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Molecular pathogenesis of autosomal 
dominant polycystic kidney disease
One’s first glimpse of a specimen from a patient with advanced 
autosomal dominant polycystic kidney disease (ADPKD) cre-
ates a lasting impression. The massive enlargement of the kid-
ney and the substitution of an irregular profusion of glistening 
cysts for its usual striated architecture are unmistakable hall-
marks of a disease afflicting approximately 1 in 1,000 individuals 
(Torres, 1998; Calvet and Grantham, 2001; Grantham, 2001; 
Igarashi and Somlo, 2002; Wilson, 2004). The dramatic appear-
ance underscores a single gene’s power to alter grotesquely the 
morphology of an organ whose structure is normally sublimely 
intertwined with its function.

ADPKD cysts increase in size and number over the space 
of decades, displacing and destroying adjacent renal parenchyma, 
leading ultimately to end-stage renal disease in 50% of cases. 
Cardiovascular, musculoskeletal, and gastrointestinal abnormal-
ities are also associated with ADPKD (Gabow, 1993). The Pkd1 
(polycystic kidney disease-1) and Pkd2 (polycystic kidney  
disease-2) genes encode polycystin-1 (PC1) and polycystin-2 
(PC2), respectively. Approximately 85% of ADPKD cases are at-
tributable to mutations in Pkd1, while mutations in Pkd2 account 
for almost all of the remaining cases. During the past fifteen years 

an enormous amount of effort has been invested in exploring the 
functions of the PC1 and PC2 proteins. The return on this invest-
ment constitutes something of an embarrassment of riches, in that 
the polycystin proteins appear to participate in a nearly bewilder-
ing array of signaling pathways and regulatory processes, and to 
reside within a complex collection of subcellular structures.  
A major goal of current ADPKD research is to elucidate the con-
nections between these cell biological properties of the poly-
cystin proteins and the pathogenesis of the disease that develops 
when their expression is perturbed.

One of the most intriguing discoveries to emerge from this 
intense research is the realization that portions of the cellular popu-
lations of PC1 and PC2 localize to the primary cilium. ADPKD is 
the founding member of the “ciliopathies,” a recently defined class 
of genetic disorders that result from mutations in genes encoding 
cilia-associated proteins. These disorders are often characterized 
by the presence of renal cysts as well as by additional pathologies 
including neural tube defects, retinal malformations, and poly-
dactyly (Badano et al., 2006). Although the cellular and molecular 
mechanisms responsible for the pathogenesis of ADPKD are still 
very much the subject of spirited and healthy debate, it has become 
clear in recent years that understanding ADPKD, and the function 
or dysfunction of PC1 and PC2, will require an appreciation of 
these proteins’ roles in the primary cilium.

The polycystin proteins
Polycystin-1 structure and cleavage. PC1 is a 450-kD pro-
tein with a large extracellular N terminus, 11 membrane-spanning 
domains, and a shorter cytoplasmic C terminus (Hughes et al., 
1995; Nims et al., 2003). It is expressed in the epithelial cells 
of the developing and mature renal tubules, as well as in a vari-
ety of other somatic tissues including heart, liver, bone, and 
endocrine glands (Ward et al., 1996; Ibraghimov-Beskrovnaya  
et al., 1997; Markowitz et al., 1999; Peters et al., 1999). Expression 
of PC1 is temporally regulated, with the highest levels found  
in fetal renal tissue and low but detectable levels present in 
adult tissue (Chauvet et al., 2002). PC1 is found in the cilium, 
but also localizes to the lateral domain of the plasma mem-
brane and adhesion complexes in polarized epithelial cells 
(Ibraghimov-Beskrovnaya et al., 1997; Huan and van Adelsberg, 
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we focus on autosomal dominant polycystic kidney dis-
ease, which is attributable to mutations in the PKD1 and 
PKD2 genes and which is characterized by perturbations 
of renal epithelial cell growth control, fluid transport, and 
morphogenesis. The mechanisms that connect the under-
lying genetic defects to disease pathogenesis are poorly 
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C termini (Mochizuki et al., 1996). PC2 functions as a Ca2+- 
permeable nonselective cation channel and is homologous  
to the transient receptor potential family of cation channels  
(Tsiokas et al., 1999; González-Perrett et al., 2001). Although a 
portion of PC2 colocalizes with PC1 to the cilium, the majority 
of the cellular pool of PC2 appears to reside in intracellular 
compartments, where it may modulate the release of calcium 
from intracellular stores. The channel activity of the ciliary pool 
of the PC1–PC2 complex appears to respond to ciliary bending, 
and may also mediate the cilium’s role in transducing other me-
chanical or chemical stimuli (Nauli et al., 2003).

Several domains present in PC2’s N and C termini are  
responsible for PC2’s protein–protein interactions and Ca2+ sen-
sitivity. At least two domains, one in each cytoplasmic tail, con-
tribute to PC2 oligomerization. Immediately distal to PC2’s last 
transmembrane domain is a functionally complex region of the 
C terminus that includes coiled-coil, EF-hand, and ER retention 
domains. A calcium-binding EF hand domain begins upstream 
of and extends into the PC1-interacting coiled-coil region  
(Mochizuki et al., 1996; Qian et al., 1997; Celić et al., 2008). 
The helix-loop-helix structure of the EF-hand binds Ca2+, per-
mitting the protein to sense or to buffer changes in Ca2+ (Gifford 
et al., 2007). The PC2 EF-hand has a single Ca2+-binding site 
with micromolar affinity (Celić et al., 2008). Slightly over-
lapping with both the coiled-coil and the EF-hand is a sequence 
that is required for maintaining PC2’s ER and Golgi localiza-
tion (Cai et al., 1999). A naturally occurring truncation muta-
tion that removes this C-terminal domain, and thus presumably 
abrogates all of its interactions and regulatory potential, is suffi-
cient to cause ADPKD (Mochizuki et al., 1996).

PC2 is a calcium-activated channel that releases calcium 
from intracellular stores in response to local increases in cal-
cium concentrations (Vassilev et al., 2001; Koulen et al., 2002). 
The calcium-conducting pore of PC2 is likely formed by the 
loop between the fifth and sixth transmembrane domains, with 
some involvement of the third transmembrane domain (Clapham 
et al., 2001; Koulen et al., 2002). A missense mutation that per-
turbs this putative conducting pore (D511V) is causative of  
ADPKD (Koulen et al., 2002). Fine-tuning PC2’s Ca2+ response 
and channel properties involves post-translational modifica-
tions, such as phosphorylation at S812 by casein kinase II, and 
binding of protein partners (Cai et al., 2004; Rundle et al., 
2004). For a more thorough discussion of PC2 channel activity 
see the review by Cantiello (2004).

PC2 also indirectly regulates cytoplasmic calcium levels 
through interactions with two major intracellular Ca2+ channels: 
the ryanodine receptor and the inositol 1,4,5-trisphosphate  
receptor (IP3R). The ryanodine receptor mediates calcium- 
induced calcium release, and PC2 inhibits its function by binding 
the channel in its open state and decreasing its conductance 
(Anyatonwu et al., 2007). PC2 also modifies IP3-induced Ca2+ 
flux through direct binding between the PC2 C terminus and the 
IP3R (Li et al., 2009).

Polycystin-2 localization and trafficking. PC2 
localizes to several subcellular compartments (Köttgen and Walz, 
2005; Tsiokas et al., 2007). The largest pool of PC2 is found in 
the ER and early Golgi (Cai et al., 1999; Koulen et al., 2002). 

1999; Yoder et al., 2002; Streets et al., 2009). In addition, PC1 
and PC2 may be shed from the apical or ciliary membranes in 
urinary exosome-like vesicles that can interact with the primary 
cilium (Hogan et al., 2009).

The large extracellular PC1 N terminus contains 15 PKD  
repeat motifs, two complete leucine-rich repeat motifs flanked  
by cysteine-rich sequences, and a C-type lectin domain (Hughes  
et al., 1995; Bycroft et al., 1999). Many of these domains are crucial 
for PC1’s functions and play established roles in protein–protein  
or protein–matrix interactions (van Adelsberg, 1999; Ibraghimov-
Beskrovnaya et al., 2000; Babich et al., 2004; Streets et al., 2009). 
This evidence, combined with PC1’s subcellular localization to the 
plasma membrane and junctional complexes, supports a role for 
PC1 in cell–cell and cell–matrix interactions. The extracellular  
domains of PC1 and PC2 may also participate in sensing fluid flow 
and pressure in the kidney, as reviewed by Patel and Honoré (2010). 
The 200 amino acids of the PC1 C-terminal tail (CTT) contain  
a G protein–binding domain and a coiled-coil domain. The 
C-terminal tail of PC1 also contains a sequence that is rich in  
proline, glutamic acid, serine, and threonine (PEST) amino  
acids, which may facilitate its ubiquitin-mediated degrada-
tion (Rechsteiner and Rogers, 1996; Low et al., 2006).

Polycystin-1 undergoes cleavages in both its N- and  
C-terminal domains (Fig. 1). N-terminal cleavage occurs at the  
G protein–coupled receptor proteolytic site (GPS), just before the 
first transmembrane domain (Qian et al., 2002). This is a cis- 
autoproteolytic cleavage that occurs early in the secretory path-
way, and the cleaved PC1 N terminus remains noncovalently 
attached to the membrane-bound C-terminal fragment (Wei  
et al., 2007). Not all of the PC1 molecules in a cell are cleaved, 
generating a heterogeneous population of full-length and GPS-
cleaved PC1 proteins (Wei et al., 2007; Yu et al., 2007). To be 
fully functional PC1 must be able to undergo N-terminal cleav-
age. Expression of a mutant form of PC1 that cannot undergo 
GPS cleavage does not rescue PC1-null cultured cells or trans-
genic mice. In addition, this missense mutation causes ADPKD 
in humans (Qian et al., 2002; Xu et al., 2007; Yu et al., 2007).

Two other cleavages liberate the cytoplasmic CTT of PC1 
(Fig. 1). Chauvet et al. (2004) observed a cleavage that releases 
an 35-kD soluble portion of the tail that accumulates in the 
nucleus in response to decreased fluid flow in the mouse kidney. 
Low et al. (2006) observed a second, more distal cleavage that 
releases a 15-kD fragment of the PC1 cytoplasmic tail that inter-
acts with the transcriptional activator STAT6 and the coacti-
vator p100. Flow cessation increased this PC1 cleavage and 
nuclear translocation of both the PC1 tail and STAT6 (Low  
et al., 2006). Interestingly, an increased level of cleaved CTT is 
observed in cells lining ADPKD cysts (Low et al., 2006).  
At least one of these C-terminal cleavages is stimulated by the 
presence of PC2, and this stimulation requires that PC2 be com-
petent to function as an ion channel (Bertuccio et al., 2009).  
Although the sizes of these fragments have been identified and 
their production is apparently regulated, the amino acid se-
quences of both cleavage sites have yet to be determined.

Polycystin-2 structure and channel function. 
Polycystin-2 (PC2 or TRP2) is a 968-amino acid protein that 
spans the membrane six times, with intracellular N and  
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C-terminal tail. PIGEA-14 (polycystin-2 interactor, Golgi- and  
endoplasmic reticulum–associated protein), also called Chibby, is 
a 14-kD protein that binds to the Golgi matrix protein GM130. 
Co-expressing PIGEA-14 with PC2 in culture cells causes a re-
distribution of PC2 from the ER to the TGN (Hidaka et al., 2004).

Mechanisms for targeting PC2 to the primary cilium and 
mitotic spindles appear to rely on novel motifs and protein traf-
ficking machinery. A 15-amino acid R6VxP motif at the very 
beginning of PC2’s N terminus is sufficient to ensure PC2’s  
localization to the primary cilium (Geng et al., 2006). Targeting 
PC2 to the mitotic spindle of dividing cells requires mammalian 
diaphanous 1 (mDia1), which belongs to a protein subfamily 
involved in cytoskeletal rearrangements and cytokinesis. Inter-
estingly, mDia1 binding to PC2 also modulates PC2’s channel 
activity and is subject to regulation by growth factors, suggest-
ing an interesting but as-of-yet unexplored connection between 
PC2 channel function and mitosis (Rundle et al., 2004).

Interaction between PC1 and PC2. The subcel-
lular localizations of PC1 and PC2 overlap and may, in some 
locations, be functionally codependent. There is strong colocal-
ization of both proteins to the primary cilium, and they are also 
found together in the ER (Yoder et al., 2002). Several investiga-
tions suggest that PC1 and PC2 may reciprocally affect each 
other’s surface membrane or ciliary localizations, although the 
precise nature of this interdependence has varied somewhat 
among experimental systems (Hanaoka et al., 2000; Grimm et al., 
2003; Babich et al., 2004). Studies performed on cells derived 
from ADPKD cysts indicate that impairing the function of one 
protein negatively affects the localization of the other: cells ex-
pressing an ADPKD-associated PC1 mutation that prevents 
GPS cleavage have decreased amounts of both PC1 and PC2 in 
their primary cilia (Xu et al., 2007). An interaction between 
PC1 and PC2 has also been suggested to be important in creating 

Functional PC2 is also found at the plasma membrane, where it 
may exist in complexes with PC1 (Hanaoka et al., 2000; Pelucchi 
et al., 2006; Yu et al., 2009). Pools of PC2 also reside in more 
restricted subcellular domains, such as the primary cilium and 
mitotic spindles (Yoder et al., 2002; Nauli et al., 2003; Rundle 
et al., 2004; Xu et al., 2007).

A set of very specific signal sequences and trafficking pro-
teins helps establish and maintain PC2 at these subcellular loca-
tions. Retention of PC2 in the early secretory pathway involves 
proteins that bind to the PC2 C terminus. A stretch of acidic amino 
acids in the protein’s C terminus functions as an ER retention signal 
by binding phosphofurin acidic cluster–sorting protein (PACS)-1 
and PACS-2 (Cai et al., 1999; Köttgen et al., 2005). PACS-2  
seems to be capable of ensuring that PC2 remains localized to the 
ER, whereas PACS-1 brings PC2 from endosomal compartments 
back to the TGN. The binding between PC2 and the PACS pro-
teins requires PC2 phosphorylation by casein kinase II (CK2) 
(Köttgen et al., 2005) Facilitating PC2–PACS binding is one of 
the several roles for CK2 in altering PC2 localization. Experi-
ments in Caenorhabditis elegans show that a mutation that pre-
vents phosphorylation at a CK2 site in the PC2 orthologue protein 
promotes its localization to cilia, and this localization is prevented 
by a phospho-mimetic mutation at the same site. Consistent with 
this model, the calcineurin phosphatase TAX-6 is required for the 
PC2 orthologue’s ciliary localization in C. elegans (Hu et al., 
2006). One of the other CK2 recognition sites in PC2 appears to 
exert no effect on the protein’s localization, but its phosphoryla-
tion is required for PC2 channel function (Cai et al., 2004). Thus, 
the multiple effects of CK2-mediated phosphorylation demon-
strate a potential connection between mechanisms that regulate 
PC2’s localization and function.

Regulation of PC2 movement from the ER to the Golgi  
is also controlled by another protein that binds to the PC2  

Figure 1. N- and C-terminal cleavage of the PC1 protein. The N terminus of PC1 is cleaved at the G protein–coupled receptor proteolytic site (GPS), 
but the extracellular domain remains noncovalently attached to the membrane-bound portion of the protein. Either of two different cleavages can 
release C-terminal tail fragments that translocate to the nucleus with components of the Wnt pathway, STAT6/p100, and perhaps with other regulators 
of transcription. At least one of the C-terminal tail cleavages is stimulated by the presence of PC2, and this stimulation requires that PC2 be capable 
of functioning as an ion channel.
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proteins negatively regulate cellular growth and division through 
several pathways, which are diagrammed in Fig. 2 (see also the 
recent review by Zhou, 2009). One significant effect of PC1 in-
volves inhibition of the mTOR (mammalian target of rapamycin) 
cascade (Shillingford et al., 2006a; Distefano et al., 2009; Dere 
et al., 2010). This effect is mediated by the TSC1 and TSC2  
(tuberous sclerosis 1 and 2) complex, which acts as a negative 
regulator of the mTOR complex (Huang and Manning, 2008). 
The TSC2–TSC1 complex acts as a GTPase-activating protein 
for the small GTP-binding protein Rheb, which must be in its 
GTP-bound state in order for the mTOR kinase to function. PC1 
decreases mTOR activity by stabilizing the functional TSC1–
TSC2 complex via two distinct mechanisms. PC1 decreases ERK- 
dependent phosphorylation of TSC2 at S664 (Distefano et al., 
2009), which allows TSC2 to remain bound to TSC1 (Ma et al., 
2005). The TSC1/2 complex is also stabilized by the binding of 
PC1 to TSC2 at the plasma membrane, protecting TSC2 from 
phosphorylation by Akt at S939 (Dere et al., 2010), thus allow-
ing the protein complex to continue repressing mTOR signaling 
(Inoki et al., 2002). The influence of the PC1–TSC2 interaction 
may not be unidirectional; expression of TSC2 may help PC1 to 
reach the plasma membrane (Kleymenova et al., 2001).

Cell cycle progression is governed by cyclin-dependent 
kinases (Cdks), and p21 slows or halts cell cycle progression by 
inhibiting Cdk2. The polycystin proteins act in concert to posi-
tively regulate p21 expression and activity. PC1 can increase 
p21 levels by binding members of the Janus kinase (JAK) and 
signal transducers and activators of transcription (STAT) path-
way. PC1 activates STAT1 and STAT3, thus elevating p21 levels 
and decreasing cell growth. This activation requires a PC2- 
dependent interaction with JAK2, and also requires that PC1 
have an intact C terminus (Bhunia et al., 2002). PC2-dependent 
mechanisms also prevent the nuclear localization of Id2 and 
E47, two p21-repressing helix-loop-helix proteins (Li et al., 2005). 

a functional ion channel, whether through activation of the  
PC2 protein’s intrinsic channel properties or through emergent  
channel properties attributable to formation of the complex 
(Hanaoka et al., 2000; Delmas et al., 2004). Physically, the inter-
action between the two proteins is thought to occur primarily 
through their C-terminal cytoplasmic tails (Qian et al., 1997; 
Tsiokas et al., 1997; Casuscelli et al., 2009). This interaction 
also appears to influence the proteins’ functional properties, as 
interaction of PC2 with PC1 decreases the ability of PC1 to ac-
tivate G proteins (Delmas et al., 2002).

Signaling pathways modified by PC1  
and PC2
The polycystin proteins modulate diverse signaling pathways, 
and there is a long list of proteins known to interact with PC1 or 
PC2 (Somlo et al., 2008). To summarize broadly, however, the 
evidence highlights three general themes in the relationship be-
tween the PC1 and PC2 proteins and cellular signaling path-
ways: negative growth regulation, G protein activation, and Wnt 
pathway modulation (Fig. 2). Although the mechanism for the 
PC1- or PC2-dependent effect in each case varies, a frequent 
theme is that the PC1 CTT binds to and negatively regulates the 
activity of crucial signaling molecules. In some cases this nega-
tive regulation happens at the cell membrane, and may be at-
tributable at least in part to the sequestration at the cell surface 
of signaling protein partners that would otherwise enter the  
nucleus to modulate signaling. In other cases the cleaved PC1 
CTT itself travels to the nucleus, where it appears to influence 
transcriptional activities. In each case, misregulating PC1 ex-
pression or cleavage appears to result in aberrant signaling, 
which may in turn lead to the abnormal cellular growth behav-
iors that are likely to contribute to ADPKD pathogenesis.

Growth regulation. Elevated cellular growth rates are 
a hallmark of ADPKD, so it is no surprise that the polycystin 

Figure 2. PC1 and PC2 affect multiple signaling pathways. Summary of the effects that PC1 and PC2 exert on signaling pathways. Multiple direct and 
indirect interactions allow the polycystin proteins to inhibit or stimulate pathways involved in cellular growth and differentiation.
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and nuclear translocation, leading to T cell factor (TCF)– 
dependent transcriptional activity. Cleaved PC1 CTT inhibits this 
pathway by directly or indirectly binding to -catenin, moving 
with it to the nucleus, and reducing its ability to promote TCF-
dependent transcription (Lal et al., 2008). PC2 may also regu-
late the expression of some components of the Wnt pathway. 
Knocking out PC2 in cultured mouse cells resulted in increased 
levels of -catenin protein (Kim et al., 2009). Both PC1 and 
PC2 can therefore influence canonical Wnt signaling; however, 
it is currently unclear whether the effects of PC2 knockout on 
-catenin levels are a direct result of the lack of PC2, or an in-
direct effect of PC1 misregulation caused by PC2 absence.

PC1 may also regulate noncanonical Wnt signaling, which 
is in turn related to the maintenance of planar cell polarity. The 
cells lining renal tubules generally divide parallel to the tubule’s 
axis, lengthening the tubule rather than expanding its diameter. 
Tubule-lining cells in models of polycystic kidney disease, 
however, show a tendency to divide at an angle to the tubule’s 
axis, which could lead to expansion of the tubule diameter. This 
deviation can occur before cysts appear, suggesting that a loss 
of this planar cell polarity may be a precursor to cyst formation 
(Fischer et al., 2006; Patel et al., 2008).

Mechanisms of cyst formation
Although ADPKD is genetically dominant at the organismal 
level, it is recessive at the cellular level. The kidneys of an  
ADPKD patient who inherits one mutated copy of PC1 or PC2 
from a parent will develop and function normally into adult-
hood. Over time, however, cysts will form in this patient’s kid-
neys and several studies suggest that the cells that line these 
cysts will have lost both functional copies of a polycystin gene 
(Qian et al., 1996; Brasier and Henske, 1997). This indicates 
that an additional “second hit” somatic mutation may cause 
cysts to form. According to this model, each cyst arises as a 
consequence of a distinct somatic mutation event, explaining 
the disease’s slow progression over the course of decades. Sub-
tler factors may also impact upon disease progression, includ-
ing the level of PKD1 protein expression, the penetrance of 
pathogenic alleles, and the stage of kidney development af-
fected by PKD1 mutation (Lu et al., 1997; Reynolds et al., 1999; 
Pritchard et al., 2000; Lantinga-van Leeuwen et al., 2004;  
Rossetti et al., 2009). Temporally controlled inactivation of PC1 
or PC2 expression in the kidneys of mice has revealed that loss 
of these proteins in the developing kidney causes far more se-
vere cystic disease than does loss of PC1 or PC2 in the mature 
kidney (Lantinga-van Leeuwen et al., 2007; Piontek et al., 2007; 
Takakura et al., 2008). These data suggest that loss of poly-
cystin function during the period of rapid cell growth and division  
that characterizes post-natal renal development creates a pre-
disposition toward cystogenesis, whereas polycystin function is  
far less critical after this period of cell proliferation ends.

The slow accumulation of cysts throughout adult life may 
be due to slow accumulation of inactivating “second hit” muta-
tions as a result of a constant somatic mutation rate. It is also 
possible that, as individuals age, their kidneys are more likely to 
suffer transient obstructive or ischemic injuries to the tubule epi-
thelial cells. These injuries would then stimulate repair, which 

PC2 also reduces cell growth through direct physical interaction 
with eukaryotic translation elongation initiation factor 2a (eIF2a). 
This translation factor is activated through phosphorylation by 
pancreatic ER-resident eIF2a kinase (PERK). PC2 binds both 
PERK and eIF2a, enhancing eIF2a’s phosphorylation and de-
creasing cell proliferation (Liang et al., 2008).

G protein activation. The PC1 CTT contains a highly 
conserved trimeric G protein activation domain (Parnell et al., 
1998). G protein -subunits activated by PC1 go on to positively 
regulate the activity of the c-Jun N-terminal kinase (JNK) and 
the AP-1 transcription factor (Parnell et al., 2002). AP-1 controls 
differentiation, apoptosis, and proliferation through a complex 
network of signaling and binding proteins (Shaulian and Karin, 
2002). In addition, PC1 activates JNK through PKC- (Arnould 
et al., 1998). Abnormal levels of AP-1 activity in tissue from 
ADPKD cysts support the conclusion that polycystin proteins 
play an important role in regulating AP-1 (Le et al., 2005).

The interaction between PC1 and G proteins also activates 
the nuclear factor of activated T cells (NFAT). The NFAT path-
way regulates genes involved in apoptosis, growth, cellular dif-
ferentiation, and cell adaptation (Horsley and Pavlath, 2002). 
Exogenous expression of PC1 causes NFAT nuclear accumula-
tion, and this effect is enhanced by coexpressing Gq, a known 
PC1-binding G protein subunit (Puri et al., 2004). NFAT can act 
in concert with AP-1 to turn on genes with composite transcrip-
tion factor binding sites (Macián et al., 2001). Both NFAT and 
AP-1 are activated by PC1-activated G proteins and it is possi-
ble that they may have combinatorial effects; however, there are 
currently no data supporting cooperativity between activated 
NFAT and AP-1 in PC1 signaling.

NFAT is connected in interesting ways to calcium signaling 
and PC2 localization. NFAT is activated by calcineurin which, in 
turn, is activated by sustained elevation of cytosolic Ca2+ levels. 
Activated calcineurin dephosphorylates NFAT, leading to its  
nuclear accumulation. NFAT rephosphorylation by glycogen syn-
thase kinase 3 (GSK-3) causes NFAT to move back into the 
cytoplasm (Horsley and Pavlath, 2002). Expressing PC1 presum-
ably activates calcineurin through G proteins, leading to NFAT 
dephosphorylation and nuclear accumulation. In C. elegans,  
calcineurin-mediated dephosphorylation of PC2 permits this pro-
tein’s ciliary localization (Hu et al., 2006). Puri et al. (2004) found 
that inhibiting the PC2-modulated inositol triphosphate or ryano-
dine receptor channels impaired PC1’s ability to regulate NFAT. 
It is thus tempting to suggest a connection between PC2’s effect 
on cytoplasmic calcium and the NFAT signaling pathway, the ac-
tivation of calcineurin, and the localization of PC2. Further re-
search will be needed to unravel this network of interaction.

Canonical and noncanonical Wnt signaling. The 
Wnt pathways affect growth, differentiation, and establishment 
of planar cell polarity. PC1 seems to have a profound influence 
on both the canonical (-catenin dependent) and noncanonical 
(-catenin independent) components that make up the Wnt sig-
naling network. ADPKD cysts and PC1-null cells manifest up-
regulation of Wnt signaling activity markers, suggesting that 
PC1 exerts a negative effect on this system (Lal et al., 2008; 
Happé et al., 2009; Song et al., 2009). In the canonical pathway, 
the presence of the Wnt ligand induces -catenin stabilization 
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lumen, causing tubule expansion rather than elongation. Such a 
shift was seen in the axes of division in tubules of a rat cystic 
kidney model (Fischer et al., 2006). A close analysis of precystic 
tubules in mouse models manifesting kidney-specific inactivation 
of PKD1 or PKD2, however, showed that cells lining cystic tubules 
lose orientated division after tubules began to dilate (Nishio et al., 
2010). More dramatically, Nishio et al. (2010) also found that 
misoriented cellular division is not sufficient for cyst develop-
ment. Mice with a mutation in the ciliary protein fibrocystin 
have altered mitotic orientation but do not form kidney cysts 
because the cells that divide out of the epithelial plane migrate 
back into the tubule lining. Thus, it is likely that defects in planar 
cell polarity play a role in cyst formation, but losing this polar-
ity may not be the event that initially causes cyst formation.

The other critical aspect of cyst formation, which involves 
the expansion of cyst fluid volume, can be understood as the con-
version of the cyst-lining cells from an ion-absorptive to an ion-
secretory epithelium. Ion secretion into the lumen then drives 
paracellular or transcellular osmotic water movement into the 
cyst, as illustrated in Fig. 3. A prime component of this secretion 
is Cl transport stimulated by cAMP (Grantham, 1996). The fluid 
movement driving cyst formation is stimulated by cAMP and in-
volves the apical cystic fibrosis transmembrane regulator (CFTR) 
and the basolateral Na+-K+-2Cl cotransporter NKCC1 (Davidow 
et al., 1996; Magenheimer et al., 2006; Montesano et al., 2009). 
PC1 may affect the expression, localization, or activity of Cl chan-
nels. Expressing full-length PC1 with the CFTR channel in cul-
tured MDCK cells decreases CFTR surface localization and 
cAMP-stimulated channel activity, suggesting that PC1 misregu-
lation in ADPKD may lead to an increase in CFTR activity (Ikeda 
et al., 2006). Expressing just the C-terminal tail of PC1 seems to 
enhance Cl transport, prolonging ATP-stimulated Cl conduc-
tance in transfected collecting duct cells and up-regulating  
Cl transport in Xenopus oocytes (Wildman et al., 2003; Chernova  
et al., 2005). The polycystin proteins may also regulate cAMP 
levels because cystic disease is associated with misregulation of 
phosphodiesterases that break down cAMP (Wang et al., 2010).

involves cellular growth and division. Given the importance of 
PC1 and PC2 for cellular growth and differentiation, the de-
creased levels of functional polycystin proteins present in the 
cells of individuals heterozygous for ADPKD mutation could 
perturb the repair process and thus lead to cyst formation.  
Support for this pathway to cystic disease comes from studies in 
mice subjected to a renal injury, which initiates an up-regulation 
of cell growth and division. Kidneys heterozygous for PKD1 or 
PKD2 mutations cannot repair themselves as effectively as kid-
neys from wild-type mice, and accumulate more tubule dilation 
and microcysts than wild-type kidneys (Bastos et al., 2009; 
Prasad et al., 2009). Knocking out PKD1 expression in adult 
mouse kidneys causes a similar sensitivity to injury (Takakura 
et al., 2009). These results suggest that injury may be able to 
initiate cyst formation in heterozygotes without a requirement 
for a somatic “second hit” mutagenesis event. In addition, in-
jury accelerates cyst formation in mouse models with slowly 
progressive cystic disease secondary to conditional inactivation 
of PKD1 or PKD2 in adulthood. It is possible, therefore, that 
the initiation of cyst formation could hinge upon the occurrence 
of either a somatic mutagenesis or an injury event, either of 
which could be seen to constitute a “second hit” that conspires 
with heterozygosity at one of the PKD loci to cause disease.

Cyst expansion. The macroscopic consequence of 
ADPKD progression is the formation of fluid-filled cysts, which 
constitute a stark contrast to the normally compact arrangement 
of tubules in a healthy kidney (Fig. 3). At the cellular level, this 
transformation is predicated upon two alterations: cells must 
organize themselves to create spherical rather than tubular 
structures, and the lumens of these structures must fill with fluid 
in order to expand the consequent cysts. Cysts increase their 
surface areas primarily by increasing the number of cells that 
surround the cyst lumens rather than by simply stretching this 
epithelial layer (Grantham, 1996; Grantham et al., 1987). Thus, 
one model for the change from tubular to spherical morphology 
posits that perturbations in planar cell polarity cause tubular epi-
thelial cells to no longer divide along an axis parallel to the tubule 

Figure 3. Cyst formation at the level of the cell, nephron, and kidney. Defects in the genes encoding PC1 or PC2 lead to aberrant gene transcription, cell 
proliferation, and ion secretion, which in turn result in the formation of fluid-filled cysts. As cysts balloon out from individual nephrons, their collective effect 
leads to the displacement of the normal renal parenchyma and the formation of a cyst-filled kidney with reduced functional capacity.
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Conclusion
ADPKD is a disease that merits the attention of cell biologists. 
The responsible genes have been identified, but much remains 
to be learned about the functions of the proteins they encode. 
Although it is clear that both polycystin-1 and -2 influence and 
are influenced by a wide array of signaling pathways, the con-
nection between these pathways and the pathogenesis of the 
disease has yet to be definitively established. Furthermore, criti-
cal to any understanding of polycystic kidney disease will be a 
deeper insight into the nature of a mysterious and fascinating 
organelle, the primary cilium. Insights into how the polycystins 
traffic into the cilium, and what they do once they arrive there, 
will shed light not only on ADPKD, but also on novel and fun-
damental processes in cell biology.
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