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Abstract: COPD is characterized by chronic bronchitis, chronic airway obstruction, and 

emphysema, leading to a progressive and irreversible decline in lung function. Inflammation 

is central for the development of COPD. Chronic inflammation in COPD mainly involves the 

infiltration of neutrophils, macrophages, lymphocytes, and other inflammatory cells into the 

small airways. The contribution of resident airway structural cells to the inflammatory process 

is also important in COPD. Airway remodeling consists of detrimental changes in structural 

tissues and cells including airway wall thickening, epithelial metaplasia, goblet cell hyper-

trophy, and smooth muscle hyperplasia. Persistent airway inflammation might contribute to 

airway remodeling and small airway obstruction. However, the underlying mechanisms remain 

unclear. In this review, we will provide an overview of recent insights into the role of major 

immunoinflammatory cells in COPD airway remodeling.
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Introduction
COPD is characterized by chronic bronchitis, chronic airway obstruction, airway 

remodeling, and emphysema, leading to a progressive and irreversible decline in 

lung function.1 Inflammation is central for COPD development and the release of 

inflammatory mediators and destructive enzymes by inflammatory cells particularly 

infiltrating immune cells, which is implicated in the progressive destruction of the 

lung in COPD.2,3 However, the role of resident structural cells in this process should 

not be discounted.

Remodeling has been described in central airways, distal airways, and lung 

parenchyma. It is a process of structural changes involving hyperplasia of airway 

epithelial cells, thickening of the reticular basement membrane (RBM), deposition 

of collagen, peribronchial fibrosis, airway epithelial-to-mesenchymal transition, and 

bronchial smooth muscle cell hyperplasia.4 In COPD, remodeling of the parenchyma 

contributes to emphysema, while small airway remodeling largely results in airway 

obstruction. These changes cause the airflow limitation seen in COPD patients. 

However, the underlying mechanisms remain unclear.

The chronic inflammation in COPD involves the infiltration of the major inflam-

matory cells including neutrophils, monocytes/macrophages, and lymphocytes into 

the airway and lung tissue, and these can be detected in bronchoalveolar fluid and 

induced sputum.5 It is generally acknowledged that persistent chronic inflammation 

may contribute to not only bronchial remodeling but also parenchyma remodeling to 

some extent.6,7 In this review, we will highlight the recent studies that have provided 

Correspondence: Xin Yao
Department of Respiratory Medicine, 
the First Affiliated Hospital of Nanjing 
Medical University, 300 Guangzhou Road, 
Nanjing 210029, China
email yaoxin@njmu.edu.cn 

Journal name: International Journal of COPD
Article Designation: Review
Year: 2018
Volume: 13
Running head verso: Wang et al
Running head recto: Role of inflammatory cells in COPD airway remodeling
DOI: 176122

http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/COPD.S176122
https://www.facebook.com/DoveMedicalPress/
https://www.linkedin.com/company/dove-medical-press
https://twitter.com/dovepress
https://www.youtube.com/user/dovepress
mailto:yaoxin@njmu.edu.cn


International Journal of COPD 2018:13submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

3342

Wang et al

additional insight into the role of these major inflammatory 

cells in COPD airway remodeling.

Neutrophils
Neutrophils are key inflammatory cells in the pathogenesis 

of COPD, with sputum and blood neutrophilia being a char-

acteristic feature of all COPD patients. They have also been 

reported as a marker of COPD severity.8,9 An observational 

study found that patients with higher sputum neutrophil 

percentages had a higher dyspnea score across different 

severities of COPD.10

Neutrophils are recruited to the airways of COPD patients 

and secrete several serine proteases including neutrophil 

elastase (NE), matrix metalloproteinase (MMP), as well as 

myeloperoxidase (MPO) all of which contribute to alveolar 

destruction.11,12 In addition, some neutrophil-derived chemok-

ines such as IL-1 and CXCL8/IL-8 are proven to be involved 

in tissue injury and remodeling in a mouse model.13

MMPs are a family of zinc-dependent proteases that can 

be secreted by stromal cells, neutrophils, and macrophages. 

They are commonly classified according to the substrates they 

degrade. The majority of MMPs implicated in emphysema 

pathogenesis include the collagenase MMP-1, the gelatinase 

MMP-9, and the metalloelastase MMP-12.14 Among those, 

the gelatinase MMP-9 is synthesized by mature neutrophils 

and is mainly stored in intracellular granules of neutrophils 

and is secreted extracellular after activation.15

MMP-9 activity is countered by the tissue inhibitors of 

metalloproteinases, and any changes in the activity of this 

enzyme will alter this balance.13 Most studies have shown 

increased MMPs in bronchoalveolar lavage fluid (BALF) and 

plasma of emphysema patients and contribute to airway obstruc-

tion by destroying the structural components of extracellular 

matrix (ECM).16,17 Moreover, as MMP-9 is a known target of 

Wnt/β-catenin signaling, it has been proved to be induced by 

transforming growth factor-β (TGF-β) + poly(I:C) treatment 

through the β-catenin pathway.18 In animal models of COPD, 

it demonstrated that dominant-negative MafB suppressed 

porcine pancreatic elastase-induced emphysema by downregu-

lating MMPs.19 Considering the significant role of MMP-9 in 

the above studies, it may be worthwhile exploring its role in the 

function of different primary cells from patients with disease.

NE is a neutrophil-derived serine proteinase that has 

proven to be involved in tissue damage and remodeling,20 

and further a study found that mice deficiency in NE resulted 

in the protection of mice against emphysema after cigarette 

smoke (CS) exposure.21 The underlying mechanism(s) may 

largely depend on the fact that NE has a similar ability as 

MMPs in causing tissue damage by degrading the structural 

components of ECM.22 Moreover, NE can cooperate with 

MMPs and amplify the effect of ECM degradation.23 In 

addition to matrix degradation, NE can also promote peri-

bronchial fibrosis by enhancing fibroblast proliferation.24 

Moreover, NE is a potent stimulant of mucus secretion from 

submucosal glands and goblet cells, which are involved in 

airway obstruction.25 The combined effect of NE on matrix 

degradation, fibroblast proliferation, and mucus metaplasia 

might accelerate small airway obstruction in disease.

MPO is a product of both neutrophils and macrophages 

and mainly stored in the primary granules of neutrophils. 

It is an inflammatory mediator that is upregulated during the 

inflammatory response and can also accelerate the inflamma-

tory response.26 3-Chlorotyrosine expression is strongly asso-

ciated with MPO activity in the sputum of COPD patients, 

suggesting that it might act as a biomarker for MPO-mediated 

tissue damage in COPD pathogenesis.27 MPO inhibitors 

prevent the development of emphysema and remodeling of 

small airways in an animal model of COPD.28 These studies 

indicated detrimental effects of MPO in the pathogenesis of 

airway remodeling. However, a study of myocardial infarc-

tion in MPO knockout mice observed increased expression 

of MMPs.29 This finding suggests a possible protective role 

of MPO in airway remodeling.

Neutrophil extracellular traps (NETs) are released by 

activated neutrophils and decorated with histones and 

enzymes such as NE and MPO that ensnare bacteria; how-

ever, excessive formation of NETs may contribute to organ 

damage.30 Large amounts of NETs were observed in the air-

ways of COPD patients and associated with disease severity 

and exacerbation frequency.31

The high-mobility group box 1 (HMGB1) is a protein 

released by necrosis of neutrophil cells that warn and activate 

inflammation. COPD patients express high HMGB1 levels 

both in sputum and in plasma.32 HMGB1 has a marked effect 

on epithelial cell repair and restitution via activation of toll-

like receptor 4 (TLR4) and/or receptor for advanced glycation 

end (RAGE) signaling, which may explain, in least in part, 

the mechanism of airway remodeling.33

Macrophages
Macrophages are mononuclear leukocyte-derived inflamma-

tory cells the numbers of which are increased in the airways, 

BALF, alveolar areas, and in induced sputum of COPD 

patients and correlated with the inflammatory response and 

alveolar wall destruction in COPD.34 They produce a host 

of inflammatory mediators implicated in COPD such as 
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IL-1β, tumor necrosis factor-α (TNF-α), IL-8, monocyte 

chemoattractant protein-1 (MCP-1), reactive oxygen spe-

cies, and MMPs.35

IL-8 is a member of the CXC chemokine family and is 

secreted by macrophages, epithelial cells, and even endothe-

lial cells. It is a major inflammatory factor in the sputum and 

BALF in COPD patients. IL-8 can enhance the expression of 

MUC5AC directly or indirectly by inducing the secretion of 

NE from neutrophils, leading to mucin overproduction and 

airway obstruction.36 And the inhibition of IL-8 by azithro-

mycin in stable neutrophilic COPD adults showed a reduced 

severe exacerbation rate.37 Further studies demonstrated that 

knockout of CXCR2, a receptor of IL-8, protected mice 

from cigarette smoke-induced lung inflammation and DNA 

damage in COPD pathogenesis.38

IL-1β and TNF-α cytokines are proinflammatory 

cytokines that are mainly secreted by macrophages. Both 

IL-1β and TNF-α receptor knockout mice are protected from 

developing emphysema and small airway remodeling when 

compared with wild-type mice in response to CS.39 However, 

in a randomized phase II study, MEDI8968, an anti-IL-1R1 

antibody, did not protect COPD patients from lung function 

decline.40 The different outcomes that attribute to the trials 

are based on measures of lung function, sputum inflammatory 

cells, or exacerbation rates, which may not reflect the remod-

eling effect of these drugs. In addition, persistent production 

of IL-1β upregulates the expression of neutrophilic cytokines 

and MMPs including MMP-9 and MMP-12 in mice and 

results in airway inflammation and alveolar enlargement.41,42 

Alveolar and airway wall remodeling occurs in SPC-TNF-α 

mice with increased expression of elastin-degrading enzymes 

and consequent matrix remodeling.43 This effect was attrib-

uted to TNF-α-induced stimulation of MMPs and NE and 

the activation of CD8+ T lymphocytes all of which contribute 

to the destruction of lung tissues.

Different TGF-β isoforms exist, including TGF-β1, 

TGF-β2, and TGF-β3. Among them, TGF-β1 is implicated 

in the progression of COPD pathogenesis.44,45 In relation to 

COPD, TGF-β induces the secretion of ECM, proliferation 

of smooth muscle cells, and transition of epithelial-to-

mesenchymal phenotype.46 Exposure to CS increases the 

production of TGF-β from epithelial cells and inflammatory 

cells, and this was linked to CS-induced lung injury and 

airway remodeling in COPD.47 This might partially provide 

a mechanism for CS-induced small airway obstruction.

Macrophages are just as an important source of MMPs as 

neutrophils. Activation of macrophages in lungs plays a criti-

cal role in MMP production that contributes to alveolar wall 

destruction. Researchers found that the loss of tyrosine phos-

phatase 2 in mice, a macrophage activation regulator, resulted 

in TGF-β activation, thereby upregulating MMP-12 expression 

in macrophages,leading to progressive emphysema-like injury 

in the mice lungs.48 Moreover, recently a study suggested that 

dehydration of airway surface can also activate macrophages 

to produce MMP-12 and trigger MMP-12-dependent emphy-

sema independent of CS.49 These findings might provide some 

clues to explore non-CS-induced emphysema.

MCP-1 is a monocyte chemokine that can be produced 

by macrophages, epithelial cells, smooth muscle cells, and 

even endothelial cells.50 Although some studies showed 

that the protein level of MCP-1 was not correlated with 

the number of macrophages, intratracheal instillation of 

MCP-1 in macrophage elastase knockout mice resulted in 

an increased macrophage infiltration into the airway.51 The 

ability of MCP-1 to accumulate macrophages might help to 

accelerate the process of airway obstruction.

Autophagy plays a critical role in the development of 

many inflammatory cells such as macrophages, neutrophils, 

and lymphocytes, which play critical roles in the develop-

ment and pathogenesis of COPD inflammation.52 In vivo 

studies in mice showed that miR-34/449 overexpression 

leads to decreased ovalbumin-induced airway remodeling 

by suppressing autophagy-related airway inflammation and 

fibrosis.53

Overall, macrophages are major inflammatory cells in 

COPD lung. They are directly involved in the process of 

airway remodeling by secreting enzymes and inflammatory 

factors that act directly and indirectly on airway structural 

cells to modulate epithelial and stromal cell function.

Mast cells
Mast cells are multifunctional immune cells composed of 

two subsets: mucosal mast cell (MC
T
) and connective tissue 

mast cell (MC
TC

).54 Mast cells have been implicated in 

asthma for many years where, in addition to the release of 

lipid mediators and other bronchoconstrictor agents, they 

promote airway remodeling.55 However, they have been 

poorly studied in COPD.

Increased numbers of mast cells have been reported in 

COPD patients with centrilobular emphysema, where they are 

mainly distributed in the bronchial mucosa, parenchyma, and 

even smooth muscle.56 The population of mast cells within the 

lung may also change with disease, with increased MC
TC

 and 

decreased MC
T
 reported in COPD. Moreover, the increased 

number of MC
TC

 positively correlated with airway remodeling 

and poorer lung function.57,58 In addition, perivascular mast 
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cell density is positively correlated with increased angiogen-

esis in the RBM of COPD airways where they are proposed 

to contribute to airway remodeling.59,60 Furthermore, IL-17A, 

which has been reported to be upregulated in COPD,61 can 

stimulate mast cells to secrete the proangiogenic mediators, 

basic fibroblast growth factor and vascular endothelial growth 

factor (VEGF), which both drive vascular remodeling.62

However, analysis of the distribution of tryptase and chy-

mase staining in mast cells indicates that mast cells are posi-

tively correlated with lung function,63 and this was particularly 

the case with chymase-positive mast cells.64 Results from the 

latter research may be confounded by the presence of pulmo-

nary hypertension. In addition, although mast cells appear to 

play a role in COPD, the molecular mechanism(s) by which 

they act are unknown. Mast cells are a rich source of inflam-

matory cytokines, proteases, VEGF, and mast cell-specific 

mediators such as histamine and cysteinyl leukotrienes.65 

Further investigations into the mechanisms of mast cells 

involved in the development of airway remodeling are required.

Lymphocytes
The adaptive immune system is activated in COPD, with 

infiltration of T-cells, B-cells, T-helper type 17 (Th17) 

cells along with a decrease in regulatory T-cells within the 

airways.66,67 Mice lacking either B-cells or T-cells fail to elicit 

airway remodeling illustrating the importance of the adaptive 

immune response in airway remodeling.68

T-lymphocytes are increased in the lung parenchyma 

and airways of smokers when compared with never smokers 

whether they develop COPD or not. There is a greater 

increase in CD8+ cells compared with CD4+ cells.69 The 

increased CD8+ cells in the peripheral airways of smokers 

with COPD have been related to smoking-induced airway 

limitation.70,71 In addition, T-cells can cause lung tissue 

destruction directly by T-cell-induced cytotoxicity or indi-

rectly by activating macrophages.72,73 These data suggest 

that increased CD8+ cells in COPD act as a bridge between 

smoking and airway obstruction.

CD8+ cells can be divided into T
C
1 cells and T

C
2 cells 

according to the cytokines they secrete. Isolation of CD4+ 

and CD8+ cells from COPD BALF indicates that CD8+ 

T
C
2 cells, which mainly produce IL-4 and IL-5 cytokines, 

were significantly increased in COPD lungs and might 

promote tissue damage and the development of emphysema 

during exacerbations.74

The number of B-cells within lymphoid follicles is greatly 

increased in advanced stages of COPD patients.75 CXCL13 

is a B-cell attractant or chemokine,76 and the reduction of 

CXCL13 expression attenuated CS-induced BALF inflam-

matory cell numbers and partially protected alveolar walls 

from destruction but had no effect on the development of 

airway remodeling.77

Th17 cells are the major source of the cytokine IL-17.78 

IL-17 can enhance airway smooth muscle contraction and 

proliferation, and Th17-deficient mice are protected from 

airway remodeling after chronic allergen challenge in an 

animal model of asthma.79

Innate lymphoid cells
Innate lymphoid cells (ILCs) are a new class of immune 

cells that can be classified into three groups (ILC1, ILC2, 

and ILC3) according to their phenotype and function. ILCs 

are widely expressed in many tissues such as skin, mucosal 

membranes, and lung tissues.80

Most studies examining ILC expression and function in 

airway disease have focused on asthma. ILC3s play a role 

in driving neutrophilic inflammation, and the number of 

natural cytotoxicity receptor (NCR−) expressing ILC3 cells 

was increased in COPD lung.81 ILC3s can activate TGF-β, 

which is a key mediator for tissue and mucosal repair.82 More 

recent evidence indicates the enhanced presence of primed 

NRP1+ ILC3s, which produce high amounts of cytokines in 

the lungs of smokers with and without COPD where they may 

play a role in angiogenesis and/or the initiation of lymphoid 

follicles.83 This result implies that ILC3s may participate in 

the process of airway remodeling in COPD.

ILC1 frequency has also been reported to be increased in 

COPD and to correlate with disease severity and susceptibility 

to exacerbations. This may reflect the functional plasticity of 

ILC2 cells and an attenuation of antiviral immunity.84 Most 

recently, the combination of microCT analysis, histology, and 

gene expression profiling indicated that signatures for ILC1s, 

but not ILC2s or ILC3s, were associated with centrilobular 

emphysema. This suggests that the alveolar destruction 

observed in COPD is driven by a Th1 response activated by 

infiltrating ILC1s.85

Overall, there are few studies that focus on the relationship 

between ILCs and airway remodeling of COPD. Considering 

the role of the immune response in COPD pathogenesis, fur-

ther elucidation of the functional role of ILCs subsets in COPD 

and its correlation with other inflammatory cells is essential.

Conclusions
COPD is a chronic inflammatory disease involving the infil-

tration of various inflammatory cells including neutrophils, 
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macrophages, lymphocytes, mast cells, and ILCs.3 The infil-

tration of inflammatory cells can contribute to the detrimental 

changes observed in structural cells such as airway epithelial 

cells, stromal cells, and parenchyma cells. The effects of these 

inflammatory cells on remodeling are attributed to direct or 

indirect release of factors such as inflammatory cytokines, 

proteases, and growth factors (Figure 1). However, defini-

tive proof of their role will require controlled clinical studies 

targeting specific cell types and/or remodeling factors with 

airway remodeling as a defined outcome. Currently, we 

do not have good biomarkers of remodeling, and imaging 

techniques are not yet sensitive to directly visualize airway 

remodeling changes.

The mechanisms of airway remodeling are poorly studied 

in COPD compared with asthma. Airway remodeling is char-

acterized by the changes in tissue, cellular, and molecular 

components, thereby contributing to pathological changes to 

the epithelium, airway smooth muscle, vessels, and ECM.86 

Inflammation in the airways of COPD is largely attributed 

to smoking and usually enhanced by bacterial and viral 

infection although this may also be present in ex-smokers.87 

Experimental studies show that CS exposure can directly 

lead to the changes in structural cells seen in the lung tissue 

and small airways as a result of inflammatory response and 

oxidative stress.88 It is notable that smoking cessation does 

not prevent the progression of chronic inflammation and 

oxidative stress and that these are associated with persistent 

tissue destruction and remodeling.89

We posit that in COPD lungs, inflammatory cells infiltrate 

into the bronchial mucosa and lung parenchyma. They affect 

airway destruction and remodeling by directly secreting 

enzymes and inflammatory cytokines or by indirectly regulat-

ing other cellular functions. Some of the above factors can 

promote airway destruction and remodeling, whereas other 

factors may protect from tissue damage and reconstruction. 

Overall, inflammatory cells influence the structural cell 

Figure 1 Role of inflammatory cells in airway remodeling in COPD.
Notes: Exogenous oxidants cause infiltration of inflammatory cells including neutrophils, macrophages, mast cells, and lymphocytes into the airway and lung tissue, resulting 
in excessive expression of some proteases and inflammatory mediators. This induces the accumulation of inflammatory cells into the airway, leading to the remodeling of 
airway structure.
Abbreviations: ILC, innate lymphoid cell; MCP, monocyte chemoattractant protein; MMPs, matrix metalloproteinases; MPO, myeloperoxidase; NE, neutrophil elastase; 
TGF-β, transforming growth factor-β; TNF-α, tumor necrosis factor-α; VEGF, vascular endothelial growth factor.
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destruction, hyperplasia of smooth muscle cells, metaplasia 

of goblet cells, and subepithelial fibrosis seen in COPD.

It is not completely known how different inflammatory 

mediators function in the process of airway remodeling and 

how remodeling contributes to the decrease in lung func-

tion. Present treatments can at best only partially reduce 

the inflammatory response and barely prevent or reverse 

airway remodeling. Given the fact that inflammatory cells 

induce such significant effects on airway remodeling in 

COPD pathogenesis, it is imperative to explore the mecha-

nisms of airway remodeling in COPD and delineate new 

therapeutic avenues.
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