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Abstract

Graph-based computational network analysis has proven a powerful tool to quantitatively characterize functional
architectures of the brain. However, the test-retest (TRT) reliability of graph metrics of functional networks has not been
systematically examined. Here, we investigated TRT reliability of topological metrics of functional brain networks derived
from resting-state functional magnetic resonance imaging data. Specifically, we evaluated both short-term (,1 hour apart)
and long-term (.5 months apart) TRT reliability for 12 global and 6 local nodal network metrics. We found that reliability of
global network metrics was overall low, threshold-sensitive and dependent on several factors of scanning time interval (TI,
long-term.short-term), network membership (NM, networks excluding negative correlations.networks including negative
correlations) and network type (NT, binarized networks.weighted networks). The dependence was modulated by another
factor of node definition (ND) strategy. The local nodal reliability exhibited large variability across nodal metrics and a
spatially heterogeneous distribution. Nodal degree was the most reliable metric and varied the least across the factors
above. Hub regions in association and limbic/paralimbic cortices showed moderate TRT reliability. Importantly, nodal
reliability was robust to above-mentioned four factors. Simulation analysis revealed that global network metrics were
extremely sensitive (but varying degrees) to noise in functional connectivity and weighted networks generated numerically
more reliable results in compared with binarized networks. For nodal network metrics, they showed high resistance to noise
in functional connectivity and no NT related differences were found in the resistance. These findings provide important
implications on how to choose reliable analytical schemes and network metrics of interest.
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Introduction

The human brain is a highly complex system represented as a

structurally interconnected network by a dense of cortico-cortical

axonal pathways (i.e., structural connectome, [1]) and a functionally

synchronized network by external or intrinsic coherent neural

activity (i.e., functional connectome, [2]). Mapping the brain

connectome and highlighting the underlying organizational princi-

ples are fundamental for our understanding of the brain

architecture. Recent studies have manifested that human brain

connectome networks can be constructed using neuroimaging (e.g.,

functional MRI (fMRI) and diffusion tensor imaging (DTI)) or

electrophysiological (e.g., electroencephalography (EEG) and mag-

netoencephalography (MEG)) data and further investigated by

graph theoretical approaches. These brain networks have consis-

tently demonstrated many non-trivial topological properties, such as

small-worldness, modularity and highly connected hubs (for

reviews, see [3,4,5,6,7]), and exhibited distinct alterations associated

with different neurocognitive disorders (for reviews, see [8,9]).

While graph theoretical approaches provide valuable insights

into normal brain architecture and pathological mechanism for

brain disorders, the test-retest reliability has not been systemati-

cally investigated. Reliable measures are fundamental to infer

trustworthy conclusions and to serve as potential clinical

biomarkers. In response to the demand, several groups examined

the TRT reliability/reproducibility of graph network metrics. In

anatomical world, Vaessen et al. [10] assessed the reproducibility

of anatomical brain networks derived from DTI data and reported

high inter-scan reproducibility of network metrics across sampling

schemes (e.g., number of gradient directions and gradient

amplitude). Bassett et al. [11] demonstrated high reproducibility

and low variability of graph metrics for both DTI and diffusion

spectrum imaging data derived networks. As for functional

imaging arena, Deuker et al. [12] investigated the TRT reliability

of functional brain networks using MEG data and reported high

reliability during a working memory task but relatively low under

resting condition for network metrics. More recently, Telesford

et al. [13] constructed functional brain networks using baseline

PLoS ONE | www.plosone.org 1 July 2011 | Volume 6 | Issue 7 | e21976



fMRI data during an executive task and demonstrated excellent

reproducibility for both small-world properties and network

efficiency metrics. Despite these progresses, however, the TRT

reliability of network metrics derived from resting-state fMRI (R-

fMRI) dataset has not been well documented so far.

R–fMRI is a promising tool to non-invasively map intrinsic

functional connectivity patterns of the human brain in vivo

[2,14,15,16] and has been extensively used to investigate inherent

brain network topological organization (for a review, see [17]). Of

note, several previous R-fMRI studies suggest that the strength of

interregional functional connectivity is dynamic in time (from

seconds to minutes) and frequency domains [18] and can be

modulated by the levels of current conscious awareness

[19,20,21,22], emotional state [23] and cognitive demand prior

to resting-state scanning [24,25,26]. Using R-fMRI, Shehzad et al.

[27] have demonstrated modest to good TRT reliability for some

specific functional connections. However, these states or experi-

ments related alterations in functional connectivity may further

interact with the global network topology [28]. To our best

knowledge, there are no studies to systematically examine the

Table 1. Brief descriptions of several specific acronyms used in the present study.

Abbreviation Full name Explanation

TI Scanning time interval Short-term: ,1 hour apart Long-term: .5 months apart

NM Network membership Network (+): only positive correlations

Network (+/-): both positive and negative correlations

NT Network type Binarized: binarized network

Weighted: weighted network

ND Node definition S-: Structural ROIs

F-: Functional ROIs

S-AAL Structural Anatomical Automatic Labeling atlas This atlas includes 90 regions

S-HOA Structural Harvard-Oxford atlas This atlas includes 112 regions

F-DOS Functional ROIs from ref (40) This set of ROIs includes 160 regions

doi:10.1371/journal.pone.0021976.t001

Table 2. Brief descriptions of complex network metrics examined in the present study.

Parameter Character Descriptions

Regional nodal parameters

1Degree ki The number of connections linked directly to a node

1Efficiency ei How efficient an index node communicates with the other nodes

2Betweenness bi The influences of an index node over information flow between other nodes

1Clustering coefficient ci The extent of interconnectivity among the neighbors of an index node

2Participant coefficient pi The ability of an index node in keeping the communication between its own module and the other modules

2Normalized pi pnor
i The normalizedpi after correcting for the effects of number of modules

Global network parameters

1Clustering coefficient Cp The extent of local clustering or cliquishness of a network

1Characteristic path length Lp The extent of overall routing efficiency of a network

2Gamma c The deviation of Cp of a network from those of surrogate random networks

2Lambda l The deviation of Lp of a network from those of surrogate random networks

2Sigma s The small-worldness indicating the extent of a network between randomness and order

1Local efficiency Eloc How efficient of information propagation over a node’s direct neighbors

1Global efficiency Eglob How efficient of information propagation through the whole network

2Assortativity r The tendency of nodes to link those nodes with similar number of edges

2Hierarchy b How likely it is that all nodes oscillate with the same wave pattern

1Synchronization S How likely that all nodes fluctuate in the same wave pattern

2Modularity Q The extent that nodes can be divided several subsets with dense connections within them but sparse between
them

Note that the formulas listed here are only for binarized networks. For details for weighted networks, see Text S1.
1First-order network metrics which are dependent on only one graph property.
2Second-order network metrics which are dependent on more than one property or are defined as rations of one property.
doi:10.1371/journal.pone.0021976.t002
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TRT reliability of network topological metrics derived from R-

fMRI data. Accordingly, systematic and direct work is clearly

warranted.

In the current study, we implemented a comprehensive

estimation of TRT reliability for both global network properties

and regional nodal characteristics of intrinsic functional brain

networks constructed using a public TRT R-fMRI dataset (http://

www.nitrc.org/projects/trt). This dataset allows us to examine

both short-term (,1 hour apart) and long-term (.5 months apart)

network reliability. Moreover, given numerous discrepancies in the

analytical strategies of existing brain network studies (e.g., how to

define network nodes or how to deal with negative correlations/

connections), we further evaluated the effects of three factors on

network reliability. They are: (1) network node definition (ND, i.e,

structural regions of interest (ROIs) based node definition or

functional ROIs based node definition); (2) network membership

(NM, i.e., inclusion or exclusion negative correlations); and (3)

network type (NT, i.e., binarized or weighted networks). Table 1

lists those acronyms specific to the current study.

Methods

Subjects
We used a TRT R-fMRI dataset of 25 participants (mean age

30.7 6 8.8, 9 males) that is publicly available at NITRC (http://

www.nitrc.org/projects/trt). The dataset has been used to

examine TRT reliability of seed-based resting-state functional

connectivity (RSFC) [27], independent component analysis and

dual regression [29], amplitude of low-frequency fluctuations [30]

and functional homotopy [31].

Figure 1. Spatial similarity and TRT reliability patterns of S-AAL-based RSFC. Mean Pearson correlation matrices (a), consistency of overall
patterns between mean matrices (b) and TRT reliability of individual connections as well as the relationship between short-term and long-term
reliability (c) are illustrated. The mean correlation matrices exhibited high similarity from both visual inspection (a) and quantitative spatial correlation
analyses (b). Further TRT reliability analyses revealed a portion of connections exhibiting fair to excellent reliability (c, also see Fig. 2). Moreover, short-
term reliability was significantly (p,0.05) correlated with long-term reliability among connections (c). Functional connections linking inter-
hemisphere homotopic regions, as highlighted by plus signs (+), showed high connectivity strength and many of them exhibited high reliability. TRT,
test-retest; RSFC, resting-state functional connectivity; S-AAL, structural ROIs from Anatomical Automatic Labeling atlas. Of note, the structural ROIs
were listed as in Table S1.
doi:10.1371/journal.pone.0021976.g001
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Data acquisition
Three resting-state scans were obtained for each participant

using a Siemens Allegra 3.0-Tesla scanner. Each scan consisted

of 197 contiguous EPI functional volumes (time repetition

(TR) = 2000 ms; time echo (TE) = 25 ms; flip angle (FA) = 90u,
number of slices = 39, matrix = 64664; field of view (FOV) =

192 mm; acquisition voxel size = 36363 mm3). Scans 2 and 3

were conducted in a single-scan session, 45 minutes apart, and

were 5–16 months (mean 1164) after scan 1. All individuals were

asked to relax and remain still with eyes open during the scan.

Additionally, a high-resolution T1-weighted magnetization pre-

pared gradient echo sequence was also obtained (MPRAGE,

TR = 2500 ms; TE = 4.35 ms; inversion time = 900 ms; FA = 8u;
number of slices = 176; FOV = 256 mm).

Data preprocessing
Data preprocessing was performed using SPM5 package

(http://www.fil.ion.ucl.ac.uk/spm). First, all images were correct-

ed for intra-volume acquisition time offsets between slices using the

Sinc interpolation and inter-volume geometrical displacement due

to head movement using six-parameter (rigid body) transforma-

tion. Then all functional images were normalized into the

Montreal Neurological Institute space using an optimum 12-

parameter affine transformation and nonlinear deformations, and

then resampled to 3-mm isotropic voxels. Finally, the normalized

images were further temporally band-pass filtered (0.01–0.1 Hz) to

reduce the effects of low-frequency drift and high-frequency

physiological noise. Notably, for the extraction of mean nodal time

courses of functional defined ROIs, spatial smoothing with 6-mm

Figure 2. TRT reliability distribution of RSFC. Both short-term and long-term TRT reliability exhibit approximatively normal distribution for all
ROI sets. The mean reliability was about 0.28 (short-term) and 0.24 (long-term) for both structural ROIs-based RSFC while relatively low values were
observed for functional ROIs-based RSFC. Green dots indicate the critical values used in the present study to grade reliability. RSFC, resting-state
functional connectivity; TRT, test-retest.
doi:10.1371/journal.pone.0021976.g002
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full width at half maximum (FWHM) Gaussian kernel was

performed before band-pass filtering (see below for node

definition).

Functional connectivity matrix and network construction
Node definition (ND). A network (i.e., graph) is comprised

of nodes and edges connecting nodes. In the current study, nodes

represent ROIs and edges represent RSFC between ROIs. Given

the accumulating evidence of effects of node definition on network

topology [32,33,34,35,36], two strategies of defining ROIs (i.e.,

anatomical and functional ROIs) were employed to provide a

comprehensive assessment of TRT reliability of brain networks

across different node definitions. Specifically, to obtain structurally

defined ROIs, a prior Anatomical Automatic Labeling atlas (AAL)

[37] and Harvard-Oxford atlas (HOA) [38,39] were separately

used to divide the whole brain into different number of regions.

These two structural atlases parcellated the whole brain into 45

and 56 regions in each hemisphere and were termed as S-AAL

and S-HOA, respectively. To obtain functionally defined ROIs,

160 spheres (radius = 5 mm) were generated around the peak

coordinates previously identified form meta-analytic studies of

multiple brain functions [40,41] and were termed as F-DOS.

These ROIs are comprised of discrete spherical ROIs and not

completely cover the cerebral cortex and cerebellum (Fig. S1). All

Figure 3. Relationship between RSFC and TRT reliability. Scatter plots of mean connectivity strength against corresponding ICC values are
depicted to show the relationship for both S-AAL (a) and F-DOS (b) based correlation matrices. The trend lines were obtained by linear least-square
fit. Significant (p,0.05) positive correlations were found between positive RSFC and their corresponding ICC values for both ROIs sets and for both
short-term and long-term scanning. In addition, significant negative correlations were also found for negative RSFC with their corresponding ICC
values but only for F-DOS-based correlation matrices. These findings suggest higher reliability for stronger RSFC. Functional connections linking inter-
hemisphere homotopic regions are highlighted by plus signs (+) for S-AAL but not for F-DOS because of the absence of direct correspondence. RSFC,
resting-state functional connectivity; TRT, test-retest; S-AAL, structural ROIs from Anatomical Automatic Labeling atlas; F-DOS, functional ROIs from
Dosenbach et al. (2006, 2010).
doi:10.1371/journal.pone.0021976.g003
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the ROIs are associated with five different kinds of functions of

error-processing, default-mode, memory, language and sensori-

motor. There were no any overlaps between ROIs. Names of the

three sets of ROIs and their corresponding abbreviations are listed

in Table S1, S2 and S3.

Edge definition. To measure inter-ROI RSFC, for each of

the three sets of ROIs, a mean time series for each ROI was

calculated by averaging the time series of all voxels within that

ROI. Several potential nuisance signals associated with

physiological processes were further removed. Specifically, we

regressed out estimated head-motion profiles and global signal

from each ROI’s mean time series [32,42]. The residuals were

then used to estimate inter-ROI RSFC that were quantified by

Pearson correlation coefficient. For each subject at each scan,

three correlation matrices (corresponding to three sets of ROIs)

consisting of Pearson correlation coefficients between each pair of

ROIs were therefore generated.

Network type (NT). Individual correlation matrices

Cij~ cij

� �
derived above was converted into both a binarized

network

Aij~ aij

� �
~

1, if cij

�� ��wrthr;

0, others

(
ð1Þ

and a weighted network

Wij~ wij

� �
~

cij

�� ��, if cij

�� ��wrthr;

0, others

(
ð2Þ

Figure 4. Spatial similarity and TRT reliability patterns of F-DOS-based RSFC. Mean Pearson correlation matrices (a), consistency of overall
patterns between mean matrices (b) and TRT reliability of individual connections as well as the relationship between short-term and long-term
reliability (c) are illustrated. The mean correlation matrices exhibited high similarity from both visual inspection (a) and quantitative spatial correlation
analyses (b). Further TRT reliability analyses revealed many connections exhibiting fair to excellent reliability (c, also see Fig. 2). Moreover, a significant
(p,0.05) correlation was found in the ICC matrices between short-term and long-term scans (c). No inter-hemisphere homotopic functional
connections were highlighted because of the absence of direct inter-hemisphere correspondence for these ROIs. TRT, test-retest; RSFC, resting-state
functional connectivity; F-DOS, functional ROIs from Dosenbach et al. (2006, 2010). Of note, the functional ROIs were listed as in Table S3.
doi:10.1371/journal.pone.0021976.g004
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where rthr is a pre-defined correlation threshold. To determine

rthr, sparsity measure, Sthr (defined as the ratio of the number of

actual edges divided by the maximum possible number of edges in

a network) was applied to each correlation matrix. Using the

sparsity threshold, a subject-specific rthr was determined to

threshold each correlation matrix such that the resulting

networks have the same sparsity level (i.e., the same number of

edges) across subjects and scans. Currently, there is no a definitive

way to accurately determine threshold and previous studies

construct brain networks either under a single threshold (e.g.,

[43,44]) or over a continuous threshold range (e.g., [45,46]) in

terms of specific constraint conditions. Here, brain networks were

constructed over the full range of sparsity, i.e., 0,Sthr,1 for the

whole correlation matrices of both positive and negative

correlations and 0,Sthr,min [Sthr{max i,jð Þ] for only positive

correlation matrices. Sthr{max i,jð Þ is a data-specific maximum of

Sthr for ith subject at jth scans (note that scan2 and scan3 were

used to determine the threshold range for short-term reliability

estimation and scan1 and the average of scan2 and scan3 were

used for long-term reliability estimation). Characterization of

network topology over continuous sparsity levels allows us to trace

the trajectory of TRT reliability of network properties over

varying network structures and to identify specific threshold range

of high reliability.

Network membership (NM). Given the disagreements in

treating negative correlations in R-fMRI network studies (e.g.,

[46,47]), the thresholding procedure was performed on both

the whole correlation matrices consisting of positive and

negative connections and positive correlation matrices con-

sisting of only positive connections (i.e., negative correlations

were set to 0).

Network metrics
We explored two sets of network topological attributes: 1)

regional nodal characteristics: degree ki, efficiency ei, between-

ness bi, cluster coefficient ci, participant coefficient pi, and

normalized participant coefficient pnor
i ; 2) global network metrics:

small-world parameters (clustering coefficient Cp, characteristic

path length Lp, normalized clustering coefficient c, normalized

characteristic path length l and small-worldness s), network

efficiency (local efficiency Eloc and global efficiency Eglob),

assortativity r, hierarchy b, synchronization S, modularity Q
and the number of modules NM . All the computations of network

metrics were performed using in-house custom MATLAB codes

termed as GRETNA. Text S1 and Table 2 give detailed

descriptions for above metrics.

Test-retest reliability
To investigate the TRT reliability of all graph metrics

mentioned above, we used a common index of intraclass

correlation [48]. For each global and nodal network measure

derived under each combination of the three factors mentioned

above, individual values were first merged into two 2562 matrices

(rows corresponding to subjects and column corresponding to

Figure 5. TRT reliability of global network metrics as a function of sparsity threshold for S-AAL-based networks. ICC values less than
0.25 were mapped to a single color of dark blue as well dark red color for ICC values greater than 0.75, respectively. Network (+/-), networks
constructed using absolute both positive and negative correlations; Network (+), networks constructed using only positive correlations; Binarized,
binarized network anlysis; Weighted, weighted network analysis; TRT, test-retest; S-AAL, structural ROIs from Anatomical Automatic Labeling atlas.
doi:10.1371/journal.pone.0021976.g005
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scans), with one representing short-term intra-session across scans

2 and 3 and the other long-term inter-session between scan 1 and

the average of scans 2 and 3. Additional long-term reliability

estimation using scan 1 and scan 3 alone outputted similar results

(Table S4). Therefore, long-term reliability results were reported

based on scan 1 and the average of scan 2 and scan 3. Of note, the

average was done on individual functional connectivity matrices

rather than graph metrics between scan 2 and scan 3, followed by

graph metric calculation. Using a one-way ANOVA on each of the

two matrices, with random subject effects, we split the total sum of

the squares into between-subject (MSb) and within-subject (MSw,

i.e., residual error) sum of squares. Finally, ICC values were

calculated according to the following equation where k is the

number of repeated observations per subject [48]:

ICC~
MSb{MSw

MSbz k{1ð ÞMSw

ð3Þ

Of note, the ICC derived from (3) has a relationship with the F-

value derived from the one-way ANOVA as follows [49]:

ICC~
F{1

Fz k{1ð Þ ð4Þ

ICC is close to 1 for reliable measures that show low within-subject

variance relative to between-subject variance and 0 (negative)

otherwise. In the current study, reliability was recorded in terms of

Figure 6. TRT reliability of summarized global network metrics (a) and metric-related differences in reliability (b). Areas under curves
(AUCs) of each metrics were used to provide threshold-independent reliability estimation. Different metrics showed variable levels of reliability.
Several of them were moderately reliable (e.g., lambda for S-AAL-based networks). Subsequent statistical analysis revealed significant differences in
TRT reliability among the 12 global network metrics for S-AAL- but not for F-DOS-based networks. ICC values less than 0.25 were mapped to a single
color of dark blue as well dark red color for ICC values greater than 0.75, respectively in (a). Network (+/-), networks constructed using absolute both
positive and negative correlations; Network (+), networks constructed using only positive correlations; Binarized, binarized network analysis;
Weighted, weighted network analysis; TRT, test-retest; S-AAL, structural ROIs from Anatomical Automatic Labeling atlas; F-DOS, functional ROIs from
Dosenbach et al. (2006, 2010).
doi:10.1371/journal.pone.0021976.g006
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the criteria of [50,51], with an ICC value from 0 to 0.25 indicating

poor; 0.25 to 0.4 indicating low; 0.4 to 0.6 indicating fair; 0.6 to

0.75 indicating good and 0.75 to 1.0 indicating excellent

reliability. Since the network construction was done over a

continuous range of sparsity threshold, ICC is a function of the

threshold. To provide a threshold-independent reliability assess-

ment, we also calculated the area under curve (AUC, i.e., the

integral) for each network metric [52] that was used to compute a

single ICC scalar for each network measure. Finally, we compared

the consistency between ICC-based reliability and Pearson

correlation coefficient-based similarity analysis (across subjects)

for network metrics between scans, which was restricted to S-AAL-

based networks.

Simulation analysis
To investigate the effects of numerical changes in RSFC on

network metric reliability, we performed simulation analyses as

follows: individual functional connectivity matrices based on S-

AAL were calculated using dataset of scan1 and their correspond-

ing network metrics (both global and nodal metrics) were used as

reference values. Then, for each correlation matrix, different levels

of independent Gaussian noise were added and all network metrics

were recomputed. The added Gaussian noise were zero mean and

the variances varied across six equally spaced levels corresponding

to 8.3%, 16.7%, 25.0%, 33.3%, 41.7% and 50.0% of actual

functional connectivity variances for each subject. This procedure

assures the same proportion of noise added to each correlation

matrix. Of note, the procedure of noise addition was performed 5

times. Therefore, 25 (subjects) | 6 (noise levels) | 5 (random

times) = 750 functional connectivity matrices were simulated in

total. Finally, the TRT reliability of each metric was calculated

between the reference values and those obtained from simulated

functional networks under each level of noise and then averaged

across 5 rounds of noise addition.

Results

TRT reliability of RSFC: S-AAL
Consistency of overall RSFC patterns. The mean RSFC

matrices across subjects were calculated (after Fisher’s r-to-z

transform) for each of the three TRT scans. Initial visual

inspection suggested that mean RSFC matrices showed highly

similar spatial patterns between different time points (Fig. 1a).

Further quantitative spatial correlation analysis (Pearson

correlation) confirmed the visual inspection, as revealed by high

correlations in the mean correlation values between each pair

among the three scans (Fig. 1b, scan1 vs. scan2: r = 0.961,

p,102300; scan1 vs. scan3: r = 0.962, p,102300; scan2 vs. scan3:

r = 0.966, p,102300).

Reliability of RSFC. ICC-based TRT reliability analysis on

individual functional connections demonstrated an approximate

normal distribution of the ICC values for all 4005 (i.e., 90689/2)

connections with a mean around 0.25 for both short-term and

long-term scans (Fig. 2a). In terms of the category used in the

present study, 1203 (,30.0%) functional connections exhibited

fair to excellent reliability for short-term scans (fair: 1006,

,25.1%; good: 191, ,4.8%; excellent: 6, ,0.2%) and 914

connections (,22.8%) for long-term scans (fair: 796, ,19.9%;

good: 114, ,2.9%; excellent: 4, ,0.1%). The majority of RSFC

(up to 70% for both short- and long-term scans) showed low or

poor reliability. Additionally, a significantly positive correlation

(Pearson correlation, r = 0.266, p,10264) was found in the ICC

values across connections between short-term and long-term scans

(Fig. 1c).

Relationship between connectivity and reliability. To

explore the relationship between connectivity strength and

reliability, linearly fitted lines were obtained separately for

positive connections and negative connections with their

corresponding ICC values. We found significantly positive

correlations (Pearson correlation) between positive connections

and their ICC values for both short-term (r = 0.135, p,1027) and

long-term (r = 0.145, p,1028) scans (Fig. 3a). No significant

correlations were found between negative correlations and their

ICC values (p.0.3 for both short-term and long-term scans)

(Fig. 3a). These findings indicate that reliability of functional

connectivity was partly determined by their strength, whereas

functional connectivity strength had limited predictive ability to

their reliability since the small amount of variance in the

functional connectivity reliability explained by their strength

(R2,3%).

Table 3. Summary of the main findings in the present study.

Factors effecting network metric reliability

Time interval Network type Network membership

S-AAL

Global metrics Long.Short (Binarized) N.S. Network (+).Network (+/-)

Nodal metrics N.S. N.S. N.S.

S-HOA

Global metrics N.S. Binarized.Weighted N.S.

Nodal metrics N.S. N.S. N.S.

F-DOS

Global metricsa N.S. N.S. N.S.

Nodal metrics N.S. N.S. N.S.

S-AAL, structural ROIs from Anatomical Automatic Labeling atlas; S-HOA, structural ROIs from Harvard-Oxford atlas; F-DOS, functional ROIs from ref (40); Network (+/-),
networks constructed using absolute both positive and negative correlations; Network (+), networks constructed using only positive correlations; Binarized, binarized
network analysis; Weighted, weighted network analysis; N.S., non-significant.
aThere were no significant differences in reliability among global network metrics for F-DOS based networks while nodal network metrics for F-DOS and both global and
nodal metrics for S-ALL and S-HOA based networks were significantly different.

doi:10.1371/journal.pone.0021976.t003
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Figure 7. TRT reliability of nodal metrics for S-AAL-based networks. Nodal reliability varied across nodal attributes and spatial locations. The
full names of region’s abbreviations were listed as in Table S1. ICC values less than 0.25 were mapped to a single color of dark blue as well dark red
color for ICC values greater than 0.75, respectively. Network (+/-), networks constructed using absolute both positive and negative correlations;
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TRT reliability of RSFC: S-HOA
Consistency of overall RSFC patterns. The mean S-HOA-

based RSFC matrices across subjects also showed highly similar

spatial patterns revealed by visual inspection (Fig. S2a) and

quantitative spatial correlation analyses (Fig. S2b, r.0.95 between

any two scans).
Reliability of RSFC. Similar to S-AAL, approximate normal

distributions were also found for the reliability of S-HOA-based

RSFC which had comparable mean (, 0.25) (Fig. 2b). Also

consistent with S-AAL, although there were quite a few

connections showing fair to good to excellent reliability (1874,

,30.1% for short-term and 1356, ,21.8% for long-term scans),

most connections were poorly reliable (4342, ,69.9% for short-

term and 4860, ,78.2% for long-term scans). Finally, short-term

reliability was found to positively correlate with long-term

reliability across connections (Fig. S2c, Pearson correlation,

r = 0.307, p,102135).
Relationship between connectivity and reliabiflity. Con-

sistent with S-AAL, positive correlations were found between

positive RSFC and their reliability for the S-HOA-based corre-

lations (short-term: r = 0.166, p,10-17; long-term: r = 0.148,

p,10213), indicating limited determination of functional con-

fnectivity strength on their reliability (R2,3%). Additionally, a

negative correlation was demonstrated between negative corre-

lations and their reliability for long-term scans (r = 20.033,

p = 0.048) (Fig. S3).

TRT reliability of RSFC: F-DOS
Consistency of overall RSFC patterns. Relative to

structural ROIs-based RSFC matrices (both S-AAL and S-

HOA), the similarity in the spatial patterns across scans

decreased for the mean RSFC matrices derived on the basis of

160 functional ROIs but still remained high (Scan1 vs. Scan2:

r = 0.896, p,102300; Scan1 vs. Scan3: r = 0.915, p,102300;

Scan2 vs. Scan3: r = 0.902, p,102300) (Fig. 4a and b).
Reliability of RSFC. Normal distributions were also found

for TRT reliability of functional ROIs-based RSFC, however

lower mean ICC values (,0.20) were obtained in this case in

comparison with structural ROIs-based RSFC (,0.25) (Fig. 2c).

Moreover, higher percentage of connections (up to ,80.0%)

showed poor and low reliability for both short-term and long-term

scanning procedure, with ,20.0% showing fair to good to

excellent reliability. Of note, those reliable connections were

mainly related with ROIs designated as default mode network

according to previous study [40]. In addition, short-term reliability

was found to positively correlate with long-term reliability across

all connections (Fig. 4c, Pearson correlation, r = 0.337, p,10-300).

Relationship between connectivity and reliability. In the

case of functional ROIs based RSFC matrices, functional

connectivity strength explained relatively more in comparison

with structural ROIs based matrices but still low variance

(R2,8%) in connectivity reliability (positive correlations and

their reliability: r = 0.279, p,10-86 for short-term and r = 0.273,

p,10-83 for long-term scans; negative correlations and their

reliability: r = 20.098, p,10217 for short-term and r = 20.097,

p,10217 for long-term scans) (Fig. 3b).

TRT reliability of network metrics: S-AAL
Reliability of global network metrics. In the present

study, individual networks were constructed at the same sparsity

level by applying subject-specific correlation thresholds to

individual correlation matrices (see Fig. S4 for the corresponding

correlation thresholds under each sparsity level). Sparsity threshold

ensures all resultant networks to have comparable topological

structures of the same number of edges. Figure 5 shows the TRT

reliability of 12 global network metrics over the whole sparisty

range. Generally, most global network metrics exhibited poor to

low reliability, irrespective of the factors of TI, NT and NM. For

example, clustering coefficient Cp was found to uniformly exhibit

poor reliability (ICC,0.25) under all conditions. Nonetheless, we

noted that some global metrics (e.g., lambdal and assortativity r)

exhibited modest long-term reliability when the networks were

sparsely connected (sparsity,10%). Interestingly, we found that

global network reliability appeared to depend on the factors of TI

and NM but relatively insensitive to NT by qualitatively visual

inspection. Specifically, long-term scans seemed to be associated

with better reliability in compared with short-term scans and the

exclusion of negative correlations enhanced network reliability

(Fig. 5). These were reflected in both increased ICC values and the

broadened threshold range of high ICC. Finally, a threshold-

independent reliability scalar was obtained for each global network

metric by using the AUC. Again, several specific global metrics

(e.g., lambdal) demonstrated moderate long-term reliability under

certain analytical schemes (Fig. 6a, left). Of note, we found that

Network (+), networks constructed using only positive correlations; Binarized, binarized network analysis; Weighted, weighted network analysis; TRT,
test-retest; S-AAL, structural ROIs from Anatomical Automatic Labeling atlas.
doi:10.1371/journal.pone.0021976.g007

Figure 8. Boxplot of mean nodal TRT reliability for S-AAL- (a) and F-DOS- (b) based networks. Significant differences were found in the
mean nodal reliability among the six nodal metrics examined with nodal degree showing the highest ICC values and least variances for both ROIs
sets. TRT, test-retest; S-AAL, structural ROIs from Anatomical Automatic Labeling atlas; F-DOS, functional ROIs from Dosenbach et al. (2006, 2010).
doi:10.1371/journal.pone.0021976.g008
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assortativity rshowed moderated both short-term and long-term

reliability for networks of positive correlations.

Beyond the descriptive results mentioned above, we further

performed statistical analyses to test the differences in reliability

among 12 global metrics (one-way repeated-measure ANOVA)

and the effects of TI, NM and NT on the reliability of global

network metrics (three-factor repeated-measure ANOVA). Those

AUC-based ICC values were used for the statistical analyses. The

results showed that TRT reliability differed significantly

(F(11,77) = 3.434, p = 0.001) among 12 global network metrics

with lambda l showing the highest reliability (Fig. 6b, left).

Furthermore, TI (F(1,11) = 8.176, p = 0.016) and NM (F(1,11) =

4.492, p = 0.058) showed significant or marginally significant

main effects on global network reliability, respectively. In addition,

a significant interaction was observed between TI and NT

(F(1,11) = 5.317 , p = 0.042). NT and other interactions were not

significant (p.0.05). Further post-hoc comparisons (paired t-tests)

revealed that long-term scans outperformed short-term scans only

Figure 9. Nodal TRT reliability of degree and its relationship with nodal degree centrality for S-AAL-based networks. (a) Nodal TRT
reliability was mapped in anatomical space after average across scanning time interval, network type and network membership because of no effects
of these factors on nodal reliability. (b) Nodal degree centrality (AUCs) was also mapped in anatomical space which was averaged across subjects and
factors of scanning time interval, network type and network membership. Trend lines were further obtained by linear least-square fit to reveal the
relationship between nodal degree centrality and their corresponding reliability after with (d) and without (c) correcting for the effects of regional
size. Of note, the full names of region’s abbreviations were listed as in Table S1. TRT, test-retest; S-AAL, structural ROIs from Anatomical Automatic
Labeling atlas; k, nodal degree; A, anterior; P, posterior; L, left; R, right.
doi:10.1371/journal.pone.0021976.g009
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for binarized networks (t(23) = 5.100, p,1024) but not for

weighted networks (t(23) = 1.333, p = 0.196) and excluding nega-

tive correlations increased the reliability (t(47) = 3.228, p = 0.002)

of global network metrics. See Table 3 for the summary of all

statistical results.

Reliability of local nodal metrics. Nodal reliability was

estimated based on AUCs. We found that nodal reliability showed:

(1) unconspicuous differences associated with factors of TI, NM

and NT; (2) different patterns across nodal metrics; and (3) a

spatially heterogeneous distribution over the whole brain (Fig. 7).

First, nodal reliability patterns did not show remarkable

differences associated with the factors of TI, NM and NT by

visual inspection. To test whether or not there exist differences in

the TRT reliability associated with these factors, three-factor

repeated-measure ANOVA was further performed on the mean

ICC values over all nodes. Results revealed that none of these

three factors had significant main effects or interactions on the

mean nodal reliability (p.0.05) (Table 3).

Second, nodal reliability exhibited variable patterns across

nodal attributes under each combination of the three factors.

Further one-factor repeated-measure ANOVA on the mean nodal

reliability over regions supported this finding that there was

significant (F(5,35) = 6.578, p = 0.0002) differences among the six

nodal metrics examined, with the highest ICC values and least

variance for nodal degree (Fig. 8a).

Finally, nodal reliability distributed non-uniformly over the

brain, an observation irrespective of nodal metrics and factors of

TI, NM and NT. To highlight those reliable regions, we selectively

mapped nodal reliability of degree of all regions after averaging

over factors of TI, NM and NT (Fig. 9a). This was because nodal

degree showed higher reliability and less variance as compared to

other nodal metrics and was robust to TI and NM as well as NT.

As shown in Figure 9a, some association and limbic/paralimbic

cortex regions [53] exhibited fair reliability that were predomi-

nately located in bilateral parietal and occipital lobes, such as

association cortex regions of the left angular gyrus (ANG), right

paracentral lobule (PCL), right precuneus (PCUN), bilateral

supramarginal gyrus (SMG), bilateral dorsolateral superior frontal

gyrus (SFGdor), right medial superior frontal gyrus (SFGmed) and

left superior occipital gyrus (SOG), and limbic/paralimbic regions

of the bilateral hippocampus (HIP) and the left posterior cingulate

gyrus. In addition, one primary cortex region of the left calcarine

fissure (CAL) was also found to be fairly reliable. To test whether

or not nodal reliability was related with nodal centrality, we also

mapped the mean nodal degree over TI, NM and NT (Fig. 9b)

and found visually different patterns between nodal degree and

nodal reliability. The most reliable regions located on the posterior

while the most connected regions on the anterior portions of the

brain. Further quantitative correlation analysis revealed that only

tiny variance (R2,7%) in nodal reliability could be explained by

nodal degree centrality in both cases of with (r = 0.255, p = 0.015,

Fig. 9c) and without (r = 0.263, p = 0.012, Fig. 9d) correction for

regional nodal size. To test whether there exist a relationship

between spatial location and nodal reliability, we compared nodal

degree reliability between anterior (y.0) and posterior (y,0)

regions. The results revealed that posterior regions were more

Figure 10. The similarity between inter-scan ICC-based reliability and inter-scan Pearson correlation coefficients for S-AAL-based
networks. The reliability and correlation analyses revealed highly consistent results (r.0.9 under most conditions), ruling out the possibility of linear
scaling biases of network metrics across test and retest scans that will lead to low TRT reliability.
doi:10.1371/journal.pone.0021976.g010
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reliable than anterior regions even if nodal mean functional

connectivity differences were corrected (t(87) = 2.801, p = 0.006).

In addition, we also found dramatically different patterns across

nodal metrics even for those most reliable regions except for the

right PCL (Fig. S5a).

Consistency between ICC-based reliability analysis and

Pearson correlation analysis. To test the possibility of linear

scaling biases across test and retest scans which may result in low

TRT reliability, we calculated the inter-scan Pearson correlation

coefficient for each global network metric (AUC) across subjects

for both short-term and long-term scans. Further scatter plots

between ICC values and Pearson correlation coefficients revealed

highly correlated patterns (r.0.9 under most conditions) (Fig. 10),

suggesting consistent results revealed by the two measures.

Simulation results. By simulating functional connectivity

matrices with different levels of noise, we found that: 1) for global

network metrics, the TRT reliability was sensitive (F(5,55) =

23.303, p,10-11, repeated two-way ANOVA) to disturbances in

functional connectivity values and weighted network analysis

generated numerically more (F(1,11) = 5.183, p = 0.044, repeated

two-way ANOVA) reliable results than binarized network analysis

(Fig. 11); 2) for nodal network metrics, although sensitive to the

levels of noise (F(5,25) = 7.762, p,1023, repeated two-way

ANOVA), they were highly resistant to numerical changes in

functional connectivity and there were no differences (F(1,5) =

0.312, p = 0.601, repeated two-way ANOVA) in the resistance to

noise between binarized and weighted network analyses (Fig. 12);

3) there were no differences in numerical stability against noise in

functional connectivity (p.0.05 under each noise level) between

the first-order and second-order network metrics (Table 2); 4)

nodal network metrics were more numerically reliable than global

network against noise in functional connectivity (p,1023 under

each noise level). Of note, although sensitive to functional

connectivity noise, the degree varied dramatically among global

metrics. For instance, small-world parameters and network

efficiency were extremely sensitive to even little noise in func-

tional connectivity while assortativity, hierarchy, synchronization

and modularity were relatively resistant to noise (Fig. 11).

TRT reliability of network metrics: S-HOA
Reliability of global network metrics. Analogous to results

from S-AAL-based networks, S-HOA-based networks also showed

overall low (Fig. S6a) but metric- (Fig. S6b) and threshold- (Fig. S7)

sensitive reliability. However, unlike the finding of modest long-

term reliability of multiple global metrics for S-AAL-based

networks (Fig. 5 and Fig. 6a, left), S-HOA-based networks were

mainly related with moderate short-term reliability in multiple

global metrics (except for lambda) (Fig. S6a and Fig. S7). Of note,

synchronization S was found to repeatedly show overall moderate

reliability (Fig. S6a). Subsequent statistical comparisons revealed

Figure 11. TRT reliability of global network metrics as a function of noise in RSFC for S-AAL-based networks. Global network metrics
were sensitive to disturbances of RSFC and weighted network analysis generated numerically more stable results in comparison with binarized
network analysis. The highlighted black border marks are the average reliability across metrics for binarized (square) and weighted (circle) network
analysis, respectively. Of note, the sensitivity varied dramatically among metrics. Small-world parameters and network efficiency were extremely
sensitive to even little noise in functional connectivity while assortativity, hierarchy, synchronization and modularity were relatively resistant to noise.
TRT, test-retest; RSFC, resting-state functional connectivity.
doi:10.1371/journal.pone.0021976.g011
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that TRT reliability of global network metrics were modulated by

NT factor (F(1,11) = 6.819, p = 0.024) with higher reliability

observed for binarized networks (t(47) = 2.248, p = 0.029, paired

t-test) (Table 3).

Reliability of local nodal metrics. Nodal reliability of S-

HOA-based networks (Fig. S8) exhibited the same patterns as

those for S-AAL-based networks of 1) factors independent (p.0.05

for all the factors of TI, NM and NT as well as all possible

interactions) (Table 3), 2) metric-sensitive (F(5,35) = 12.098,

p,1026, degree was the most reliable and least variable) (Fig.

S9), and 3) spatial heterogeneous distribution over the brain (Fig.

S10a). The most reliable regions were also mainly unimodal and

heteromodal association cortex regions and limbic/paralimbic

regions of temporal and parietal lobes that were not replicated by

other nodal metrics (Fig. S5b). Also, nodal centrality (Fig. S10b)

showed no significant relationship (R2,2%) with nodal reliability

(Fig. S10c and d).

TRT reliability of network metrics: F-DOS
Reliability of global network metrics. In compared with

structural ROIs-based networks, functional ROIs-based networks

showed fair reliability in more global metrics over wider threshold

range, especially for networks of positive correlations (Fig. 13). For

example, small-world parameters (clustering coefficient Cp,

characteristic path length Lp, normalized clustering coefficient c,

normalized characteristic path length l and small-worldness s)

were fairly reliable (predominantly for long-term reliability) for

positive networks. The threshold-independent reliability was

presented in the right panel of Figure 6a. Subsequent statistical

analyses revealed that, in contrast with the measure-related

differences in global network reliability observed for structural

ROIs based-networks (Fig. 6b, left and Fig. S6b), there was no

significant differences (F(11,77) = 1.298, p = 0.242) among global

metrics (Fig. 6b, right) for functional ROIs-based networks.

Furthermore, unlike the sensitivity of global network reliability

to experimental factor of TI and graph-based analytical strategies

of NM and NT for structural ROIs-based networks, reliability of

functional ROIs-based networks was robust against these factors

(p.0.05) (Table 3).

Reliability of local nodal metrics. Figure 14 delineated the

nodal reliability for functional ROIs-based networks. No

significant (p.0.05) effects were observed for TI, NM and NT

on mean nodal reliability (Table 3), consistent with findings from

structural ROIs-based networks (both S-AAL and S-HOA). Also

analogous to findings of structural ROIs-based networks, nodal

degree was found to show the highest reliability and least variance

in compared with others (F(5,35) = 3.041, p = 0.022) (Fig. 8b).

After averaged over factors of TI, NM and NT, mean nodal

Figure 12. TRT reliability of nodal network metrics as a function of noise in RSFC for S-AAL-based networks. Nodal network metrics
were sensitive to disturbances of RSFC and no differences were observed in the resistance to noise in functional connectivity between binarized and
weighted network analysis. The highlighted black border marks are the average reliability across metrics for binarized (square) and weighted (circle)
network analysis, respectively. Of note, although sensitive, nodal network metrics showed strong tolerance of disturbances in RSFC. TRT, test-retest;
RSFC, resting-state functional connectivity.
doi:10.1371/journal.pone.0021976.g012
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degree reliability showed that there were quite a few reliable

regions distributed in bilateral temporal, parietal and the right

frontal lobes (Fig. 15a). The nodal centrality pattern (Fig. 15b) can

only explain a small fraction (R2,6%) of nodal reliability pattern

(Fig. 15c and d). We also noted that the most reliable regions were

predominantly located in the right hemisphere (Fig. 15a) and

varied across nodal metrics (Fig. S5c).

Discussion

In the present study, we examined the test-retest reliability of

topological metrics of intrinsic connectivity networks derived from

human brain R-fMRI data. First, we replicated previous findings

that RSFC exhibited modest to high test-retest reliability [27].

Further reliability analyses of network metrics highlighted several

main findings: 1) that global network metrics showed overall poor

to low but threshold-sensitive reliability; 2) that local nodal metrics

were fairly reliable for association and limbic/paralimbic cortex

regions; 3) that reliability of network metrics (both global and local)

differed significantly among the measures examined; 4) that

reliability of global network metrics depended on multiple

experiment and analytical factors while nodal reliability was

robust to these factors; and 5) that weighted networks (compared

to binarized networks) and nodal (compared to global) network

metrics were numerically more reliable in the face of noise in

functional connectivity. Taken together, we provided a systemat-

ically quantitative TRT reliability evaluation of topological metrics

of R-fMRI based brain networks. Our findings suggested

continued usage of graph theoretical approaches to explore brain

networks and had potential relevance for guiding graph analytical

schemes for R-fMRI to achieve reliable results.

For global network metrics, we observed overall low TRT

reliability. This observation was consistent with results reported in

a previous MEG study [12]. Indeed, compared with task

engagement, Deuker et al. (2009) found that resting state was

related with significantly lower reliability of global network

metrics. This may be related to variable mental states of

participants across scans which induce variations in RSFC

[19,20,21,22,23,24,25]. Such discrepancies in RSFC especially

in shortcuts or inter-module/component connections [54] may

further affect the topological organization of the overall connec-

tivity network [28]. To test the possibility, we examined the

differences in RSFC strength between scans by paired t-tests. The

results revealed that no connections showed significant differences

(p,0.05, corrected) across scans, implying the temporal stability of

RSFC [27,29,31]. Despite of non-significant differences, our

simulation analysese indicated that global network metrics were

extremely sensitive to numerical changes in RSFC, especially for

small-world parameters and network efficiency. Another possible

origin of low TRT reliability is due to low between-subject

variance or low ability of global network metrics to differentiate

subjects. With that said, the low TRT reliability of global metrics

may suggest high consistency of global properties of intrinsic brain

networks across subjects. Finally, the noise resulting from MRI

Figure 13. TRT reliability of global network metrics as a function of sparsity threshold for F-DOS-based networks. ICC values less than
0.25 were mapped to a single color of dark blue as well dark red color for ICC values greater than 0.75, respectively. Multiple network metrics showed
modest reliability in certain threshold range. Network (+/-), networks constructed using absolute both positive and negative correlations; Network (+),
networks constructed using only positive correlations; Binarized, binarized network anlysis; Weighted, weighted network analysis; TRT: test-retest; F-
DOS, functional ROIs from Dosenbach et al. (2006, 2010).
doi:10.1371/journal.pone.0021976.g013
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data acquisition and coregistration inaccuracy may also influence

network reliability, which should be elucidated in the future work.

Despite of the overall low TRT reliability, some global metrics

showed relatively high reliability. For example, lambda showed

moderate long-term reliability for structural both S-AAL and S-

HOA-based networks. This may be due to the correction of

absolute characteristic path length to referenced random networks

which compensates for underlying differences of baseline net-

works. Further statistical analyses revealed significant differences

in TRT reliability among global metrics, suggesting an obvious

heterogeneity among different global network metrics in reliably

capturing intrinsic brain architecture. Moreover, the profiles of

global network reliability presented threshold sensitive patterns

indicating the importance of threshold selection for reliable results.

These findings raise the question of how to determine threshold for

brain network studies. A compromise strategy is to investigate

brain networks over a continuum threshold range under the

circumstance that no sufficient knowledge exists for prior threshold

selection.

Several factors were found to significantly affect the TRT

reliability of global network metrics. First, inclusion of negative

functional connectivity in brain networks tended to decrease TRT

reliability of global network properties. Previous evidence has

manifested that negative correlations showed greater population

and state related variance in the spatial maps [55] and lower TRT

reliability [27] relative to positive correlations. Consistent with

these findings, our results suggest that negative connectivity should

be treated with cautions for resting-state brain network studies,

which may reduce the TRT reliability. It should be noted that the

emergence of negative connectivity is related with the global signal

regression, a currently controversial step in preprocessing R-fMRI

data [56,57,58,59].

Second, binarized networks outperformed weighted networks in

TRT reliability of global network metrics. This finding seemed

counterintuitive. Indeed, weighted networks could characterize

network topology more precisely and detect more subtle network

topological changes than binarized networks due to the consider-

ation of connectivity strength [60]. However, this is not necessary

to mean better reliability for weighted networks since the

possibility that weighted networks may introduce simultaneously

extra noise or overly model individual specific details. All these

may lead to more within-subject variance (i.e., variance across

scans) and thus lower reliability. Of note, our simulation results

showed that weighted networks generated numerically more stable

results against noise in functional connectivity in comparison to

binarized networks. This suggests that the observed reliability

derived from actual R-fMRI data were affected by various factors,

not a single factor of numerical changes in functional connectivity.

Third, long-term scans showed higher TRT reliability of global

network metrics than short-term scans. This finding was contrast

to previous findings that RSFC exhibited higher TRT reliability

for short-term interval scans [27]. It may reflect the fact that the

average of scan2 and scan3 in the current study can potentially

improve the estimation of long-term reliability, i.e., reduce within-

session noise [29,30]. To test this interpretation, we further

calculated the long-term TRT reliability by using scan1 and scan3

and again found a long-term-larger-than-short-term pattern,

indicating a robust finding. Nevertheless, further work is needed

to verify this finding and aid in our understanding of how network

topology interacts with the scanning procedure of time interval.

Finally, TRT reliability of global network metrics was

modulated by strategies of network node definition. Specifically,

reliability of only structural (S-AAL and S-HOA) rather than

functional (F-DOS) ROIs-based networks depended on the factors

of TI, NM and NT. The discrepancy may reflect different

approaches of generating ROIs. Structural ROIs were obtained

mainly in terms of anatomical features of sulcal pattern (S-AAL)

[37] or standard anatomical boundaries (S-HOA) [38,39] whereas

functional ROIs were derived from previous meta-analyses of

fMRI activation studies which carried specific functional informa-

tion [40,41]. Furthermore, even for structural ROIs based

networks, the modulations of TI, NM and NT differed across

parcellations. Previous studies have demonstrated that network

properties were sensitive to nodal definition based on parcellation

strategies [32,36] and spatial scales [33,34,35]. Nevertheless, it’s

hard to conclude which approach or which parcellation is better

since all of them are valid and important approaches to uncover

brain connectivity architecture from different perspectives

[40,43,61,62]. Here, our results provide references for studying

intrinsic brain networks, for example, binarized networks should

be preferred for S-HOA-based intrinsic brain networks according

to our results.

For local nodal metrics, nodal degree showed the highest

reliability and least variance across factors of TI, NM and NT

among the six nodal metrics. Using this metric, we found that

some association cortex and limbic/paralimbic regions exhibited

fair to good TRT reliability for S-AAL and S-HOA derived

networks, such as precuneus, angular gyrus, superior forntal

gurus, paracentral lobule, supramarginal gyrus, anterior cingulate

gyrus, hippocampus and parahippocampal gyrus. Most of these

regions have been identified to serve as structural or functional

hubs/connectors in human brain networks [43,44,54,60,

63,64,65,66]. For F-DOS derived networks, more regions were

modestly reliable, predominately located in the right frontal lobe

and bilateral parietal and temporal lobes. Hubs are essential in

supporting the performance of high cognitive functions of the

human brain by integrating specialized brain regions into

coordinated networks. Buckner and colleagues [64] demonstrated

that the topography of human brain cortical hubs is highly similar

across populations and robust against task states, therefore

reflecting a stable property of brain functional architecture.

Here, our results indicate that those reliable regions qualitatively

tend to serve as hubs in intrinsic functional brain networks.

Nonetheless, our quantitative analysis found that nodal reliability

showed low correlations (although significant) with nodal

centrality (R2,10%), suggesting limited predictive ability of

nodal centrality on reliability. These findings imply that there

may exist other factors affecting nodal reliability, such as the

spatial locations of nodes or regions. Indeed, we found that

posterior regions were more reliable than anterior regions even

after correcting for the differences in functional connectivity

across regions. This may reflect the nature of the brain in which

the neural dynamics of spatially different brain regions are

differently constrained in the resting-state. It would be an

Figure 14. TRT reliability of nodal metrics for F-DOS-based networks. Nodal reliability varied across nodal attributes and spatial locations.
The full names of region’s abbreviations were listed as in Table S3. ICC values less than 0.25 were mapped to a single color of dark blue as well dark
red color for ICC values greater than 0.75, respectively. Network (+/-), networks constructed using absolute both positive and negative correlations;
Network (+), networks constructed using only positive correlations; Binarized, binarized network analysis; Weighted, weighted network analysis; TRT,
test-retest; F-DOS, functional ROIs from Dosenbach et al. (2006, 2010).
doi:10.1371/journal.pone.0021976.g014
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interesting question for future studies. Additionally, we noted that

the most reliable regions appeared to predominately locate in the

right hemisphere for F-DOS and S-HOA based networks. Hence,

exploring brain functional asymmetry from the perspective of

reliability may provide more insights into the brain’s functional

architecture.

Nodal reliability was found to be robust against the factors of

TI, NM and NT, regardless of different node definition strategies.

Simulation analyses revealed that nodal metrics were highly

tolerant of fluctuations in functional connectivity values and were

numerically more stable than global network metrics in the face of

connectivity noise. The reliable and robust features of nodal

Figure 15. Nodal TRT reliability of degree and its relationship with nodal degree centrality for F-DOS-based networks. (a) Nodal TRT
reliability was mapped in anatomical space after average across scanning time interval, network type and network membership because of no effects
of these factors on nodal reliability. (b) Nodal degree centrality (AUCs) was also mapped in anatomical space which was averaged across subjects and
factors of scanning time interval, network type and network membership. Trend lines were further obtained by linear least-square fit to reveal the
relationship between nodal degree centrality and their corresponding reliability after with (d) and without (c) correcting for the effects of regional
size. Of note, the full names of region’s abbreviations were listed as in Table S1. TRT, test-retest; F-DOS, functional ROIs from Dosenbach et al. (2006,
2010); k, nodal degree; A, anterior; P, posterior; L, left; R, right.
doi:10.1371/journal.pone.0021976.g015

Reliability of Brain Functional Networks

PLoS ONE | www.plosone.org 19 July 2011 | Volume 6 | Issue 7 | e21976



metrics propose local nodal metrics as reliable candidates to reveal

topological organization of intrinsic functional brain networks.

There are several issues that remained to be addressed in future.

First, the reliability analyses of graph-based network metrics were

conducted after several R-fMRI preprocessing steps. To date, how

different preprocessing strategies affect the TRT reliability of

network metrics is rarely investigated. Specifically, in the current

study, RSFC were obtained based on band-pass filtered data

(0.01–0.1 Hz). Previous R-fMRI studies have demonstrated

frequency specific features for RSFC [67,68,69] and network

topology [43,46,70,71]. Accordingly, exploring the impacts of

different preprocessing steps on TRT reliability, especially the

filtering frequency bands, is an important topic to determine

specific processing schemes for consistent, reliable results. Second,

we limited our examination of TRT reliability to 12 global

network properties and 6 nodal characteristics, which were widely

used to characterize brain network architectures. However, there

are still a lot of other network metrics, such as motif [72] and

vulnerability [73] (for reviews, see [74,75]) whose TRT reliability

need to be evaluated in future. Finally, using R-fMRI, we

examined the TRT reliability of intrinsic functional brain

networks. Previous studies have performed similar analyses of

structural or functional brain networks using DTI, MEG, or fMRI

data during resting state or cognitive task engagement

[10,11,12,13]. Despite these advances, a systematic reliability

evaluation using multimodal data from the same cohort of

population is warranted to gain more insights into human brain’s

structural and functional architectures.

In conclusion, we studied the TRT reliability of graph-based

network metrics derived from resting-state fMRI data and the

effects of several factors on the reliability. Based on our findings,

we provide some methodological recommendations for resting-

state fMRI community in dealing with brain connectome studies.

First, negative correlations need to be excluded or considered with

cautions for S-AAL-based brain network studies. Second,

binarized networks should be preferred for S-HOA-based brain

network studies as compared to weighted networks. Third,

reliability of functional ROIs-based networks was robust against

the three factors of scanning time, network membership and

network type. Finally, nodal metrics (especially nodal degree) could

produce more reliable results and are more resilient to functional

connectivity disturbances, which should be popularized in future

brain network studies. Nonetheless, we pointed out that further

work is necessary to standardize the methodological framework on

this burgeoning field.

Supporting Information

Figure S1 Spatial locations of functionally defined ROIs. These

ROIs broadly but not completely cover the cerebral cortex and

cerebellum without any overlap between ROIs and were

associated with five functions of error-processing, default-mode,

memory, language and sensorimotor. A, anterior; P, posterior; L,

left; R, right.

(DOC)

Figure S2 Spatial similarity and TRT reliability patterns of S-

HOA-based RSFC. Mean Pearson correlation matrices (a),

consistency of overall patterns between mean matrices (b) and

TRT reliability of individual connections as well as the

relationship between short-term and long-term reliability (c) are

illustrated. The mean correlation matrices exhibited high

similarity from both visual inspection (a) and quantitative spatial

correlation analyses (b). Further TRT reliability analyses revealed

many connections exhibiting fair to excellent reliability (c, also see

Fig. 2). Moreover, a significant (p,0.05) correlation was found in

the ICC matrices between short-term and long-term scans (c).

Functional connections linking inter-hemisphere homotopic re-

gions, as highlighted by plus signs (+), showed high connectivity

strength and many of them exhibited high reliability. TRT, test-

retest; RSFC, resting-state functional connectivity; S-HOA,

structural ROIs from Harvard-Oxford atlas. Of note, the

structural ROIs were listed in the order as in Table S2.

(DOC)

Figure S3 Relationship between RSFC and TRT reliability for

S-HOA-based correlation matrices. Scatter plots of mean

connectivity strength against corresponding ICC values are

depicted to show the relationship. The trend lines were obtained

by linear least-square fit. Significant (p,0.05) positive correlations

were found between positive RSFC and their corresponding ICC

values for both short-term and long-term scanning. In addition,

significant negative correlations were also found for negative

RSFC with their corresponding ICC values but only for long-term

scanning. These findings suggest higher reliability for stronger

RSFC. Functional connections linking inter-hemisphere homo-

topic regions are highlighted by plus signs (+). RSFC, resting-state

functional connectivity; TRT, test-retest; S-HOA, structural ROIs

from Harvard-Oxford atlas.

(DOC)

Figure S4 The absolute correlation thresholds under each

sparsity level for all the three sets of ROIs based networks. The

correlation thresholds decrease with the increase of sparsity and

are comparable across scans and across subjects for each set of

ROIs-based networks. Of note, negative correlations were

included.

(DOC)

Figure S5 Ranks of reliable regions revealed by nodal degree

over other nodal metrics. (a) S-AAL-based networks; (b), S-HOA-

based networks; (c) F-DOS-based networks. The ranks of those

most reliable regions in terms of nodal degree (regions with

ICC.0.4 in Fig. 9a, Fig. S10a and Fig. 15a) changed dramatically

over nodal metrics for all ROIs sets, indicating inconsistency for

most reliable regions. The full names of region’s abbreviations

were listed as in Table S1, S2 and S3.

(DOC)

Figure S6 TRT reliability of summarized global network

metrics (a) and metric-related differences in reliability (b). The

area under curve (AUC) of each metric was used to provide

threshold-independent reliability estimation. Different metrics

showed variable levels of reliability. Several of them were

moderately reliable (e.g., lambda and synchronization). Subse-

quent statistical analysis revealed significant differences in TRT

reliability among the 12 global network metrics, with lambda

showing relatively high reliability and low variance. ICC values

less than 0.25 were mapped to a single color of dark blue as well

dark red color for ICC values greater than 0.75, respectively in (a).

Network (+/-), networks constructed using absolute both positive

and negative correlations; Network (+), networks constructed using

only positive correlations; Binarized, binarized network analysis;

Weighted, weighted network analysis; TRT, test-retest; S-HOA,

structural ROIs from Harvard-Oxford atlas.

(DOC)

Figure S7 TRT reliability of global network metrics as a

function of sparsity threshold for S-HOA-based networks. ICC

values less than 0.25 were mapped to a single color of dark blue as

well dark red color for ICC values greater than 0.75, respectively.

Network (+/-), networks constructed using absolute both positive
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and negative correlations; Network (+), networks constructed using

only positive correlations; Binarized, binarized network anlysis;

Weighted, weighted network analysis; TRT: test-retest; S-HOA,

structural ROIs from Harvard-Oxford atlas.

(DOC)

Figure S8 TRT reliability of nodal metrics for S-HOA-based

networks. Nodal reliability varied across nodal attributes and

spatial locations. Moreover, removing negative correlations

seemed to result in more regions showing higher reliability in

more nodal attributes (predominantly for binarized networks). The

full names of region’s abbreviations were listed as in Table S2.

ICC values less than 0.25 were mapped to a single color of dark

blue as well dark red color for ICC values greater than 0.75,

respectively. Network (+/-), networks constructed using absolute

both positive and negative correlations; Network (+), networks

constructed using only positive correlations; Binarized, binarized

network analysis; Weighted, weighted network analysis; TRT, test-

retest; S-HOA, structural ROIs from Harvard-Oxford atlas.

(DOC)

Figure S9 Boxplot of mean nodal TRT reliability for S-HOA-

based networks. Significant differences were found in the mean

nodal reliability among the six nodal metrics examined with nodal

degree showing the highest ICC values and least variances. TRT,

test-retest; S-HOA, structural ROIs from Harvard-Oxford atlas.

(DOC)

Figure S10 Nodal TRT reliability of degree and its relationship

with nodal degree centrality for S-HOA-based networks. (a) Nodal

TRT reliability was mapped in anatomical space after average

across scanning time interval, network type and network mem-

bership because of no effects of these factors on nodal reliability.

(b) Nodal degree centrality (AUCs) was also mapped in anatomical

space which was averaged across subjects and factors of scanning

time interval, network type and network membership. Trend lines

were further obtained by linear least-square fit to reveal the

relationship between nodal degree centrality and their corre-

sponding reliability after with (d) and without (c) correcting for the

effects of regional size. Of note, the full names of region’s

abbreviations were listed as in Table S2. TRT, test-retest; S-HOA,

structural ROIs from Harvard-Oxford atlas; k, nodal degree; A,

anterior; P, posterior; L, left; R, right.

(DOC)

Table S1 Regions of interest from S-AAL.

(DOC)

Table S2 Regions of interest from S-HOA.

(DOC)

Table S3 Regions of interest from F-DOS.

(DOC)

Table S4 Correlation coefficients between long-term reliability

estimated by scan1 and the average of scan 2 and scan 3 and those

estimated by scan 1 and scan 3 alone.

(DOC)

Text S1 Mathematical definitions of network metrics.

(DOC)
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