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I. Current-voltage characteristics of the device
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Figure S1: Current-voltage characteristics of the device for different values of VTG.
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Supplementary Figure 1 shows the current-voltage (I-V) characteristics of the device for different

values of the top-gate voltage VTG. Curves display an abrupt switching from the superconducting

state (R = 0) to the resistive state (R 6= 0) at the critical current as already already observed in

LaAlO3/SrTiO3 heterostructures [1, 2]. When the current is decreased from I > Ic the system gets

retrapped in the superconducting state at a lower current. The presence of both the abrupt switching

and the hysteresis tends to indicate that the superconductor behave as a Josephson junction array

rather than an homogeneous superconductor.

II. Magneto-transport measurements at different temperatures
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Figure S2: a) Magneto-conductance of the device for different values of VTG measured for four different temperatures, T=3,5K

(panel a), T=5K (panel b), T=8K (panel c), T=10K (panel d). Experimental data (open symbols) are fitted by the Maekawa-

Fukuyama formula (??) described in the article.
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Figure S3: Evolution of the fitting parameters Bφ (panel a), BSO (panel b) and AK (panel c) as a function of VTG for different

temperatures.

We measured the magneto-conductance ∆σ(B) in the normal state for different temperatures and

top-gate voltages. The experimental data of Supplementary Figure 2 were fitted with the Maekawa-

Fukuyama formula for a diffusive regime that describes the change of conductivity with magnetic field

∆σ(B) = σ(B) − σ(0) with negligible Zeeman splitting [3] (see main text). Supplementary Figure

3 shows the evolutions of the fitting parameters as a function of the top-gate voltage VTG for the

different temperature. As mentioned in the main text, the temperature dependence of the inelastic

scattering time is given by τΦ ∝ T−p and therefore BSO ∝ T p where p depends on the inelastic

mechanism. We obtain a linear variation of BΦ with temperature, which indicates that inelastic

scattering is dominated by electron-electron interaction (p=1) [4]. BSO is found to be independent

of temperature below 10K which is the range where the dielectric constant of SrTiO3 is rather
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Figure S4: a) Magneto-conductance of the device for different positive values of VTG fitted by the Maekawa-Fukuyama formula

with and without the Kohler term. b) Evolution of the fitting parameters BSO with and without the Kohler.

temperature independent. As the bending of the SrTiO3 conduction band that defines the quantum

well is not modified, the interfacial electric field Ez remains constant and the coupling constant α

is not modified. The Kohler term is proportional to the square of the mobility which doesn’t vary

below 10K as it is also mainly determined by the confinement conditions. As a consequence, AK

doesn’t change with temperature.

We emphasize here that the Kohler term is crucial in the analysis of the magnetoconductance data.

As AK increases quadratically with the mobility this term dominates the magneto-transport for

positive gating. As shown in Supplementary Figure 4, fitting without this term leads to an incorrect

determination of BSO.
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