# Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world's hottest sea, the Persian/Arabian Gulf 

Hume, B.C.C. ${ }^{1}$; D’Angelo, C. ${ }^{1}$; Smith, E.G. ${ }^{2}$; Stevens, J.R. ${ }^{3}$, Burt ${ }^{2}$, J. \& Wiedenmann, J. ${ }^{1,4^{*}}$

${ }^{1}$ Coral Reef Laboratory. Ocean and Earth Science, University of Southampton, Waterfront Campus, National Oceanography Centre, Southampton, SO14 3ZH, UK
${ }^{2}$ Marine Biology Laboratory, Centre for Genomics and Systems Biology, New York University - Abu Dhabi, PO Box 129 188, Abu Dhabi, United Arab Emirates
${ }^{3}$ Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
${ }^{4}$ Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK

## Supplementary Information

Supplementary Figures


Supplementary Figure S1. Classification of predominant Symbiodinium types associated with 6 species of southern Gulf corals using denaturing gradient gel electrophoresis of the ITS2 region of the nrDNA. The novel ITS2 variant of the C3 type, C3v1 is denoted by a 1 within a C3 section of pie. Three coral colonies were sampled per species at each of 8 time points from 06/11-03/13. Each pie chart represents the number of times a given symbiont (for example C3), or mix of symbionts (for example a mix of C3 and A1) was detected (symbiont mixes identified by the vertical division of a slice; the proportion of each symbiont making up a mix was not quantified) in either summer ( 5 time points; 06/11, 09/11, 05/12, 07/12 and $08 / 12$ ) or winter ( 3 time points; $11 / 12,02 / 13$ and $03 / 13$ ) time point collections. A full breakdown of DGGE results for individual corals and replicates is available in Supplementary Table S1.
C3 TTGCCCCAACTTTGCAAGCAGGATGTGTTTCTGCCTTGCGTTCTTATGAGCTATTGCCCT ..... 60
I\|T\|CCCCAACTTTGCAAGCAGGATGTGTTTCTGCCTTGCGTTCTTATGAGCTATTGCCCT ..... 60
C3 Gulf TTGCCCCAACTTTGCAAGCAGGATGTGTTTCTGCCTTGCGTTCTTATGAGCTATTGCCCT
C3 CTGAGCCAATGGCTTGTTAATTGCTTGGTTCTTGCAAAATGCTTTGCGCGCTGTTATTCA ..... 120 $\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|$C3 Gulf CTGAGCCAATGGCTTGTTAATTGCTTGGTTCTTGCAAAATGCTTTGCGCGCTGTTATTCA 120
C3 AGTTTCTACCTTCGTGGTTTTACTTGAGT--------GACGCTGCTCATGCTTGCAACCG ..... 172
 \|\|\|\|\|\|\|\|\|\|\|\|\|\|\|
C3 Gulf AGTTTCTACCTTCGTGGTTTTACTTGAGTGACGCTGCGACGCTGCTCATGCTTGCAACCG ..... 180
C3 CTGGGATGCAGGTGCATGCCTC ..... 194
|||||||||||||||||||
C3 Gulf CTGGGATGCAGGTGCATGCCTC ..... 202

Supplementary Figure S2. Alignment of representative ITS2 type C3 and C3-Gulf nrDNA ITS2 sequences. The 8 bp duplication region specific for C3-Gulf is highlighted in magenta. The corresponding region in the C3 reference sequence is marked black.
Supplementary Figure S3. Bayesian Inference phylogenies of $p s b A^{n c r}$ sequences from sites within and external to the Persian/Arabian Gulf. Estimated phylogeny of 22 Symbiodinium thermophilum and 264 reference (non-Gulf) $p s b A^{n c r}$ sequences. Tree creation is detailed in the Methods section of the main report. Non-Gulf sequences are annotated according to their ITS2 type and accession number.


Supplementary Figure S4. Photographs of representative denaturing gradient gel electrophoresis (DGGE) gel demonstrating the resolution of predominant subclades found within southern Gulf corals in the 22 month seasonal analysis. Gel lanes with marker amplicons run in them are marked with L (Ladder) with bands annotated according to clade/subclade. The other lanes are examples of amplicons from DNA samples of individual coral colonies with predominant clades/subclades being annotated. Examples of bands representing alternative structural conformations, which, when excised, re-amplified and rerun on an identical gel form the same fingerprint as the original sample are highlighted by white rectangles.

## Supplementary Tables

Supplementary Table S1. Dominant Symbiodinium ITS2 types attained by DGGE found in 6 Gulf coral species from Saadiyat reef. Each cell of the table represents one coral colony. Multiple symbiont types found in individual corals listed with their names separated by a forward slash. Multiple rows in cells of the table show the results for different tissue samples taken from the same colony.

$\ddagger$ C3V1 refers to a novel ITS2 type variant (1bp different from ITS2 type C3) identified in this study.

Supplementary Table S2. Prevalence of the C3-Gulf ITS2 sequence variant found in Gulf C3 Symbiodinium populations in the southern Gulf. .

| $\underline{\text { ID }}$ | $\underline{\text { Host species }}$ | Collection <br> region | Collection <br> date | $\underline{\text { No. of Seqs }}$ | $\underline{\text { C3-Gulf:C3 }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BH772 | Porites harrisoni | Dalma | Sept. 2012 | 9 | $0: 9$ |
| BH776 | P. harrisoni | Dalma | Sept. 2012 | 9 | $0: 9$ |
| BH1448 | P. harrisoni | Dalma | Sept. 2012 | 9 | $3: 6$ |
| BH1411 | P. harrisoni | Dalma | Sept. 2012 | 9 | $3: 6$ |
| BH787 | P. harrisoni | Dalma | Sept. 2012 | 9 | $3: 6$ |
| BH173 | Porites lobata | Saadiyat | May 2010 | 9 | $2: 7$ |
| BH164 | P. lobata | Saadiyat | May 2010 | 13 | $3: 10$ |
| BH167 | P. lobata | Saadiyat | May 2010 | 9 | $9: 7$ |
| BH143 | P. lobata | Saadiyat | May 2010 | 17 | $3: 14$ |
| BH213 | P. lobata | Saadiyat | Oct. 2011 | 3 | $1: 2$ |
| BH218 | P. lobata | Saadiyat | Oct. 2011 | 7 | $1: 6$ |
| BH223 | P. lobata | Saadiyat | Oct. 2011 | 12 | $2: 10$ |
| BH313 | P. harrisoni | Saadiyat | Oct. 2011 | 3 | $1: 2$ |
| BH318 | P. harrisoni | Saadiyat | Oct. 2011 | 8 | $1: 7$ |
| BH236 | P. harrisoni | Saadiyat | Oct. 2011 | 7 | $2: 5$ |
| BH377 | P. harrisoni | Saadiyat | Sept. 2012 | 28 | $18: 10$ |
| BH386 | P. harrisoni | Saadiyat | Sept. 2012 | 28 | $16: 12$ |
| BH403 | P. harrisoni | Saadiyat | Sept. 2012 | 8 | $0: 8$ |
| BH383 | Porites lutea | Saadiyat | Sept. 2012 | 3 | $0: 3$ |
| BH369 | P. lobata | Saadiyat | Sept. 2012 | 15 | $2: 13$ |
| BH1217 | P. lobata | Saadiyat | Sept. 2012 | 6 | $1: 5$ |
| BH1222 | P. lobata | Saadiyat | Sept. 2012 | 2 | $1: 1$ |
| BH1422 | P. lutea | Saadiyat | Sept. 2012 | 9 | $7: 2$ |
| BH1425 | P. lutea | Umm Al <br> Quwain | Mar. 2013 | 9 | $3: 6$ |
| BH1426 | P. lutea | Umm Al <br> Quwain | Mar. 2013 | 18 | $3: 15$ |
| BH1427 | P. lutea | Umm Al <br> Quwain | Mar. 2013 | 8 | $0: 8$ |
| BH1392 | P. lutea | Umm Al <br> Quwain | Mar. 2013 | 8 | $0: 8$ |
| BH293 | Platygyra daedalea | Saadiyat | June 2011 | 3 | $1: 2$ |
| BH302 | P. daedalea | Saadiyat | June 2011 | 8 | $3: 5$ |
| Total |  |  |  |  | $\mathbf{2 8 6}$ |
|  | $\mathbf{8 2 : 2 0 5 ~}$ |  |  |  |  |

${ }^{\dagger}$ Zooxanthellae were sampled from corals from Saadiyat reef (collected May 2010) after four years of aquarium culture in the experimental mesocosm of Coral Reef Laboratory at the University of Southampton, UK ${ }^{1}$

Supplementary Table S3. GenBank accession numbers and corresponding ITS2 types of the reference sequences used in the $p s b A^{n c r}$ Bayesian Inference analysis. Sequences represent a subset of the sequences analysed in two previous analyses ${ }^{2,3}$.

| JQ043553 | C26a | JQ043639 | C3 | KF572241 | C7a | KF572294 | C3 | KF572359 | C40 | KF572411 | C3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JQ043555 | C26a | JQ043640 | C3 | KF572242 | C7a | KF572295 | C3 | KF572360 | C40 | KF572412 | C3 |
| JQ043556 | C26a | JQ043641 | C3 | KF572243 | C7a | KF572296 | C3 | KF572361 | C40 | KF572413 | C3 |
| JQ043557 | C26a | JQ043642 | C3 | KF572244 | C7a | KF572297 | C3 | KF572362 | C40 | KF572414 | C3 |
| JQ043558 | C26a | JQ043643 | C3 | KF572245 | C7a | KF572299 | C3c | KF572364 | C40 | KF572415 | C87 |
| JQ043559 | C26a | JQ043644 | C3 | KF572246 | C7a | KF572300 | C3c | KF572365 | C40 | KF572416 | C87 |
| JQ043560 | C26a | JQ043645 | C3k | KF572247 | C7 | KF572301 | C3 | KF572366 | C40 | KF572417 | C87 |
| JQ043561 | C26a | JQ043646 | C3k | KF572248 | C7 | KF572302 | C3 | KF572367 | C40 | KF572418 | C87 |
| JQ043580 | C31c | JQ043647 | C3k | KF572249 | C7 | KF572303 | C3 | KF572368 | C40 | KF572419 | C3 |
| JQ043589 | C26a | JQ043648 | C3k | KF572250 | C7 | KF572304 | C3 | KF572369 | C40 | KF572420 | C3 |
| JQ043591 | C26a | JQ043649 | C3i | KF572251 | C7 | KF572305 | C3 | KF572370 | C40 | KF572421 | C3 |
| JQ043592 | C26a | JQ043650 | C3 | KF572252 | C7 | KF572306 | C3 | KF572371 | C31 | KF572422 | C3 |
| JQ043593 | C26a | JQ043651 | C3i | KF572253 | C7 | KF572307 | C3 | KF572372 | C3 | KF572423 | C3 |
| JQ043594 | C26a | JQ043652 | C3 | KF572254 | C7 | KF572308 | C3 | KF572373 | C3h | KF572424 | C3 |
| JQ043595 | C26a | JQ043653 | C3 | KF572255 | C7 | KF572309 | C3 | KF572374 | C3h |  |  |
| JQ043596 | C26a | JQ043654 | C3i | KF572256 | C7 | KF572310 | C3 | KF572375 | C3 |  |  |
| JQ043598 | C31 | JQ043655 | C3 | KF572257 | C7 | KF572313 | C3 | KF572376 | C3 |  |  |
| JQ043599 | C31 | JQ043656 | C3 | KF572258 | C7 | KF572314 | C3 | KF572377 | C3 |  |  |
| JQ043600 | C31 | JQ043657 | C3 | KF572259 | C7 | KF572315 | C3 | KF572379 | C3 |  |  |
| JQ043601 | C31c | JQ043658 | C21 | KF572260 | C7 | KF572316 | C3 | KF572380 | C3s |  |  |
| JQ043602 | C31 | JQ043659 | C21 | KF572261 | C7 | KF572317 | C3 | KF572381 | C3s |  |  |
| JQ043603 | C31 | JQ043660 | C21 | KF572262 | C7 | KF572318 | C3 | KF572382 | C3s |  |  |
| JQ043604 | C31 | JQ043661 | C21 | KF572263 | C7 | KF572319 | C3 | KF572383 | C3s |  |  |
| JQ043606 | C31 | JQ043662 | C21a | KF572264 | C7 | KF572320 | C3 | KF572384 | C3s |  |  |
| JQ043607 | C31 | JQ043663 | C21a | KF572265 | C7 | KF572321 | C3 | KF572385 | C3b |  |  |
| JQ043608 | C31 | JQ043664 | C21a | KF572266 | C7 | KF572322 | C3 | KF572386 | C3b |  |  |
| JQ043609 | C31 | JQ043665 | C21a | KF572267 | C7 | KF572323 | C3 | KF572387 | C3b |  |  |
| JQ043610 | C31 | JQ043666 | C21a | KF572268 | C7 | KF572324 | C3 | KF572388 | C3b |  |  |
| JQ043612 | C31 | JQ043668 | C27 | KF572269 | C7 | KF572325 | C3 | KF572389 | C3b |  |  |
| JQ043613 | C31 | JQ043669 | C27 | KF572270 | C7 | KF572326 | C3 | KF572390 | C3b |  |  |
| JQ043615 | C31 | JQ043670 | C27 | KF572271 | C7 | KF572327 | C3 | KF572391 | C3b |  |  |
| JQ043616 | C31 | JQ043671 | C27 | KF572272 | C3 | KF572328 | C3 | KF572392 | C3b |  |  |
| JQ043618 | C17 | JQ043672 | C27 | KF572273 | C3 | KF572329 | C3 | KF572393 | C3b |  |  |
| JQ043619 | C17 | JQ043673 | C27 | KF572274 | C3 | KF572330 | C3 | KF572394 | C3b |  |  |
| JQ043621 | C17a | JQ043674 | C27 | KF572275 | C3 | KF572336 | C3b | KF572395 | C3 |  |  |
| JQ043623 | C17a | KF572222 | C7a | KF572277 | C3 | KF572337 | C3b | KF572396 | C3 |  |  |
| JQ043624 | C21 | KF572223 | C7a | KF572278 | C3 | KF572338 | Cq | KF572397 | C3 |  |  |
| JQ043625 | C21 | KF572224 | C7a | KF572279 | C3 | KF572339 | Cq | KF572398 | C3 |  |  |
| JQ043626 | C21 | KF572225 | C7a | KF572280 | C3 | KF572340 | Cq | KF572399 | C3a |  |  |
| JQ043627 | C3h | KF572226 | C7a | KF572281 | C3 | KF572341 | Cq | KF572400 | C3a |  |  |
| JQ043628 | C3h | KF572227 | C7a | KF572282 | C3 | KF572343 | C3 | KF572401 | C3a |  |  |
| JQ043629 | C3h | KF572228 | C7a | KF572284 | C3 | KF572344 | C3 | KF572402 | C3a |  |  |
| JQ043630 | C3h | KF572229 | C7a | KF572285 | C3 | KF572345 | C3 | KF572403 | C3a |  |  |
| JQ043631 | C3h | KF572230 | C7a | KF572286 | C3 | KF572346 | C3 | KF572404 | C3 |  |  |
| JQ043633 | C21 | KF572231 | C7a | KF572287 | C3 | KF572347 | C3 | KF572405 | C3 |  |  |
| JQ043634 | C3 | KF572232 | C7a | KF572289 | C3 | KF572353 | C3 | KF572406 | C3 |  |  |
| JQ043635 | C3 | KF572233 | C7a | KF572290 | C3 | KF572354 | C3 | KF572407 | C3 |  |  |
| JQ043636 | C3 | KF572234 | C7a | KF572291 | C3 | KF572355 | C3 | KF572408 | C3 |  |  |
| JQ043637 | C3 | KF572235 | C7c | KF572292 | C3 | KF572357 | C40 | KF572409 | C3 |  |  |
| JQ043638 | C3 | KF572236 | C7c | KF572293 | C3 | KF572358 | C40 | KF572410 | C3 |  |  |

Supplementary Table S4. Details of the 22 Gulf psbA ${ }^{n c r}$ sequences used in the Bayesian Inference phylogenetic analyses. Underlined or asterisk-appended IDs represent sequences that underwent additional nrDNA ITS2 (see Supplementary Table S2) or both cp23S and cob molecular cloning, sequencing and analysis, respectively.

| ID | Sampling Location | Host | ITS2 <br> Type | Accession |
| :--- | :--- | :--- | :--- | :--- |
| BH1411* | Dalma | Porites <br> harrisoni | C3 | KM458273 |
| BH1413 | Dalma | P. harrisoni | C3 | KM458274 |
| BH1414* | Dalma | P. harrisoni | C3 | KM458275 |
| BH1415* | Dalma | P. harrisoni | C3 | KM458276 |
| BH1417 | Saadiyat | Porites lutea | C3 | KM458277 |
| BH1419 | Saadiyat | Porites <br> lobata | C3 | KM458278 |
| BH1422* | Saadiyat | P. lutea | C3 | KM458279 |
| BH1423 | Umm Al Quwain | P. lutea | C3 | KM458280 |
| BH1424 | Umm Al Quwain | P. lutea | C3 | KM458281 |
| BH1425* | Umm A1 Quwain | P. lutea | C3 | KM458282 |
| BH1426* | Umm Al Quwain | P. lutea | C3 | KM458283 |
| BH1427* | Umm Al Quwain | P. lutea | C3 | KM458284 |
| BH1428 | Umm Al Quwain | P. lutea | C3 | KM458285 |
| BH1448* | Dalma | P. harrisoni | C3 | KM458286 |
| BH1449 | Dalma | P. lutea | C3 | KM458287 |
| BH1450 | Dalma | P. lutea | C3 | KM458288 |
| BH1451* | Saadiyat | P. lobata | C3 | KM458289 |
| BH1453* | Saadiyat | P. lobata | C3 | KM458290 |
| BH1456 | Umm Al Quwain | P. lutea | C3 | KM458291 |
| BH1458 | Umm Al Quwain | P. lutea | C3 | KM458292 |
| BH1356* | Saadiyat | P. lutea | C3 | KM458293 |
| BH1392* | Umm Al Quwain | P. lutea | C3 | KM458294 |

Supplementary Table S5. Sequences utilised in the cp23S and cob phylogenies.

| ITS2 type | Marker | Study | Accession number |
| :---: | :---: | :---: | :---: |
| C1 | cp23S | Sampayo et al. 2009 ${ }^{4}$ | FJ529545 |
| C3 | cp23S | Sampayo et al. 2009 | FJ529546 |
| C35a | cp23S | Sampayo et al. 2009 | FJ529548 |
| C79 | cp23S | Sampayo et al. 2009 | FJ529549 |
| C8a | cp23S | Sampayo et al. 2009 | FJ529550 |
| C78a | cp23S | Sampayo et al. 2009 | FJ529551 |
| C42a | cp23S | Sampayo et al. 2009 | FJ529552 |
| C33a | cp23S | Sampayo et al. 2009 | FJ529553 |
| C33 | cp23S | Sampayo et al. 2009 | FJ529554 |
| C3nt | cp23S | Sampayo et al. 2009 | FJ529555 |
| C91 | cp23S | Pochon et al. 2012 ${ }^{5}$ | JN557980 |
| C90 | cp23S | Pochon et al. 2012 | JN557975 |
| C15 | cp23S | Pochon et al. 2012 | JN557974 |
| Gulf C3 | cp23S | This study | KP234523 |
| C1 | cob | Sampayo et al. 2009 | FJ529534 |
| C3 | cob | Sampayo et al. 2009 | FJ529535 |
| C35a | cob | Sampayo et al. 2009 | FJ529537 |
| C79 | cob | Sampayo et al. 2009 | FJ529538 |
| C8a | cob | Sampayo et al. 2009 | FJ529539 |
| C78a | cob | Sampayo et al. 2009 | FJ529540 |
| C42a | cob | Sampayo et al. 2009 | FJ529541 |
| C33a | cob | Sampayo et al. 2009 | FJ529542 |
| C33 | cob | Sampayo et al. 2009 | FJ529543 |
| C3nt | cob | Sampayo et al. 2009 | FJ529544 |
| C91 | cob | Pochon et al. 2012 | JN557946 |
| C90 | cob | Pochon et al. 2012 | JN557945 |
| C15 | cob | Pochon et al. 2012 | JN557944 |
| Gulf C3 | cob | This study | KP234522 |

Supplementary Table S6. A list of Primers and thermal cycles used in PCR to amplify amplicons used as part of this study. Thermal cycles are only listed where they differ from those used in the referenced study associated with each primer pair. Reaction conditions for all PCRs were as used for primer pair SYM_VAR_FWD \& SYM_VAR_REV in Hume et al. $2013^{6}$.

| Amplicon | Primers | Thermal Cycle |
| :--- | :--- | :--- |
| ITS1-5.8S-ITS2 |  |  |
|  | SYM_VAR_FWD $^{6}$ |  |
|  | SYM_VAR_REV $^{6}$ | $95^{\circ} \mathrm{C} 2 \mathrm{~min}$ |
| ITS2-DGGE |  | $30 \mathrm{x}\left[95^{\circ} \mathrm{C} 30 \mathrm{~s}, 56^{\circ} \mathrm{C} 30 \mathrm{~s}, 72^{\circ} \mathrm{C}\right.$ 30s] |
|  | SYM_VAR_5.8S2 <br> $5^{\prime}$ GAATTGCAGAACTCCGTGAACC3' | $72^{\circ} \mathrm{C} 5 \mathrm{~min}$ |
|  | SYM_VAR_CLAMP <br> 5'[CGCCCGCCGCGCCCCGCGCCCGTCCC- <br> GCCGCCCCGCCC] CGGGTTCTCTTGTT- <br> TGACTTCATGC3' |  |
| psbA $^{\text {ncr }}$ | psbAFor_1 ${ }^{3}$ |  |
|  | psbARev_1 ${ }^{3}$ |  |
| cp23S domain V |  |  |
|  | 23S1M13 ${ }^{4}$ | $95^{\circ} \mathrm{C} 2 \mathrm{~min}$ |
| Cytochrome b | 23S2M13 |  |
|  | cob1 (forward) |  |

## Supplementary Methods

## Details of the DGGE protocol

Denaturing gradient gel electrophoresis (DGGE) analysis was used to identify the predominant zooxanthellae ITS2 types present in each coral colony analysed in this study. All visible bands on DGGE gels were characterised according to their predominant ITS2 sequence as described below. Bands characterised by novel ITS2 sequences (not previously characterised as a representative of an ITS2 type according to previous DGGE analyses) were considered to be intragenomic variants unless: the band ran as the brightest band, or if no band representing a closely related sequence (1-2 bp difference) was apparent in the same sample. If rare sequence variants were identified during characterisation of a single band these sequences were deemed to be representative of intragenomic variants. Intragenomic variants were excluded from the study. For each sample to be run in the DGGE analysis the complete ITS1-5.8S-ITS2 region of the nrDNA was first amplified using primers SYM_VAR_FWD and SYM_VAR_REV as described previously ${ }^{6}$. The PCR was then run on a $0.8 \%$ agarose gel, the product size verified, the PCR product cut out (using a sterilised scalpel) and homogenised using a sterile micropestle in $500 \mu 1$ of deionised water. This sample was then stored at $-20^{\circ} \mathrm{C} .3 \mu \mathrm{l}$ of this homogenised sample was then used as a template for a DGGE specific PCR using primers SYM_VAR_5.8SII 5'GAATTGCAGAACTCCGTGAACC3' and SYM_VAR_Clamp 5’[CGCCCGCCGCGCCCCGCGCCCGTCCCGCCGCCCCCGCCC] CGGGTTCTCTTGTTTGACTTCATGC3' (identical to SYM_VAR_REV but with the addition of a 40bp GC clamp). These primers amplify a partial region of the 5.8 S , the complete ITS2 region and a partial region of the 28 S and were used with reaction conditions identical to those with the SYM_VAR_FWD and SYM_VAR_REV primer pair with thermal cycling of $95^{\circ} \mathrm{C}$ for $2 \mathrm{mins}, 30$ cycles of $95^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 56^{\circ} \mathrm{C}$ for 30 s and $72^{\circ} \mathrm{C}$ for 30 s followed by a final extension time of $72^{\circ} \mathrm{C}$ for 5 minutes.

DGGE analyses were conducted using a BioRad DCode System for DGGE with a model 475 gradient former. $10 \mu 1$ of PCR product was loaded onto an $8 \%$ gel with a $32.5-57.5 \%$ gradient (the $100 \%$ denaturing solution was made according to the manufacturers instruction) using an equal mix of $2 x$ loading dye (made according to the manufacturer's instructions). The gel was run for 1400 Vh . Gels were stained (with a final concentration of $50 \mu \mathrm{~g} / \mathrm{ml}$ of ethidium bromide) and destained for 15 min in 200 ml of TAE running buffer. Markers for ITS2 sequences were created by amplifying cloned plasmid DNA templates that contained previously sequenced and characterised ITS2 nrDNA sequences. When amplifying DGGE fragments from plasmid template, an annealing temperature of $66^{\circ} \mathrm{C}$ was used with 28 cycles. The presence of Symbiodinium types within a coral were characterised by analysing the unique 'fingerprint' produced. This fingerprint was characteristically made up of a single bright band and a multitude of fainter bands. When excised, reamplified and re-run, many of the fainter bands produced the same fingerprint (including the bright and fainter bands) as the original sample. In this case, these bands were considered to be structural conformations of the ITS2 sequence and part of the unique fingerprint of the sample. Over cycling of PCR products was avoided to prevent the formation of excessive structural conformations. Bands that were excised, re-amplified, re-run and produced only a single bright band, that ran to the point where the band had originally been excised were taken as indicators of genuine ITS2 sequences (rather than structural conformations). In cases where samples were run and produced fingerprints that differed from any previously run samples, all of the bands were excised, re-amplified and re-run in order to characterise them. Any bands characteristic of a genuine ITS2 sequence, rather than a structural conformation, were excised from the gel and homogenised in $500 \mu \mathrm{l}$ of deionised water. $3 \mu \mathrm{l}$ of this homogenate was then used as template to re-amplify the band's ITS2 sequence using high fidelity Advantage 2 PCR mix polymerase (Clontech) and primers SYM_VAR_5.8SII and SYM_VAR_REV with reaction conditions
and thermal cycling identical to that of the SYM_VAR_5.8SII and SYM_VAR_Clamp primer pair. This PCR product was then molecularly cloned and sequenced as detailed in the methods section for the other ITS2 sequences analysed in this study. The DGGE procedure utilised in this study had been used to successfully characterise subclades, A1, C3, C1, multiple C3 variants, C15, multiple C15 variants, D1-4 and clade G. To ensure a lack of bias in the PCR amplification between clades, equal amounts of clade A and clade D template were amplified using the DGGE primers and run on a gel. Two major bands of equal intensity were produced representative of each clade, thus indicating a suitable lack of PCR bias. Despite the pseudo-quantitative nature of the DGGE analysis, subclades were only characterised as present or absent in this study and no attempt at quantification was made according to band intensity.

## Supplementary References

1. D'Angelo, C. \& Wiedenmann, J. An experimental mesocosm for long-term studies of reef corals. J. Mar. Biol. Assoc. UK 92, 769-775 (2012).
2. Thornhill, D. J., Lewis, A. M., Wham, D. C. \& Lajeunesse, T. C. Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution 68, 352-367 (2014).
3. LaJeunesse, T. C. \& Thornhill, D. J. Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS ONE 6, e29013 (2011).
4. Sampayo, E. M., Dove, S. \& LaJeunesse, T. C. Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium. Mol. Ecol. 18, 500-519 (2009).
5. Pochon, X., Putnam, H. M., Burki, F. \& Gates, R. D. Identifying and characterizing alternative molecular markers for the symbiotic and free-living dinoflagellate genus Symbiodinium. PLoS ONE 7, e29816 (2012).
6. Hume, B. et al. Corals from the Persian/Arabian Gulf as models for thermotolerant reef-builders: prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. Mar. Pollut. Bull. 72, 313-22 (2013).
7. Zhang, H., Bhattacharya, D. \& Lin, S. Phylogney of dinoflagellates based on mitochondrial cytochrome b and nuclear small subunit rDNA sequence comparisons. J. Phycol. 41, 411-420 (2005).
