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The respiratory mucosa is the primary portal of entry for numerous viruses such

as the respiratory syncytial virus, the influenza virus and the parainfluenza virus.

These pathogens initially infect the upper respiratory tract and then reach the lower

respiratory tract, leading to diseases. Vaccination is an affordable way to control

the pathogenicity of viruses and constitutes the strategy of choice to fight against

infections, including those leading to pulmonary diseases. Conventional vaccines based

on live-attenuated pathogens present a risk of reversion to pathogenic virulence while

inactivated pathogen vaccines often lead to a weak immune response. Subunit vaccines

were developed to overcome these issues. However, these vaccines may suffer from

a limited immunogenicity and, in most cases, the protection induced is only partial.

A new generation of vaccines based on nanoparticles has shown great potential to

addressmost of the limitations of conventional and subunit vaccines. This is due to recent

advances in chemical and biological engineering, which allow the design of nanoparticles

with a precise control over the size, shape, functionality and surface properties, leading to

enhanced antigen presentation and strong immunogenicity. This short review provides an

overview of the advantages associated with the use of nanoparticles as vaccine delivery

platforms to immunize against respiratory viruses and highlights relevant examples

demonstrating their potential as safe, effective and affordable vaccines.
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INTRODUCTION

Lower respiratory tract infections (LRTIs) constitute a major public health burden worldwide.
LRTIs represent a leading cause of humanmortality andmorbidity, causing annually over 3 million
deaths worldwide (1). Among these infections, about 80% of LRTI cases are caused by viruses (2).
In most cases, these pathogens enter the host via airborne transmissions (e.g., droplets or aerosols),
replicate efficiently in the respiratory tract and cause clinical manifestations, ranging from fever to
bronchiolitis and pneumonia (3). In addition, LRTIs associated with viruses represent an important
source of economic loss for livestock and poultry industry as these infections predispose animals to
secondary bacterial infections (4–6).

Viruses infecting the human lower respiratory tract include the influenza virus, the respiratory
syncytial virus (RSV), the parainfluenza virus and the adenovirus (7, 8). Seasonal influenza virus
epidemics result in a significant burden of disease in children and elderlies and account for 3–5
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million cases of severe illness and for nearly 290,000–650,000
deaths worldwide each year (9). RSV and parainfluenza virus
infections are the leading cause of hospitalization for acute
respiratory infections in young children, causing 45 and 40%
of pediatric hospitalizations, respectively (10, 11). Adenovirus
infections account for 3–5% of LRTIs cases in children and
can be fatal for immunocompromised patients (12). In general,
respiratory viruses represent a major health problem in infants,
young children, immunocompromised patients and the elderly
population. According to Global Burden of Diseases (GBD),
74% of deaths associated with LRTIs represent these vulnerable
patient groups (13).

Vaccination remains the most cost-effective strategy to
fight against infectious diseases. Conventionally, vaccine
formulations consist of attenuated viruses, killed pathogens
(inactivated) or subunit protein antigens, which elicit a specific
immune response. These vaccine formulations have allowed
the prevention, or the control, of several important diseases
including rubella, yellow fever, polio and measles, and, in the
case of smallpox, even eradication (14, 15). Considerable efforts
have been devoted for the development of efficient vaccines
against LRTIs, including inactivated/fragmented trivalent
or quadrivalent seasonal vaccines against influenza type A
and type B viruses such as Influvac R© (16), Vaxigrip R© (17),
and Fluzone R©(18) as well as live attenuated vaccines such as
Nasovac R© and Flumist R© for nasal administration in young
children (19, 20). Nevertheless, live-attenuated vaccines against
influenza virus suffer from safety concerns due to their nature
and represent a risk for elderly and immunosuppressed humans
(21). Besides, killed pathogen vaccines and virus-derived subunit
vaccines induce weaker immune responses and often require the
use of an adjuvant to boost efficiency (22).

Several promising vaccines are currently evaluated in the
clinics for different respiratory viruses (23). These new vaccine
formulations aim to be safer and more efficient compared to
traditional vaccines based on attenuated viruses, killed pathogens
and subunits. Nevertheless, the high level of antigenic drift
(genetic mutations) of some viruses, such as the influenza virus,
reduces the efficacy of vaccines and needs to be addressed (24).
Therefore, while improving safety and efficiency, vaccines should
also be less sensitive to antigenic drift. The concept of “universal
vaccine” is critical for viruses like the influenza virus, and new
formulations to induce broad-spectrum immunity are being
investigated. In the next sections, we discuss the advantages of
using nanoparticle formulations against respiratory viruses and
we highlight relevant examples of the use of nanoparticles as safe,
effective, and affordable vaccines.

NANOPARTICLES, AN ALTERNATIVE
APPROACH TO CONVENTIONAL
VACCINES

The use of particles as nanoplatforms displaying relevant
antigenic moieties is appealing as an alternative approach
to conventional vaccines. These nano-sized materials can be
obtained from biological sources and/or can be synthetic.

Currently, there is a large variety of particles evaluated as antigen
carriers, including inorganic and polymeric nanoparticles, virus-
like particles (VLPs), liposomes and self-assembled protein
nanoparticles (Figure 1A). The advantages of these materials
reside primarily in their size (at least one dimension should be
at the nanometer level), since many biological systems such as
viruses and proteins are nano-sized (25). Nanoparticles can be
administered via sub-cutaneous and intramuscular injections, or
can be delivered through the mucosal sites (oral and intranasal),
and penetrate capillaries as well as mucosal surfaces (26, 27).
Recent progresses have allowed the preparation of nanoparticles
with unique physicochemical properties. For instance, size,
shape, solubility, surface chemistry, and hydrophilicity can
be tuned and controlled, which allows the preparation of
nanoparticles with tailored biological properties (28). Moreover,
nanoparticles can be designed to allow the incorporation of a
wide range of molecules including antigens which makes them
highly interesting in vaccinology (29, 30).

Incorporation of antigens in nanoparticles can be achieved
by encapsulation (physical entrapment) or by conjugation
(covalent functionalization) (21). Studies have demonstrated
that nanoparticles could protect the native structure of
antigens from proteolytic degradation and/or improve
antigen delivery to antigen-presenting cells (APCs) (31). In
addition, nanoparticles incorporating antigens can exert a
local depot effect, ensuring prolonged antigen presentation
to immune cells (32). Interestingly, nanoparticles have also
shown intrinsic immunomodulatory activity (33). For instance,
nanoparticles such as carbon nanotubes (CNTs), carbon
black nanoparticles, poly(lactic-co-glycolic acid) (PLGA)
and polystyrene nanoparticles, titanium dioxide (TiO2)
nanoparticles, silicon dioxide (SiO2) nanoparticles, and
aluminum oxyhydroxide nanoparticles have been reported to
induce NLRP3-associated inflammasome activation (34). In fact,
once internalized by APCs, these nanoparticles provide signals
that trigger lysosomal destabilization and the production of
reactive oxygen species (ROS), leading to the release of lysosomal
contents, including the cysteine protease cathepsin B. This
protease is sensed by NLRP3, which subsequently activates the
formation of the inflammasome complex (35–39). Subsequently,
interleukins are produced as downstream signaling events,
leading to the recruitment and/or activation of immune cells
(35, 40–45). Taken together, these properties advocate that
nanoparticles are promising antigen carriers and immune cell
activators for vaccination.

NANOPARTICLES AND THE RESPIRATORY
TRACT IMMUNE SYSTEM

The respiratory mucosa represents the primary site for invasion
and infection by a virus whose replication occurs in the ciliated
cells of the upper respiratory tract (URT). Subsequently, infection
spreads to the low respiratory tract (LRT) by virus-rich secretions
and by infected cell debris from the URT (46). Nasal-associated
lymphoid tissue (NALT), the first site for inhaled antigen
recognition located in the URT, is an important line of defense
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FIGURE 1 | Overview of the immune response in the upper respiratory tract. (A) Schematic view of different nanoparticles used for intranasal vaccination.

(B) Mechanisms of NALTs immune responses in the upper respiratory tract. (1) Nanoparticles are transcytosed from the mucus layer into the nasal epithelial tissues by

micro-fold cells (M cells) or passively diffuse through epithelial cell junctions. (2) Other nanoparticles are captured and internalized by DCs (dendritic cells) from their

extension through epithelial junctions and by other APCs, such as B cells. (3) Cells that have encountered nanoparticles migrate to the nearest lymph node in order to

activate naive T helper cells. Once activated, T helper cells activate B cells that have encountered the same antigen presented by nanoparticles. Activated B cells

proliferate in the lymph node (B cell zone) and, once mature, enter systemic circulation in order to reach the inflammation site. IgA+ B cells locally differentiate into

antibody-secreting plasma cells to produce IgA dimers. (4) IgA dimers are secreted via polymeric Ig receptor (pIgR) at the mucosal surface. NALT immune response

induces long-lasting memory B and T cells able to trigger a rapid recall response.

against respiratory viruses. NALT is present in rodents, birds
and primates (47). This structure is characterized by aggregates
of lymphoid cells located in the nasopharyngeal cavity (48). In
human, the Waldever’s ring, made of adenoid and tonsil, is
considered as the equivalent of NALT structure, which contains
various narrow epithelial channels. NALT comprises aggregates
of lymphoid follicles (B-cell areas), interfollicular areas (T-cell
areas), macrophages and dendritic cells (DCs) (Figure 1B),
which, when activated, support the clearance of infectious agents
(46, 48, 49). Accordingly, NALT is considered as an inductive
site for humoral and cellular immune responses and represents a
promising target for vaccines against respiratory viruses. Ideally,
nanovaccines would follow a path similar to respiratory viruses
in order to efficiently deliver antigens to NALT and trigger
a specific mucosal immune response. Therefore, formulation,
size and antigen exposition are critical aspects when designing
nanovaccines targeting NALT. Most respiratory viruses have an
average diameter size ranging between 20 and 200 nm (50–53).

Thus, in addition of being safe and immunogenic on its own,
a nanovaccine should have a size similar to viruses while
incorporating relevant antigens (54).

Over the last decade, a number of nanoparticles have been
designed to mimic respiratory viruses in terms of size, shape
and surface property in order to target NALT as well as to
raise humoral and cellular immune responses (21, 55, 56).
First, beside a nanoparticle size of 20–200 nm in diameter to
match the size of most respiratory viruses, nanoparticles should
be preferably positively charged. In fact, positively charged
polymeric, phospholipidic, metallic, inorganic, and protein-
based nanoparticles have shown stronger immune responses
compared to their negatively charged counterparts (21, 57).
Second, the incorporation of antigens/epitopes within or on
the surface of the nanoparticles can be challenging and
requires advanced approaches in chemical and/or biological
engineering (21). The most common strategy is to encapsulate
or entrap antigens/epitopes within the nanoparticles. In this case,
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nanoparticles are used to protect the antigen/epitopes and deliver
them to NALT (58–60). Nanoencapsulation can be achieved
by using different procedures, including nanoprecipitation and
oil in water (o/w) emulsion (61). Alternatively, antigens can
be attached and exposed on the nanoparticle surface. This
strategy aims at mimicking viruses. Conjugation of antigenic
epitope can be performed directly on the nanoparticles using
different chemical reactions like the disulfide bond and the
thiolate-gold bond formation (62–64). Otherwise, it can be
achieved by first preparing an epitope-functionalized self-
assembling unit, which upon self-assembly form nanoparticles
decorated with the antigen (65–67). Third, the formulation and
administration strategies are also critical aspects to consider.
Vaccines administered via subcutaneous or intramuscular
injection induce systemic immunity and usually, a weak mucosal
response is observed. On the other hand, mucosal vaccination,
either oral or intranasal delivery, induces humoral, and cellular
immune responses at the systemic level and the mucosal surfaces,
which is more effective in the protection against respiratory
viruses (68, 69). Studies have demonstrated that vaccination via
the intranasal route provides a better protection when compared
to subcutaneous immunization in the context of respiratory
pathogens and mucosal immunity. Intranasal vaccination led
to higher antigen-specific lymphocyte proliferation, cytokine
production (interferon-γ, interleukins) and induction of antigen-
specific IgA antibody (70–74). A promising formulation strategy
is the intranasal spray, which delivers conveniently and safely
the nanovaccines directly to the respiratory mucosa (75–77).
However, the number of clinical trials using nanovaccine
formulations for intranasal delivery, including spray dried
nanovaccines, is limited. This is mostly associated with the
difficulty of keeping the nanovaccine integrity during the entire
formulation process (76). Moreover, the immune response is
particularly sensitive to the nature, size, shape, and surface
properties of the nanoparticles as well as to the density and the
potency of the antigens. Thus, it is very challenging to predict
the effect of a given nanovaccine on the immune system. In
addition, nanoparticles have some limitations associated with
their synthesis, or preparation, and their properties. These
include limited antigen loading, low synthesis yield, poor
targeting capability to immune cells, limited manufacturability,
and, in some cases, toxicity (78–80). These drawbacks can lead
to side effects and/or poor immunogenicity, which precludes
their clinical usage. Besides, little is known about the interactions
between nanoparticles and immune cells. In fact, their adjuvant
effect and their ability to activate the immune system still remain
unclear and need to be better understood at the molecular
level (81). Nonetheless, nanoparticle formulations have recently
revealed promising results against respiratory virus infections
(Table 1) and relevant examples will now be discussed.

POLYMERIC NANOPARTICLES

A polymer consists of a large molecule constructed from
monomeric units. Depending on the construction, polymers
can be linear, slightly branched or hyperbranched (3D network)

(104). Polymeric nanoparticles can be either obtained from
the polymerization of monomeric units or from preformed
polymers. These nanoparticles are attractive in the medical field
due to their adjustable properties (size, composition, and surface
properties), which allow controlled release, ability to combine
both therapy and imaging (theranostics), and protection of
drug molecules (105–107). For example, poly(lactic-co-glycolic
acid) (PLGA) is a biodegradable and biocompatible polymer
approved by the Food and Drug Administration (FDA) and
European Medicines Agency (EMA) for use in humans. This
is due to its ability to undergo hydrolysis in vivo, resulting in
lactic acid and glycolic acid metabolites, which are efficiently
processed by the body (108). PLGA can be engineered to
form nanoparticles capable of encapsulating different types of
biomolecules and release them sustainably over time (108–111).
These nanoparticles can encapsulate antigens and prevent their
degradation over 4 weeks under physiological conditions, which
is critical for mucosal vaccination (112). Moreover, PLGA-
NPs promote antigen internalization by APCs and facilitate
antigen processing and presentation to naïve lymphocytes
(113, 114). For instance, spherical PLGA-NPs (200–300 nm
of diameter) were used to encapsulate an inactivated Swine
influenza virus (SwIV) H1N2 antigens (KAg) via water/oil/water
double emulsion solvent evaporation (83). It was observed
that pigs vaccinated twice with this preparation and challenged
with a virulent heterologous influenza virus strain, have a
significantly milder disease in comparison to non-vaccinated
animals. This observation correlated closely with the reduced
lung pathology and the substantial clearance of the virus from
the animal lungs. Other polymeric nanoparticles, such as
chitosan, a natural polymer composed of randomly distributed
β-(1–4)-linked d-glucosamine and N-acetyl-d-glucosamine, and
N-(2-hydroxypropyl)methacrylamide/N-isopropylacrylamide
(HPMA/NIPAM), were also investigated as intranasal vaccines
against respiratory viruses (85–90, 115–121). Overall, polymeric
nanoparticles have many advantages, including biocompatibility
(122), antigen encapsulation and stabilization (123, 124),
controlled release of antigens and intracellular persistence in
APCs (125, 126), pathogen-like characteristics, and suitability
for intranasal administration (126, 127). Nevertheless, the effect
of the polymer properties (core chemistry, size, shape, surface
properties) on the transport within the URT remains unknown.
More studies are needed to better understand the effect of
changing nanoparticle properties on their biological activities
and to, ultimately, predict the fate of these nanocarriers upon
their intranasal administration.

SELF-ASSEMBLING PROTEIN
NANOPARTICLES AND VLPs

Self-assembling protein nanoparticles (SAPNs) are structures
obtained from the oligomerization of monomeric proteins.
The protein building blocks are mostly obtained through
recombinant technologies and are considered safe for biomedical
applications (128). SAPNs can be engineered to have a diameter
ranging from 20 to 100 nm, similar to the sizes of many
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TABLE 1 | Nanoparticle-based vaccines against respiratory viruses delivered via the intranasal route.

Material Size (nm) Virus Antigen/Epitope Adjuvant References

POLYMERIC NANOPARTICLES

PLGA 225.4 Bovine parainfluenza 3 virus

(BPI3V)

BPI3V proteins – (82)

200–300 Swine influenza virus (H1N2) Inactivated virus H1N2 antigen – (83)

γ-PGAa 100–200 Influenza (H1N1) Hemagglutinin – (84)

Chitosan 140 Influenza (H1N1) H1N1 antigen – (85)

300–350 Influenza (H1N1) HA-Split – (86)

571.7 Swine influenza virus (H1N2) Killed swine influenza antigen – (87)

200–250 Influenza (H1N1) M2e Heat shock protein 70c (88)

HPMA/NIPAM 12–25 RSV F protein TLR-7/8 agonist (89, 90)

Polyanhydride 200–800 RSV F and G glycoproteins – (91, 92)

SELF-ASSEMBLING PROTEINS AND PEPTIDE-BASED NANOPARTICLES

N nucleocapside

protein of RSV

15 RSV RSV phosphoprotein R192G (93)

15 RSV FsII Montanide
TM

Gel 01 (94)

15 Influenza (H1N1) M2e Montanide
TM

Gel 01 (95)

Ferritin 12.5 Influenza (H1N1) M2e – (96)

Q11 – Influenza (H1N1) Acid polymerase – (97)

INORGANIC NANOPARTICLES

Gold 12 Influenza M2e CpG (64)

OTHERS

VLP 80–120 Influenza (H1N1) Hemagglutinin – (98)

80–120 Influenza (H1N1, H3N2, H5N1) M2e – (99)

80–120 RSV F protein et G glycoprotein of

RSV and M1 protein of Influenza

– (100)

ISCOMb 40 Influenza (H1N1) Hemagglutinin ISCOMATRIX (101, 102)

DLPC liposomesc 30–100 Influenza (H1N1) M2, HA, NP MPL and trehalose 6,6′ dimycolate (103)

aPoly-γ -glutamic acid.
bQuillaia saponin, cholesterol, phospholipid, and associated antigen.
cDilauroylphosphatidylcholine.

viruses and therefore, are considered as nanovaccine candidates
against viruses, including respiratory viruses (128, 129). For
example, SANPs, designed to elicit an immune response
against RSV, have been explored using the nucleoprotein
(N) from the virus nucleocapsid. The N protein is a major
target of antigen-specific cytotoxic T-cell response. The self-
assembly of N protein protomers led to the formation
of supramolecular nanorings of 15 nm diameter (93). This
platform was modified by fusing the FsII epitope targeted
by monoclonal neutralizing antibody (palivizumab) to the N-
protein, in order to form chimeric nanorings with enhanced
immune response and virus protection against RSV. The results
showed reduced virus load in the lungs of challenged mice
(94). Similarly, chimeric nanorings displaying 3 repeats of the
highly conserved ectodomain of the influenza virus A matrix
protein 2 (M2e), were prepared by recombinant technologies
(95). When administrated via the intranasal route, these M2e-
functionalized nanorings induced local production of mucosal
antibodies and led to mice protection (95). These N-nanorings
are interesting for intranasal delivery of antigen due to their
similarities with respiratory viruses in term of size and structure
(sub-nucleocapsid-like superstructures). Other examples of

SAPNs as potential nanovaccines against respiratory viruses
include the capsid protein of the papaya mosaic virus (PapMV),
the purified coronavirus spike protein and ferritin, which are self-
assembling proteins that form rod-shaped and nearly spherical
nanostructures, respectively (96, 130–140). Recently, assemblies
composed of four tandem copies of M2e and headless HA
proteins were prepared and stabilized by sulfosuccinimidyl
propionate crosslinking, showing the possibility of generating
protein nanoparticles almost entirely composed of the antigens of
interest (141).

VLPs are spherical supramolecular assemblies of 20–200 nm
diameter, which result from the self-assembly of viral capsid
proteins. These particles are free from genetic materials and
have the advantage of mimicking perfectly the structure and
the antigenic epitopes of their corresponding native viruses.
Therefore, this repetitive antigen display promotes efficient
phagocytosis by APCs and subsequent activation (142–146).
Recently, Lee and colleagues demonstrated that intranasal
delivery of influenza-derived VLPs expressed in insect cells and
exposing 5 repeats of the M2e epitopes, confers cross protection
against different serotypes of influenza viruses by inducing
humoral and cellular immune responses (99).
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SAPNs and VLPs are thus attractive but their formulation
into stable and spray dried vaccines for intranasal injection
can be challenging and may require the use of surfactants and
saccharides (147). In the last decades, self-assembling peptides
(SAPs) have also been investigated as intranasal nanovaccines
against respiratory viruses due to their straightforward chemical
synthesis and their storage stability upon lyophilization (97).

INORGANIC NANOPARTICLES

There are many inorganic nanoparticles suitable for biomedical
applications, including superparamagnetic nanoparticles (iron
oxide nanoparticles), quantum dots and plasmonic nanoparticles
(gold and silver nanoparticles). Inorganic materials are mostly
used as tools with improved therapeutic efficacy, biodistribution
and pharmacokinetics. However, inherently, plain inorganic
core nanoparticles would not be suitable in biological fluids
due to particle aggregation. Therefore, in the medical field,
these nanoparticles are often coated with organic molecules via
adsorption or chemical reactions. In fact, these biocompatible
nanoparticles can be described as complex hybrids materials
with an inorganic core and an organic outer shell (148, 149).
Among inorganic nanoparticles, the most commonly used for
vaccination are gold nanoparticles (AuNPs). AuNPs are readily
internalized by macrophages and dendritic cells, and induce their
activation (150, 151). Large scale production is possible with
strict control on particle size and ease of functionalization using
the strong affinity between thiol groups and gold. Thiol groups
can be attached to AuNP surface by forming thiolate–Au bonds
(152–155). Furthermore, no immune response is elicited toward
inert carriers like AuNPs (156). Thus, these nanoparticles are
an appealing platform for nanovaccine engineering via antigen
functionalization.

A wide range of molecules, including adjuvants and antigens
can be conjugated on AuNPs at high density, resulting in
improved immunogenicity and antigen presentation (157, 158).
AuNPs can be formulated for intranasal administration and
can diffuse into the lymph nodes, triggering robust antigen-
specific cytotoxic T-cell immune responses (159, 160). Tao and
coworkers have demonstrated that the peptide consensus M2e
of influenza A viruses with a non-native cysteine residue at the
C-terminal end could be attached on the AuNPs via thiolate–
Au chemistry. The resulting M2e-AuNPs was administered
by the intranasal route to mice with CpG (cytosine-guanine
rich oligonucleotide) adjuvant, triggering a fully protective
immune response against the influenza virus PR8 strain (161).
More recently, it was demonstrated that this formulation
could induce lung B cell activation and robust serum anti-
M2e IgG response, with stimulation of both IgG1 and IgG2a

subclasses (161). Additionally, this vaccination strategy led
to protection against infection by the pandemic influenza
virus strain, A/California/04/2009 (H1N1pdm) pandemic strain,
influenza virus A/Victoria/3/75 (H3N2) strain and the highly
pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1)
(64). Although gold nanoparticles constitute an attractive
platform for antigen conjugation, they can accumulate in
organs such as liver and spleen for a long period, which
could be ultimately associated with toxicity (162). Coating
with biocompatible materials reduces their toxicity, although it
can lead to alterations of the physicochemical and biological
properties. Therefore, safety issues of AuNPs still need to be
addressed.

CONCLUSION AND PERSPECTIVES

Engineered nanoparticles have demonstrated their potential as
vaccine delivery platforms. They can be envisaged as both
antigen nanocarriers and adjuvants. In all cases, intranasal
administration of nanovaccines allows a convenient and safe
delivery of the antigen to NALT, inducing mucosal and systemic
immunity. Nonetheless, additional studies are still needed
before their clinical translation. While intranasal vaccination
of nanoparticles generates specific IgA antibody in the URT
and leads to high survival rates in animal models, there are
still limited studies on non-human primates, thus making
nanoparticle’s fate difficult to predict in a human URT. In
addition, nanoparticle vaccines are generally functionalized
with specific antigen(s), which result in an immune response
targeted against these antigenic determinants. Considering
antigenic drifts, the growing human population that needs to
be vaccinated and the different type of viruses, the cost to
address all these aspects would be too prohibitive to produce
affordable vaccines. Consequently, the development of broad
spectrum vaccines constitutes a critical need and we consider
that nanovaccine engineering will contribute to achieve this
objective.
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