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Abstract

Background: A major impediment to tuberculosis control in Africa is the difficulty in diagnosing active tuberculosis (TB),
particularly in the context of HIV infection. We hypothesized that a unique host blood RNA transcriptional signature would
distinguish TB from other diseases (OD) in HIV-infected and -uninfected patients, and that this could be the basis of a simple
diagnostic test.

Methods and Findings: Adult case-control cohorts were established in South Africa and Malawi of HIV-infected or -
uninfected individuals consisting of 584 patients with either TB (confirmed by culture of Mycobacterium tuberculosis [M.TB]
from sputum or tissue sample in a patient under investigation for TB), OD (i.e., TB was considered in the differential
diagnosis but then excluded), or healthy individuals with latent TB infection (LTBI). Individuals were randomized into
training (80%) and test (20%) cohorts. Blood transcriptional profiles were assessed and minimal sets of significantly
differentially expressed transcripts distinguishing TB from LTBI and OD were identified in the training cohort. A 27 transcript
signature distinguished TB from LTBI and a 44 transcript signature distinguished TB from OD. To evaluate our signatures, we
used a novel computational method to calculate a disease risk score (DRS) for each patient. The classification based on this
score was first evaluated in the test cohort, and then validated in an independent publically available dataset
(GSE19491). In our test cohort, the DRS classified TB from LTBI (sensitivity 95%, 95% CI [87–100]; specificity 90%, 95% CI
[80–97]) and TB from OD (sensitivity 93%, 95% CI [83–100]; specificity 88%, 95% CI [74–97]). In the independent validation
cohort, TB patients were distinguished both from LTBI individuals (sensitivity 95%, 95% CI [85–100]; specificity 94%, 95% CI
[84–100]) and OD patients (sensitivity 100%, 95% CI [100–100]; specificity 96%, 95% CI [93–100]). Limitations of our study
include the use of only culture confirmed TB patients, and the potential that TB may have been misdiagnosed in a small
proportion of OD patients despite the extensive clinical investigation used to assign each patient to their diagnostic group.

Conclusions: In our study, blood transcriptional signatures distinguished TB from other conditions prevalent in HIV-infected
and -uninfected African adults. Our DRS, based on these signatures, could be developed as a test for TB suitable for use in
HIV endemic countries. Further evaluation of the performance of the signatures and DRS in prospective populations of
patients with symptoms consistent with TB will be needed to define their clinical value under operational conditions.
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Introduction

There is an urgent need for improved tests to diagnose active

tuberculosis (TB), particularly in countries of sub-Saharan Africa

most affected by the TB/HIV pandemic. The diagnosis of TB was

problematic even before the emergence of HIV, as symptoms and

radiological features of TB overlap those of many other infectious

and non-infectious conditions. However in countries of sub-

Saharan Africa, where HIV prevalence amongst individuals

presenting with symptoms consistent with TB is over 50% [1],

the diagnostic difficulty is increased, as TB must be distinguished

from a wide range of opportunistic infections and HIV-associated

malignancies that present clinically with similar symptoms and

signs.

For over a century, diagnosis of TB has relied on clinical and

radiological features, sputum microscopy (with or without culture),

and tuberculin skin testing (TST). All of these have major

drawbacks, particularly in HIV co-infected individuals [2,3], in

whom radiological features are often atypical [4], cavitary lung

disease is less common [5,6], and results of sputum microscopy are

often negative [2,7]. Furthermore, culture facilities are largely

unavailable in many African hospitals [8]. As TST and interferon

gamma release assays (IGRAs) cannot discriminate TB from latent

TB infection (LTBI) [9], they are of limited diagnostic utility

amongst African adults where LTBI is highly prevalent in the

general population [10], and amongst inpatients with other

diagnoses. Molecular methods have improved detection of

Mycobacterium tuberculosis (M.TB) DNA in sputum [11], but the

sensitivity of this approach is lower in smear negative sputum

samples even if culture positive [12]. Consequently, high

proportions of patients with TB in sub-Saharan Africa remain

undiagnosed or are treated empirically without laboratory

confirmation. The need for improved diagnostic methods is

highlighted by post mortem studies showing TB to be a frequent

undiagnosed cause of death in Africa [13–15].

RNA expression analysis by microarray has emerged as a

powerful tool for understanding disease biology [16]. Many

diseases including cancer [17] and infectious diseases [18], as well

as TB [19–26], are associated with specific transcriptional profiles

in blood or tissue. Although previous studies in TB have suggested

that RNA expression might be used diagnostically to distinguish

TB from other conditions, these studies have excluded HIV-

infected participants, and have compared TB with other diseases

(OD) that are not representative of the spectrum seen in HIV-

infected and -uninfected patients presenting to African hospitals

with symptoms for which TB is included in the differential

diagnosis [19–26]. There is thus a need to identify biomarkers that

discriminate TB from OD prevalent in African populations, where

the burden of the HIV/TB pandemic is greatest.

In this two country prospective case-control study, we investi-

gated the hypothesis that host peripheral blood RNA expression

would distinguish TB from other conditions prevalent in African

populations in the context of endemic HIV infection, and explored

the use of a transcriptional signature as the basis for a diagnostic test.

Methods

Ethics Statement
The study was approved by the Human Research Ethics

Committee of the University of Cape Town, South Africa

(HREC012/2007), the National Health Sciences Research Com-

mittee, Malawi (NHSRC/447), and the Ethics Committee of the

London School of Hygiene and Tropical Medicine (5212). Written

information was provided by trained local health workers in local

languages and all patients provided written consent.

Study Sites
In order to enable generalization of our findings to African

countries with differing prevalence of malaria and other parasitic

infections, as well as other environmental exposures that might

affect transcriptional profiles, we chose highly contrasting study

sites (one urban, one rural) in two African countries with differing

co-endemic diseases:
Cape Town, South Africa. South Africa has one of the

highest TB incidence rates in Africa (981 per 100,000) [27], as well

as high rates of HIV infection (up to 41.8% prevalence in females

aged 25–35) [28]. Patients undergoing investigation for suspected

TB were recruited at GF Jooste Hospital Manenberg, Groote

Schuur Hospital, and at Khayelitsha site B clinics serving the

largely Xhosa population residing in the low income townships of

Cape Town. Malaria is not endemic in these urban populations.
Karonga district, Northern Malawi. The incidence of new

TB cases in Karonga district (180 per 100,000, Karonga

Prevention Study unpublished data, 2012) and the stable HIV

prevalence (10%–15% of females aged 25–29, Karonga Preven-

tion Study unpublished data, 2012) are lower in Karonga than in

Cape Town. Malaria and helminth infection are hyperendemic.

Patients were recruited at Karonga District hospital, which serves

a rural population living by the shores of Lake Malawi.

Diagnostic Process
To ensure accurate assignment of patients to definite TB and

OD groups, a rigorous diagnostic process was followed. All

patients underwent chest radiographs and serological testing for

HIV, along with cultures of blood, CSF, and urine, and biopsies

for histological examination including TB culture where clinically

indicated. Two sputum samples obtained after induction or

coughing were examined by standard microscopy for acid fast

bacilli (AFB) and cultured for TB using standard methods (i.e.,

solid media [South Africa and Malawi] and on liquid media

[South Africa only]) [29]. Patients were followed up 26 wk post

diagnosis to confirm that those with OD remained TB-free.

Individuals were either assigned to one of the diagnostic groups or

excluded once the results of investigations and follow-up were

available. Healthy LTBI controls were recruited by random

community selection (Malawi) and from HIV screening clinics

(South Africa) from the same catchment areas as patients with TB

(Figure 1). In vitro IGRA to substantiate LTBI was undertaken

using an in-house whole blood assay [30,31]. OD patients were

RNA Signature of Active TB in African Adults
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recruited if they presented with symptoms that would mandate

investigation for TB as a differential diagnosis. After intensive

investigation, any case with an established alternative diagnosis to

TB, no microbiological evidence of TB, and an absence of TB

symptoms at the time of follow-up or with an observed

improvement of clinical symptoms on follow-up without TB

treatment, was recruited as an OD case. If TB could not be

reliably ruled out of the differential, the patient was excluded.

Patient Cohorts
Patient recruitment strategies, which differed at each site, were

embedded within health services administered by statutory

providers in order to best investigate on an ‘‘intention to test’’

basis.

Cape Town, South Africa. Recruitment in Cape Town

commenced 12th October 2007 and concluded 5th January 2010.

Subject to research staff availability, 96 sequential patients

presenting with at least one positive TB culture result were

recruited from an outpatient TB clinic in Khayelitsha site B until

49 HIV-infected and 47 HIV-uninfected persons were recruited

(Figure 2). In Cape Town, 36.7% (18/49) HIV-infected patients

with TB were smear-negative and 8.5% (4/47) HIV-uninfected

patients were smear-negative. Patients in the OD category were

recruited at GF Jooste and Groote Schuur hospitals in Cape

Town. Patients were assessed by a hospital clinician and enrolled

in the study if TB was considered in the differential diagnosis.

After intensive investigation as described above, patients were

assigned to the OD group if (1) an alternative diagnosis was

established; (2) no microbiological evidence of TB was found after

culture of sputum or other samples; and (3) an improvement of

clinical symptoms was observed on follow-up without TB

treatment (Figure 1). If a patient recruited to the OD group was

later found to be culture positive for M.TB, they were reclassified

appropriately. In total 138 HIV-infected and 80 HIV-uninfected

patients were recruited in the OD group, of which 70 HIV-

infected and 31 HIV-uninfected were excluded as TB diagnosis

could not be excluded (i.e., TB uncertain) (Figure 2).

Karonga district, Northern Malawi. Recruitment at Kar-

onga District Hospital commenced on 1st June 2007 and ceased

on the 30th November 2009. Patients attending the hospital were

assessed by a local clinician. If this clinician considered TB to be

within the differential diagnosis, patients were recruited by a study

staff member and investigated according to clinical and study

protocols as described above. Following the completion of in-

patient care, patients were followed up for at least 26 wk post

discharge to assess their progress including a verbal autopsy if the

patient had died. Individuals were categorized following the

completion of follow-up. Patients were assigned to the OD group if

Figure 1. Diagnostic process to identify TB cases, LTBI cases, and other diseases cases.
doi:10.1371/journal.pmed.1001538.g001
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(1) a firm alternative diagnosis was established; (2) there was no

microbiological evidence of TB; and (3) there was absence of

symptoms of TB at the time of follow-up or assignation of an

alternative cause of death on verbal autopsy (Figure 1). Individuals

who did not have TB and did not fulfill criteria for OD—e.g.,

failed to attend follow-up and with an unknown 6-mo outcome—

were categorized as ‘‘TB uncertain’’ (i.e., TB uncertain). During

the recruitment period 437 patients were recruited. Of these 254

had definite TB, 77 had a confirmed OD, and 106 were

categorized as TB cannot be excluded. The first 60 HIV-infected

and 59 HIV-uninfected patients with TB, along with all the OD

patients were included in the RNA expression study (Figure 2).

In Malawi, 13.3% (8/60) HIV-infected patients with TB were

smear-negative and 10.2% (6/59) HIV-uninfected patients were

smear-negative.

Oversight and Conduct of the Study
Patients were recruited by FZ and a team of research assistants

in Karonga, Malawi, and by TO and hospital staff in Cape Town,

South Africa. Assignment of patients to clinical groups was made

by consensus of two experienced clinicians at each site (indepen-

dent of those managing the patient clinically) after review of the

investigation results. Testing for HIV status was conducted after

appropriate counseling. Clinical data were anonymised and

patient samples identified only by study number. Statistical

analysis was conducted only after the RNA expression data and

the clinical databases had been locked and deposited for

independent verification.

Peripheral Blood RNA Expression by Microarray
Whole blood was collected at the time of recruitment (before or

within 24 h of commencing TB treatment in suspected patients) in

PAXgene blood RNA tubes (PreAnalytiX), frozen within 3 h of

collection, and later extracted using PAXgene blood RNA kits

(PreAnalytiX). RNA was shipped frozen to the Genome Institute

of Singapore for analysis on HumanHT-12 v.4 expression

Beadarrays (Illumina). Additional details of the microarray

method, quality control, and analysis are provided in Text S1.

Statistical Analysis
Expression data were analysed using ‘R’ Language and Environment

for Statistical Computing (R) 2.12.1 (Text S1). To identify transcript

signatures applicable across geographic locations and in patients

with differing HIV status, we combined HIV-infected and

-uninfected patient cohorts from South Africa and Malawi. The

recruited participants were randomly assigned to a training cohort

(80% of the participants) and a test cohort (20%) with no overlap,

using the ‘‘sample( )’’ function without replacement in ‘R’, which

obtains a subset of a given set [32]. For additional validation we

used the whole blood expression dataset from Berry et al. [25]

comparing TB with LTBI and other infectious diseases in an

African case-control study (accession GSE19491) (i.e., the ‘‘vali-

dation’’ dataset) (Text S1).

To detect transcripts that were differentially expressed between

patients with TB and comparator groups, a linear model was fitted

and moderated t-statistics calculated for each transcript with

correction for false discovery using Benjamini and Hochberg’s

method [33]. Significantly differentially expressed transcripts in

the training cohort with a |log2 fold change| (FC).0.5 were

subjected to variable selection using elastic net [34] (Text S1) in

order to identify the smallest number of transcripts distinguishing

TB from the comparator groups. These minimal transcript

selected sets for TB versus LTBI and TB versus OD (Tables S1T
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Table 2. Major clinical diagnoses in other diseases cohorts.

Other Diseases HIV Infected HIV Uninfected Total

SA Malawi SA Malawi

Pneumonia/LRTI/PJP 24 (35%) 19 (50%) 5 (10%) 13 (33%) 61 (31%)

Malignancy and other neoplasia other than Kaposi’s sarcomaa 2 (3%) 4 (11%) 17 (35%) 5 (13%) 28 (14%)

Pelvic inflammatory disease/UTI 4 (6%) 1 (3%) 15 (31%) 5 (13%) 25 (13%)

Bacterial, viral meningitis, or meningitis of uncertain origin 4 (6%) 4 (11%) 0 (0%) 6 (15%) 14 (7%)

Hepatobiliary disease 6 (9%) 0 (0%) 7 (14%) 0 (0%) 13 (7%)

Febrile syndromes of uncertain origin 1 (1%) 3 (8%) 1 (2%) 6 (15%) 11 (6)%

Kaposi’s sarcoma 9 (13%) 1 (3%) 0 (0%) 0 (0%) 10 (5%)

Cryptococcal meningitis 6 (9%) 4 (11%) 0 (0%) 0 (0%) 10 (5%)

Non TB pleural effusion/empyema 5 (7%) 0 (0%) 2 (4%) 0 (0%) 7 (4%)

Gastroenteritis 5 (7%) 0 (0%) 0 (0%) 0 (0%) 5 (3%)

Peritonitis 0 (0%) 1 (3%) 0 (0%) 3 (8%) 4 (2%)

Otherb 0 (0%) 1 (3)% 2 (4%) 1 (3%) 4 (2%)

Gastric ulcer or gastritis 2 (3%) 0 (0%) 0 (0%) 0 (0%) 2 (1%)

Total 68 38 49 39 194

aBronchial carcinoma (14), lymphoma (4), cervical carcinoma (1), ovarian carcinoma (1), mesothelioma (1), gastric carcinoma (1), metastatic carcinoma of unknown origin
(4), benign salivary tumour (1), dermatological tumour (1).
bHIV-related lymphadenopathy(1), Crohn9s disease (1), orchitis (1), pyomyositis (1).
LRTI, lower respiratory tract infection; PJP, Pneumocystis jirovecii pneumonia; SA, South Africa; UTI, urinary tract infection.
doi:10.1371/journal.pmed.1001538.t002

Figure 3. Heatmaps showing clustering of training and test cohorts using transcriptional signatures. Clustering of training (A/C) and
test (B/D) cohorts using transcripts identified by elastic net for TB versus LTBI (A/B) and TB versus OD (C/D) (training: nTB = 157 nLTBI = 128/nTB = 153
nOD = 140, test: nTB = 37 nLTBI = 39/nTB = 42 nOD = 34). Rows are transcripts (transcripts shown in red are up-regulated, those in green are down-
regulated) and columns are patients regardless of HIV status (purple, patients with TB; green, patients with LTBI; light blue, patients with OD).
doi:10.1371/journal.pmed.1001538.g003
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and S2) were assessed in the test cohort and further evaluated in

the validation dataset [25].

A Simplified Method for Identifying Individual Patient’s
Risk of Active TB

Current whole genome array-based technologies are not well

suited for use in resource poor settings as they are costly and

require sophisticated technology as well as bioinformatics

expertise. We therefore developed a method for translation of

multiple transcript RNA signatures into a disease risk score

(DRS), which could form the basis of a simple, low cost,

diagnostic test requiring basic laboratory facilities and minimal

bioinformatics analysis. For each individual, we calculated (on

normalized intensities) the DRS using the minimal transcript

selected sets for TB versus LTBI and TB versus OD. The score is

derived by adding the total intensity at up-regulated transcripts,

and subtracting the total intensity at all down-regulated

transcripts (Text S1). The threshold for the classification was

calculated as the weighted average of risk score within each class

(group of patients), with weights given as the inverse of the

standard deviation of the score within each class (Text S1). The

information that the DRS requires for classification (i.e., the

expression values of the transcripts of the signatures) can be

derived from the dataset itself, which allows its unbiased

application using expression data acquired using other array

platforms or non-array technologies. The sensitivity and speci-

ficity of the score in disease classification were evaluated on the

test cohort and validation dataset.

Accession Numbers
The data discussed in this publication have been deposited in

NCBI’s Gene Expression Omnibus and are accessible through

GEO Series accession number GSE37250 (http://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc = GSE37250).

Results

We recruited 311 adults to the South African cohort and 273 to

the Malawi cohort meeting the definitions for TB or OD, after

screening a total of 314 in South Africa and 437 patients in

Malawi (Figures 1 and 2; Table 1). After including samples from

LTBI controls that were recruited separately (98 and 77 patients in

South Africa and Malawi, respectively) and removing technical

failures (48 samples), 536 consecutive patient samples remained for

microarray analysis (Figure 2). The spectrum of infectious and

malignant diseases in the OD cohorts reflected the range of

conditions with similar clinical manifestations to TB at each site

(Table 2).

TB Specific RNA Signature That Is Independent of
Geographic Location and HIV Status

We performed quality control on the microarray data in

order to examine the effect of disease state on transcript

expression and to check for assignment errors. Inspection

revealed that the primary clustering was based on disease state

(TB, LTBI, OD) rather than geographical location or HIV

status (Figure S1). There was substantial correlation of TB

versus LTBI differential expression across different geographic

locations and HIV status, which was also seen for TB versus

OD (Figures S2 and S3). This indicates the presence of a robust

underlying signature of TB, independent of HIV status or

geographical location.

Identification and Validation of Minimal Transcript Sets
To find minimal transcript sets required to discriminate TB

from other groups, we applied the variable selection algorithm

elastic net [34] to the training cohort (Methods; Text S1). A 27

transcript model was identified for discriminating TB from LTBI

in the South Africa/Malawi training and test set (Figure 3A and

3B; Table S1), whilst a 44 transcript model was identified for

discriminating TB from OD (Figure 3C and 3D; Table S2). These

models were also applied to data from the South Africa validation

dataset [25], which, unlike our cohort, included only HIV-

uninfected participants (Figure S4).

Evaluation of a Simplified Disease Risk Score for TB
To evaluate the feasibility of using a simplified diagnostic test

based on our transcript sets for TB diagnosis in low resource

settings, we applied the DRS to our test cohort, which includes

patients that were not used to discover the signatures, and to the

South Africa validation dataset [25]. In our combined HIV-

infected and -uninfected test set, the 27 transcript DRS

discriminated TB from LTBI with sensitivity and specificity of

95%, 95% CI (87–100), and 90%, 95% CI (80–97), respectively,

whilst achieving perfect classification in the HIV-uninfected

cohorts and a slightly reduced accuracy in the HIV-infected

cohorts (Figures 4A, 5A, and 5B; Table 3). In the validation

dataset, the DRS achieved a sensitivity of 95%, 95% CI (85–100),

and a specificity of 94%, 95% CI (84–100) (Figure 4B; Table 3). As

for the discrimination between TB and OD, the 44 transcript DRS’s

sensitivity and specificity were 93%, 95% CI (83–100), and 88%,

95% CI (74–97), respectively, with consistent accuracy in the HIV-

infected and -uninfected test cohorts (Figures 4C, 5C, and 5D;

Table 3). In the validation dataset, the patients were classified with

100% sensitivity, 95% CI (100–100), and 96% specificity, 95% CI

(93–100) (Figure 4D; Table 3). Similar values for sensitivity and

specificity were obtained when the DRS was evaluated in the training

dataset, demonstrating the robustness of our approach to avoid

overfitting (Table S5). In order to evaluate the classificatory power of

the DRS, we compared its performance with the regression model

derived from the elastic net based on the same signatures (Table S5).

We found that our DRS had similar accuracy in distinguishing TB

from LTBI and OD to the weighted regression model.

In order to assess the predictive value of our DRS in a cohort of

patients undergoing investigation for persistent symptoms such as

cough, fever, and weight loss, i.e., where TB was included in the

differential diagnosis, we used the prevalence of TB in our

prospective Malawi cohort (58%; 254 confirmed TB cases of 437

patients with suspected TB) to calculate the positive and negative

predictive value (PPV/NPV). The DRS for TB versus OD had a

PPV of 92%, 95% CI (84–99), and a NPV of 90%, 95% CI (80–

100) (Table S7). Using a 20% prevalence, which may be more

reflective of a general primary care setting in a high-burden

African country, NPV for TB versus OD is higher (98%, 95% CI

Figure 4. Classification using the disease risk score on the test cohort and validation dataset. Disease risk score and receiver operating
characteristic curves based on the TB/LTBI 27 transcript signature (A/B) and the TB/OD 44 transcript signature (C/D) applied to the South African (SA)/
Malawi HIV+/2 test cohort (A/C) (nTB = 37 nLTBI = 39/nTB = 42 nOD = 34) and independent validation dataset comprising South African patients (B/D)
(nTB = 20 nLTBI = 31 nOD = 82). Sensitivity, specificity are reported in Table 3. HIV+, HIV-infected; HIV2, HIV-uninfected. Classification cut-offs: (A) 138.98;
(B) 107.76; (C) 154.44; (D) 99.94.
doi:10.1371/journal.pmed.1001538.g004
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[96–100]), but PPV decreases (66%, 95% CI [46–87]), emphasiz-

ing the value of DRS as a rule-out test, with those patients with

positive DRS selected for further investigation (Table S7).

We also explored the effect of adjusting the threshold for the

DRS in assigning individual patients to TB or LTBI/OD. By

accepting a percentage of patients as ‘‘non-classifiable,’’ the

majority of patients under investigation are accurately assigned.

These ‘‘non-classifiable’’ patients could then be selected for more

detailed investigation (Figure S5).

As it would be advantageous to have a single signature that

distinguished TB from non-TB, we assessed the performance of a

signature in distinguishing TB from both TB and LTBI. A 53

transcript signature was identified (Table S3) that distinguished TB

from both LTBI and OD with sensitivity/specificity 91%/82%—a

lower performance than TB/LTBI and TB/OD signatures alone.

We also explored whether a smaller number of transcripts could

be used to distinguish TB from LTBI and from OD, which would

aid in manufacturing of a test (Text S1), resulting in a 21 and 29

transcript signature for distinguishing TB from LTBI and OD,

respectively. The sensitivity of the smaller models was 6%–10%

lower than the original models, while retaining the same specificity

for TB versus OD (Table S8).

In contrast to our approach, previous studies of RNA expression

as a diagnostic tool for TB have excluded HIV-infected patients,

and have used other disease controls that were not recruited

concurrently with TB cases or from the same population of

patients undergoing investigation for TB [19,21,22,24,25]. To

establish how these differences in biomarker study design might

affect performance of biomarker signatures, we compared the

performance of our 27 transcript TB/LTBI signature and our 44

transcript TB/OD signature with the performance of the

signatures of Berry et al. [25] for discrimination of TB versus

LTBI (393 transcripts) and TB versus OD (86 transcripts). While

the 393 TB/LTBI signature achieved a sensitivity of 88%, 95% CI

(80–94), and a specificity of 84%, 95% CI (76–92), on our TB

HIV-uninfected cohorts, the performance on the HIV-infected

group was 74%, 95% CI (65–82), and 80%, 95% CI (71–87),

respectively (Figure 6; Table 4). Furthermore, the Berry et al. TB/

OD 86 transcript signature had a lower performance on our

cohorts (sensitivity 71%, 95% CI (62–80), specificity 76%, 95% CI

(67–84), in HIV-uninfected; sensitivity 67%, 95% CI (58–75),

specificity 69%, 95% CI (59–78), in HIV-infected) (Figure 6;

Table 4). Thus our minimal transcript signatures and the DRS

method show better performance in distinguishing TB from LTBI

and OD (especially in the HIV-infected cohorts) than the much

larger number of transcripts identified by Berry et al. [25]. (Table 5)

Finally, we evaluated the performance of our signatures in the

smear-negative sub-group of patients with TB, the majority of

whom were HIV-infected (31 smear-negative TB patients with

definite negative smear status; seven TB HIV-uninfected and 24

TB HIV-infected). In the smear-negative patients the DRS showed

a sensitivity for detecting TB of 68%, 95% CI (52–84), when using

Figure 5. Application of the transcript signatures to the South African and Malawi test cohorts by HIV status. Disease risk score and
receiver operating characteristic curves based on the TB/LTBI 27 transcript signature (A/B) and the TB/OD 44 transcript signature (C/D) applied to the
HIV-uninfected (HIV2) (A/C) and HIV-infected (HIV+) (B/D) test cohort. Area under the curve, sensitivities, and specificities are reported in Table 3.
Classification cut-offs: (A) 131.37; (B) 142.84; (C) 151.10; (D) 142.84.
doi:10.1371/journal.pmed.1001538.g005

Table 3. Classification achieved using the disease risk score.

Measures South Africa/Malawi Test Cohort Validation Dataset

HIV+/2 (95% CI) HIV2 (95% CI) HIV+ (95% CI) HIV2 (95% CI)

TB versus LTBI (27 TB/LTBI transcript
signature)

Number of patients 76 38 38 51

Area under the curve 98% (95–100) 100% (100–100) 97% (95–100) 99% (97–100)

Sensitivity 95% (87–100) 100% (100–100) 94% (83–100) 95% (85–100)

Specificity 90% (80–97) 100% (100–100) 90% (75–100) 94% (84–100)

Likelihood ratio positive 9.23 (3.63–23.4) NA 9.44 (2.52–5.34) 14.73 (3.84–56.47)

Likelihood ratio negative 0.06 (0.02–0.23) 0 0.06 (0.01–0.42) 0.05 (0.01–0.36)

TB versus ODs (44 TB/OD transcript
signature)

Number of patients 76 37 39 102

Area under the curve 95% (89–99) 96% (89–100) 94% (83–100) 100%a (100–100)

Sensitivity 93% (83–100) 91% (77–100) 95% (85–100) 100% (100–100)

Specificity 88% (74–97) 93% (80–100) 84% (68–100) 96% (93–100)

Likelihood ratio positive 7.89 (3.13–19.89) 14.3 (2.15–95.12) 6.02 (2.1–17.08) 27.67 (9.11–84.03)

Likelihood ratio negative 0.08 (0.03–0.24) 0.05 (0.01–0.35) 0.06 (0.01–0.41) 0

The TB/LTBI 27 transcript signature and TB/OD 44 transcript signature were applied to the South African/Malawi HIV-uninfected (HIV2) and HIV-infected (HIV+) test
cohort and the independent validation dataset. Sensitivity and specificity calculated using the weighted threshold for classification. The actual numbers of patients that
were DRS negative and positive are shown in Table S4.
a99.94%.
HIV2; HIV-uninfected; HIV+; HIV-infected; NA; not applicable.
doi:10.1371/journal.pmed.1001538.t003
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Figure 6. Application of transcript signatures [25] to the combined South Africa and Malawi cohorts. Disease risk score and receiver
operating characteristic curves based on transcript signatures of Berry et al. [25] for TB versus LTBI (A/B/C) and TB versus OD (D/E/F) applied to the
combined training and test cohorts in HIV-uninfected (HIV2) and HIV-infected (HIV+) (A/D), HIV2 (B/E), and HIV+ (C/F) cohorts (Table 4 for
sensitivities, specificities, and area under the curve). Classification cut-offs: (A) 1,847.73; (B) 1,777.65; (C) 1,898.97; (D) 172.12; (E) 170.30; (F) 173.70.
doi:10.1371/journal.pmed.1001538.g006
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the TB versus LTBI signature and a sensitivity of 90%, 95% CI

(81–100), with the TB/OD signature, both of which are

comparable to results obtained in the larger HIV-infected cohort

of smear-positive and -negative patients. As we used the same

LTBI and OD patients from the test set, the specificity was

unchanged (90%, 95% CI (80–97), for TB versus LTBI and 88%,

95% CI (74–97), for TB versus OD) (Table S9).

Discussion

We have identified a host blood transcriptomic signature that

distinguishes TB from a wide range of OD prevalent in HIV-

infected and -uninfected African patients. We found that patients

with TB can be distinguished from LTBI with only 27 transcripts

and from OD with 44 transcripts. Our findings appear robust as

the results are reproducible in both HIV-infected and -uninfected

cohorts, in different geographic locations, and in an independent

TB patient dataset. The high sensitivity and specificity of the

signatures in distinguishing TB from OD, even in the HIV-

infected patients that have differing levels of T cell depletion and a

wide spectrum of opportunistic infections as well as HIV-related

complications, suggests that the signatures are promising biomark-

ers of TB. The relatively small number of transcripts in our

signatures may increase the potential for using transcriptional

profiling as a clinical diagnostic tool from a single peripheral blood

sample (i.e., using a multiplex assay [35,36]).

The major challenge for diagnosis of TB in Africa is how to

distinguish this disease from the range of other conditions that

show similar symptoms in countries where TB and HIV are co-

endemic. Previous TB biomarker studies have focused on

distinguishing patients with TB from healthy controls, or from

LTBI [21,22,24], or have used other disease controls that may not

represent the ‘‘real world’’ disease spectra from which TB should

be clinically differentiated [19,25]. Furthermore, these TB

biomarker studies have also excluded HIV co-infected patients

who are the group that most need new diagnostics. Our study

design should ensure that our signatures are applicable in TB/

HIV endemic countries as we recruited patients with TB

concurrently with patients with a range of conditions that present

with similar clinical features to TB, as well as recruiting both HIV-

infected and -uninfected individuals.

We have identified separate signatures for distinguishing TB/

OD and TB/LTBI, which only overlap in three transcripts. In

practice the clinical applications of these signatures might be

distinct as the TB/LTBI signature would be of value in contact

screening, where the concern is distinguishing active disease from

previous exposure in minimally symptomatic individuals. The

TB/OD signature would be of most value in evaluating

symptomatic patients presenting to medical services with symp-

toms of TB. We have also explored whether a single signature

might be used to distinguish TB from both LTBI and OD. The

combined signature showed lower performance to the separate

TB/LTBI and TB/OD signatures. Further exploration of the

operational performance of a combined signature or separate

signatures is needed to establish the best strategy.

Although our signatures and DRS distinguished the majority of

patients with TB from those with LTBI or OD, a proportion of

patients were not correctly classified. There is increasing

recognition that TB and LTBI may represent a dynamically

evolving continuum, particularly in HIV-infected patients and

thus failure to culture M.TB is not absolute proof that TB is not

present. Some false assignment by our current ‘‘gold standard’’ is

to be expected as noted by post mortem studies at which

undiagnosed TB is confirmed [14,15]. All patients in the OD

group presented with symptoms for which TB was included in the

differential diagnosis, and it is possible that TB may have been

misdiagnosed in a small proportion of OD patients despite the

extensive clinical investigation used to assign each patient to each

diagnostic group. Some improvement in sensitivity and specificity

of our DRS may also be achieved by weighting the signal from the

most discriminatory transcripts, and this could be explored in

subsequent refinements of the method.

A major concern in using transcriptional signatures as a clinical

diagnostic tool in resource poor settings is the complexity, as well

as cost, of the current methodologies. Our results have shown that

transcriptional signatures can be used to distinguish TB from OD

in an African setting. We explored the feasibility of a simplified

method for disease categorization that may facilitate development

of a diagnostic test based on our signatures. Our DRS provides a

new approach that enables the use of multi-transcript signatures

for individual disease risk assignment without the requirement for

complex analysis. Our method could be used to develop a simple

Table 4. Application of published signatures to the South Africa and Malawi cohorts.

Measures South African/Malawi Cohorts

HIV2/+ (95% CI) HIV2 (95% CI) HIV+ (95% CI)

TB versus LTBI (393 transcript signature)

Number of patients 361 180 181

Area under the curve 89% (86–92) 94% (91–97) 88% (82–92)

Sensitivity 82% (76–87) 88% (80–94) 74% (65–82)

Specificity 81% (75–87) 84% (76–92) 80% (71–87)

TB versus OD (86 transcript signature)

Number of patients 369 180 189

Area under the curve 76% (70–80) 78% (70–84) 75% (68–82)

Sensitivity 68% (61–73) 71% (62–80) 67% (58–75)

Specificity 70% (62–76) 76% (67–84) 69% (59–78)

Sensitivities, specificities, and area under curve based on transcript signatures of Berry et al. [25] for TB versus LTBI (393 transcripts), and TB versus OD (86 transcripts)
applied to the South African/Malawi HIV-uninfected (HIV2) and HIV-infected (HIV+) cohorts.
doi:10.1371/journal.pmed.1001538.t004
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test in which the transcripts comprising the diagnostic signature

(separated into those that are either up- or down-regulated in TB

relative to controls) are each measured using a suitable detection

system [35], and the combined signature used to identify each

patient’s risk of TB. For example, a simple test using the TB/OD

signature probes that show increased transcript expression in TB

relative to OD could be located in a single well or tube, and those

probes that show reduced transcript expression in TB located in a

second well or tube. Binding of RNA from a patient’s blood to

these probes could be detected as a combined signal from each

tube using one of the aforementioned detection systems. To allow

normalization, expression of up- or down-regulated transcripts in

an individual patient could be compared with that of housekeeping

genes, which do not show variation between healthy and disease

states. There are methods for rapid detection of multi-transcript

signatures including lateral flow reverse transcription (RT)-PCR

based systems, nano-pore technology [37], nano-particle enzyme

linked detection [38,39], and detection using nano-wires and

electrical impedance [40]. Some of these may be suitable for direct

analysis of multiple transcript signatures in blood and at a

relatively low cost.

While this study provides a proof of principle that relatively small

numbers of RNA transcripts can be used to discriminate active TB

from latent TB infection and OD in Africa, limitations remain that

need to be addressed in order to translate these results into a clinical

test. One such limitation is that our study has not assessed

performance of our DRS in patients treated for TB solely on the

basis of clinical suspicion, without any microbiological confirma-

tion. Amongst these ‘‘probable/possible’’ patients with TB, there is

no gold standard to evaluate any new biomarker. Exclusion of

probable/possible patients with TB may have produced better

estimates of sensitivity and specificity than would be achieved in a

prospective ‘‘all comers’’ study including the entire cohort of

patients in whom TB is included in the differential diagnosis. Thus,

further evaluation using a prospective population based study in

which the decision whether and when to initiate TB treatment is

evaluated against the new biomarker is required. Future studies will

also be required to refine the use of these biomarkers in a clinical

decision process either as an initial screening tool, or in conjunction

with more detailed culture based diagnostics.

From a clinical perspective a simple transcriptome-based test

that reliably diagnoses or excludes TB in the majority of patients

undergoing investigation for suspected TB, using a single blood

sample, would be of great value, allowing scarce hospital resources

to be focused on the small proportion of patients where the result

was indeterminate. The challenge for the academic research

community and for industry is to develop innovative methods to

translate multi-transcript signatures into simple, cheap tests for TB

suitable for use in African health facilities.

Supporting Information

Figure S1 Principal components analysis (PCA) of the
microarray samples. PCA plot based on all transcripts on all

samples after background adjustment and normalisation. A) PCA1

& PCA2 and B) PCA1 & PCA3. The sample highlighted

(categorised as active TB HIV+ from Malawi) was removed from

the analysis. Rings are levels of confidence (0.9 inner circle, 0.9999

outer circle).

(TIF)

Figure S2 Concordance of differential expression by
location of cohort and by HIV status for TB versus LTBI.
Concordance of differential expression by location of cohort (A/B)

and by HIV status (C/D) for the active TB versus latent

TB infection cohorts in South Africa and Malawi. Negative

logarithm of the corrected p-values in TB versus LTBI between

South Africa and Malawi for HIV-uninfected (HIV2) cohort (A)

and HIV-infected (HIV+) cohort (B); and between HIV2 and

HIV+ cohorts in South Africa (C) and in Malawi (D). There were

positive correlations between all comparisons. p = 0.05 is equiv-

alent to 2log p value = 1.3.

(TIF)

Figure S3 Concordance of differential expression by
location of cohort and by HIV status for TB versus OD.
Concordance of differential expression by location of cohort (A/B)

and by HIV status (C/D) for the active TB versus other disease

cohorts in South Africa and Malawi. Negative logarithm of the

corrected p-values in TB versus OD between South Africa and

Malawi for HIV-uninfected (HIV2) cohort (A) and HIV-infected

(HIV+) cohort (B); and between HIV2 and HIV+ cohorts in

South Africa (C) and in Malawi (D). There were positive

correlations between all comparisons. Note, the correlation

between South Africa/Malawi HIV2 cohorts is less than in

South Africa/Malawi HIV+ cohorts which may reflect the

different spectra of conditions in the ‘other disease’ cohorts.

p = 0.05 is equivalent to 2log p value = 1.3.

(TIF)

Figure S4 Heatmaps showing clustering of the indepen-
dent South African validation dataset based on the TB/
LTBI and TB/OD signatures. Clustering of TB versus LTBI

based on the TB/LTBI 27 transcript signature (A) and TB/OD 44

transcript signature (B) applied to the independent South African

validation datasets of Berry et al. [25]. Patients are represented as

columns (red are patients with TB, green are LTBI, blue are OD)

and individual transcripts are shown in rows (transcripts shown in

red are up-regulated and those in green are down-regulated).

(TIF)

Figure S5 Calculating the error rate of the classifiers.
The error rate of classification is presented in relation to the

percentage of unclassified samples. We present the error rate of

the classifier for the different groups using the 27 TB/LTBI

and 44 TB/OD transcript signatures in relation to the missing

rate we accept (HIV+ patients in red, HIV2 in blue and both

HIV+ & HIV2 in black; solid lines show the error rate for the

training cohorts while dotted lines show the error rate for the test

cohorts).

(TIF)

Table S1 The 27 transcript signature for distinguishing
TB from LTBI.

(DOC)

Table S2 The 44 transcript signature for distinguishing
TB from other diseases.

(DOC)

Table S3 The 53 transcript signature for detecting TB
from non-TB (i.e., LTBI and OD).

(DOC)

Table S4 Number of patients per group and calls of
DRS classification per group.

(DOC)

Table S5 Comparison of classification achieved using
elastic net derived linear classifier and disease risk
score for every pairwise comparison.

(DOC)
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Table S6 Classification achieved using the disease risk
score applied to the South African/Malawi HIV-unin-
fected (HIV2) and HIV-infected (HIV+) test cohort and
validation dataset with confidence intervals calculated
using the exact binomial method (Text S1).
(DOC)

Table S7 Positive and negative predictive values for the
classification achieved using the disease risk score
applied to the South African/Malawi HIV-uninfected
(HIV2) and HIV-infected (HIV+) test cohort and valida-
tion dataset.
(DOC)

Table S8 Performance of the smaller signatures when
applied to the South Africa/Malawi test set.
(DOC)

Table S9 Classification achieved using the disease risk
score applied to the South African/Malawi smear-
negative patients with TB and the controls from the test
cohort with confidence intervals calculated using the
bootstrapping and the exact binomial method.
(DOC)

Text S1 Appendix.
(DOC)

Text S2 STARD checklist.
(DOC)
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Editors’ Summary

Background. Tuberculosis (TB), caused by Mycobacterium
tuberculosis, is curable and preventable, but according to the
World Health Organization (WHO), in 2011, 8.7 million people
had symptoms of TB (usually a productive cough and fever)
and 1.4 million people—95% from low- and middle-income
countries—died from this infection. Worldwide, TB is also the
leading cause of death in people with HIV. For over a
century, diagnosis of TB has relied on clinical and radiological
features, sputum microscopy, and tuberculin skin testing but
all of these tests have major disadvantages, especially in
people who are also infected with HIV (HIV/TB co-infection)
in whom results are often atypical or falsely negative.
Furthermore, current tests cannot distinguish between
inactive (latent) and active TB infection. Therefore, there is
a need to identify biomarkers that can differentiate TB from
other diseases common to African populations, where the
burden of the HIV/TB pandemic is greatest.

Why Was This Study Done? Previous studies have
suggested that TB may be associated with specific transcrip-
tional profiles (identified by microarray analysis) in the blood
of the infected patient (host), which might make it possible
to differentiate TB from other conditions. However, these
studies have not included people co-infected with HIV and
have included in the differential diagnosis diseases that are
unrepresentative of the range of conditions common to
African patients. In this study of patients from Malawi and
South Africa, the researchers investigated whether blood
RNA expression could distinguish TB from other conditions
prevalent in African populations and form the basis of a
diagnostic test for TB (through a process using transcription
signatures).

What Did the Researchers Do and Find? The researchers
recruited patients with suspected TB attending one clinic in
Cape Town, South Africa between 2007 and 2010 and in one
hospital in Karonga district, Malawi between 2007 and 2009
(the training and test cohorts). Each patient underwent a
series of tests for TB (and had a blood test for HIV) and was
diagnosed as having TB if there was microbiological
evidence confirming the presence of Mycobacterium tuber-
culosis. At recruitment, each patient also had blood taken for
microarray analysis and following this assessment, the
researchers selected minimal transcript sets that distin-
guished TB from latent TB infection and TB from other
diseases, even in HIV-infected individuals. In order to help
form the basis of a simple, low cost, diagnostic test, the
researchers then developed a statistical method for the
translation of multiple transcript RNA signatures into a
disease risk score, which the researchers then checked using
a separate cohort of South African patients (the independent
validation cohort).
Using these methods, after screening 437 patients in Malawi
and 314 in South Africa, the researchers recruited 273
patients to the Malawi cohort and 311 adults to the South

African cohort (the training and test cohorts). Following
technical failures, 536 microarray samples were available for
analysis. The researchers identified a set of 27 transcripts that
could distinguish between TB and latent TB and a set of 44
transcripts that could distinguish TB from other diseases.
These multi-transcript signatures were then used to calculate
a single value disease risk score for every patient. In the test
cohorts, the disease risk score had a high sensitivity (95%)
and specificity (90%) for distinguishing TB from latent TB
infection (sensitivity is a measure of true positives, correctly
identified as such and specificity is a measure of true
negatives, correctly identified as such) and for distinguishing
TB from other diseases (sensitivity 93% and specificity 88%).
In the independent validation cohort, the researchers found
that patients with TB could be distinguished from patients
with latent TB infection (sensitivity 95% and specificity 94%)
and also from patients with other diseases (sensitivity 100%
and specificity 96%).

What Do These Findings Mean? These findings suggest
that a distinctive set of RNA transcriptional signatures
forming a disease risk score might provide the basis of a
diagnostic test that can distinguish active TB from latent TB
infection (27 signatures) and also from other diseases (44
signatures), such as pneumonia, that are prevalent in African
populations. There is a concern that using transcriptional
signatures as a clinical diagnostic tool in resource poor
settings might not be feasible because they are complex and
costly. The relatively small number of transcripts in the
signatures described here may increase the potential for
using this approach (transcriptional profiling) as a clinical
diagnostic tool using a single blood test. In order to make
most use of these findings, there is an urgent need for the
academic research community and for industry to develop
innovative methods to translate multi-transcript signatures
into simple, cheap tests for TB suitable for use in African
health facilities.

Additional Information. Please access these websites via
the online version of this summary at http://dx.doi.org/
10.1371/journal.pmed.1001538.

N Wikipedia has definitions of tests for gene expression (note
that Wikipedia is a free online encyclopedia that anyone
can edit; available in several languages)

N The National Center for Biotechnology Information has a
fact sheet on microarray analysis

N MedlinePlus has links to further information about
tuberculosis (in English and Spanish)

N The World Health Organization has up-to-date information
on TB

N The Stop TB partnership is working towards tuberculosis
elimination; patient stories about tuberculosis/HIV
coinfection are available
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