Supplementary text and figures

Szymon Jozefczuk and Sebastian Klie

February 16, 2010

Contents

1	Detailed description of changes in the metabolic profiles	2
2	Discussion of transcriptional changes observed directly after perturbation	3
3	Perturbation elicits a specific response both on metabolic and transcript level	; 4
4	Overlap between heat stress response and stationary phase might be due to shift to anaerobic respiration.	5
5	Significance estimation of co-clustering events via bootstrap sampling	6
6	Supplementary Tables	7
7	Supplementary Figures	37
Re	eferences	47

Supplementary Tables

1	Metabolites which change significantly as ratio between time point of interest	
	and time points before stress	7
2	List of 288 genes directly related via biochemical pathway enzymes to analyzed	
	metabolites	13
3	Metabolites and transcripts co-clustering results	23
4	List of all metabolites and transcripts used for CCA analysis	35
5	Example of canonical structure correlations of two metabolites and the pps gene	
	under control condition	36

Supplementary Figures

1	Relative standard deviation (RSD) of metabolite data of all biological and tech-	
	nical replicates	37
2	Sampling time of all conditions tested	38
3	The general stress response within 40 min after stress on the metabolic level	39
4	GO over- and underrepresentation analysis of genes changing expression under	
	various environmental conditions	40
5	Similarity between metabolites and transcripts changing in comparison to con-	
	trol condition \ldots	42
6	Changes in metabolites during stationary phase	43
7	Hierarchical clustering of all samples based on metabolites and transcripts	44
8	Visualization of the CCA results of metabolites and genes involved in primary	
	metabolism under stationary phase and heat stress	45

1 Detailed description of changes in the metabolic profiles

As a result of cold stress several amino acids including alanine, asparagine, lysine, methionine, isoleucine, leucine, as well as organic acids such as 2-aminobutyric acid, or 4-aminobutyric acid increase within the first 40 min post-perturbation. By 50 min post-perturbation the concentration of further amino acids and carboxylic acids (aspartic acid, glutamic acid, phenylalanie, homoserine, threonic acid) increases.

A similar response is observed after heat stress. Most amino acids increase within 20 min after heat stress (isoleucine, threonine, phenylalanine, lysine, alanine, asparagine, glutamic acid, homoserine), in addition to trehalose and fumaric acid, which increase 50 min postperturbation, and malic acid (which increases 150 min post-perturbation). The accumulation of trehalose in response to heat stress has been previously reported and is thought to reduce the deleterious effect of high temperature on the folding and aggregation of proteins [1]. Whereas the majority of amino acids increase after heat stress exposure, glucose-6-phosphate, pyruvic acid, and glyceric acid-3-phosphate rapidly (10 min after stress application) decrease in addition to 2-ketobutyric acid, methionine, GABA, and, with some delay, succinic acid. Only few metabolites recover from initial decreases such as pyruvic acid, erythrose-4-phosphate, ribose-5-phosphate, and glycerol.

Glucose starvation during lactose diauxie displays a large number of transient changes in metabolite concentration. 10 min after the cessation of growth, phosphoenolpyruvate (PEP) and asparagine increase, whereas leucine, valine, homoserine, 2-ketoglutaric acid, and 2-ketobutyric acid transitorily decrease. Since PEP serves as phosphate donor for the phosphotransferase system (PTS) responsible for glucose import, swift accumulation of PEP was recently proposed to be a direct effect of decreased glucose import caused by low glucose concentration within the medium [2].

Major changes were observed between 90 and 200 min post-perturbation. At the 90 min time point amino acids (alanine, glutamine, glycine, leucine, lysine, phenylalanine, homoserine, threonine, and valine), organic acids acids (2-hydroxyglutaric acid, pyruvic acid, 2-aminobutyric acid, and 4-aminobutyric acid) and isomaltose increase in a transient fashion. At the 150 min time point asparagine, fumaric acid, succinic acid, 2-hydroxybutyric acid, and 6-phosphogluconic acid also increased.

Transient changes at 10 min post-perturbation also characterize the response to oxidative stress. Alanine and asparagine significantly increase whereas aspartic acid, isoleucine, glucose-6-phosphate, and 2-ketoglutaric acid decrease transiently. Similar to the changes observed during the glucose-lactose shift, major metabolic changes occurred 90 min post-perturbation, including increases in the levels of amino acids (alanine, arginine, cysteine, glycine, isoleucine, phenylalanine, proline, threonine and valine), carboxylic acids (isopropylmalic acid, pyruvic acid, succinic acid, 2-ketoglutaric acid and 4-aminobutyric acid), dodecanoic acid, erythrose-4-phosphate, and trehalose. Most of those metabolites continue to increase in the next time point (150 min) with the addition of asparagine, lysine, methionine, and fumaric acid, which also show a significant increase during entry into the stationary phase.

The massive changes at 90 min post-perturbation observed for the glucose-lactose shift and oxidative stress experiments were also observed for the control culture suggesting that they are due to the prevailing growth phase, i.e. the transition between exponential growth and early stationary phase. This is supported by the increase in levels of trehalose (90 min postoxidative stress) and many amino acids starting 90 min post-perturbation. Elevated trehalose concentrations have been previously associated with a transition between logarithmic growth and stationary phase [3]. The observed increase in amino acids before entry into stationary phase has been interpreted to result from protein degradation thought to increase availability of building blocks for synthesis of proteins important for survival during starvation [4].

The stationary phase in control cultures is characterized by decreases in the levels of 2ketobutyric acid and gluconic acid whereas trehalose, PEP, oxalic acid, and glycolic acid levels increase. The accumulation of trehalose during stationary phase is in agreement with earlier reports [5]. Furthermore PEP has been reported to accumulate during entry into stationary phase for *E. coli* [6].

2 Discussion of transcriptional changes observed directly after perturbation

Analysis of highly expressed genes under different conditions reveals numerous stress specific responses such as increase of cold shock and cold inducible proteins (cspB, cspI, cspG, nusA,

ynfN under cold stress, heat shock proteins (*ibpB*, *ibpA*, *hchA*, *hslO*, *hslR*) under heat stress, oxidative response genes including members of oxyR regulon (oxyS, sulA, trxC, dps, katG) under oxidative stress, and disaccharide transporters and carbon starvation inducible proteins (*lacZ*, *csiD*, *csiE*, *lacY*) during glucose lactose shift. The induction of the expression of exemplary stress marker genes are indicated in Figure 2A and B.

Analysis of the transcriptome data for the diauxic shift experiment shows that 459 transcripts change already before induction of lacZ becomes detectable. Analysis of GO terms indicates that most of these genes are associated with carbon starvation response including genes associated with GO terms: ATP sythesis, biosynthetic processes of nucleotide, ribonucleotide, amino acid and amine, cell motion and proton transport which are all down-regulated. At the same time a number of starvation specific genes are induced e.g. cstA [7], csiD [8] and csiE [9]. As well, this maximum in gene expression is accompanied by a maximum in metabolite changes including significant increases in PEP and 3PGA levels, metabolites which accumulate during carbon starvation [2].

3 Perturbation elicits a specific response both on metabolic and transcript level

To assess the degree of similarity between different experimental conditions and time points we applied HCA (hierarchical clustering algorithm) to all time points from all conditions tested on both the transcript and metabolic level.

On the metabolic level we observed a separation of all time points into two major groups which reflects on the one hand a strong influence of the growth phase (Suppl. Fig. 8) and on the other hand the specific stress (Suppl. Fig. 8A). Here the metabolic profiles of the stationary phase samples of control, diauxic shift, and oxidative stress experiments group together (black colour coding). The same holds true for the samples of late logarithmic growth (blue). The second major group contains post-perturbation time points (red) of cold, heat and oxidative stress experiments together with distinct sub-clusters of prior-perturbation and control samples (green). The two temperature shift experiments are clearly separated, thereby suggesting specific adaptation to heat and cold. Following both temperature stresses due to continued presence of stress no resumption of logarithmic growth was observed within the limits of the experiment, however a separation of late post-perturbation time points (t8-t12) is evident within the heat and cold specific clusters. Co-clustering of post-perturbation adaptation phase time points from oxidative (t_4-t_7) and heat (t_3-t_7) stress experiments could indicate similar mechanism of system response to these two perturbations which is evident in all data descried in this work. It is worth mentioning that all control samples except late log phase (t8-t9) and stationary phase (t10-t12) cluster together with the time points prior to perturbation of all stress experiments (green) except the diauxic shift experiment which forms a cluster of its own.

When next applying HCA separately to these three groups (before perturbation, postperturbation, and stationary phase time points) both the pre-perturbation and the stationary phase samples showed a high degree of similarity within each of the two groups and could not be ordered according to the stress applied (data not shown). In contrast HCA applied to early post-perturbation samples (10-40min) from different stress conditions and the corresponding time points from control revealed an overall disparity of sample groups based upon the stress applied (Suppl. Fig. 8B). Two main sub clusters can be seen, the first containing heat stress samples and oxidative stress time points and the second the glucose-lactose shift and control time points as well as cold stress experiment.

High similarity between oxidative stress and heat stress is in agreement with previous observations indicating that oxidative stress triggers physiologically similar responses compared to heat stress (for review see [10]). For example, a number of key proteins important for the protection against heat stress including GroEL, GroES, and DnaK, are induced by oxidative stress as well. Also it is suggested that heat stress by disrupting the electron transport chain can generate reactive oxygen species and trigger an oxidative stress response [11].

When applying a similar analysis on the transcriptomic data, taking into account only the post-perturbation time points, a similar picture emerges. All stresses are well separated from each other and form clusters on their own (except one outlier in case of diauxic shift) with the heat cluster being the most different (Suppl. Fig. 8C).

In summary, the response on both the transcriptome and the metabolome level displays a large amount of specificity allowing one to discriminate the different applied stresses.

4 Overlap between heat stress response and stationary phase might be due to shift to anaerobic respiration.

Increase in the temperature and bacterial culture density might lead to shift from aerobic to micro-aerobic (hypoxia) conditions under both heat stress and stationary phase. This is supported by the analysis of transcript data showing significant increase in levels of genes involved in hypoxic metabolism including fumarate reductase (frdABCD), arcA, pyruvate formate-lyase (tdcE), hydrogenases (hyaBC, hycDG) and a number of stationary phase induced genes (ug-pABC, aspA, fumB).

A shift to micro-aerobic conditions is known to have a predominant influence on central metabolism [12], conversion of pyruvic acid to acetyl-CoA is no longer catalyzed by pyruvate dehydrogenase which is partially replaced by pyruvate formate-lyase (PFL). 2-ketoglutarate dehydrogenase is repressed blocking TCA cycle at 2-ketoglutarate, succinate dehydrogenase activity is replaced by fumarate reductase (Frd), while genes coding enzymes catalyzing conversion of oxaloacetate to fumaric acid (aspAC) are induced [13]. Similar transcriptional response was observed also in our own data following heat and stationary phase (see above)

but also during glucose-lactose shift, where levels of *aspA* and *frdACD* significantly increase. The explanation why hypoxia related genes are significantly induced under glucose-lactose shift might come from the previous studies showing that the responses triggered by both carbon starvation and hypoxia are physiologically related and were suggested to originated from similar redirection of metabolic pathways under both conditions [12]. However it is intriguing to find that the metabolic profiles of the glucose-lactose shift and the stationary phase are not similar (Fig. 4B), while the only stress condition which is similar to the stationary phase is heat stress.

Increase in levels of fumaric acid is one of the overlapping changes between those two conditions. The accumulation of fumaric acid under hypoxic conditions might be caused by redirection of TCA cycle flux [13]. Fumaric acid levels might be feed by activation of a route from oxaloacetate through aspartic to fumaric acid and by conversion of malic to fumaric acid by fumarase B [14]. Increased fumaric acid levels can be then used as an alternative electron acceptor for anaerobic respiration. High overlap which was observed between stationary phase and stress responses at transcriptional level (Fig. 4C) can at least partially result from a general transcriptional stress response program including repression of genes from aerobic metabolism [15,16]. At the same time the actual cellular metabolism is much more condition specific (Fig. 4B) however changes in crucial environmental parameters (oxygen concentration) lead to the similar redirection of the metabolism under different experimental conditions such as heat and stationary phase.

5 Significance estimation of co-clustering events via bootstrap sampling

In order to determine the statistical significance of a co-clustering event of genes and metabolites that leads to a pathway enrichment, we employed a non-parametric bootstrap procedure [17] for each set of co-clustered genes and metabolites. Let X denote such a set comprised of at least one gene and at least one metabolite that resulted in a pathway enrichment by membership of the same cluster. For each set X we perform the following steps:

(1) We sample with replacement from the original set of genes and metabolites (containing in total m variables) by randomly selecting m genes and metabolites with equal probability of $\frac{1}{m}$. If necessary, this step is repeated until all elements of X are present in this bootstrap sample. (2) The bootstrap sample is subjected to k-means clustering as outlined before in the *Materials and Methods* section of the manuscript. Let $\mathcal{P} = \{P_1, \ldots, P_k\}$ be a clustering composed of k clusters. We define the co-clustering indicator function f_{co} for the set X as:

$$f_{co}(X) = \begin{cases} 1 & : \quad if X \subseteq P_i, 1 \le i \le k \\ 0 & : \quad else \end{cases}$$

Since the granularity of the clustering (i.e. the choice of parameter k) greatly effects a possible co-clustering, parameter k in this step is set to match the value of k that lead to an enrichment in the original condition-specific clustering.

(3) The bootstrap sampling procedure and subsequent clustering is repeated 1000 times to obtain an empirical probability $p_{observed}$ of the occurrence of the co-clustering event for X.

The outlined approach consisting of steps (1)-(3) is therefor a Bernoulli trial with 1000 independent repetitions and the dichotomous outcome of 1 (= co-clustering) and 0 (= no co-clustering). Furthermore, we assume that the co-clustering of all members of X occurs randomly. Then, the probability p_{random} of such a random co-clustering for set X equals $\frac{k}{k^{l}}$, where k denotes the number of clusters and l is the size of set X. A binomial expansion with the parameters n = 1000 (i.e. the sample size), $p_{random} = \frac{k}{k^l}$ (i.e. the probability of success) and q = 1 - p (i.e. the probability of failure) yields a probability distribution which equals the binomial distribution $\mathbf{B}(n, p_{random})$. Now, we let H_0 denote the null hypothesis that a co-clustering of set X occurs randomly. By application of the binomial test (e.g. the binom.test()-function in R) using $\mathbf{B}(n, p_{random})$ as the null-distribution, we can decide if the observed probability $p_{observed}$ for a particular co-clustering is in agreement with H_0 or should be rejected in favor of the alternative hypothesis H_1 . Rejection of H_0 implies that a co-clustering event is not random and occurs with the probability of $p_{observed}$. Naturally, we only consider the possibility that $p_{observed} \gg p_{random}$ which corresponds to a right-sided test. Finally, we account for the multiple testing of all co-clustering events found in our analysis by Bonferronicorrection and set the significance level to 1%. P-values obtained by the binomial test, as well as the empirically determined co-clustering probabilities, are presented in supplementary table 3 in conjunction with the respective sets of clusters and pathway enrichment.

6 Supplementary Tables

Supplementary Table 1: Metabolites which change significantly $(p < 0.05, \text{ ratios} \ge 2)$ as ratio between time point of interest and time points before stress are shown. Colours indicate direction of change: purple-increase, blue-decrease.

cold stress	10min	20min	30min	40min	50min	90min	150min	210min	300min	320min
2 aminobutyric acid	5.55	4.93	4.64	4.90	5.33	5.19	4.77		3.56	3.37
2hydroybutyric acid								2.49	3.18	3.22
4Aminobutyric acid			2.16	2.45	3.03	4.58	12.69	25.19	31.07	29.15
Adipic acid	2.27									2.55
Alanine	2.71	2.74	3.09	3.23	3.57	3.19	3.28		2.61	2.51
arginine					2.69				2.80	2.39
asparagine	2.71	2.73	2.66	2.55	2.87	3.56	3.57		4.41	4.09
Aspartic acid					2.45	2.56	2.86	2.46	3.26	3.23
Glutamic acid					2.18	2.37	2.63	2.63	2.97	2.69
Glutamic acid N acetyl					2.16	2.22				
glutamine							3.41	2.81	3.50	3.20
Glutamine N acetyl					2.37	2.28				
Homoserine					2.03	2.62	2.03	2.95		
Isoleucine			2.10	2.30	2.83	2.26	4.12	3.36	5.30	5.04
Leucine		2.07	2.11	2.16	2.38	2.26	2.53	2.03	2.49	2.39
Lysine	2.90	2.61								2.60
Malic acid						0.44	0.45		0.40	0.38
Methionine	2.97	2.38	2.14	2.03	2.36					
Phenylalanine					2.33	2.45	3.20	2.35		3.51
Pyroglutamic acid							2.31	2.55		2.69
ribose5P						0.50	0.44		0.47	0.47
Threonic acid					2.47	2.62	2.93	2.49	3.41	3.29
Tyrosine			0.19							

glucose-lactose diauxie	10min	20min	30min	40min	90min	140min	210min
Alanine					3.54		
arginine							7.55
asparagine	4.61					7.67	
Benzoic acid 4 hydroy						9.82	
cysteine					4.28	9.38	9.32
Fumaric acid						4.66	
Glucose 6 phosphate							9.29
Glutamine					3.13		
Glutamine N acetyl					10.21		
Glutaric acid 2 hydroy					3.14		
Glycerol 3 phosphate						3.06	
Glycine					3.28		
Isomaltose					9.65		0.23
isopropylmalic acid					3.14	7.58	
Leucine	0.46				2.13		
Lysine					2.90		5.01
Malic acid					4.84	12.15	6.87
Maltose						0.28	0.03
PEP	8.87						
Phenylalanine					3.10		
Homoserine	0.36				4.09		
Proline				2.15	4.62	13.06	
Pyruvic acid					5.37		
ribose 5P						7.39	
Serine major							4.52
Succinic acid						5.48	
Threonine					4.20		
Valine	0.39				3.26		
2 aminobutyric acid					4.59		
2 hydroybutyric acid						4.13	
2 ketobutyric acid	0.34	0.41					
2 ketoglutaric acid	0.32						
4 Aminobutyric acid		2.26	2.95	3.54	4.16		
6 phosphogluconic acid						17.35	9.77

Supplementary Table $1-{\rm continued}$ from previous page

unperturbed culture	10min	20min	30min	40min	$50 \mathrm{min}$	90min	$150 \mathrm{min}$	210min	$240 \mathrm{min}$	$260 \mathrm{min}$
arginine							5.89			
asparagine						3.68	3.67			2.68
Aspartic acid						2.96				
Azelaic acid							0.38	0.27	0.24	0.21
Benzoic acid 4 hydroy						2.72	4.16	4.79	4.88	4.45
cysteine					2.56	5.20	7.70	6.95	7.63	8.10
D erythrose 4 phosphate						3.01				
Fumaric acid						2.56	3.76	3.60	3.88	3.50
Gluconic acid							0.32	0.11	0.07	0.06
Glucose 6 phosphate					2.13	3.85	6.02			
Glutamic acid					2.11	3.24	3.22	2.98	3.32	3.12
Glutamic acid N acetyl						6.42	7.31	4.40	3.28	3.25
Glutamine						2.15				
Glutamine N acetyl						8.34	16.42			6.37
Glutaric acid 2 hydroy						2.67	3.93	4.92	4.90	4.50
Glycerol				0.47						
Glycerol 3 phosphate						2.32	3.45	2.82	3.11	2.50
Glycine						2.16	2.57			
heptadecanoic acid								2.04	2.06	
Isoleucine						2.59		47.16	57.71	52.16
isopropylmalic acid						2.87	4.24	3.33	3.06	2.89
Leucine						2.28		2.54	3.74	3.72
Lysine					2.01	3.13	4.57	5.68	4.54	3.87
Malic acid						2.71	4.28	3.20	4.29	3.24
Maltose										0.26
Methionine						2.90	4.85	5.85	5.74	4.86
oalic acid									10.35	
Pelargonic acid or Nonanoic acid			0.49							
PEP			0110					2.18		
Phenylalanine						2.55	4.67	9.48	10.85	9.86
Homoserine						3.03	1.01	0.10	10.00	0.00
Proline						3.39	5.19	6.36	7.20	5.97
Pyroglutamic acid						0.00	0.10	2.93	3.20	2.78
Pyruvic acid						3.27	6.22	2.00	0.20	2.10
ribose 5P						2.86	0.22			
Serine major						2.00	2.08	2.22	2.53	
Spermidine major							2.00	4.44	2.00	0.41
Succinic acid						2.34	4.35	4.63	4.38	3.60
Threonine						3.29	7.38	4.05 7.66	9.78	5.00 7.74
Thymine						0.23	2.66	2.60	3.21	2.43
Trehalose							2.00	2.00	0.21	321.38
Valine						2.76		2.29	2.73	2.41
2 aminobutyric acid						3.39		4.49	2.10	2.41
2 aminobutyric acid 2 hydroybutyric acid						0.09	2.65			
2 hydroybutyric acid 2 ketobutyric acid						3.13	2.00	0.14	0.13	0.12
-								0.14 155.91		
2 ketoglutaric acid						2.97	E 0.4	199.91	188.88	164.54 2.58
4 Aminobutyric acid					9.99	3.07	5.94 7.27			3.58
6 phosphogluconic acid					2.22	4.08	7.37			

Supplementary Table 1 – continued from previous page

heat stress	10min	20min	30min	40min	50min	90min	150min	210 min	230min
Alanine		6.05	6.41	7.02	8.42	12.35	14.96	17.89	19.76
arginine				2.39			5.97	8.39	10.28
asparagine		3.31	3.40	3.18	3.80	5.13	6.40	6.86	7.44
Aspartic acid						2.01			
cysteine				2.38					
D erythrose 4 phosphate			0.34						
Fumaric acid					2.47	4.00	5.40	6.81	7.78
Gluconic acid								0.49	
Glucose 6 phosphate	0.39	0.37	0.49	0.35	0.35	0.25	0.34	0.44	0.38
Glutamic acid	2.38	2.59	2.71	2.89	2.90	3.11	3.20	3.59	3.43
Glutamic acid N acetyl			0.47						
Glutamine N acetyl		0.42	0.33	0.32	0.36	0.43	0.42		
glutamine minor									2.15
Glyceric acid 3 phosphate	0.42	0.40	0.39	0.35	0.45	0.50			
Glycerol					0.47				
Isoleucine		22.28	20.31	20.61	23.16		31.82		
Lysine		7.77		7.16			10.16		
Malic acid							2.92	4.27	5.06
Methionine	0.05	0.06	0.05	0.11	0.04	0.06	0.08	0.08	0.08
Phenylalanine		13.31	14.07	14.19	16.54		27.52	40.40	45.39
Homoserine		2.02	2.30	2.52	3.34	5.26	6.35	7.79	8.83
Proline		4.93	5.31	6.16	7.37		12.69		18.34
Pyroglutamic acid							3.12		
Pyruvic acid		0.48	0.42	0.45	0.46			3.39	4.07
ribose 5P				0.43		0.46			
Succinic acid			0.48	0.43	0.43	0.42	0.41		
Threonine		16.11	16.52	17.62	21.96	31.78	38.87	46.83	52.02
Trehalose					2.58		30.99		
ureidopropionic acid								0.44	
2 aminobutyric acid								4.24	
2 ketobutyric acid	0.15	0.14	0.12	0.16	0.15	0.15	0.26	0.37	0.44
4 Aminobutyric acid		0.48	0.47	0.46					
6 phosphogluconic acid						0.48			

Supplementary Table 1 – continued from previous page

Supplementary Table 1 – continued from previ	ous page
--	----------

oxidative stress	10min	20min	30min	40min	90min	150min	210 min	230min
Alanine	3.75	5.99	6.61	6.44	2.54			
arginine				2.44	2.75	4.56	4.53	
asparagine	2.12	3.52	4.67			4.59		
asparagine minor				3.27				
Aspartic acid	0.36			2.05				
Azelaic acid							0.28	0.18
Benzoic acid 4 hydroy					2.39	3.64	5.79	6.17
cysteine					2.77	5.40	6.02	7.45
D erythrose 4 phosphate					2.16			
dodecanoic acid					2.28			
Fumaric acid						2.58		
Galactonic acid gamma lactone							0.27	
Gluconic acid							0.13	0.07
Glucose 6 phosphate	0.36	0.28	0.39					
Glutamic acid N acetyl					3.82			
Glutamine N acetyl					4.93	12.40	17.72	
Glutaric acid 2 hydroy						9.76	16.77	16.39
Glyceric acid 3 phosphate		0.44						
Glycerol 3 phosphate							3.04	3.24
glycine minor					2.06	2.83		
Glycolic acid							7.27	
Heacosanoic acid							2.12	
Isoleucine	0.38				3.14		42.17	40.44
isopropylmalic acid					2.79	5.92	7.63	7.80
Leucine		0.30				2.05		
Lysine			3.78	4.31		2.95	4.86	3.55
Malic acid	0.27	0.45						
Methionine						3.39	3.79	3.82
Phenylalanine				2.20	2.70	3.63		7.75
Uracil							3.83	4.37
Proline		2.02			2.44			
Pyroglutamic acid				2.48	2.25			2.57
Pyruvic acid				2.58	2.44	4.38		
Serine major				2.00		1.00		2.77
Succinic acid					3.06			
Threonine					2.80		8.17	11.71
Thymine					2.00		2.64	
Trehalose					4.89	9.02		
Valine					2.20	0.02		
2 ketobutyric acid					2.20	3.72	0.24	0.20
2 ketoglutaric acid	0.30				3.34	0.14	J.21	0.20
4 Aminobutyric acid	0.00				2.16		9.98	12.21
6 phosphogluconic acid		0.36			2.10		0.00	14.41

Supplementary Table 2: List of 288 genes directly related via biochemical pathway enzymes to analyzed metabolites (based on EcoCyc database).

	gene	Blatter	gene	related
	name	number	product	metabolite
1	trpB	b1261	tryptophan synthase subunit beta	L-serine
2	ygaF	b2660	predicted enzyme	2-Hydroxyglutarate
3	idnO	b4266	gluconate 5-dehydrogenase	Gluconate
4	tdcE	b3114	pyruvate formate-lyase 4/2-	2-ketobutyrate
			ketobutyrate formate-lyase	
5	pyrC	b1062	dihydroorotase	Dihydroorotate
6	glcD	b2979	glycolate oxidase subunit, FAD-	glycolate
			linked	
7	mhpE	b0352	4-hydroxy-2-ketovalerate aldolase	Ribitol
8	pps	b1702	phosphoenolpyruvate synthase	Phosphoenolpyruvate
9	yhiJ	b3488	hypothetical protein	L-serine
10	thrS	b1719	threonyl-tRNA synthetase	L-threonine
11	cysS	b0526	cysteinyl-tRNA synthetase	L-cysteine
12	pheT	b1713	phenylalanyl-tRNA synthetase beta	L-phenylalanine
			subunit	
13	fadD	b1805	acyl-CoA synthase	2-hexadecenoate
14	idnK	b4268	D-gluconate kinase, thermosensitive	6-phospho-D-gluconate
15	pstS	b3728	phosphate transporter subunit	L-glutamate
16	$\mathrm{ugp}\mathrm{Q}$	b3449	cytoplasmic glycerophosphodiester	Glycerol
			phosphodiesterase	
17	hisS	b2514	histidyl-tRNA synthetase	L-histidine
18	lpd	b0116	dihydrolipoamide dehydrogenase	Glycine, Ribitol
19	pyrD	b0945	dihydroorotate dehydrogenase	Dihydroorotate
20	mqo	b2210	malate:quinone oxidoreductase	Malate
21	gnd	b2029	6-phosphogluconate dehydrogenase	6-phospho-D-gluconate
22	folC	b2315	bifunctional folylpolyglutamate syn-	L-glutamate
			thase/ dihydrofolate synthase	
23	glyA	b2551	serine hydroxymethyltransferase	Glycine
24	purF	b2312	${\it amidophosphoribosyltransferase}$	L-glutamate
25	gldA	b3945	glycerol dehydrogenase	Glycerol
26	zwf	b1852	glucose-6-phosphate 1-	beta-D-Glucose 6-phosphate
			dehydrogenase	
27	argG	b3172	argininosuccinate synthase	L-aspartate
28	ucpA	b2426	short chain dehydrogenase	D-erythrose-4-phosphate
29	serS	b0893	seryl-tRNA synthetase	L-serine
30	pabC	b1096	4-amino-4-deoxychorismate lyase	Ribitol

Supplementary Table 2 – continued from previous page

		~ apr	plementary Table 2 – continued from pro-	evious page
31	aspC	b0928	aspartate aminotransferase, PLP-	2-ketoglutarate
			dependent	
32	treA	b1197	periplasmic trehalase	Trehalose, 2-ketoglutarate
33	serC	b0907	phosphoserine aminotransferase	2-ketoglutarate
34	ydiD	b1701	hypothetical protein	2-hexadecenoate
35	serA	b2913	D-3-phosphoglycerate dehydroge-	2-Hydroxyglutarate
			nase	
36	lldD	b3605	L-lactate dehydrogenase, FMN-	Ribitol
			linked	
37	aroA	b0908	3-phosphoshikimate 1-	Phosphoenolpyruvate
			$\operatorname{carboxyvinyltransferase}$	
38	dld	b2133	D-lactate dehydrogenase, FAD-	Ribitol
			binding, NADH independent	
39	glcB	b2976	malate synthase	Malate
40	argA	b2818	N-acetylglutamate synthase	L-glutamate
41	purB	b1131	adenylosuccinate lyase	Fumarate
42	speF	b0693	ornithine decarboxylase isozyme, in-	L-ornithine
			ducible	
43	pflB	b0903	pyruvate formate lyase I	Ribitol
44	amn	b1982	AMP nucleosidase	D-ribose-5-phosphate
45	lysS	b2890	lysine tRNA synthetase, constitutive	L-lysine
46	pyrG	b2780	CTP synthetase	L-glutamate
47	yidA	b3697	predicted hydrolase	Trehalose
48	metA	b4013	homoserine O-succinyltransferase	Homoserine
49	pgk	b2926	phosphoglycerate kinase	3-phosphoglycerate
50	alr	b4053	alanine racemase	L-alanine
51	gadB	b1493	glutamate decarboxylase B, PLP-	4-aminobutyrate
			dependent	
52	rluD	b2594	23S rRNA pseudouridine synthase	D-ribose-5-phosphate
53	otsB	b1897	trehalose-6-phosphate phosphatase,	Trehalose
			biosynthetic	
54	proS	b0194	prolyl-tRNA synthetase	L-proline
55	pyrE	b3642	orotate phosphoribosyltransferase	Orotate
56	argB	b3959	acetylglutamate kinase	N-Acetyl-L-glutamate
57	ldhA	b1380	D-lactate dehydrogenase	Ribitol
58	panD	b0131	aspartate 1-decarboxylase precursor	beta-Alanine
59	gntK	b3437	gluconate kinase 2	6-phospho-D-gluconate
60	frdB	b4153	fumarate reductase (anaerobic), Fe-S	Fumarate
			subunit	
61	maeB	b2463	malic enzyme	Malate
62	$_{\rm glnS}$	b0680	glutaminyl-tRNA synthetase	L-Glutamine

Supplementary Table 2 – continued from previous page

		Subl	plementary Table $2 - \text{continued from pro-}$	evious page
63	metC	b3008	cystathionine beta-lyase	2-ketobutyrate
64	asnS	b0930	asparaginyl-tRNA synthetase	L-asparagine
65	argH	b3960	argininosuccinate lyase	Fumarate
66	fumC	b1611	fumarate hydratase	Fumarate
67	tnaA	b3708	$tryptophanase/L-cysteine \ desulfhy-$	2-ketobutyrate
			drase, PLP-dependent	
68	gdhA	b1761	glutamate dehydrogenase	2-ketoglutarate
69	leuS	b0642	leucyl-tRNA synthetase	L-leucine
70	ybiV	b0822	predicted hydrolase	Dihydroorotate
71	carA	b0032	carbamoyl-phosphate synthase small	L-glutamate
			subunit	
72	malZ	b0403	maltodextrin glucosidase	Maltose
73	adiA	b4117	biodegradative arginine decarboxy-	L-arginine
			lase	
74	dapD	b0166	2,3,4,5-tetrahydropyridine-2-	2-ketoglutarate
	-		carboxylate N-succinyltransferase	, , , , , , , , , , , , , , , , , , ,
75	murC	b0091	UDP-N-acetylmuramate-L-alanine	L-alanine
			ligase	
76	yeiN	b2165	hypothetical protein	D-ribose-5-phosphate
77	deoA	b4382	thymidine phosphorylase	Thymine
78	eda	b1850	keto-hydroxyglutarate-	Ribitol
			aldolase/keto-deoxy-	
			phosphogluconate aldolase	
79	purA	b4177	adenylosuccinate synthetase	L-aspartate
80	alkB	b2212	oxidative demethylase of N1-	cytosine
00	unit	02212	methyladenine or N3-methylcytosine	0,000110
			DNA lesions	
81	pykF	b1676	pyruvate kinase	Phosphoenolpyruvate
82	frc	b2374	formyl-coenzyme A transferase	oxalate
83	astA	b1747	arginine succinyltransferase	L-arginine
84	proC	b0386	pyrroline-5-carboxylate reductase	L-proline
85	thrC	b0004	threonine synthase	L-pronne L-threonine
86	ppc	b3956	phosphoenolpyruvate carboxylase	Phosphoenolpyruvate
80 87	yjbC	b3950 b4022	23S rRNA pseudouridine synthase	D-ribose-5-phosphate
88	aldA	b4022 b1415	aldehyde dehydrogenase A, NAD-	glycolate
00	aiuA	01410	linked	grycolate
20	4 - 1D	1.0000		Demetheres Archemitete
89 00	talB	b0008	transaldolase B	D-erythrose-4-phosphate
90	menD	b2264	2-succinyl-6-hydroxy-2,4-	2-Hydroxyglutarate
			cyclohexadiene-1-carboxylate	
01	6.10	1 44 80	synthase	
91	frdC	b4152	fumarate reductase subunit C	Fumarate Continued on next page

Supplementary Table 2 – continued from previous page

92	yghZ	b3001	plementary Table 2 – continued from pro- aldo-keto reductase	Glycerol-3-P
93	puuE	b1302	GABA aminotransferase, PLP-	2-ketoglutarate
90	puun	01502	dependent	2-Ketogrutarate
94	cls	b1249	cardiolipin synthetase	Glycerol
95	$\mathrm{thr}\mathbf{A}$	b0002	bifunctional aspartokinase	Homoserine
			I/homeserine dehydrogenase I	
96	eutI	b2458	predicted phosphotransacetylase subunit	L-valine
97	proB	b0242	gamma-glutamyl kinase	L-glutamate
98	malY	b1622	bifunctional beta-cystathionase,	2-ketobutyrate
			PLP-dependent/ regulator of mal- tose regulon	
99	metL	b3940	bifunctional aspartate kinase	Homoserine
			II/homoserine dehydrogenase II	
100	lipA	b0628	lipoyl synthase	L-methionine
101	sdhA	b0723	succinate dehydrogenase flavopro-	Fumarate
			tein subunit	
102	dgoT	b3691	D-galactonate transporter	Ribitol
103	aspS	b1866	aspartyl-tRNA synthetase	L-aspartate
104	asnB	b0674	asparagine synthetase B	L-asparagine
105	metH	b4019	B12-dependent methionine synthase	L-methionine
106	priA	b3935	primosome assembly protein PriA	D-erythrose-4-phosphate
107	eutC	b2440	ethanolamine ammonia-lyase small subunit	Ethanolamine
108	purL	b2557	phosphoribosylformylglycinamidine synthase	L-glutamate
109	ansA	b1767	cytoplasmic asparaginase I	L-asparagine
110	pck	b3403	phosphoenolpyruvate carboxykinase	Phosphoenolpyruvate
111	ilvI	b0077	acetolactate synthase III large sub-	2-ketobutyrate
			unit	v
112	rffA	b3791	TDP-4-oxo-6-deoxy-D-glucose	2-ketoglutarate
			transaminase	0
113	fumA	b1612	fumarate hydratase (fumarase A),	Fumarate
-			aerobic Class I	
114	entF	b0586	enterobactin synthase multien-	L-serine
			zyme complex component, ATP-	
			dependent	
115	gcvP	b2903	glycine dehydrogenase	Glycine
116	hisF	b2025	imidazole glycerol phosphate syn- thase subunit HisF	L-glutamate
117	lysC	b4024	aspartate kinase III	Lagnartato
117	1980	04024	aspartare killase III	L-aspartate Continued on next page

Supplementary Table 2 – continued from previous page

118	sdhB	50724	plementary Table 2 – continued from pro- succinate dehydrogenase, FeS sub-	Fumarate
-			unit	
119	gltB	b3212	glutamate synthase, large subunit	2-ketoglutarate
120	yieH	b3715	predicted hydrolase	6-phospho-D-gluconate
121	puuA	b1297	gamma-Glu-putrescine synthase	L-glutamate
122	dxs	b0420	1-deoxy-D-xylulose-5-phosphate	Pyruvate
			synthase	
123	ubiA	b4040	4-hydroxybenzoate octaprenyltrans-	4-Hydroxybenzoate
			ferase	
124	lysU	b4129	lysine tRNA synthetase, inducible	L-lysine
125	aceB	b4014	malate synthase	Malate
126	tyrS	b1637	tyrosyl-tRNA synthetase	L-tyrosine
127	pssA	b2585	phosphatidylserine synthase	L-serine
128	yceQ	b1085	hypothetical protein	D-ribose-5-phosphate
129	avtA	b3572	valine pyruvate transaminase	2-aminobutyrate
130	ilvN	b3670	acetolactate synthase small subunit	2-ketobutyrate
131	entE	b0594	2,3-dihydroxybenzoate-AMP ligase	L-serine
132	prpB	b0331	2-methylisocitrate lyase	Ribitol
133	dapA	b2478	dihydrodipicolinate synthase	Ribitol
134	malQ	b3416	4-alpha-glucanotransferase (amylo-	Maltose
			maltase)	
135	nadB	b2574	L-aspartate oxidase	L-aspartate
136	gpmI	b3612	phosphogly ceromutase	3-phosphoglycerate
137	ydcW	b1444	medium chain aldehyde dehydroge-	4-aminobutyrate
			nase	
138	ybhE	b0767	$6 ext{-phosphogluconolactonase}$	6-phospho-D-gluconate
139	yneI	b1525	predicted aldehyde dehydrogenase	Succinate
140	nudF	b3034	ADP-ribose pyrophosphatase	D-ribose-5-phosphate
141	ldcC	b0186	lysine decarboxylase 2, constitutive	L-lysine
142	sucA	b0726	alpha-ketoglutarate decarboxylase	2-ketoglutarate
143	kdsA	b1215	$\label{eq:2-delydro-3-deoxyphosphooctonate} 2-dehydro-3-deoxyphosphooctonate$	Phosphoenolpyruvate
			aldolase	
144	rihC	b0030	ribonucleoside hydrolase 3	cytosine
145	rbsK	b3752	ribokinase	D-ribose-5-phosphate
146	poxB	b0871	pyruvate dehydrogenase	Ribitol
147	uidA	b1617	beta-D-glucuronidase	Glycerol
148	tiaE	b3553	$\label{eq:loss} \ensuremath{2\text{-ketoaldonate reductase/glyoxylate}}$	Gluconate
			reductase B	
149	ymfC	b1135	23S rRNA pseudouridine synthase	D-ribose-5-phosphate
150	astE	b1744	succinylglutamate desuccinylase	L-glutamate

Supplementary Table 2 – continued from previous page

	1.5	11	plementary Table 2 – continued from pr	10
151	pabB	b1812	para-aminobenzoate synthase com-	L-glutamate
		_	ponent I	
152	glcF	b4467	glycolate oxidase iron-sulfur subunit	glycolate
153	aroF	b2601	3-deoxy-D-arabino-heptulosonate-	D-erythrose-4-phosphate
			7-phosphate synthase, tyrosine-	
			repressible	
154	alaS	b2697	alanyl-tRNA synthetase	L-alanine
155	glk	b2388	glucokinase	beta-D-Glucose 6-phosphate
156	ltaE	b0870	L-allo-threonine aldolase, PLP-	Glycine
			dependent	
157	speA	b2938	arginine decarboxylase	L-arginine
158	gadA	b3517	glutamate decarboxylase A, PLP-	4-aminobutyrate
			dependent	
159	putA	b1014	proline dehydrogenase/pyrroline-5-	L-glutamate
			carboxylate dehydrogenase	
160	pgi	b4025	glucose-6-phosphate isomerase	beta-D-Glucose 6-phosphate
161	eno	b2779	phosphopyruvate hydratase	Phosphoenolpyruvate
162	aceE	b0114	pyruvate dehydrogenase subunit E1	Ribitol
163	ygfH	b2920	propionyl-CoA:succinate-CoA trans-	Succinate
			ferase	
164	metB	b3939	cystathionine gamma-synthase	2-ketobutyrate
165	gshA	b2688	glutamate–cysteine ligase	L-cysteine
166	yjjN	b4358	predicted oxidoreductase, Zn-	L-Galactonate
			dependent and NAD(P)-binding	
167	dapE	b2472	succinyl-diaminopimelate desucciny-	Succinate
			lase	
168	frlB	b3371	fructos elysine - 6 - P - degly case	beta-D-Glucose 6-phosphate
169	frdD	b4151	fumarate reductase subunit D	Fumarate
170	gabD	b2661	succinate-semialdehyde dehydroge-	Succinate
			nase I, NADP-dependent	
171	gcvT	b2905	glycine cleavage system	Glycine
			aminomethyltransferase T	
172	gltD	b3213	glutamate synthase, 4Fe-4S protein,	2-ketoglutarate
			small subunit	
173	treF	b3519	cytoplasmic trehalase	Trehalose
174	tdh	b3616	L-threonine 3-dehydrogenase	L-threonine
175	rihA	b0651	ribonucleoside hydrolase 1	cytosine
176	ybhO	b0789	cardiolipin synthase 2	Glycerol
177	speE	b0121	spermidine synthase	Putrescine
178	mhpC	b0349	2-hydroxy-6-ketonona-2,4-dienedioic	Succinate
			acid hydrolase	

Supplementary Table 2 – continued from previous page

		Supp	plementary Table 2 – continued from pre	evious page
179	yfbT	b2293	predicted hydrolase or phosphatase	Trehalose
180	icd	b1136	isocitrate dehydrogenase	2-ketoglutarate
181	sucB	b0727	${\rm dihydrolipoamide\ acetyl transferase}$	2-ketoglutarate
182	cadA	b4131	lysine decarboxylase 1	L-lysine
183	$\mathrm{ent}\mathrm{D}$	b0583	phosphop ant ethe inyl transferase	L-serine
184	aroH	b1704	3-deoxy-D-arabino-heptulosonate-7-	D-erythrose-4-phosphate
			phosphate synthase	
185	aceF	b0115	dihydrolipoamide acetyltransferase	Ribitol
186	panC	b0133	pantoate–beta-alanine ligase	beta-Alanine
187	$\mathrm{thr}\mathbf{B}$	b0003	homoserine kinase	Homoserine
188	thiH	b3990	thiamine biosynthesis protein ThiH	L-tyrosine
189	tyrB	b4054	tyrosine aminotransferase, tyrosine-	2-ketoglutarate
			repressible, PLP-dependent	
190	nanA	b3225	N-acetylneuraminate lyase	Ribitol
191	mdh	b3236	malate dehydrogenase	Malate
192	cysK	b2414	cysteine synthase A, O-acetylserine	L-cysteine
			sulfhydrolase A subunit	
193	sfcA	b1479	malate dehydrogenase, (decarboxy-	Malate
			lating, NAD-requiring) (malic en-	
			zyme)	
194	yneH	b1524	predicted glutaminase	L-glutamate
195	ilvE	b3770	branched-chain amino acid amino-	2-ketoglutarate
			transferase	
196	yfbB	b2263	predicted peptidase	Ribitol
197	purC	b2476	phosphoribosylaminoimidazole-	L-aspartate
			succinocarboxamide synthase	
198	glpK	b3926	glycerol kinase	Glycerol
199	speB	b2937	agmatinase	Putrescine
200	$\mathrm{trp}\mathrm{D}$	b1263	bifunctional indole-3-glycerol-	L-glutamate
			phosphate synthase/anthranilate	
			phosphoribosyltransferase	
201	sdhD	b0722	succinate dehydrogenase cytochrome	Fumarate
			b556 small membrane subunit	
202	fumB	b4122	anaerobic class I fumarate hydratase	Fumarate
			(fumarase B)	
203	aspA	b4139	aspartate ammonia-lyase	Fumarate
204	frdA	b4154	fumarate reductase	Fumarate
205	yfbE	b2253	uridine 5'-(beta-1-threo-	2-ketoglutarate
			pentapyranosyl-4-ulose diphosphate)	
			aminotransferase	
206	argE	b3957	acetylornithine deacetylase	L-ornithine
				Continued on next page

0 1	TT 1 1 0	. 1	C	•	
Supplementary	Table 2 –	continued	trom	previous	nage
Supplementary	10010 2	commutu	monn	provious	pase

207			plementary Table 2 – continued from pre	
207	rpiA	b2914	ribose-5-phosphate isomerase A	D-ribose-5-phosphate
208	ansB	b2957	periplasmic L-asparaginase II	L-asparagine
209	dfp	b3639	bifunctional phosphopan-	L-cysteine
			tothenoylcysteine decarboxy-	
			lase/phosphopantothenate synthase	
210	metG	b2114	methionyl-tRNA synthetase	L-methionine
211	edd	b1851	phosphogluconate dehydratase	6-phospho-D-gluconate
212	trpE	b1264	anthranilate synthase component I	L-glutamate
213	pyrB	b4245	aspartate carbamoyl transferase cat-	L-aspartate
			alytic subunit	
214	sdhC	b0721	succinate dehydrogenase cytochrome	Fumarate
			b556 large membrane subunit	
215	glnA	b3870	glutamine synthetase	L-glutamate
216	garL	b3126	alpha-dehydro-beta-deoxy-D-	Ribitol
			glucarate aldolase	
217	iscS	b2530	cysteine desulfurase	L-alanine
218	nadE	b1740	NAD synthetase	L-glutamate
219	treC	b4239	trehalose-6-P hydrolase	beta-D-Glucose 6-phosphate
220	yigL	b3826	predicted hydrolase	D-erythrose-4-phosphate
221	tauD	b0368	taurine dioxygenase	2-ketoglutarate
222	cysE	b3607	serine acetyltransferase	L-serine
223	iaaA	b0828	L-asparaginase	L-asparagine
224	rluC	b1086	23S rRNA pseudouridylate synthase	D-ribose-5-phosphate
225	argI	b4254	ornithine carbamoyltransferase 1	L-ornithine
226	udp	b3831	uridine phosphorylase	Uracil
227	gltX	b2400	glutamyl-tRNA synthetase	L-glutamate
228	upp	b2498	uracil phosphoribosyltransferase	Uracil
229	glpQ	b2239	periplasmic glycerophosphodiester	Glycerol
	01 0		phosphodiesterase	v
230	deoB	b4383	phosphopentomutase	D-ribose-5-phosphate
231	gshB	b2947	glutathione synthetase	Glycine
232	speC	b2965	ornithine decarboxylase, constitutive	L-ornithine
233	hemN	b3867	coproporphyrinogen III oxidase	L-methionine
234	ubiC	b4039	chorismate pyruvate lyase	4-Hydroxybenzoate
235	bioB	b0775	biotin synthase	L-methionine
236	argD	b3359	bifunctional acetylornithine amino-	2-ketoglutarate
250	argD	00000	transferase/ succinyldiaminopime-	2-Retogratarate
			late aminotransferase	
237	carB	b0033	carbamoyl-phosphate synthase large	L-glutamate
201	CarD	66000	subunit	n-Sinianaie
990	parls A	619F1		Phoenhoonelnumerate
238	pykA	b1854	pyruvate kinase	Phosphoenolpyruvate Continued on next page

Supplementary Table 2 – continued from previous page $% \left({{{\bf{n}}_{{\rm{s}}}}} \right)$

		⊸ ⊶r r		1.0
239	glyS	b3559	glycyl-tRNA synthetase subunit beta	Glycine
240	epd	b2927	D-erythrose 4-phosphate dehydroge-	D-erythrose-4-phosphate
0.41	D	1 1 0 0 0	nase	4
241	puuD	b1298	gamma-Glu-GABA hydrolase	4-aminobutyrate
242	glxK	b0514	glycerate kinase II	3-phosphoglycerate
243	lysA	b2838	diaminopimelate decarboxylase, PLP-binding	L-lysine
244	rsuA	b2183	16S rRNA pseudouridylate 516 syn- thase	D-ribose-5-phosphate
245	glcE	b4468	glycolate oxidase FAD binding sub- unit	glycolate
246	asnA	b3744	asparagine synthetase AsnA	L-asparagine
247	argS	b1876	arginyl-tRNA synthetase	L-arginine
248	rluB	b1269	23S rRNA pseudouridylate synthase	D-ribose-5-phosphate
249	ilvH	b0078	acetolactate synthase small subunit	2-ketobutyrate
250	rpiB	b4090	ribose-5-phosphate isomerase B	D-ribose-5-phosphate
251	ilvB	b3671	acetolactate synthase large subunit	2-ketobutyrate
252	aroG	b0754	3-deoxy-D-arabino-heptulosonate-7-	D-erythrose-4-phosphate
			phosphate synthase	
253	guaA	b2507	bifunctional GMP syn- thase/glutamine amidotransferase	L-glutamate
			protein	
254	entB	b0595	isochorismatase	L-serine
255	eutB	b2441	ethanolamine ammonia-lyase, large subunit, heavy chain	Ethanolamine
256	pheS	b1714	phenylalanyl-tRNA synthetase alpha subunit	L-phenylalanine
257	astC	b1748	succinylornithine transaminase, PLP-dependent	2-ketoglutarate
258	pyrI	b4244	aspartate carbamoyltransferase reg-	L-aspartate
			ulatory subunit	-
259	metK	b2942	S-adenosylmethionine synthetase	L-methionine
260	ytjC	b4395	phosphoglycerate mutase	3-phosphoglycerate
261	pabA	b3360	para-aminobenzoate synthase com- ponent II	L-glutamate
262	sucC	b0728	succinyl-CoA synthetase subunit beta	Succinate
263	tktB	b2465	transketolase 2, thiamin-binding	D-erythrose-4-phosphate
264	ilvA	b3772	threonine dehydratase	2-ketobutyrate
			v	Continued on next page

Supplementary Table 2 – continued from previous page

		elementary Table 2 – continued from pro	
ygjG	b3073	putrescine:2-oxoglutaric acid amino-	2-ketoglutarate
		transferase, PLP-dependent	
metE	b3829	5-methyltetrahydropteroyltriglutamat	eL-methionine
		homocysteine methyltransferase	
gcvH	b2904	glycine cleavage system protein H	Glycine
prsA	b1207	ribose-phosphate pyrophosphokinase	D-ribose-5-phosphate
argF	b0273	ornithine carbamoyltransferase 2 ,	L-ornithine
		chain F	
codA	b0337	cytosine deaminase	cytosine
ilvM	b3769	acetolactate synthase II, small sub-	2-ketobutyrate
		unit	
purD	b4005	phosphoribosylamine–glycine ligase	Glycine
hisH	b2023	imidazole glycerol phosphate syn-	L-glutamate
		thas subunit HisH	
tdcB	b3117	threonine dehydratase	2-ketobutyrate
glyQ	b3560	glycyl-tRNA synthetase subunit al-	Glycine
		pha	
gpmA	b0755	phosphogly ceromutase	3-phosphoglycerate
ybaS	b0485	predicted glutaminase	L-glutamate
aceA	b4015	isocitrate lyase	Succinate
dadA	b1189	D-amino acid dehydrogenase small	Ribitol
		subunit	
sucD	b0729	succinyl-CoA synthetase subunit al-	Succinate
		pha	
dadX	b1190	alanine racemase	L-alanine
thiG	b3991	thiazole synthase	L-tyrosine
kbl	b3617	2-amino-3-ketobutyrate coenzyme A	Glycine
		ligase	
murA	b3189	UDP-N-acetylglucosamine 1-	Phosphoenolpyruvate
		carboxyvinyltransferase	
bioF	b0776	8-amino-7-oxononanoate synthase	L-alanine
tktA	b2935	transketolase 1, thiamin-binding	D-ribose-5-phosphate
$_{\rm gabT}$	b2662	4-aminobutyrate aminotransferase	2-ketoglutarate
hisC	b2021	histidinol-phosphate aminotrans-	2-ketoglutarate
		ferase	~
	metE gcvH prsA argF codA ilvM purD hisH tdcB glyQ gpmA ybaS aceA dadA sucD dadX thiG kbl murA bioF tktA gabT	metE b3829 gcvH b2904 prsA b1207 argF b0273 codA b0337 jwM b3769 purD b4005 hisH b2023 fdcB b3117 gbmA b0755 ybaS b4015 aceA b4015 dadA b1189 sucD b0729 dadX b1190 thiG b3911 b3617 b3617 fuice b391 b3617 b3617 b1190 b3617 b1191 b3617 b192 b3617 b193 b3617 b194 b3617	transferase, PLP-dependent metE b3829 5-methyltetrahydropteroyltriglutamat homocysteine methyltransferase gcvH b2904 glycine cleavage system protein H prsA b1207 ribose-phosphate pyrophosphokinase argF b0273 ornithine carbamoyltransferase 2, chain F codA b0337 cytosine deaminase ilvM b3769 acetolactate synthase II, small sub- unit purD b4005 phosphoribosylamine–glycine ligase hisH b2023 imidazole glycerol phosphate syn- thase subunit HisH tdcB b3117 threonine dehydratase glyQ b3560 glycyl-tRNA synthetase subunit al- pha gpmA b0755 phosphoglyceromutase ybaS b0485 predicted glutaminase aceA b4015 isocitrate lyase dadA b1189 D-amino acid dehydrogenase small subunit sucD b0729 succinyl-CoA synthetase subunit al- pha dadX b1190 alanine racemase thiG b3991 thiazole synthase kbl b3617 2-amino-3-ketobutyrate coenzyme A ligase murA b3189 UDP-N-acetylglucosamine 1- carboxyvinyltransferase bioF b0776 8-amino-7-oxononanoate synthase tktA b2935 transketolase 1, thiamin-binding gabT b2662 4-aminobutyrate aminotransferase hisC b2021 histidinol-phosphate aminotransferase

Supplementary Table 3: Metabolites and transcripts co-clustering results. The list includes all metabolites and transcripts which co-cluster across different conditions, clusters with pathway's over-enrichment are shown.

STATIONARY PHASE						
ALL CLUSTERS						
CLUSTER NO	TOTAL NO	METABOLITES NO	TRANSCRIPTS NO	pathway enrichment		
1	65	4	61	no		
2	63	5	58	no		
3	68	2	66	yes		
4	103	0	103	no		
5	69	1	68	no		
6	35	14	21	no		
7	37	37	0	no		
8	74	5	69	no		
9	78	1	77	no		
10	116	0	116	no		
11	141	1	140	no		
12	61	1	60	no		
13	119	0	119	no		
14	59	4	55	no		
15	53	21	32	no		
16	69	0	69	no		
17	57	3	54	yes		
18	103	2	101	no		
19	160	0	160	no		
20	99	0	99	no		

CLUSTERS WITH PATHWAYS ENRICHMENT

STATIONARY PHASE CLUSTER 3

all cluster members

 $\begin{array}{l} \mbox{Trehalose, oxamic acid, b0581, b3093, b4167, b1003, b2662, b1010, b4124, b1836, b1197, b1454, b1256, b4271, b1577, b2332, b4230, b4304, b1188, b4127, b0510, b2405, b2015, b2305, b2665, b1515, b2137, b2535, b4298, b4529, b4269, b1514, b1428, b1297, b2881, b0508, b1784, b1300, b4119, b1440, b1728, b0286, b1442, b2659, b2936, b0812, b0507, b1441, b0304, b4051, b4212, b1467, b2781, b2664, b2310, b4126, b0865, b1512, b2375, b1298, b2172, b3073, b0979, b1675, b4214, b3362, b4128, b1007. \end{array}$

enriched pathway; p-value (enrich.); # of genes; # of metabolites; prob. of co-clust.; p-value (co-clust.)

put rescine degradation II 0.00015 3 0

superpathway of arginine and ornithine degradation; 2.55e-06; 5; 0;

 $superpathway \ of \ arginine, \ put rescine, \ and \ 4-amin obutyrate \ degradation; \ 2.37e-06; \ 5; \ 0;$

superpathway of ornithine degradation; 8.66e-06; 4; 0;

trehalose degradation II trehalase; 0.0018; 1; 1; 4.40e-16; 0.14

$enriched \ GO \ term_p\text{-}value_number \ of \ genes_term$

GO:0006575 0.0011 5 amino acid derivative metabolic process GO:0006576 0.0093 4 biogenic amine metabolic process GO:0006595 0.00038 4 polyamine metabolic process GO:0006598 4.05e-05 4 polyamine catabolic process GO:0009445 0.0001 4 putrescine metabolic process GO:0009447 4.05e-05 4 putrescine catabolic process GO:0042219 3.44e-05 5 amino acid derivative catabolic process GO:0042402 0.0001 4 biogenic amine catabolic process

STATIONARY PHASE CLUSTER 17

all cluster members

Glycericacid-3-phosphate, histidine, palmitoleic acid, b2341, b1426, b1725, b2148, b2426, b3605, b4512, b0346, b1593, b1376, b2151, b4208, b1415, b0307, b2149, b2537, b2702, b3845, b1205, b0598, b0064, b2243, b3846, b1384, b2597, b1660, b3430, b2869, b2875, b2799, b4151, b4033, b4032, b2242, b2022, b4118, b4037, b4122, b0228, b2147, b4322, b4216, b0306, b2239, b0162, b2241, b4487, b0308, b2146, b2703, b3885, b2342, b3081, b2021

enriched pathway; p-value (enrich.); # of genes; # of metabolites; prob. of co-clust.; p-value (co-clust.)

ethylene glycol degradation; 0.0032; 2; 0; glycerol degradation I; 0.00037; 4; 0; histidine biosynthesis; 0.0043; 2; 1; 4.40e-16; 0.54 L-lactaldehyde degradation aerobic; 0.0032; 2; 0; methylglyoxal degradation IV; 0.0027; 2; 0; superpathway of fucose and rhamnose degradation; 0.0027; 3; 0;

enriched GO term_p-value_number of genes_term

GO:0006575 0.0011 5 amino acid derivative metabolic process GO:0006004 0.0048 3 fucose metabolic process GO:0009056 0.0061 12 catabolic process GO:0016042 0.0019 4 lipid catabolic process GO:0019317 0.0019 3 fucose catabolic process GO:0042354 0.0025 3 L-fucose metabolic process GO:0042355 0.0019 3 L-fucose catabolic process

	OXIDATIVE STRESS						
	ALL CLUSTERS						
CLUSTER NO	TOTAL NO	METABOLITES NO	TRANSCRIPTS NO	pathway enrichment			
1	21	21	0	no			
2	23	3	20	no			
3	36	3	33	\mathbf{yes}			
4	38	0	38	no			
5	46	9	37	\mathbf{yes}			
6	16	2	14	no			
7	59	1	58	no			
8	5	5	0	no			
9	23	2	21	no			
10	23	4	19	\mathbf{yes}			
11	16	14	2	no			
12	43	0	43	no			
13	44	1	43	no			
14	57	0	57	no			
15	41	9	32	\mathbf{yes}			
16	41	1	40	no			
17	24	2	22	no			
18	21	1	20	no			
19	16	3	13	no			
20	20	20	0	no			

OXIDATIVE STRESS CLUSTER 3

all cluster members

Succinic acid, Glutamine, trimethyl lysine, b0704, b2675, b2660, b3221, b0946, b4364, b3172, b1454, b2818, b2676, b3959, b0860, b4127, b3960, b1611, b1956, b0233, b1428, b2999, b3958, b2112, b0789, b3957, b4126, b2209, b3359, b4511, b3361, b2441, b0753, b4128, b4094, b4451

enriched pathway; p-value (enrich.); # of genes; # of metabolites; prob. of co-clust.; p-value (co-clust.)

adenosine nucleotides biosynthesis; 0.0026; 2; 1; 1.10e-15; 0.41 arginine biosynthesis I; 8.90e-12; 7; 2; 1.10e-15; 0.32 guanosine nucleotides biosynthesis; 0.0025; 2; 1; 1.10e-15; 0.22 ornithine biosynthesis 3.36e-07 5 0 superpathway of arginine and polyamine biosynthesis 4.67e-08 7 0

enriched GO term_p-value_number of genes_term

GO:0006082 6.24e-05 9 organic acid metabolic process GO:0006519 3.75e-05 8 cellular amino acid and derivative metabolic process GO:0006520 2.38e-05 8 amino acid metabolic process GO:0006525 1.10e-10 7 arginine metabolic process GO:0006526 1.68e-12 7 arginine biosynthetic process GO:0006807 7.64e-05 8 nitrogen compound metabolic process GO:0008652 1.16e-05 7 amino acid biosynthetic process GO:0009064 2.57e-08 7 glutamine family amino acid metabolic process GO:0009084 1.10e-10 7 glutamine family amino acid biosynthetic process GO:0009262 0.005 2 deoxyribonucleotide metabolic process GO:0009263 0.003 2 deoxyribonucleotide biosynthetic process GO:0009308 3.83e-05 8 cellular amine metabolic process GO:0009309 1.34e-05 7 amine biosynthetic process GO:0015949 0.005 2 nucleobase, nucleoside and nucleotide interconversion GO:0019752 6.24e-05 9 carboxylic acid metabolic process GO:0034641 3.83e-05 8 cellular nitrogen compound metabolic process GO:0044249 0.006 11 cellular biosynthetic process GO:0044271 1.34e-05 7 nitrogen compound biosynthetic process

OXIDATIVE STRESS CLUSTER 5

all cluster members

Alanine, Pyruvic acid, Threonine, Aspartic acid, Glutaric acid, 2-hydroxy, Pyroglutamic acid(oxoproline), Glutamic acid, cysteine, 3-deoxy-D-arabinoheptulosonic acid, b1183, b1102, b0232, b1634, b3161, b1188, b2542, b0585, b0192, b4460, b0401, b2155, b1225, b0594, b2698, b4043, b4256, b1184, b1660, b1060, b2135, b4051, b4293, b3494, b4458, b2008, b4406, b0589, b0592, b1226, b1957, b4367, b0595, b2673, b1743

enriched pathway; p-value (enrich.); # of genes; # of metabolites; prob. of co-clust.; p-value (co-clust.)

2, 3-dihydroxybenzoate biosynthesis; 0.0031; 1; 1; 1.10e-15; 0.37 alanine biosynthesis I; 0.00065; 0; 3; alanine biosynthesis II; 3.61e-05; 0; 3; alanine biosynthesis III; 0.0017; 0; 2; alanine degradation I; 0.00282; 0; 2; asparagine biosynthesis I; 0.0031; 0; 2; aspartate biosynthesis; 0.0017; 0; 2; enterobactin biosynthesis; 0.0075; 2; 0; glutamate degradation II; 0.0028; 0; 2; glutathione biosynthesis; 0.0031; 0; 2; isoleucine biosynthesis I from threenine: 0.0017: 0: 3: L-cysteine degradation II; 0.0020; 0; 2; lysine biosynthesis I; 0.0020; 0; 3; methionine biosynthesis I; 0.0017; 0; 3; NAD biosynthesis I from aspartate; 0.0075; 0; 2; peptidoglycan biosynthesis III; 0.0020; 0; 3; phenylalanine biosynthesis I; 0.004; 0; 2; pyridoxal 5'-phosphate biosynthesis; 0.0080; 0; 2; serine biosynthesis; 0.005; 0; 2; thiamin biosynthesis I; 0.0020; 0; 3; tRNA charging pathway; 0.0006; 0; 5; tryptophan biosynthesis; 0.008; 0; 2; tyrosine biosynthesis I; 0.0031; 0; 2; valine biosynthesis; 0.008; 0; 2;

enriched GO term_p-value_number of genes_term

GO:0000041 3.40e-07 8 transition metal ion transport GO:0006281 0.009 4 DNA repair GO:0006518 0.008 2 peptide metabolic process GO:0006810 0.004 15 transport GO:0006811 0.0009 8 ion transport GO:0006812 5.27e-05 8 cation transport GO:0006826 6.30e-08 8 iron ion transport GO:0006974 0.009 4 response to DNA damage stimulus GO:0009237 0.0053 2 siderophore metabolic process GO:00092380.00532 enterobactin metabolic process GO:0009239 0.0053 2 enterobactin biosynthetic process GO:0009432 0.0004 4 SOS response GO:0009605 0.0053 4 response to external stimulus GO:0009712 0.0053 2 catechol metabolic process GO:0009991 0.001 4 response to extracellular stimulus GO:0015674 8.004e-08 8 di-, tri-valent inorganic cation transport GO:0018958 0.0053 2 phenol metabolic process GO:0019184 0.0053 2 nonribosomal peptide biosynthetic process GO:0019290 0.005 2 siderophore biosynthetic process GO:00195400.0052 siderophore biosynthetic process from catechol GO:0030001 1.91e-05 8 metal ion transport GO:0031668 0.001 4 cellular response to extracellular stimulus $\mathrm{GO:}0034984$ 0.0093 4 cellular response to DNA damage stimulus GO:0043043 0.005 2 peptide biosynthetic process $GO:0051179 \ 0.005 \ 15$ localization GO:0051234 0.0047 15 establishment of localization

OXIDATIVE STRESS CLUSTER 10

all cluster members

Valine, Hexacosanoic acid, cytosine, Linolenic acid, b1900, b2394, b1901, b3774, b0582, b0016, b1987, b3686, b1518, b2788, b4030, b2804, b0355, b3727, b4326, b2012, b2142, b3091, b3497

enriched pathway; p-value (enrich.); # of genes; # of metabolites; prob. of co-clust.; p-value (co-clust.)

valine biosynthesis; 0.0015; 1; 1; 1.10e-15; 0.53

enriched GO term_p-value_number of genes_term

OXIDATIVE STRESS CLUSTER 15

all cluster members

Isoleucine, Proline, Benzoic acid, 4-hydroxy, Lysine, Trehalose, norvaline, glutamine, arginine, asparagine, b1042, b0872, b3434, b1598, b2074, b1758, b1463, b1195, b3159, b4269, b0752, b2366, b3549, b4366, b1728, b0286, b4546, b0349, b1227, b3441, b2447, b1736, b2957, b4553, b0998, b2730, b0551, b2384, b1512, b0384, b0235, b3408,

enriched pathway; p-value (enrich.); # of genes; # of metabolites; prob. of co-clust.; p-value (co-clust.)

superpathway of aspartate and asparagine biosynthesis 0.0036; 1; 1; 1.10e-15; 0.53 tRNA charging pathway; 6.62e-05; 0; 5;

enriched GO term_p-value_number of genes_term

	GLUCOSE-LACTOSE SHIFT						
ALL CLUSTERS							
CLUSTER NO	TOTAL NO	METABOLITES NO	TRANSCRIPTS NO	pathway enrichment			
1	42	11	31	no			
2	25	1	24	no			
3	12	5	7	no			
4	41	0	41	no			
5	12	6	6	\mathbf{yes}			
6	38	5	33	no			
7	20	1	19	no			
8	11	0	11	no			
9	29	29	0	no			
10	26	4	22	no			
11	27	0	27	no			
12	23	0	23	no			
13	13	4	9	no			
14	44	0	44	no			
15	26	1	25	no			
16	38	0	38	no			
17	7	3	4	no			
18	22	22	0	no			
19	31	7	24	no			
20	15	2	13	no			

GLUCOSE-LACTOSE SHIFT CLUSTER 5

all cluster members

glycine, Threonine, Aspartic acid, Threonic acid, Adipic acid, asparagine, b3375, b2448, b0965, b2807, b3617, b2159

enriched pathway; p-value (enrich.); # of genes; # of metabolites; prob. of co-clust.; p-value (co-clust.)

asparagine biosynthesis I; 0.00043; 0; 2; asparagine biosynthesis II; 0.00043; 0; 2; superpathway of aspartate and asparagine biosynthesis; 0.0006; 0; 2; threonine degradation II 0.00043; 1; 1; 2.20e-16; 0.25 tRNA charging pathway; 0.00062; 0; 3;

enriched GO term_p-value_number of genes_term

	HEAT STRESS						
ALL CLUSTERS							
CLUSTER NO	TOTAL NO	METABOLITES NO	TRANSCRIPTS NO	pathway enrichment			
1	120	8	112	no			
2	124	3	121	no			
3	105	1	104	no			
4	52	2	50	no			
5	112	1	111	no			
6	124	14	110	no			
7	51	51	0	no			
8	120	9	111	no			
9	233	3	230	no			
10	60	0	60	no			
11	91	0	91	no			
12	57	2	55	\mathbf{yes}			
13	164	0	164	no			
14	108	3	105	no			
15	50	1	49	no			
16	39	2	37	no			
17	193	0	193	no			
18	91	0	91	no			
19	81	1	80	no			
20	213	0	213	no			

HEAT STRESS CLUSTER 12

all cluster members

Glutamicacid, heptadecanoicacid, b2230, b0900, b2427, b4268, b0208, b2452, b1598, b2548, b1900, b0982, b2870, b0457, b4186, b2407, b4286, b0877, b1323, b1798, b0130, b4478, b0601, b1250, b2201, b4460, b2546, b2831, b1803, b0987, b1312, b1218, b1525, b4528, b0106, b3891, b0340, b1562, b1217, b3718, b4479, b4424, b4415, b4518, b1196, b0227, b4422, b3130, b4326, b0561, b0048, b1429, b0773, b0802, b1793, b0560, b1999

enriched pathway; p-value (enrich.); # of genes; # of metabolites; prob. of co-clust.; p-value (co-clust.)

formylTHF biosynthesis I; 0.0071; 1; 1; 4.40e-16; 0.33 tetrahydrofolate biosynthesis; 0.007; 1; 1; 4.40e-16; 0.33

enriched GO term_p-value_number of genes_term

		CONTRO	L	
		ALL CLUST	ERS	
CLUSTER NO	TOTAL NO	METABOLITES NO	TRANSCRIPTS NO	pathway enrichment
1	54	45	9	yes
2	13	11	2	no
3	26	26	0	no
4	21	12	9	no
5	9	5	4	no
6	28	2	26	no

CONTROL CLUSTER 1

all cluster members

Alanine, Glycolic acid, Pyruvic acid, Valine Ethanolamine, Leucine, Isoleucine, Glycine, Proline, Urea, Serine (major), Succinic acid Threonine, Fumaric acid, beta-Alanine, Homoserine Malic acid, 4-Aminobutyric acid, Aspartic acid, Threonic acid, Methionine, Glutaric acid (2-hydroxy), Pyroglutamic acid (oxoproline), Glutamic acid Putrescine, Phenylalanine, Benzoic acid (4-hydroxy), Glutamine (N-acetyl), Orotic acid, Lysine, Oleic acid, 2-hydroxybutyric acid, 2-aminobutyric acid, 2-ketoglutaric acid, 2-ketobutyric acid, norvaline, norleucine, glutamine minor, isopropylmalic acid, cysteine, arginine, trimethyl, lysine, shikimic acid-3-phosphate, dihydroorotic acid, 3-deoxy-D-arabinoheptulosonic acid, b2252, b0647, b4113, b2408, b4467, b2254, b2253, b2256, b4112

enriched pathway; p-value (enrich.); # of genes; # of metabolites; prob. of co-clust.; p-value (co-clust.)

4-aminobutyrate degradation I; 0; 0; 4; alanine biosynthesis I; 0; 0; 5; alanine biosynthesis II; 4.76E-005; 0; 4; arginine biosynthesis I 0; 0; 5; arginine degradation II AST pathway; 0; 0; 4; arginine degradation III; arginine; decarboxylase/agmatinase; pathway; 0; 0; 3; aspartate biosynthesis; 0; 0; 3; BasSR Two-Component Signal Transduction System; 0.01; 2; 0; folate polyglutamylation I; 0; 0; 3; glutamate degradation II; 0; 0; 4; glutathione biosynthesis; 0; 0; 3; glycolate and glyoxylate degradation II; 0.01; 1; 2; 2.20e-16; 0.39; isoleucine biosynthesis I from threenine; 0; 0; 5; leucine biosynthesis; 4.76E-005; 0; 6; lysine biosynthesis I; 0; 0; 6; methionine biosynthesis I; 4.76E-005; 0; 6; phenylalanine biosynthesis I; 0; 0; 4; putrescine biosynthesis I; 0; 0; 3; putrescine degradation I; 0; 0; 4; putrescine degradation II; 0.01; 0; 3; serine biosynthesis; 0; 0; 4; tRNA charging pathway; 3.09E-010; 0; 15; tyrosine biosynthesis I; 0.01; 0; 3; uridine-5'-phosphate biosynthesis; 0.01; 0; 4; valine biosynthesis; 0; 0; 4;

enriched GO term_p-value_number of genes_term

GO:0009245 0.0025 2 lipid A biosynthetic process GO:0010035 0.0002 3 response to inorganic substance GO:0010038 0.0001 3 response to metal ion GO:0010039 4.38e-06 3 response to iron ion GO:0010041 4.38e-06 3 response to iron(III) ion GO:0042221 0.0001 5 response to chemical stimulus GO:0046493 0.002 2 lipid A metabolic process GO:0046677 0.002 3 response to antibiotic GO:0050896 0.004 5 response to stimulus

		COLD STRI	ESS	
		ALL CLUST	ERS	
CLUSTER NO	TOTAL NO	METABOLITES NO	TRANSCRIPTS NO	pathway enrichment
1	93	5	88	no
2	117	21	96	\mathbf{yes}
3	101	4	97	no
4	59	1	58	no
5	126	2	124	no
6	160	6	154	no
7	116	1	115	no
8	193	7	186	\mathbf{yes}
9	56	0	56	no
10	134	1	133	no
11	147	2	145	no
12	128	13	115	\mathbf{yes}
13	239	2	237	no
14	151	0	151	no
15	147	1	146	no
16	51	28	23	no
17	247	4	243	no
18	132	3	129	no
19	129	0	129	no
20	117	0	117	no

COLD STRESS CLUSTER 2

all cluster members

Pyridine3-hydroxy, phosphoric acid, Phosphate, Benzoic acid, Serine(major), Uracil, Glutaric acid, 2hydroxy, Ribose, Orotic acid, Gluconic acid, Oleic acid, Glucose6-phosphate;Lactitol, D-erythrose-4phosphate, choline chloride;oxamic acid, shikimic acid-3-phosphate, tyramine histidine, ribose5P, Spermidine(major), b0805, b0034, b3723b0807, b1755, b0272, b0908, b4512, b3751, b3669, b3869, b1877, b3745b0238, b1940, b1593, b3431, b0778, b2306, b0166, b3613, b1987, b3538b0599, b0524, b0749, b0469, b0147, b2627, b2155, b0833, b0675, b4541, b4369, b4367, b1682, b4368, b0745, b1975, b1230, b1757, b3606, b0885, b2858, b2421, b3937, b1446, b3978, b1821, b0748, b1756, b2404, b4541, b4369, b4367, b1682, b4368, b0745, b1975, b1230, b1757, b3606, b0885, b2858, b2421, b3937, b1446, b3978, b1821, b0748, b1756, b2404, b2026, b0640, b0743, b3416, b3752, b3337, b0747, b1945, b3976, b1730, b0381, b2784, b1910, b2153, b1944, b3064, b0788, b2092, b0133, b4207, b4037, b2204, b4378, b3798, b1467, b4390, b1989, b0803, b1835, b1960, b1019, b1939, b3977, b3925, b0804, b1074, b1382, b0666, b3590, b4370, b4541, b4369, b2025, b0724, b1681, b1231, b1231.

enriched pathway; p-value (enrich.); # of genes; # of metabolites; prob. of co-clust.; p-value (co-clust.)

degradation of pyrimidine ribonucleosides; 0.001; 0; 4; histidine biosynthesis; 0.009; 2; 2; 1.54e-15; 0.019 pentose phosphate pathway non-oxidative branch; 0.006; 0; 4; PRPP biosynthesis I; 0.001; 0; 3; PRPP biosynthesis II 0.006; 0; 3; ribose degradation 0.0006; 1; 3; 1.54e-15; 0.021; salvage pathways of adenine, hypoxanthine, and their nucleosides; 0.0013; 2; 3; 1.54e-15; 0.006 superpathway of gluconate degradation; 0.007; 0; 4;

 $enriched \ GO \ term_p\mbox{-value_number} \ of \ genes_term$

COLD STRESS CLUSTER 8

all cluster members

4-Aminobutyric acid, Pyroglutamic acid(oxoproline), Glutamine, 2-hydroxybutyric acid, norvaline, norleucine, arginine, b2157, b1958, b0167, b2979, b3512, b3886, b1719, b2009, b2587, b4020, b0882, b1841, b3244, b4396, b0686, b3164, b0610, b1278, b1663, b0290, b0800, b2467, b3910, b0489, b4467, b2317, b0490, b3243, b0114, b0494, b4340, b4012, b4294, b0881, b0845, b4468, b1299, b1839, b2020, b2699, b4059, b1781, b0195, b2369, b0478, b0932, b3804, b3699, b3434, b2795, b4109, b0200, b0730, b2133, b3496, b1164, b1489, b1206, b2063, b0693, b1981, b1083, b1657, b1860, b1464, b4234, b3350, b1542, b0959, b3499, b1328, b2071, b0763, b3648, b0516, b3021, b1777, b1322, b4551, b3625, b0759, b1302, b1249, b3847, b0958, b3585, b0953, b1840, b0628, b1271, b0391, b0127, b4296, b1020, b2678, b3178, b1625, b1482, b1325, b1297, b2522, b4014, b1921, b0110, b1490, b1301, b2217, b2292, b0190, b1300, b2574, b2677, b3034, b2943, b3549, b1215, b2837, b1398, b0968, b2616, b1165, b1778, b4030, b0848, b0779, b0109, b0495, b1764, b1192, b4077, b1326, b1167, b1321, b0438, b0437, b0764, b0213, b0866, b0115, b2893, b1279, b0392, b2392, b2679, b0111, b3805, b3426, b1447, b4212, b3649, b3888, b1448, b2249, b0683, b2530, b2016, b3554, b2620, b2549, b3773, b1748, b2529, b4210, b3284, b0761, b4355, b0024, b2007, b0481, b0488, b1782, b2696, b1189, b1190, b1992, b3279, b4430, b4360, b4403, b3040, b3602, b3351,

enriched pathway; *p*-value (enrich.); # of genes; # of metabolites; prob. of co-clust.; *p*-value (co-clust.) glycolate and glycyylate degradation II; 0.001 4; 0;

putrescine degradation II; 0.0002; 4; 1; 1.54e-15; 0.618;

superpathway of arginine and ornithine degradation; 0.0002; 6; 1; 1.54e-15; 0.702;

superpathway of arginine, putrescine, and 4-aminobutyrate degradation; 0.0003; 5; 1; 1.54e-15; 0.36;

superpathway of glycol metabolism and degradation; 0.009; 4; 0;

superpathway of ornithine degradation; 0.0005; 5; 0;

enriched GO term_p-value_number of genes_term

COLD STRESS CLUSTER 12

all cluster members

Alanine, Leucine, Isoleucine, Threonine, Homoserine, Aspartic acid, Threonic acid, Glutamic acid, Phenylalanine, Glutamine N-acetyl, 2-aminobutyric acid glutamine, asparagine, b4356, b2046, b2210, b1706, b3627, b0453, b1522, b0019, b1082, b1634, b3632, b2594, b3210, b1894, b4048, b2105, b1620, b0476, b0155, b2123, b1432, b1845, b3629, b4516, b0786, b0038, b3293, b0275, b3716, b1747, b0925, b4172, b3743, b0119, b2435, b4361, b2572, b2577, b3631, b2382, b3711, b0401, b0265, b3101, b0705, b1741, b1829, b0706, b3179, b1789, b2501, b1085, b4394, b2531, b2698, b4043, b0439, b3292, b2010, b3347, b0122, b1617, b0944, b0124, b4313, b3086, b2593, b3444, b4058, b3194, b3207, b3616, b0927, b3894, b4424, b3834, b2331, b0128, b2910, b1296, b0022, b1254, b2301, b1688, b1848, b2008, b3662, b3193, b4422, b0891, b2640, b3163, b4175, b0388, b3895, b4447, b1957, b3802, b2101, b2560, b0942, b2949, b1335, b3848, b0214, b0926, b3195, b2106, b4140, b3162, b4420, b3181, b1295, b3036, b3617

enriched pathway; *p*-value (enrich.); # of genes; # of metabolites; prob. of co-clust.; *p*-value (co-clust.) alanine biosynthesis II; 0.0065; 0; 2;

aminopropanol biosynthesis; 0.0065; 1; 1; 3.24e-6; 0.003;

asparagine biosynthesis I; 0.0027; 0; 3;

threenine degradation II; 0.00084; 2; 1; 1.54e-15; 0.653;

threenine degradation III to methylgly oxal; $0.0065;\,1;\,1;\,1.54\text{e-}15;\,0.234$

tRNA charging pathway; $0.0001;\,0;\,8;$

aspartate biosynthesis; 0.0065; 0; 2;

Lipid A-core biosynthesis; $0.0065;\,3;\,0;$

enriched GO term_p-value_number of genes_term

GO:0006259 0.0076 13 DANN metabolic process GO:0006950 0.0060 15 response to stress GO:0009432 0.0063 5 SOS response GO:0034960 0.0063 39 cellular biopolymer metabolic process GO:0043170 0.0063 41 macromolecule metabolic process GO:0043283 0.0063 39 biopolymer metabolic process GO:0044260 0.0063 40 cellular macromolecule metabolic process

metabolites	genes							
	ррр	glycolysis	TCA cycle	transcriptional regulators	anaerobic respiration			
Succinic acid	tktA	glpX	sdhA	arcA	frdA			
Fumaric acid	tktB	eno	sdhB	arcB	frdB			
Malic acid	talA	gpmA	sdhC	crp	frdC			
6-phosphogluconic acid	talB	fbaA	sdhD	fnr	frdD			
D-erythrose-4-phosphate	zwf	fbaB	gltA	fruR	hycB			
ribose 5P	gnd	fbp	acnA	dgsA	hycC			
Glucose 6-phosphate	rpiA	pfkA	acnB	dcuB	hycD			
Glyceric acid-3-phosphate	rpiB	pfkB	icd	cyaA	hycE			
PEP	rpe	pgi	lpd		hycF			
Pyruvic acid	ybhE	tpiA	sucB		hycG			
2-ketoglutaric acid		pgk	sucA		pflB			
		pykA	sucC		tdcE			
		pykF	sucD		poxB			
		pps	fumA		fdhF			
		ytjC	fumB					
		yggF	fumC					
		ybhA	mqo					
		gpmI	mdh					
		gapA						

Supplementary Table 4: List of all metabolites and transcripts used for CCA analysis.

	x = G6P	x = PEP	x = pps	canon. corr. $x = V_i, 1 \le i \le 11$
$cor(x, U_1)$	-0.80	-0.57	-0.65	0.97
$cor(x, U_2)$	-0.36	-0.39	-0.40	0.96
$cor(x, U_3)$	0.35	0.60	-0.41	0.94
$cor(x, U_4)$	-0.23	0.12	-0.00	0.81
$cor(x, U_5)$	0.03	0.07	-0.17	0.76
$cor(x, U_6)$	-0.11	-0.22	-0.29	0.71
$cor(x, U_7)$	0.01	0.12	-0.13	0.68
$cor(x, U_8)$	0.06	0.25	0.00	0.64
$cor(x, U_9)$	-0.06	0.12	0.05	0.59
$cor(x, U_{10})$	0.04	-0.11	-0.10	0.35
$cor(x, U_{11})$	-0.01	-0.01	0.17	0.34

Supplementary Table 5: Example of canonical structure correlations of two metabolites and the pps gene under control condition. This table shows the canonical structure correlations of glucose 6-phosphate (G6P), phosphoenolpyruvate (PEP) and the pps gene encoding phosphoenolpyruvate synthase. Each row corresponds to the respective Pearson correlation of the original representation of a variable (a column vector in X or Y) and the respective canonical variate U_i , $1 \le i \le 11$. Note, as the dimension of the metabolite matrix Y is 21×11 and the dimension of the gene matrix X is 21×69 , we can determine 11 linear combinations of X and Y resulting in 11 cononical correlations of the respective canonical variates U_i and V_i (as shown in column 4). As a result of the restriction on succesive higher-order canonical variates to be orthogonal, the canonical correlation decreases. The scatter plots in the manuscript use the first and second canonical structure correlations, marked in bold.

7 Supplementary Figures

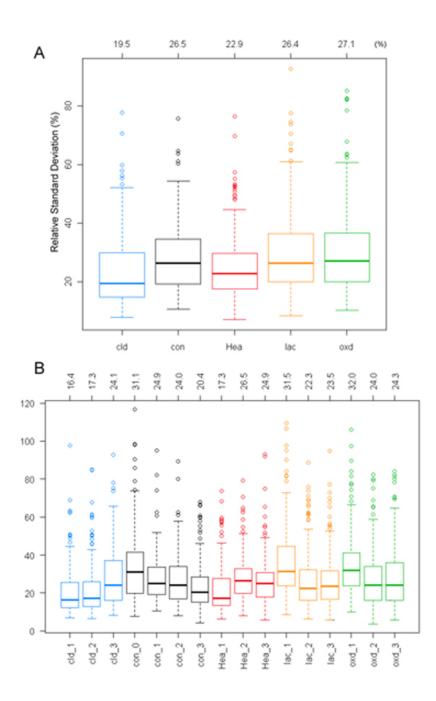


Figure 1: Relative standard deviation (RSD) of metabolite data of all biological and technical replicates. A: Box plots show RSD averages for all time points and all technical replicates within individual conditions. B: Box plots show RSD for the three technical replicates averaged independently for all biological replicates. Different conditions are indicated on the figure and additionally colour coded: blue-cold, black-control, red-heat, orange-lactose shift, green-oxidative stress.

contr; cold; heat		1	2	3	4	5	6	7	8	9	10	11	12
lactose; oxidative	1	2	3	4	5	6	7		8	9	10	11	12
	OD 0.3	OD 0.5	OD 0.6	10min	20min	30min	40min	50min	90min	150min	210min	235min	260mir
control 1		0.51	0.62	0.68	0.74	0.77	0.88	0.95	1.43	2.15	2.35	2.34	2.35
control 2		0.50	0.59	0.69	0.76	0.83	0.92	1.00	1.42	2.26	2.26	2.26	2.25
control 3		0.53	0.61	0.70	0.75	0.82	0.91	0.99	1.44	2.21	2.43	2.47	2.46
control 4		0.49	0.59	0.71	0.79	0.85	0.92	1.01	1.40	2.16	2.50	2.51	2.47
cold 1		0.50	0.61	0.62	0.62	0.65	0.64	0.67	0.68	0.67	0.71	0.77	0.76
cold 2		0.52	0.63	0.66	0.62	0.64	0.66	0.68	0.72	0.65	0.71	0.79	0.78
cold 3		0.50	0.60	0.64	0.60	0.61	0.64	0.67	0.65	0.68	0.71	0.75	0.74
heat 1		0.49	0.61	0.68	0.73	0.73	0.73	0.75	0.80	0.83	0.86	0.87	NA
heat 2		0.52	0.59	0.64	0.65	0.64	0.68	0.69	0.74	0.79	0.78	0.87	NA
heat 3		0.50	0.58	0.62	0.67	0.68	0.69	0.69	0.73	0.77	0.81	0.86	NA
oxidative 1	NA	0.43	0.67	0.66	0.66	0.67	0.69		0.92	1.53	2.20	2.11	NA
oxidative 2	NA	0.53	0.64	0.64	0.64	0.66	0.67		0.91	1.60	2.24	2.28	2.29
oxidative 3	NA	0.51	0.62	0.67	0.68	0.69	0.72		1.00	1.73	2.21	2.21	2.20
lactose 1	0.36	0.45	0.55	0.61	0.63	0.65	0.67		0.74	0.96	2.30	NA	NA
lactose 2	0.32	0.60	0.66	0.66	0.67	0.70	0.75		1.15	2.02	2.23	2.32	2.28
lactose 3	0.48	0.63	0.69	0.68	0.70	0.72	0.76		1.27	2.01	2.30	2.33	2.29
C	ontrol (b	iol repli	ca 3)					Oxida	tive str	ess (bio 3	l replica	3)	
	2	.5								5			
		2	9	10111	2					2		/101	112
00 600nm	1	.5				600nm				5	/	9	
00		,	/8			00				1			
		34 ⁶⁷							0.	5× 456	/8 7		
;		•							1	0			
-400 -20	00 tii	0 me [min]	20	0	400	-30	- 00	200	-100 t	0 ime [min	100]	200	300

Figure 2: Sampling time of all conditions tested. Time course is represented by 12 time points: 2-3 before stress, 4-5 every 10 min after stress and 5 time points (90-260min) late after stress. Different phases of growth are marked by colours: exponential growth before stress: green, growth arrest after stress: red, resumption of exponential growth after stress and late log growth (90-150min) in control: blue, stationary phase: black. Optical density (600nm) is shown for every time point. pH 7 did not change significantly during culture growth, also temperature (37°C) was kept constant except both temperature stresses. Exemplary growth curves (based on OD 600nm) for a control and the oxidative stress experiment are shown below with depicted time points. The moment of stress (or OD=6 in control) is indicated on the X axis by 0.

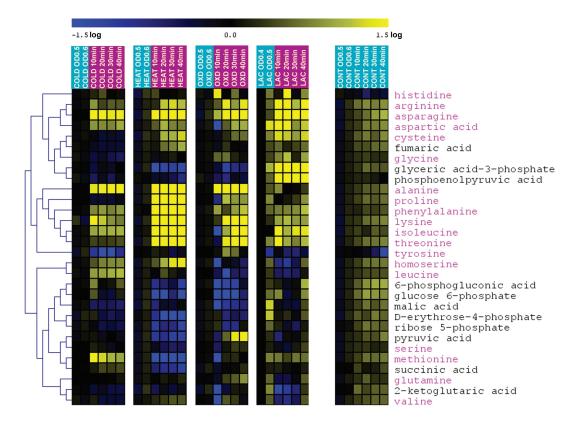


Figure 3: Median metabolite levels from time points up to 40 minutes after applied stress for three independent biological repetitions of each stress condition, plus the controls, relative to time points prior to the perturbation are shown in columns. The color of the panel indicates the growth phase: blue- exponential growth, magenta- growth cessation or reduction. Time points before stress application are indicated by their optical density. Only metabolites described as a part of the general response to perturbation - amino acids (magenta) and metabolites associated with glycolysis, the pentose phosphate pathway, and TCA cycle (black) are shown. The hierarchical clustering (Pearson correlation, average linkage aggregation method) separates these two groups of compounds, illustrating a tendency of amino acids to accumulate while intermediates of central metabolism decrease.

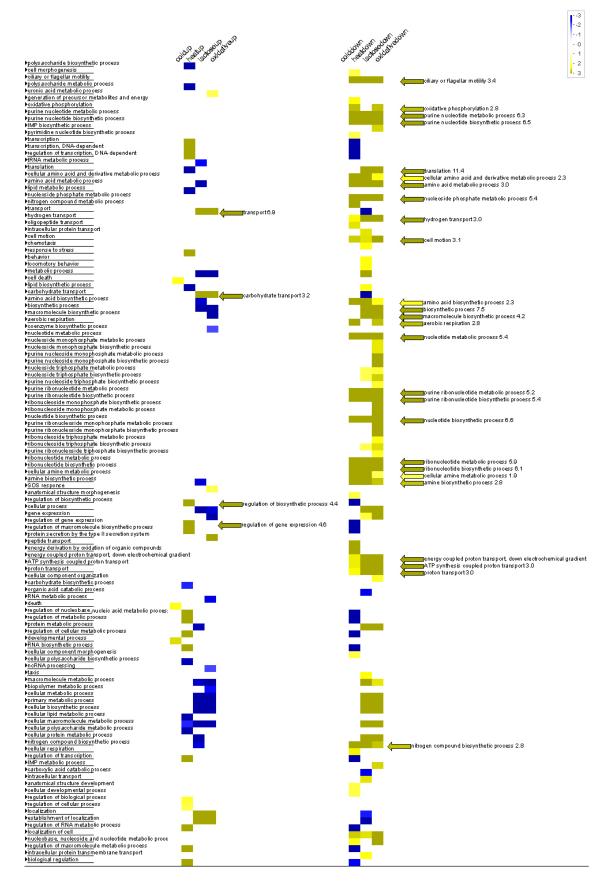


Figure 4: GO over- and underrepresentation analysis of genes changing expression under various environmental conditions. Continued on next page.

Figure 4: Continued from previous page. GO term enrichment analysis was performed for the time point of maximal changes at transcript level (cf. Figure 4). The analysis was performed for both up (left column) and down (right column) regulated genes. GO terms described in the main text are indicated with arrows. The intensity of the colour indicates the significance, with the highest significance for the most intense colour. Different colours indicate if given GO term in under- (blue) or overrepresented (yellow). Since for each Bin p-values are calculated, a transformation has to be made to display them on a linear scale for visualization. PageMan compresses the p-values by converting them into z-scores with a z-score of 1.96 representing a p-value of 0.05. All p-values above 0.05 (Bonferroni corrected) are masked (coloured white).

					-				
t1 (10min)	cold	heat	lactose	oxidative	t1(10min)	cold	heat	lactose	oxidative
cold	12	0/1	3/0.08	1/0.65	cold	6	5/0.04	1 /0.71	2 /0.11
heat		10	0/1	7/6.1E-07	heat		115	32/1.1E-03	24/8.5E-
lactose			18	1/0.79	lactose			54	8 /0.15
oxidative				16	oxidative				29
t2 (20min)	cold	heat	lactose	oxidative	t2(20min)	cold	heat	lactose	oxidative
cold	7	1/0.68	0/1	4/7.6E-03	cold	40	22/0.09	13/0.02	14/0.0
neat		29	5/0.02	16/3.3E-09	heat		127	33/6.4E-03	47/4.4E-
actose			12	3/0.21	lactose			55	27/2.5E-
oxidative				27	oxidative				57
0 (00					40 (20 min)				
3 (30min)	cold	heat	lactose	oxidative	t3 (30min)	cold	heat	lactose	oxidative
	14	heat 2/0.55	actose 3/0.054	oxidative 5/0.01	cold	cold 60	heat 32/0.02	lactose 3/0.99	
old					, , ,				13/2.7E-
cold heat		2/0.55	3/0.054	5 /0.01	cold		32 /0.02	3/0.99	13/2.7E- 24/5.1E-
cold heat lactose		2/0.55	3/0.054 1/0.84	5/0.01 12/3.5E-07	cold heat		32 /0.02	3/0.99 6/1	13/2.7E- 24/5.1E-
cold heat lactose		2/0.55	3/0.054 1/0.84	5/0.01 12/3.5E-07 3/0.16	cold heat lactose		32 /0.02	3/0.99 6/1	13/2.7E- 24/5.1E- 2/0.94
cold heat lactose oxidative		2/0.55	3/0.054 1/0.84	5/0.01 12/3.5E-07 3/0.16	cold heat lactose		32 /0.02	3/0.99 6/1	13/2.7E- 24/5.1E- 2/0.94
cold heat lactose oxidative t4 (40min)	14	2/0.55 25	3/0.054 1/0.84 13	5/0.01 12/3.5E-07 3/0.16 22	cold heat lactose oxidative	60	32/0.02 118	3/0.99 6/1 40	13/2.7E- 24/5.1E- 2/0.94 30 oxidative
cold heat lactose oxidative t4 (40min) cold		2/0.55 25 heat	3/0.054 1/0.84 13 lactose	5/0.01 12/3.5E-07 3/0.16 22 oxidative	cold heat lactose oxidative t4 (40min)	60 	32/0.02 118 heat	3/0.99 6/1 40 lactose	13/2.7E- 24/5.1E- 2/0.94 30 oxidative 8/4.8E-0
t3 (30min) cold heat lactose oxidative t4 (40min) cold heat lactose		2/0.55 25 heat 4/0.2	3/0.054 1/0.84 13 lactose 0/1	5/0.01 12/3.5E-07 3/0.16 22 oxidative 4/0.08	cold heat lactose oxidative t4 (40min) cold	60 	32/0.02 118 heat 33/8.6E-03	3/0.99 6/1 40 lactose 0/1	13/2.7E- 24/5.1E- 2/0.94 30

в

Figure 5: Similarity between metabolites (a) and transcripts (b) changing in comparison to control condition as a result of the respective stress application Parallel time points post perturbation (t1: 10 min after perturbation; t2: 20 min; t3: 30 min; t4: 40 min) from different experiments were compared against corresponding time points from an unperturbed growth curve (control). The total number of metabolites (A) which differ ($p \leq 0.05$, ratios ≥ 2) between control and the corresponding treatment and genes coding enzymes which could be directly linked to measured metabolites (B) which do likewise ($p \leq 0.05$, ratios ≥ 3) is shown in grey boxes. Lists of significant differences were compared and the number of similarly changing features (in the same direction) following pair wise comparison is displayed in orange boxes. The significance of the overlap was tested using the Fisher exact test, from which respective p-values are shown for each comparison. The significant overlaps are showed in blue boxes.

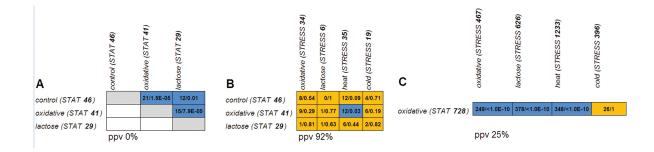


Figure 6: Changes in metabolites during stationary phase are similar between different cultures (A) but different from metabolites changing during post-perturbation phase (B) whereas transcripts changing during stationary phase or during post-perturbation phase are very similar (C). The number of metabolites: A,B ($p \le 0.05$, ratios ≥ 2) and transcripts: C ($p \le 0.05$, ratios ≥ 3), which change upon entry into stationary phase (STAT) and post-perturbation changes (STRESS) (numbers are given in parentheses after the respective condition) are compared and number of changing transcripts and metabolites shared between two conditions are displayed. The significance of overlap between different conditions was tested using the Fisher exact test and respective p-values are shown. Significant overlaps are highlighted in blue. A: Comparison of metabolites changing for three different cultures (control conditions; oxidative stress; glucose-lactose shift) upon entering stationary phase. The number in brackets given after the respective condition indicates the number of significantly changing metabolites. B: Comparison of metabolites changing for three different cultures (control conditions; oxidative stress; glucose-lactose shift) upon entering stationary phase with metabolites changing during post-perturbation phase for all four different environmental conditions. The number in brackets given after the respective condition indicates the number of significantly changing metabolites. C: Comparison of transcripts changing upon entering stationary phase (as exemplified for the culture exposed to oxidative stress treatment) with transcripts changing during post-perturbation phase for the four different stress treatments.

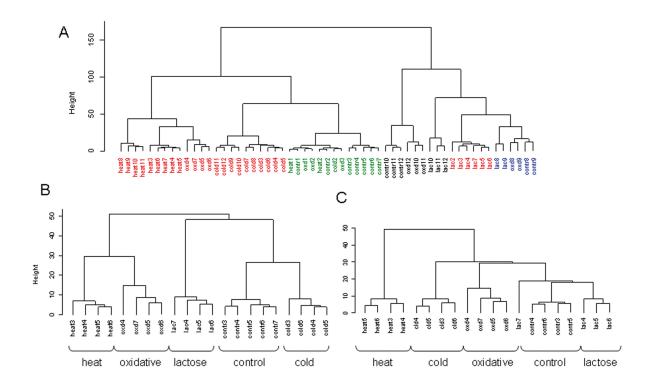


Figure 7: Hierarchical clustering of all samples based on metabolites (Figure 2A, B) and transcripts (Figure 2C). A. HCA of all samples based on metabolite composition. cold: cold treatment; heat: heat treatment; oxd: oxidative stress experiment; lac: glucose-lactose diauxic shift experiment; contr: no stress application. Numbering refers to the numbering given in supplemental figure 1. B. HCA of post-perturbation samples plus control based on metabolite data. Further details are as in figure 2A. C. HCA of post-perturbation samples plus controls based on transcript data. Further details are as in figure 2A.

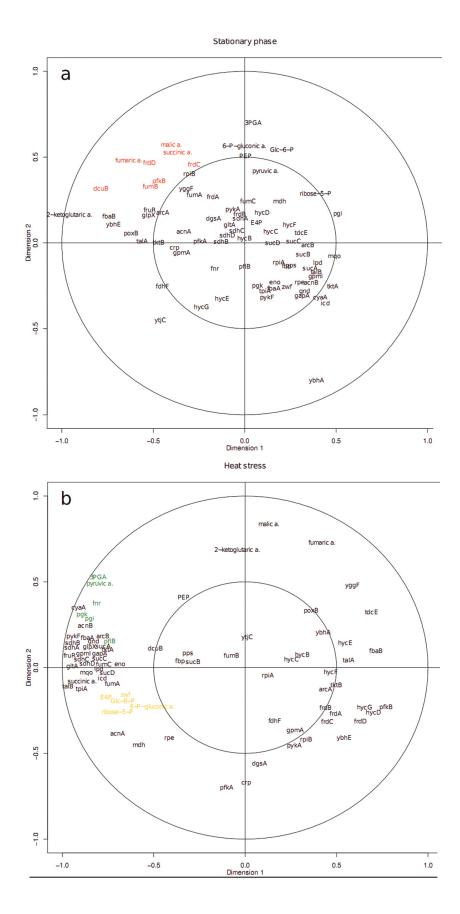


Figure 8: Visualization of the CCA results of metabolites and genes involved in primary metabolism under stationary phase and heat stress. Continued on next page.

Figure 8: Continued from previous page. (a) Visualization of the canonical structure correlations with the first two canonical variates under stationary phase: The group of genes colored in red is comprised of three metabolites of the TCA cycle including malic acid, fumarate and succinic acid. Additionally, 4 genes including fumarate reductase ($frd \ C,D$), fumarase B (fumB) and fumarate-succinate antiporter (dcuB) are in the close proximity. (b) Representation of the CCA result under heat stress: We were able to identify two groups of genes and metabolites. Colored in yellow we find similarity between the zwf gene encoding the glucose-6-phosphate dehydrogenase and three intermediates of the ppp, including glucose-6-phosphate (Glc-6-P), 6-phosphogluconic acid (6-P-gluconic a.) and D-erythrose-4-phosphate (24P). The second group colored in green consists of pyruvic acid, glyceric acid 3-phosphate (3PGA) and the genes $fnr, \ pgk, \ pflB$ and pgi. For futher details see the main text.

References

- W. J. Welch and C. R. Brown. Influence of molecular and chemical chaperones on protein folding. *Cell Stress & Chaperones*, 1(2):109–115, 1996.
- [2] M. J. Brauer, J. Yuan, B. D. Bennett, W. Y. Lu, E. Kimball, D. Botstein, and J. D. Rabinowitz. Conservation of the metabolomic response to starvation across two divergent microbes. *Proc. National Acad. Sciences United States Am.*, 103(51):19302–19307, 2006.
- [3] S. Kusano and A. Ishihama. Stimulatory effect of trehalose on formation and activity of Escherichia coli RNA polymerase E sigma(38) holoenzyme. J. Bacteriology, 179(11):3649– 3654, 1997.
- [4] J. Mandelstam. Protein turnover and its function in economy of cell. Annals New York Acad. Sciences, 102(3):621-&, 1963.
- [5] R. Hengge-Aronis, W. Klein, R. Lange, M. Rimmele, and W. Boos. Trehalose synthesis genes are controlled by the putative sigma-factor encoded by rpos and are involved in stationary-phase thermotolerance in escherichia-coli. J. Bacteriology, 173(24):7918–7924, 1991.
- [6] M. Rahman, M. R. Hasan, and K. Shimizu. Growth phase-dependent changes in the expression of global regulatory genes and associated metabolic pathways in Escherichia coli. *Biotechnology Lett.*, 30(5):853–860, 2008.
- [7] A. Matin. The molecular-basis of carbon-starvation-induced general resistance in escherichia-coli. *Mol. Microbiology*, 5(1):3–10, 1991.
- [8] C. Marschall, V. Labrousse, M. Kreimer, D. Weichart, A. Kolb, and R. Hengge-Aronis. Molecular analysis of the regulation of csiD, a carbon starvation-inducible gene in Escherichia coli that is exclusively dependent on sigma(S) and requires activation by campcrp. J. Mol. Biol., 276(2):339–353, 1998.
- [9] C. Marschall and R. Henggearonis. Regulatory characteristics and promoter analysis of csie, a stationary phase-inducible gene under the control of sigma(s) and the camp-crp complex in escherichia-coli. *Mol. Microbiology*, 18(1):175–184, 1995.
- [10] S. B. Farr and T. Kogoma. Oxidative stress responses in escherichia-coli and salmonellatyphimurium. *Microbiological Rev.*, 55(4):561–585, 1991.
- [11] C. T. Privalle and I. Fridovich. Induction of superoxide-dismutase in escherichia-coli by heat-shock. Proc. National Acad. Sciences United States Am., 84(9):2723–2726, 1987.

- [12] T. Nystrom. The glucose-starvation stimulon of escherichia-coli induced and repressed synthesis of enzymes of central metabolic pathways and role of acetyl phosphate in geneexpression and starvation survival. *Mol. Microbiology*, 12(5):833–843, 1994.
- [13] J. D. Partridge, G. Sanguinetti, D. P. Dibden, R. E. Roberts, R. K. Poole, and J. Green. Transition of Escherichia coli from aerobic to micro-aerobic conditions involves fast and slow reacting regulatory components. J. Biological Chem., 282:11230–11237, 2007.
- [14] A. Kleefeld, B. Ackermann, J. Bauer, J. Kramer, and G. Unden. The Fumarate/Succinate Antiporter DcuB of Escherichia coli Is a Bifunctional Protein with Sites for Regulation of DcuS-dependent Gene expression. J. Biological Chem., 284(1):265–275, 2009.
- [15] D. E. Chang, D. J. Smalley, and T. Conway. Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model. *Mol. Microbiology*, 45(2):289– 306, 2002.
- [16] A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G. Storz, D. Botstein, and P. O. Brown. Genomic expression programs in the response of yeast cells to environmental changes. *Mol. Biol. Cell*, 11(12):4241–4257, 2000.
- [17] Bradley Efron and Robert Tibshirani. An Introduction to the Bootstrap. Chapman & Hall, New York, 1993.