaluminum: Al/Al(H2O)63+, AlOH2+,
Al(OH)2+, Al(OH)3 y Al(OH)4- Trivalent aluminum (Al) is the most abundant form and has the greatest impact on plant growth at pH < 5. At pH > 5–6, the dominant
species are AlOH2+ and Al(OH)2+, which are not as toxic to plants as Al. When the pH is neutral, Al(OH)3 or gibbsite occurs; however, it is non-toxic and relatively
insoluble. Aluminate, Al(OH)4-, is the dominant specie when the pH is alkaline (pH > 7). (Kinraide, 1991; Delhaize and Ryan, 1995; Brautigan et al., 2012; Hagvall
et al., 2015; Kisnieriené and Lapeikaité, 2015).

FIGURE 3 | Effect of aluminum on plants and mechanisms of tolerance to stress by aluminum. (1) Toxicity of Al in plants. (2) Beneficial effect of Al in some taxas,
mainly species adapted to acid soils. (3) Mechanisms of exclusion, resistance or alleviation of Al uptake, and (4) Mechanisms of internal tolerance to stress by Al in
plants.

1937; Osaki et al., 1997; Ghanati et al., 2005; Tomioka et al.,
2005). In tea (C. sinensis) and Q. serrata, it is well known that
Al potentializes biomass growth, root elongation and both
short and long term proliferation of lateral roots (Ghanati

et al., 2005; Tomioka et al., 2005; Mukhopadyay et al., 2012;
Hajiboland et al., 2013b; Xu et al., 2016). In the case of tea, it
has been demonstrated that root growth is stimulated in the
presence of Al, while in the absence of the metal, growth of
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the root and the plant is delayed (Tsuji et al., 1994; Fung et al.,
2008). In M. malabathricum it has been suggested that Al is
essential for the growth of this plant; in the absence of the metal,
chlorosis, morphological changes and leaf curling have been
observed (Watanabe et al., 2006). The Melastoma plant secretes
mucilage in the roots in order to accumulate Al in soils with poor
availability of this element and the accumulation of Al increases
the growth of roots and shoots (Watanabe et al., 2005, 2008a,b).
Morphological changes in the root, such as thickening, white
coloration and elongation have also been reported in C. sinensis,
Q. acutissima, Cinnamomum camphora, Eucalyptus viminalis,
Q. serrata, M. malabathricum, and Symplocos paniculata in the
presence of Al (Oda, 2003; Ghanati et al., 2005; Watanabe et al.,
2006; Schmitt et al., 2016a).

Despite the fact that the beneficial effect of Al in plants has
been reported mainly in woody species adapted to acid soils
(Osaki et al., 1997; Hajiboland et al., 2013b), there are reports
available on species of economic importance, such as rice (Oryza
sativa) and corn (Zea mays) (Watanabe et al., 1997; Famoso et al.,
2011; Wang et al., 2015b). In rice varieties tolerant to Al, an
increase in root growth has been observed in the presence of
160 and 200 µM of Al (Famoso et al., 2011; Moreno-Alvarado
et al., 2017). The administration of a low dosage of Al in corn
inhibited root growth, but increased leaf growth (Wang et al.,
2015b). Similarly, an increase in the Al content of horticultural
species, such as turnip (Brassica rapa) and the legume Glycine
max increases elongation and activity of the root (Rufty et al.,
1995; Yu et al., 2011).

Aluminum can also stimulate the growth of other organisms.
In marine environments, Al increases the growth and biomass
accumulation of phytoplankton, mainly diatoms (Saçan et al.,
2007; Golding et al., 2015; Zhou L. et al., 2016). In a mutant of
Saccharomyces cerevisiae (zrt11), deficient in zinc uptake, the
addition of Al restored growth to a level comparable to that
of the wild strain and promoted the uptake of Zn (Tamura
and Yoshimura, 2008). In microorganisms such as Frankia (a
nitrogen-fixing bacteria), an increase in growth (in vitro) was
observed with the addition of 500 µM of Al; similarly, it was
possible to observe that Al prevented the inhibitory effect of
the acidic pH (Igual and Dawson, 1999). Aluminum is also
involved in bone formation in animal cells (Quarles et al., 1988,
1989). It has been observed that the addition of Al increases
the proliferation and differentiation of human and chicken
osteoblasts (Lau et al., 1991). Moreover, it has been demonstrated
that Al induces the synthesis of DNA in osteoblasts (Quarles et al.,
1994) and acts as mitogen in epithelial cells of mice (Jones et al.,
1986).

Aluminum Promotes Nutrient Uptake
One of the possible reasons explaining the stimulation of plant
growth induced by Al is the promotion of nutrient uptake. In
hyperaccumulator plants, Al can stimulate or have no effect
on essential nutrient uptake (Malta et al., 2016). In different
plant species, nitrogen (N), phosphorous (P), and potassium
(K) uptake has been considered the mechanism responsible for
the stimulation of root growth induced by Al (Osaki et al.,
1997). In tea plants, the stimulation of root growth has been

explained as a consequence of an increased uptake of some
macronutrients (Fung et al., 2008). In M. malabathricum, Q.
serrata and tea the uptake and accumulation of P in the roots
and leaves of the plants increased in the presence of Al. It has
been suggested that the stimulation of root growth and the
increase in P could be due to precipitation of the Al-P complex
on the root surface and/or in the Donnan free space (apoplast)
and in some way the plants use the precipitated P (Konishi,
1992; Osaki et al., 1997; Tomioka et al., 2005). Similarly, Al
stimulates alkaline phosphatase activity and organic P uptake
in the marine diatom Thalassiosira weissflogii (Zhou L. et al.,
2016).

In Q. serrata, stimulation of root growth was associated with
the activation of the nitrate reductase and the increase in NO3

−

uptake (Tomioka et al., 2007, 2012). In species of the genus
Symplocos there is a positive correlation between the calcium
(Ca) uptake and the level of Al (Schmitt et al., 2016a). Similarly,
in C. arabica roots an increase in the content of K and Ca
was observed with the concentration of Al which stimulated
primary root growth (Bojórquez-Quintal et al., 2014). All the data
presented suggest that Al can induce the expression or activity
of transport proteins (channels and transporters) and change the
membrane potential and proton flux (H+) which promotes the
fluxes of nutrients in the plants. There is evidence in wheat roots
(Triticum aestivum) that Al increased the extrusion of H+ and
the polarity of the membrane, which could be associated with a
greater nutrient uptake and growth increase (Kinraide et al., 1992;
Kinraide, 1993). Moreover, in Arabidopsis thaliana, Al induces
depolarization of the membrane, K and H+ influx, and reduces
K efflux (Bose et al., 2010a,b). Magnesium (Mg) can prevent
the toxic effect of Al on plants (Bose et al., 2011). In a mutant
of Arabidopsis (alr-140), an increase in influx and intracellular
content of Mg induced by Al has been observed; it has also been
suggested that Al can activate channels and Mg transporters in
Al-resistant plants (Bose et al., 2013).

Aluminum Prevents Biotic and Abiotic
Stress
The beneficial elements, including Al, can increase tolerance
to abiotic stress (ion toxicity and nutrient deficiency) and
resistance to biotic stress (herbivores and pathogens) (Kaur et al.,
2016). Pilon-Smits et al. (2009) mention that plants which are
hyperaccumulators of Al (1 g Al kg−1 dry weight) can use this
metal in their tissues to discourage herbivores, as was observed in
the application of Al to prevent herbivory in Festuca arundinacea
(Potter et al., 1996). Due to the fact that Al can be toxic for
some pathogenic microorganisms, a number of salts containing
Al have been used to control diseases caused by fungi in crops of
carrot (Daucus carota) and potato (Solanum tuberosum) (Kolaei
et al., 2013). In S. tuberosum, treatment with Al increased
resistance to the oomycete Phytophthora infestans and to the
pathogenic fungus Thielaviopsis basicola Ferraris. The addition of
Al inhibited the germination of spores and fungus growth (Meyer
et al., 1994; Andrivon, 1995). The protective capacity of Al against
P. infestans was associated with the accumulation of H2O2 in
the roots and the activation of the acquired systemic response
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depending on salicylic acid and nitric oxide (Arasimowicz-
Jelonek et al., 2014).

Aluminum can prevent the effects of H+ toxicity and that
of different elements when found in excess. The increase in
root biomass of tree species after treatment with Al has been
associated with the lessening of H+ toxicity (Thornton et al.,
1986, 1989). This mechanism has also been suggested in wheat,
Japanese radish (Raphanus sativus var. Longipinnatus) and pea
plants (Pisum sativum), but not in Q. serrata (Kinraide et al.,
1992; Kinraide, 1993; Tomioka et al., 2005). In acid soils, the
availability of Al, iron (Fe) and manganese (Mn) is high; thus,
the plants growing in these soils can present toxicity of these
metals (Figure 1). An excess of Fe induces the production of
reactive oxygen species (ROS), leading to the interruption of
several cellular functions. In plants of M. malabathricum and
C. sinensis, growth stimulation is accompanied by the prevention
of iron toxicity. In these species, Al prevents bronzing of the
leaves due to the toxic effect of Fe and also reduces the Fe content
in leaves and roots (Watanabe et al., 2006; Watanabe and Osaki,
2009; Hajiboland et al., 2013a).

In some plant species, Al can prevent the Mn toxicity (Yang
et al., 2009; Wang et al., 2015e). In rice, the prevention of Mn
toxicity induced by Al can be attributed to the reduced metal
accumulation in the shoots as a result of the decrease in Mn
uptake in the roots. The reduction of Mn uptake in the roots was
a consequence of changes in the membrane potential. In addition,
Al brought about an increase in insoluble Mn in the root and
changed the properties of junction to the cell wall, making Mn
less available in the rice roots (Wang et al., 2015e). Aluminum
can also help to detoxify fluoride (F) in tea plants by forming Al-
F compounds. In the absence of the metal, the tea plants were
sensitive to F (Yang Y. et al., 2016). Aluminum is also able to
prevent toxicity caused by other elements, particularly P, zinc
(Zn) and copper (Cu) (Asher, 1991). Also, Al improves plant
growth under nutrient deficiency; for example, supplementation
with Al enhanced the growth of tea plants deficient in boron (B).
Under B deficiency conditions, Al was able to positively regulate
the metabolism of N and carbon (C) and antioxidant defense
activity, while increasing the uptake and transportation of B in tea
plants (Hajiboland et al., 2014, 2015). Under limiting conditions
of P, Al stimulates P uptake in microalgae (Zhou L. et al., 2016).

Beneficial Effects of Aluminum on Plant
Metabolism
Investigation on the beneficial effect of Al has focused mainly on
physiological aspects such as the promotion of nutrient uptake;
however, recent advances have suggested the possible role of Al
in plant metabolism (Xu et al., 2016). In tea plants, Al is retained
in the apoplast of leaf epidermal cells as a mechanism of Al-
resistance (Tolrà et al., 2011). In the aerial part of the plant,
the stimulatory effect of Al has been attributed to the increase
in photosynthesis and the activation of antioxidant defense
(Hajiboland et al., 2013b). Similarly, in roots and cell suspensions
of tea plants, Al induces the activation of antioxidant enzymes,
increases the integrity of the membrane and reduces lignification
and aging, which could be a possible reason for the stimulation of

root growth (Ghanati et al., 2005). In C. xalapensis plants treated
with Al, the increase in biomass and in the number of lateral
roots coincided with greater activity of the glutathione reductase
and superoxide dismutase, at low levels of ROS (González-
Santana et al., 2012). In Q. serrata, stimulation of root growth
by Al is associated with an increase in the activation of nitrate
reductase and the photosynthetic rate (Tomioka and Takenaka,
2007; Tomioka et al., 2007, 2012; Moriyama et al., 2016).

The beneficial effect of Al on plants has also been associated
with the regulation of C and N metabolism. The shrub
M. malabathricum changes the metabolism of organic acids (OA)
in the absence or presence of Al; more specifically, it increases the
synthesis of citrate and diminishes that of malate (Watanabe and
Osaki, 2001), suggesting the possible role of Al in the regulation
of the expression and activation of genes and proteins associated
with the biosynthesis of OA with respect to growth stimulation.
In M. malabathricum, citrate is necessary for the transportation
of Al from the roots to aerial part of the plant (Watanabe
et al., 2005). In tea plant roots, it has been suggested that the
secretion of caffeine induced by Al can increase root growth by
inhibiting callus deposits (Morita et al., 2011). Also, Al positively
regulates the biosynthetic pathway of caffeine in suspension cells
of C. arabica. This regulation may be accomplished by activation
of a signal transduction pathway through Ca and ROS (Pech-Ku
et al., 2017). There is also evidence indicating that Al increases the
content of chlorophyll, carotenoids, sugars, amin oacids such as
proline and cysteine, hormones, and metabolites of the Shikimico
acid pathway in woody and crop plants (Hajiboland et al., 2013b;
Moriyama et al., 2016; Xu et al., 2016; Moreno-Alvarado et al.,
2017). In fact, glucose has been suggested as an energy source
which is a key element in the promotion of root growth, in the
presence of Al. Moreover, glucose and abscisic acid (ABA) may
participate as signaling molecules which promote the root growth
induced by Al, acting on the metabolism of N and C (Moriyama
et al., 2016). For instance, Al increases the concentration of
soluble sugars and differentially regulates the expression of NAC
transcription factors, which in turn may enhance growth and
biomass production in rice plants (Moreno-Alvarado et al., 2017).

In corn, stimulation of leaf growth has been associated with
greater protein synthesis (Wang et al., 2015b). In coffee seedlings,
the activity of phospholipase C, an enzyme which participates
in signal transduction, was increased in the concentration of Al
where it was possible to observe stimulation and inhibition of
root growth, suggesting a possible participation in the signal-
transduction pathway mediated by inositol phosphate in the
beneficial and toxic effect of Al in plants (Bojórquez-Quintal
et al., 2014). It has also been suggested that the beneficial effect
of Al on root growth and morphological changes is associated
with changes in the levels of plant growth regulators (PGR).
Aluminum is capable of inducing, directly or indirectly, synthesis
or transportation of PGR. In the conifer Picea abies, an increase in
the levels of indole-acetic acid (IAA), cytokinins and gibberellins
has been reported in the roots in the presence of Al; these
changes are in correlation with the morphological changes and
the stimulation of lateral roots close to the root apex. The
formation of new roots in Q. acutissima, C. camphora, and
Q. serrata was accelerated by the Al treatment and correlated with
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low concentrations of IAA and an increase in the concentration
of cytokinins and ABA in the roots (Oda, 2003; Moriyama et al.,
2016).

Aluminum Modulates Floral Colors
Aluminum plays an important role in the color changes
of some hyperaccumulator plants. In hydrangea (Hydrangea
macrophylla), Al and pH are important factors for the change of
color in the sepals, from red to blue (Ito et al., 2009; Schreiber
et al., 2011). The blue coloring is formed from the union of
Al with metalloanthocyanins, delphinidin 3-glucoside and 5-O-
caffeoylquinic acid (Oyama et al., 2015; Kodama et al., 2016).
In the genus Camellia, the purple color of Camellia japonica
flowers (cv. Sennen-fujimurasaki) and the intense yellow tone of
Camellia chrysanthaes are generated by the chelation of the Al
ions with anthocyanins and flavonoids (quercetin), respectively
(Tanikawa et al., 2008, 2016). Anthropologically, the leaves and
bark of species of the genus Simplocos are used by weavers as
mordant in textile dyeing due to their high content of Al (Schmitt
et al., 2016b).

ALUMINUM TOXICITY

Aluminum is also the primary factor in reducing crop yields
in acid soils (Ma et al., 2002; Kochian et al., 2005). The initial
and most dramatic Al toxicity symptom is the inhibition of
root elongation (Delhaize and Ryan, 1995). Because Al is a
highly reactive element, there are innumerable mechanisms
of toxicity involving the cell wall (Jones et al., 2006; Zhang
et al., 2007) and plasma membrane, where it can modify its
structure, as well as the nearby ionic medium to wall, both
disturb the transport of ions and cause an improper balance of
nutrients (Bose et al., 2011). Also, Al can affect the constituents’
symplast (calmodulin) (Tokizawa et al., 2015), apoplast (pectin
matrix) (Eticha et al., 2005; Delhaize et al., 2007) and DNA
in cells of plant roots (Kochian et al., 2004; Sade et al.,
2016).

Aluminum is widely reported as toxic to most plants (Sade
et al., 2016). There are a number of symptoms caused by
aluminum toxicity in plants (Figure 3), all associated with
severe changes in the root system (Kopittke and Blamey,
2016). Al interferes with cell division at the root apex and
lateral roots, increases the rigidity of the cell wall by cross-
linking of pectins and reduces DNA replication because of
increased rigidity of the double helix (Zhang et al., 2014;
Eekhout et al., 2017). Moreover, Al induces a series of cellular
toxic changes concerning cell division and nucleolus, and
localization and expression of the nucleolar proteins such as
fibrillarin (Zhang et al., 2014). Aluminum tends to bond with
phosphorus (P) in a less available and insoluble form in soils
and plant roots, thereby creating a P deficiency for plant
growth. Aluminum also decreases root respiration, interferes
with enzymes governing the deposition of polysaccharides in
cell walls, decreases the synthesis and transport of cytokinins,
and modifies the structure and function of plasma membranes
which interfere with the uptake, transport, and use of multiple

elements (Ca, Mg, P, and K), as well as water uptake by
roots plants (Foy, 1974; Foy et al., 1978; Kochian et al.,
2004).

In plants these symptoms are linked to disorders that are
generally divided into two categories: (1) long-term responses,
requiring hours to develop, and (2) short-term responses that
can be measured within a few minutes or even a few seconds
after exposure to Al (Taylor, 1988; Simoes et al., 2012). The first
signs of these responses related to Al toxicity have been observed
after one hour (Ownby and Popham, 1989). Moreover, the most
important response to the application of Al seems to be short
term interruption of Ca influx through the plasma membrane
(Jones et al., 1998; Panda and Matsumoto, 2007).

Aluminum and other metals are non-biodegradable, they
remain in the environment and are able to circulate in the food
chain, posing a serious threat not only to plants but also to
animals and humans (Jackson and Huang, 1983; Exley, 2003;
Ashenef, 2014). For example, tea plants contain a substantial
amount of Al in leaves, and thus it is present in tea leaf infusions.
Although only a small proportion of Al is available for absorption
in the gastrointestinal tract and the renal excretion of Al is fairly
effective, this metal can cause serious problems or possible health
risks in humans (Exley, 2003; Mehra and Baker, 2007). High
Al content in the human body has been hypothesized as having
possible links with various diseases, such as encephalopathy,
dementia, Alzheimer’s disease, osteomalacia fractures and high
levels of bone Al; therefore tea-drinkers should be forewarned of
the risks (Anitha and Rao, 2002; Mehra and Baker, 2007; Ashenef,
2014).

MECHANISMS OF TOLERANCE TO
ALUMINUM

Plants have developed different mechanisms of tolerance to
counteract the toxic effects of Al. These mechanisms can be
divided into two forms (Figure 3): mechanisms of exclusion
or resistance to Al, the function being to avoid or reduce the
entrance of Al to the cell; and mechanisms of internal tolerance
which compartmentalize Al in vacuoles or stabilize them in order
to inhibit its toxicity.

Tolerance to Aluminum – Mechanisms of
Exclusion
Changes in the Rhizosphere pH
A small increment in the rhizospheres pH reduces the solubility,
activity, toxicity and content of Al in plants through exclusion
of the metal in the root apoplast (Yang Y. et al., 2011). The
Arabidopsis alr-104 mutant Al-resistant and other plant species
increase the apoplastic pH through the H+ and NH4

+ influx
and the efflux of OA in the root apex, in the presence of Al
(Foy et al., 1965; Degenhardt et al., 1998; Larsen et al., 1998;
Houman et al., 2009; Bose et al., 2010b; Wang et al., 2015a).
In squash (Cucurbita pepo) and wheat, changes in rhizosphere
pH and resistance to stress due to Al are regulated by H+-
ATPasa of the plasma membrane (Ahn et al., 2001, 2002; Yang
Y. et al., 2011). OA can also increase or reduce rhizosphere pH
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in the presence of other metals, as well as Al (Kochian et al.,
2004; Zeng et al., 2008; Javed et al., 2013). In the case of tea,
the Al uptake induces H+ efflux from the roots, suggesting a
mechanism of soil acidification (Wan et al., 2012). Aluminum
plays a positive role in growth increase in tea (Konishi et al.,
1985), particularly in the promotion of root elongation. Soil
acidification might maintain the solubility and Al uptake in tea.
In contrast, acidification of the rhizosphere increases toxicity
and metal accumulation in Al-sensitive species (Houman et al.,
2009).

Changes in Cell Wall Composition and Plasma
Membrane Properties
The root cell wall is the main binding site of Al and thus is
the target of Al toxicity and exclusion in plants (Horst et al.,
2010; Yang J.L. et al., 2011; Kopittke et al., 2015; Liu S. et al.,
2016). At present, physiological, biochemical and molecular
evidence is available which has demonstrated that modification
of the cell wall composition plays an important role in the
resistance to Al (Levesque-Tremblay et al., 2015; Che et al.,
2016; Zhang et al., 2016). The increase in the polysaccharide
content of the cell wall induced by Al can reduce water and
nutrient uptake, as well as cellular wall elasticity (Nguyen et al.,
2005). Among the cereals, rice is the crop with most tolerance
to Al (Yang et al., 2008; Famoso et al., 2010). In rice cultivars
which differ in their Al-resistance, a positive correlation between
polysaccharide content (pectin and hemicellulose) in the root
apex and the accumulation of Al has been observed, indicating
the importance of the cell wall composition in the exclusion
of Al (Yang et al., 2008). The pectin content and its degree
of methylation in the cell wall contribute to the differences in
resistance to Al (Eticha et al., 2005; Yang J.L. et al., 2011). In
Arabidopsis and other plant species, the regulation of genes and
expansin enzymes, pectin methyltransferases and xiloglucano
endohydrolases reduce binding and accumulation of Al in the
root apex by changing the load and the porosity of the cell wall
(Yang J.L. et al., 2011; Zhu et al., 2014; Zhang et al., 2016).
The transporter ABC formed by the complex STAR1/STAR2
transport UDP-glucose and it can modify the cell wall under
stress by Al (Huang et al., 2009).

The physicochemical and physiological properties of the
plasma membrane also affect tolerance of the plants to Al.
The lipid composition of the plasma membrane (PM) has an
important role in Al-tolerance (Wagatsuma et al., 2015). The
phospholipids create a negative charge on the surface of the PM
and increase the sensitivity to Al, as a result of the union of the
metal to the PM. In rice and timber species (M. malabathricum
and M. cajuputi), Al-tolerance increased in response to a decrease
in the proportion of phospholipids of the root cell PM (Maejima
and Watanabe, 2014). Similarly, the sterol content also plays an
important role in the tolerance to stress by Al. High sterol content
in combination with low contents of phospholipids is a common
strategy for Al-tolerance in different plant species (Khan et al.,
2009; Wagatsuma et al., 2015). It has also been suggested that
a small peptide, anchoring the PM, could prevent Al-influx in
root cells through bonding with cation and thus contribute to the
resistance in rice (Xia et al., 2013).

Excretion of Chelating Molecules and Mucilage
Secretion
The release of OA in the root is the Al exclusion mechanism most
widely described in plants (Kochian et al., 2015), with a wide
natural variation in different crops, mainly in cereals (Brunner
and Sperisen, 2013; Schroeder et al., 2013). The organic anions,
malate, citrate and oxalate are secreted by the root and chelate
Al in a non-toxic Al-OA complex, protecting the root apex
and permitting it to grow. Malate and citrate are ubiquitous in
all plant cells given that they are part of the tricarboxylic acid
(TCA) cycle in the mitochondria, while oxalate participates in the
regulation of Ca and the detoxification of metals (Brunner and
Sperisen, 2013). Evidence in different species of cultivable plants
and timber trees indicates that OA efflux confers resistance to Al
(Delhaize et al., 1993; Brunner and Sperisen, 2013; Yang et al.,
2013).

In a wheat genotype resistant to Al (Delhaize et al., 1993),
the first gene of a malate transporter activated by Al (TaALMT1)
was cloned, which codifies an anionic channel activated by Al
that facilitates the malate efflux from the root. TaALMT1 was
the first gene of resistance to Al cloned in plants (Sasaki et al.,
2004). To date, several ALMT1 type genes have been isolated
in different plant species (AtALMT1, Hoekenga et al., 2006;
BnALMT1 and BnALMT2, Ligaba et al., 2006; HvALMT1, Gruber
et al., 2010; ZmALMT2, Ligaba et al., 2012). The heterologous
expression of TaALMT1 in barley (Hordeum vulgare) and
tobacco (Nicotiana tabacum) allowed the malate efflux and an
increase in Al-resistance (Delhaize et al., 2004; Zhang et al.,
2008). On the other hand, the citrate efflux is mediated by
the family of MATE proteins (Multidrug and toxic compound
extrusion). MATE genes have been cloned and identified in
Arabidopsis (AtMATE, Liu et al., 2009), sorghum (SbMATE,
Magalhaes et al., 2007), barley (HvAACT1-HvMATE1, Furukawa
et al., 2007), wheat (TaMATE1, García-Oliveira et al., 2014),
poplar (PtMATE1, Grisel et al., 2010), rice (OsFRD1; Yokosho
et al., 2011), rice bean (VuMATE1, Yang X.Y. et al., 2011),
corn (ZmMATE1-ZmMATE2, Maron et al., 2010, 2013) and
soybean (GmMATE1-GmMATE117, Liu J. et al., 2016). The
plasma membrane H+-ATPase plays an important role in OA
exudation in the root by the transporters ALMT and MATE
(Yu W. et al., 2016); however, in cluster roots of white lupin
(Lupinus albus), the citrate exudation induced by combined
treatment with P-deficiency and Al is independent of H+-
ATPase PM activity and dependent on K efflux (Zeng H. et al.,
2013). To date, the molecular components of oxalate efflux
have not been identified. In tea plants and other woody species
such as poplar (Populus tremula) and buckwheat (Fagopyrum
esculentum), oxalate is an important element in the detoxification
of Al in the root (Qin et al., 2007; Morita et al., 2008; Wang et al.,
2015a).

In addition to the OA, the exudation of other organic
compounds in the root has been suggested for the chelation of
Al (Kochian et al., 2015); however, very little is known of their
mechanism of action. Studies on Eucalyptus camaldulensis have
revealed secretion in the root of a ligand with low molecular
weight binding to Al (Tahara et al., 2008, 2009). In tea plants,
an increase in the release of caffeine, a phenolic compound, has
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been observed in response to exposition to Al (Morita et al.,
2011). Other ligands released in the root include the phenolic
compounds (catechol, catechin, and quercetin), flavonoids,
succinate, phosphates, UDP-glucose and polysaccharides in the
form of mucilage (Kidd et al., 2001; Winkel-Shirley, 2002; Zheng
et al., 2005; Huang et al., 2009; Osawa et al., 2011; Kochian
et al., 2015). In fact, root mucilage plays an important role
as a mechanism of resistance to metals (Morel et al., 1986).
Mucilage is a gelatinous material consisting of polysaccharides
of high molecular weight which are exuded from the most
external layers of the root apex. Due to the fact that the
mucilage contains uronic acid and pectin, the carboxil groups
of this acid and of the pectin can ligate metallic cations
such as Al (Watanabe et al., 2008a,b). In cowpea (Vigna
unguiculata), wheat and corn a strong binding of mucilage-
Al has been reported and this bond is not toxic for the
plant (Horst et al., 1982; Archambault et al., 1996; Li et al.,
2000).

CAP Type Structures and Border Cells in the Radical
Apex
The function of the root cap or calyptra and the border cells
is to protect the mother cells of the root apex from microbes
and soil stresses, and also to receive and transmit environmental
signals which will ultimately determine root growth (Endo et al.,
2011; Kumpf and Nowack, 2015; Hawes et al., 2016). In many
plant species, the root cap and border cells produce and exude
mucilage, rich in polysaccharides, which can bind to metallic
cations (Horst et al., 1982; Cai et al., 2013; Kumpf and Nowack,
2015). In genotypes of bean (Phaseolus vulgaris), barley, soybean
and castor (Ricinus communis), resistant to Al, the exclusion of
the metal is associated with the immobilization and detoxification
of Al with the mucilage secreted by the root cap and border
cells (Miyasaka and Hawes, 2001; Zhu et al., 2003; Cai et al.,
2013; Silva et al., 2014). In contrast, the mucilage secreted by
the root cap of M. malabathricum increases the accumulation
of Al in the plant (Watanabe et al., 2008a,b). In pea (Pisum
sativum) plants, it has been observed that removal of the border
cells increases the sensitivity and absorption of Al, indicating
the important role of the border cells as mechanisms of Al
exclusion (Yu et al., 2009a; Yang J. et al., 2016). Furthermore,
in Acacia mangium, a legume tropical forest tree known to
be resistant to Al, the root apex was found to be surrounded
by a cap type structure, the purpose of which is to protect
the root from the flexion induced by Al (Endo et al., 2009,
2011).

Alleviation of Aluminum-Induced Toxicity
Recent evidence has demonstrated that the exogenous addition
and availability of certain elements prevents Al toxicity in
plants. In rice, ammonium (NH4

+) reduces the accumulation
of Al in the root as a consequence of pH changes induced
by NH4

+ uptake and the direct competition of Al and NH4
+

for the cell wall binding sites (Wang et al., 2015d). Similarly,
the exogenous addition of Si in corn prevents the inhibition of
root elongation and callous deposition through the formation of
hydroxy aluminosilicates in the root apex (Wang et al., 2004).

In pea and rice, the application of Si reduced the content of
Al in the roots, stem and leaves (Singh et al., 2011; Shen et al.,
2014). In addition to being cofactor of many enzymes and
a central component of chlorophyll, Mg also prevents metal
phytotoxicity, including Al. High concentrations of Mg (mM)
prevent Al toxicity by competing in uptake and interaction with
the binding sites in the cell wall and the plasma membrane
(Bose et al., 2011; Rengel et al., 2015). In the cytosol, Mg (µM)
can increase the biosynthesis of OA and induce the activity of
the H+-ATPasa by phosphorylation to increase the resistance
to Al (Bose et al., 2013; Rengel et al., 2015). Prevention of
Al toxicity by supplementation with B has been reported in
a large number of plants. Boron can act synergically with Ca
and prevent binding of Al to the cell wall (Hossain et al.,
2005; Yu et al., 2009b; Horst et al., 2010). Recent evidence in
pomelo (Citrus grandis) suggests that B prevents Al-toxicity by
regulating different genes associated with modification of the
cell wall, cellular transport, metabolism, signal transduction and
antioxidant activity (Wang et al., 2015c; Zhou et al., 2015).
Similarly, the addition of P prevents the effect of Al-toxicity
on root growth and photosynthetic machinery of C. grandis
(Jianq et al., 2009). The P-deficiency also reduces Al-toxicity by
changing the properties of the plasma membrane and cell wall,
while high P increases the toxicity of the metal, possibly through
the precipitation of Al-P on the root surface (Maejima et al., 2014;
Shao et al., 2015).

Hormones and polyamines play an important role in the
tolerance to stress by Al. The exogenous addition of auxins
(indole-acetic acid, IAA) reduces the accumulation of Al in
the root apex in wheat (Wang et al., 2013c) and alleviates
the Al-induced inhibition of root growth in lucerne (Medicago
sativa) (Wang S. et al., 2016). Indole-acetic acid stimulates
the exudation of citrate by the positive regulation of the
GmMATE transporter and increases the activity of the PM
H+-ATPasa by phosphorylation. Both processes participate in
resistance to stress by Al through chelation of Al-citrate and
pH changes in the rhizosphere (Wang S. et al., 2016; Wang
P. et al., 2016). Furthermore, the overexpression of a transport
auxin efflux (OsPin2) prevents rigidity of the cell wall, Al-
binding to the cell wall and oxidative damage induced by
Al through the transport of auxins and H+ (Wu et al.,
2014). The polyamine putrescine (Put) and nitric oxide are
also involved in the modulation of citrate secretion from
roots of red bean (Wang et al., 2013a). The Al-induced root
inhibition could be alleviated by Put through decreased ethylene
production (Yu Y. et al., 2016). Putrescine has been identified
as an important signaling molecule involved in Al tolerance
in plants (Chen et al., 2008; Wang et al., 2013b; Yu Y. et al.,
2016).

Some factors of abiotic stress such as drought and hypoxia
can indirectly reduce the accumulation of Al and its effect on
plants. In bean, drought stress changes the porosity of the cell
wall and reduces the Al-binding (Zhang et al., 2016); on the other
hand, hypoxic stress in barley prevents Al-toxicity in roots by
increasing the antioxidant capacity and reducing K efflux induced
by ROS (Ma et al., 2016). Mycorrhiza association can also prevent
Al-toxicity in acid soils (Seguel et al., 2013).
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Tolerance to Aluminum- Mechanisms of
Internal Tolerance
Chelation of Aluminum in the Cytosol (Organic Acids
and Other Organic Ligands)
The mechanism of internal detoxification of Al involves the
chelation of metal with OA and subsequent sequestration into the
vacuole. Many tolerant plants, including the hyperaccumulators
of Al, use the OA for the sequestration of Al in the cytosol
of the root cells and also to remobilize or to translocate Al
toward the shoots. Fagopyrum esculentum uses oxalate for the
internal and external chelation of Al (Ma et al., 1998; Ma and
Hiradate, 2000; Shen et al., 2002; Wang et al., 2015a). Oxalate
is the predominant ligand in the root cytosol of tea and forms
Al-oxalate compounds (Morita et al., 2004); however, Al is
translocated toward the shoots in the form of Al-citrate or Al-
malate (Morita et al., 2004, 2008). A mechanism similar to that
of tea is observed in buckwheat (Wang et al., 2015a). In the
shrub M. malabathricum, intracellular Al binds to citrate, and
the Al-citrate compound is transported to the shoots; once in
the leaves, the citrate is substituted by oxalate to form Al-oxalate
(1:3) which is less toxic (Watanabe and Osaki, 2001). In Camellia
oleifera Al is transported via phloem; however, it is not known
if it is in the form of an Al-OA compound (Zeng Q.L. et al.,
2013).

In addition to the OAs, the phenolic compounds can bind
to Al and form a complex in the cytosol. For example, in tea
plants, catechin forms a complex with Al (Nagata et al., 1992).
In the sepals of H. macrophylla Al can bind to chlorogenic
acid (3-caffeoylquinic acid) and delphinidin a 3-glucoside for
stabilization of Al and color change in the flowers (Ma et al., 1997,
2001). In C. camphora, the accumulation of proanthocyanidin in
the epidermal cells of the root apex is induced by Al; however,
there is no evidence of its binding to metal (Osawa et al., 2011). It
has also been suggested that the hydroxamates can bind to Al in
the root (Poschenrieder et al., 2005). In the sap of tea leaves, the
Al-F compound has been identified as a mechanism of tolerance
to F (Yang Y. et al., 2016).

Aluminum Transporters in the Plasma Membrane and
Vacuolar Compartmentalization
Transportation through biological membranes requires
transport proteins. In plants, Al transportation through the
plasma membrane and the vacuole tonoplast has not been
widely studied. However, it has been reported that the ABC
transporters, transporters of binding to ATP, AtABCI16/AtALS3,
AtABCI17/AtSATR1/AtALS1 and OsALS1, as well as the
transporters Nrat1 (Nramp Family) contribute to the
detoxification of Al in plants (Xia et al., 2010; Hwang et al.,
2016). AtALS3 is a partial, type ABC transporter which is
located in the PM of the epidermal cells of the root cortex,
and in phloem cells throughout the plant. It is believed that
AtASL3 distributes Al inside the plant far from the root apex
(sensitive to Al), by transporting Al directly or bound to a
ligand (Kang et al., 2011; Ryan et al., 2011). To date, it is
unknown if AtASL3 is a transporter of Al influx or efflux
(Delhaize et al., 2012). However, it has been suggested that it

might participate in Al efflux from the root after absorption
of the metal (Larsen et al., 2005). In fact, the Al efflux has
been proposed as an exclusion mechanism (Arunakumara
et al., 2013). Mutation of the transporter AtALS3 results in
hypersensitivity to Al and an increase in the accumulation
of the metal in the roots of Arabidopsis (Larsen et al., 1997,
2005). An ALS3 gene with characteristics similar to those of
AtASL3 has been identified in poplar (P. tremula); however, it
has been suggested that it participates in internal tolerance of
Al (Grisel et al., 2010; Brunner and Sperisen, 2013). AtALS1
is also a partial, type ABC protein and probably participates
in intracellular transportation of Al in vacuoles of root cells
and vascular cells of the plant (Larsen et al., 2007; Delhaize
et al., 2012). OsALS1 is an ortholog of AtALS1 in rice and its
expression is induced rapidly and specifically by Al. OsALS1
is located in the tonoplast of root cells and participates in the
compartmentalization of Al in the vacuoles, which is required
for the internal detoxification of Al in rice (Huang et al., 2009,
2012).

The Nrat1 transporter is a member of the Nramp family of
transporters located in the PM of all root apex cells, except
in the epidermal cells (Xia et al., 2010). The Nrat1 gene is
positively regulated by the transcription factor responsive to Al,
ART1 in rice (Yamaji et al., 2009). It has been demonstrated
that the protein Nrat1 exhibits the activity of Al transportation,
but not for divalent metals such as Fe, Mn, and Cd or Al-
citrate compounds (Xia et al., 2010, 2011). Moreover, it has
been suggested that Nrat1 is required for detoxification of Al
in the cell wall as it reduces metal levels through Al-influx
to the root cells and their subsequent compartmentalization in
the vacuole, possibly by OsALS1 (Xia et al., 2010, 2011, 2014;
Huang et al., 2012; Li et al., 2014). Given that the mutant nrat1
presents increased sensitivity to Al and the over-expression of
Nrat1 in yeast, rice and Arabidopsis increases Al uptake (Xia
et al., 2010, 2011; Li et al., 2014), the Nrat1 gene or its orthologs
can be useful tools to enhance Al tolerance in different plant
species.

In H. macrophylla, transporters have been identified
[members of the aquaporin (AQP) family and anion permeases],
located in the tonoplast and plasma membrane, which
must work as Al transporters (Negishi et al., 2012, 2013).
Recently, Wang et al. (2017) reported that NIP1;2, a plasma
membrane-localized member of the Arabidopsis nodulin 26-
like intrinsic protein (NIP) subfamily of the AQP family,
facilitates Al-malate transport from the root cell wall into
the root symplasm, with subsequent Al xylem loading and
root-to-shoot translocation, which are critical steps in an
internal Al tolerance mechanism in A. thaliana. Surprisingly,
NIP1;2 facilitates the transport of Al-malate, but not Al3+
ions. Hence the coordinated function of NIP1;2 and ALMT1
are required for Al uptake, translocation, and tolerance in
Arabidopsis (Hoekenga et al., 2006; Wang et al., 2017). Moreover,
a recent report mentions that endocytic vesicular traffic can
contribute to the internalization of Al in the root apex of rice.
The overexpression of OsPIN2 in rice increases tolerance to Al
through the internalization of Al via vesicular traffic (Wu et al.,
2015).
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Modification of Plant Metabolism and DNA
Checkpoints
In plants, the mechanisms of exclusion and tolerance to Al
are intimately related to mitochondrial activity, mitochondrial
metabolism and OA transportation (Nunes-Nesi et al., 2014).
The cycle of TCA is inducible by Al, and intervenes in the
biosynthesis of OA to chelate Al in the apoplast or cytosol. In
Brassica napus, Al induces enzyme activity of OA anabolism
and catabolism, as well as the accumulation of OA (Ligaba
et al., 2004). Overexpression of the enzymes citrate synthase,
malate dehydrogenase and pyruvate phosphate dikinase confers
resistance to Al by increasing the synthesis and exudation of OA
(Deng et al., 2009; Han et al., 2009; Trejo-Téllez et al., 2010;
Wang et al., 2010). In wheat varieties tolerant to Al, exposure
to Al positively regulates the expression of mitochondrial ATP
synthase and vacuolar H+-ATPasa, suggesting an increase in
metabolic activity in the mitochondria and pH changes in
the cytosol (Hamilton et al., 2001). Therefore, the increase in
mitochondrial biochemical activity is important for the synthesis
of OA under stress by Al. In fact, the lack of correlation
between OA exudation and resistance to Al in corn, soybean
and buckwheat (Piñeros et al., 2005; Nian et al., 2005; Zheng
et al., 2005) has suggested that the exudation of OA is a result
of the biochemical reactions required for the tolerance to Al
(Nunes-Nesi et al., 2014).

Alternative metabolic routes of cellular respiration also
participate in tolerance to stress by Al. Under adverse conditions,
where carbohydrates are scarce, plants can metabolize proteins
and lipids as alternative substrates for cellular respiration (Araújo
et al., 2011). Similarly, the overexpression of mitochondrial
alternative oxidase (AOX) increases the respiration and reduces
the oxidative stress induced by Al in the mitochondria
(Panda et al., 2013). Lou et al. (2016) suggested that formate
accumulation is involved in both H+ and Al-induced root growth
inhibition in rice bean (Vigna umbellate). The overexpression of
the formate dehydrogenase (FDH) gene of rice bean (VuFDH)
in tobacco (N. tabacum) results in decreased sensitivity to
Al and H+ stress due to less production of format in the
transgenic tobacco lines under Al and H+ stresses. These
findings suggest a possible new route toward the improvement
of plant performance in acidic soils, where Al toxicity and
H+ stress coexist (Lou et al., 2016). In tomato (Solanum
lycopersicum) roots proteins have been identified which play
an important role in Al exclusion and tolerance (Zhou
S. et al., 2016). Gallagher et al. (1980) evaluated nitrate
reductase activity and reported an increase in the activity of
this enzyme in crops which are tolerant to Al. Toxicity by
Al is also associated with the metabolism of nitrogen (N)
(Foy and Fleming, 1982). Transcriptome analyses in lucerne
roots reveal candidate Al-stress-responsive genes involved in
ribosome, protein biosynthesis, TCA cycle, membrane transport
(organic, small molecules and ions) and hormonal regulation.
However, the ribosome protein genes was the pathway with
the largest numbers of genes differentially up-regulated, which
suggested a high biological importance for ribosomal genes
and an alternative in response to Al stress in plants (Liu
et al., 2017). Also, NAC genes have been postulated to play

pivotal roles in plants exposed to Al (Moreno-Alvarado et al.,
2017).

Recently identified Arabidopsis mutants with increased Al
tolerance provide evidence of DNA as one of the main targets
of Al (Eekhout et al., 2017). Al treatment results in binding
of Al to the negative charges of the phosphodiester backbone
DNA. In fact, nuclei have been reported to accumulate Al even
in the presence of low environmental concentrations. Binding Al
to DNA might possibly alter DNA topology from the B-DNA
to Z-DNA conformation, resulting in increased DNA rigidity
that leads to difficulty in unwinding during DNA replication
and susceptibility of DNA to endogenous mutagens (Anitha and
Rao, 2002; Hu et al., 2016). Also, Al stress gives rise to changes
in the localization and expression of the nucleolar proteins
and inhibition of DNA synthesis, as well as promoting DNA
fragmentation and the generation of micronuclei (Zhang et al.,
2014; Sade et al., 2016; Eekhout et al., 2017). In Arabidopsis
plants, this Al- induced DNA damage triggered the activation
of a cell cycle arrest causing root growth inhibition, at least
partly (Rounds and Larsen, 2008). Eekhout et al. (2017) suggested
the modification of DNA checkpoints to confer Al-tolerance
through DNA repair with cell-cycle progression. The DNA
damage response (DDR) pathway maintains genome integrity
under adverse conditions that affect DNA replication. The
DDR pathway introduces a transient cell-cycle arrest during the
process of DNA repair, through the coordinated expression of
DNA repair and cell-cycle inhibitory genes, thus ensuring that
both the daughter cells inherit a complete and error free copy of
the genome. This insight could lead the way for novel strategies
to generate Al-tolerant crop plants (Hu et al., 2016; Eekhout et al.,
2017).

CONCLUSION

Much interest has been shown recently in the use of biostimulants
and stimulants in agriculture with the aim of increasing root
growth, nutrient uptake and tolerance to stress in plants. Plant
biostimulants or agricultural stimulants include microorganisms
and a diversity of substances, among which are the beneficial
elements (Calvo et al., 2014). Aluminum (Al), cobalt (Co),
selenium (Se), sodium (Na), and silicon (Si) are considered to be
beneficial elements for plants, given that, despite the fact that they
are not required by all plants, they can promote growth and are
essential for certain plant taxa, depending on the environmental
conditions, concentration of the element and plant species.
These elements can also increase tolerance to abiotic stress
(drought, salinity, high temperatures, cold, UV light, toxicity
or nutrient deficiency) as well as biotic stress (pathogens and
herbivores) when administered at low concentrations. However,
it is important to know the range of concentration in which a
beneficial element becomes lethal, in particular with respect to
its use as a fertilizer to increase the production of crops under
conditions of stress and/or improve the nutritional value of food
plants (Pilon-Smits et al., 2009; Kaur et al., 2016).

Aluminum stimulates growth in plants of economic
importance such as the tea shrub and can maintain or fix floral
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colors, as in the case of hydrangeas; therefore its application as
a biostimulant of a desirable response in these plants is feasible
(Fang et al., 2014). However, high concentrations of Al can pose
a serious threat to agricultural production due to inhibition
of root elongation and plant growth through a diversity of
mechanisms with the participation of Al, including interactions
in the symplast, plasma membrane and the cell wall (Kochian
et al., 2015). In addition to the plants, Al can also cause serious
problems in the nervous system, lungs and kidneys of human
beings. Tea is an important dietetic source of Al for human
beings. There is a great need to understand how environmental
factors can have an influence on the accumulation of Al in
tea leaves in order to create strategies for the reduction of Al
uptake in tea plants (de Silva et al., 2016). A number of studies
have suggested that people who are exposed to high levels of Al
can develop Alzheimer’s disease, encephalopathy and dementia,
among other diseases (Anitha and Rao, 2002; Mehra and Baker,
2007; Ashenef, 2014).

The root system is complex and a wide variety of root
phenotypes have been identified which contribute to the
adaptation to toxicity by Al (Rao et al., 2016). A greater
root surface induced by Al can increase the uptake of water
and nutrients by plants (Hajiboland et al., 2013b), mainly in
conditions of stress caused by drought, salinity and nutrient

deficiency. Further studies on the use of low concentrations of
Al to prevent the effect of different conditions of stress must be
considered.
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