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A healthy eating pattern, regardless of age, should consist of ingesting high quality

protein preferably in adequate amounts across all meals throughout the day. Of

particular relevance to overall health is the growth, development, and maintenance of

skeletal muscle tissue. Skeletal muscle not only contributes to physical strength and

performance, but also contributes to efficient macronutrient utilization and storage.

Achieving an optimal amount of muscle mass begins early in life with transitions to

“steady-state” maintenance as an adult, and then safeguarding against ultimate decline

of muscle mass with age, all of which are influenced by physical activity and dietary

(e.g., protein) factors. Current protein recommendations, as defined by recommended

dietary allowances (RDA) for the US population or the population reference intakes (PRI) in

Europe, are set to cover basic needs; however, it is thought that a higher protein intake

might be necessary for optimizing muscle mass, especially for adults and individuals

with an active lifestyle. It is necessary to balance the accurate assessment of protein

quality (e.g., digestible indispensable amino acid score; DIAAS) withmethods that provide

a physiological correlate (e.g., established measures of protein synthesis, substrate

oxidation, lean mass retention, or accrual, etc.) in order to accurately define protein

requirements for these physiological outcomes. Moreover, current recommendations

need to shift from single nutrient guidelines to whole food based guidelines in order

to practically acknowledge food matrix interactions and other required nutrients for

potentially optimizing the health effects of food. The aim of this paper is to discuss

protein quality and amount that should be consumed with consideration to the presence

of non-protein constituents within a food matrix and potential interactions with physical

activity to maximize muscle mass throughout life.

Keywords: children, adolescents, aging-old age-seniors, skeletal muscle mass, muscle protein
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INTRODUCTION

The development of a healthy eating pattern, or the identification
of the best food combinations and amounts to include in the diet,
is relevant to support physical performance, weight management,
and reduce disease risk. In terms of protein-containing foods,

protein quality, and amount are two major considerations within
the development of a healthy eating pattern irrespective of
age. Food protein quality is traditionally dependent on its
amino acid content and the availability of these amino acids

in circulation, factors that would influence their metabolism
within different body protein pools. Hence, protein quality is
often based on protein digestibility ranking methods such as
protein digestibility-corrected amino acid score (PDCAAS) or
the digestible indispensable amino acid score (DIAAS), as will
be highlighted below. The latter method has gained favor by the
Food and Agriculture Organization of the United Nations (FAO)
after the most recent review of the “best” methods to determine
protein quality for human nutrition (1).

Regardless of the method used to measure protein digestibility
in human foods (1), it is also important to consider coupling
protein digestibility scoring metrics with other relevant human
metabolic processes (2), such as the ability to influence protein
turnover (i.e., synthesis and degradation) of body proteins. Given
the primary role of dietary amino acids are to support protein
metabolic demand and cover obligatory protein losses (3), it
is perhaps important to consider coupling protein digestibility
scoring methods with direct measurements of protein synthesis
rates (e.g., within skeletal muscle) and whole body amino acid
oxidation rates. For example, amino acids can only be “stored”
within functional proteins, which given its size and nutrient
sensitivity, positions skeletal muscle protein as a primary
reservoir for dietary amino acids (4). Therefore, confirming
that ingested protein foods are stimulating postprandial
muscle protein synthesis rates without excessive amino acid
oxidation rates provides confirmation that the available dietary
amino acids in circulation are being used to support this
vital tissue.

Protein requirements are set as a minimal need to prevent net
nitrogen losses, but arguably are not sufficient to account for all
factors contributing to quality of life throughout the lifespan (e.g.,
exercise habits, aging, hospitalization, or disease) (5). As such,
there has been an impetus for a change for better a definition
of “optimal” protein intake (5, 6). It has been suggested that
greater focus on skeletal muscle is relevant when the goal is
to define an optimal requirement of protein intake, especially
throughout older adult life (7). The rationale behind this idea
is that skeletal muscle represents a large proportion of total
body protein in adults, or a large storage depot of energy and
dietary amino acids, and contributes ∼25–30% to whole body
protein synthesis rates (8). Moreover, muscle has an obvious role
in physical performance, but metabolically has important roles
in the regulation of glucose disposal (cf. insulin resistance), fat
oxidation, and energy balance (9). This ostensibly highlights its
maintenance as especially pertinent throughout middle and old
age. However, the increasing prevalence of metabolic disorders
in pediatric populations and the potential for early programming

of muscle tissue for later life (10, 11) likely refocuses the issue of
optimizing muscle quantity and quality as being essential across
the lifespan.

In this review, therefore, we discuss the role of dietary
protein quality and quantity in terms of optimizing muscle
mass from childhood to old age as a goal toward maintaining
metabolic health and physical performance. We also discuss
that a transition to a holistic framework within the area of
protein nutrition is likely required to truly define optimal
protein intakes for muscle. This involves shifting the focus
from determining the effect of single nutrients (or the food
parts) on metabolic outcomes, in favor of considering how an
integrative holistic approach (e.g., exercise habits, eating pattern,
and the food matrix in which the protein is consumed) affects
the overall protein recommendation and associated muscle
metabolic outcomes.

DIETARY PROTEIN QUALITY

It is recommended that a healthy eating pattern consists of
ingesting a variety of high quality protein foods to ensure a
sufficient supply of amino acids for lean mass (e.g., muscle)
maintenance or growth, and overall diet quality (12). In other
words, the constituent amino acids of a protein food should
match the requirement of the consumer and consist of a
variety of protein foods to ensure nutrient density. Indeed, there
has been a shift toward plant-based dietary patterns within
dietary guidelines to presumably maximize population health
benefits and to support environmental sustainability (13). For
example, epidemiological findings suggest that minimizing red
meat consumption within a dietary pattern is favorable to reduce
disease risk (type 2 diabetes, cardiovascular disease, etc) (14,
15). However, these data are challenging to interpret as the
comparison diet is often a confounding factor (e.g., different
macronutrient compositions, processed vs. unprocessed, or
varying fat percentages of meat intake) (16) and/or the lack
of control of the physical activity patterns of the participants.
It is also relevant to highlight that defining protein intakes
based on very general definitions such as “ounce-equivalents” as
provided by the USDA’s Choose My Plate is discounting the value
of protein quality scores and caloric intakes required to meet
minimal essential amino acid requirements between animal vs.
plant-based foods as indicated elsewhere (17).

The role of dietary protein quality is also perhaps relevant
when defining more sustainable diets to meet the nutritional
needs of an expanding global population (18). Protecting the
planet (i.e., managing greenhouse gas emissions to land andwater
use) and living sustainably are also important topics in dietary
protein quality considerations (19). As such, it is clear that there
needs to be a range of methods to evaluate protein quality in
order to titrate the claim for food as “high” quality depending on
the desired physiological outcome. This also needs to be balanced
against the potential environmental impact and importance of
maximizing the use of natural resources for production of high
quality proteins that provide target amounts of essential amino
acids for muscle mass maintenance or growth (19).
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DIAAS is the current protein quality ranking method that
is recommended by the Food and Agriculture Organization
of the United Nations (FAO) (20). The rationale behind this
recommendation is that protein digestibility (quality) estimates
should be based on true ileal digestibility (i.e., determined at
the end of the small intestine where amino acids are absorbed),
and ideally performed in humans. Thus, this method aims to
determine what amino acid(s) may be limiting in circulation
after accounting for digestion and absorption to support whole
body protein metabolism. It is not feasible, however, to routinely
perform ileal digestibility in humans. Hence, the growing pig
model is often used due to the similarly between the digestive
tract between pigs and humans, and the willingness of pigs to
eat foods within the human diet (21). DIAAS cut-off values
have been proposed to provide a basis for protein quality
claims, while accounting for the quantity of protein ingested,
such as excellent/high (100 or more), good (22–46), and no
claim (<75) (20).

Much of the DIAAS work has been done on raw foodstuffs
with more recent work focusing on how cooking method impacts
food protein quality (47). This is relevant as many of the
commonly consumed protein foods within the human diet have
experienced heat treatment prior to consumption, which may
impact its amino acid content and overall nutritional quality
(48). As shown in Table 1, it has been established that cooking
method (i.e., raw, boiled, grilled, pan-fried, or roasted) of meat
affects its structural properties and subsequent DIAAS (47). It
generally accepted that cooking (internal temperature of 70◦C)
increases protein digestibility by denaturing the protein and
thus allowing greater bio-accessibility of proteolytic enzymes to
its cleavage sites (47, 53). However, it was demonstrated that
DIAAS was superior for the raw, boiled, and pan-fried minced
beef conditions when compared to roasted or grilled beef in
growing pigs (47). Collectively, these data highlight that the
food matrix, such as food structure, can be manipulated by heat
treatment to modulate protein quality scores. It is important to
keep in mind, however, that severe heat treatment, or prolonged
storage, can impact the nutritional value of amino acids (e.g.,
lysine) (54).

Certainly, it is more common to eat mixed meals, as
opposed to single nutrients, throughout the day and thus it is
relevant to have protein quality scores within the context of
mixed foods/ingredients to better inform the various regulatory
dietary frameworks (55). The challenge with this food-first
approach could be identifying, let alone testing, the myriad
of combinations of different food items to assess mixed
food/ingredient interactions. However, research has begun to
address this challenge through combinations of macronutrient
co-ingestion. For example, in terms of protein digestibility, it
has been established that the co-ingestion of lipids with protein
improves protein digestibility/quality in growing pigs by slowing
gastric emptying rates to allowmore time for the ingested protein
to be exposed to proteolytic enzymes and/or reducing passage
rate within the small intestine to allow more time for the amino
acids to be absorbed (56).

What is noteworthy, however, is that researchers have
developed tools to assess the quality of dietary protein sources

TABLE 1 | Cooking method and its impact on protein quality scores.

Raw/

Extruded

Boiled Grilled/

Baked

Pan-

fried

Roasted Source

Surface temp. (◦C) ∼80 ∼193–225 ∼186 ∼160

Valine

Beef 0.97 0.99 0.80 0.98 0.91 (47)

Pinto beans 0.92 0.95 0.69 (49)

Green peas 0.93 0.98 0.89 (50)

Green lentils 0.80 0.93 0.86 (51)

Isoleucine

Beef 1.25 1.25 1.11 1.23 1.15 (47)

Pinto beans 1.02 1.23 0.72 (49)

Green peas 1.03 1.16 1.06 (50)

Green lentils 1.11 1.05 0.91 (51)

Leucine

Beef 1.09 1.11 0.97 1.08 0.99 (47)

Pinto beans 1.13 1.17 0.74 (49)

Green peas 1.00 1.13 1.00 (50)

Green lentils 1.02 1.04 0.83 (51)

Lysine

Beef 1.28 1.21 1.11 1.11 1.12 (47)

Pinto beans 0.86 1.09 0.66 (49)

Green peas 1.07 1.15 1.10 (50)

Green lentils 1.05 1.04 0.79 (51)

DIAAS

Beef 97a 99a 80c 98a 91b (47)

Pinto beans 0.61 0.7 0.44 (49)

Green peas 0.7 0.67 0.7 (50)

Green lentils 0.53 0.49 0.44 (51)

Beef internal temperature is 71 ◦C in all conditions. Within a row, values without a common

superscript letter differ significantly (P < 0.001). Hodgkinson et al. (47) determined DIAAS

directly based on true ileal amino acid digestibility using the growing pig model. Nosworthy

et al. (49–51) estimated DIAAS based on fecal digestibility using a rat model. Lysine

content does not represent reactive lysine and thus the bioavailability of digestible lysine

might be overestimated (52). DIAAS, digestible indispensable amino acid scores.

for the benefit of supporting whole body and muscle protein
remodeling. Specifically, intrinsically labeled food proteins,
whereby stable isotope tracers are incorporated into the protein
matrix, are more readily applied within a human model
to provide an index of protein digestibility and subsequent
dietary amino acid availability after food ingestion (57–59).
Using a labeled food protein approach, it has been established
that macro-nutrient co-ingestion with isolated protein sources
modulates postprandial protein derived amino acid availability
in circulation, but not the stimulation of postprandial muscle
proteins synthesis rates in healthy adults (60, 61). This highlights
the potential disconnect between postprandial protein derived
amino acid ability in circulation and the subsequent postprandial
muscle protein synthetic response that may otherwise be missed
without a metabolic tracer that can be tracked from mouth
to muscle (60–63). These findings provide support for the
notion that protein quality scores need to be coupled with
other physiological correlates (e.g., protein turnover) to better
define the impact of protein foods from a more “whole-human”
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TABLE 2 | Protein recommendations throughout the life span as defined by the

recommended dietary allowance (RDA), the population reference intakes (PRI), or

muscle-centric meal-based recommendations.

Protein recommendations

USA Europe Muscle-centric

RDA (g/kg) PRI (g/kg) Meal-based (g/kg)

Across the lifespana

Infants (0–12 month) 1.50 1.31 ?

Young children (1–3 year) 1.10 1.01b ?

Children (4–13 year) 0.95 0.90b 0.30d

Adolescents (14–18 year) 0.85 0.86 0.30d

Adults (19–70 year) 0.80 0.83 0.25

Pregnancy, lactation 1.10 1.07c ?

Aging Adult (>70 years) 0.80 0.83 0.40

Note that the RDA and PRI values are prescribed on a daily basis and obscuring the

value of protein distribution and meal frequency as important factors for the stimulation of

postprandial muscle protein synthesis rates. Meal-based recommendations should be

consumed 4–5 times daily based on normally consumed meal-times (e.g., breakfast,

lunch, snack, dinner, evening snack).
aAge ranges based on United States Department of Agriculture definition; bmean of intake

values for ages within given age range; ccalculated based on European Food Safety

Authority absolute recommendation and reference female body weight; dbased on whole

body protein balance data. ? indicates unknown values.

perspective. This in turn will help inform healthy eating patterns
and develop effective public health messaging toward the goal of
optimizing muscle mass and health (2).

DEFINING OPTIMAL vs. RECOMMENDED
PROTEIN INTAKES

Current protein recommendations, as defined by the
recommended dietary allowance (RDA) or population reference
intakes (PRI), throughout the lifespan are shown in Table 2.
Protein recommendations are set as the lowest level of protein
intake to prevent net nitrogen loss and reduce disease risk in
nearly all (97–98%) healthy individuals at energy balance (64).
However, these protein recommendation may not be optimal to
support the metabolic needs of highly active individuals such as
strength (65) and endurance trained populations (66). This is not
completely surprising, however, given that protein requirements
are designed to prevent protein deficiencies, which is particularly
relevant for children and adults in developing countries but less
of an issue in more developed nations (67). Therefore, lifestyle
and goals of a given population (e.g., athletic performance,
muscle growth/maintenance, functional independence, etc.)
need to be considered when identifying minimum and optimal
protein intakes.

The “best” method to define an optimal protein intake is
certainly a matter of debate (68–70), and will depend on the
population studied (e.g., children or adults). Stable isotope
tracer methods, such as the indicator amino acid oxidation
(IAAO) or direct incorporation methods for the determination
of muscle protein synthesis, have shown their utility to define
protein recommendations across various ages and in relation

to an exercise setting (71–74). We believe that studying
nutrient requirements in the context of exercise should be a
greater consideration as increasing levels of physical activity,
including the incorporation of structured exercise regimes, is
unquestionably one of the most important lifestyle behaviors for
improved health (75), and is arguably our genetic “evolutionary
default” as we were born to move. Importantly, exercise
also directly affects nutrient utilization and requirement when
compared to the sedentary-state. Hence, dietary and exercise
guidelines are inherently connected and should be considered
together when the goal is to define “optimal” protein intakes for
improved health.

Importantly, exercise mode (strength vs. endurance exercise)
directly impacts the metabolism of dietary protein at the whole
body and muscle levels (Figure 1). For example, resistance
exercise is inherently anabolic by improving net muscle protein
balance (defined as muscle protein synthesis minus breakdown)
for up to 2 days (78). Moreover, the performance of resistance
exercise results in greater use of dietary amino acids for the
stimulation of postprandial muscle protein synthesis rates during
the immediate (0–4 h) (71, 79) and prolonged recovery period
(∼24 h) (76, 80). In other words, the ingestion of 10 g of essential
amino acids (equivalent to ∼25 g of high quality protein) is
required to maximize the ingested protein dose-responsiveness
of muscle protein synthesis rates in the sedentary-state (81). In
the immediately post-exercise period, however, the ingestion of
∼8.6 g of essential amino acids (equivalent to ∼20 g of high
quality protein) is required to plateau the postprandial muscle
protein synthetic response (71). This implies that resistance
exercise enhances the dietary amino acid sensitivity of muscle
protein synthesis such that lower protein amounts are required
to elicit a robust anabolic effect when compared to the sedentary-
state. Similarly, it has been established that skeletal muscle tissue
becomes a larger “sink” for dietary amino acids during recovery
from resistance exercise as noted by the increased incorporation
of dietary phenylalanine into muscle protein when compared to
the sedentary-state (82). Finally, regular strength training results
in increased whole-body nitrogen retention vs. the untrained-
state (83). With these factors in mind, it seems that a greater
ratio of circulating amino acids are being retained by the body’s
largest protein pool (skeletal muscle) in both the fasting and
fed-states after resistance exercise. Such findings suggest that
regular strength training is a strategy to optimize dietary protein
utilization (Figure 1).

Interestingly, endurance exercise appears to be on the other
end of the spectrum in terms of its impact on dietary protein
utilization. Oxidation of endogenous amino acids may only
represent a fraction of total energy provision during exercise
(∼2–10% depending on carbohydrate availability), but their
utilization increases with endurance exercise intensity (84) and
duration (85, 86). For example, estimates of leucine oxidation
rates during moderate intensity exercise (∼60% of maximal
oxygen uptake; VO2max) are ∼8 mg/(kg·h) (87) with rates
increasing to ∼10 mg/(kg·h) at higher intensities (∼70%
VO2max) (88) in endurance trained athletes. This may translate
in a total leucine loss up to ∼1.5 g over 2 h (89). Indeed,
regular endurance exercise training blunts the exercise-induced
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FIGURE 1 | Eating an adequate amount of protein at rest (i.e., in absence of a prior exercise stimulus) generally results in a doubling of the myofibrillar (contractile)

protein synthetic response from post-absorptive values in healthy young adults (20–35 years). The fundamentally anabolic nature of resistance exercise results in an

interaction between feeding and the exercise stimulus during recovery such that the stimulation of postprandial myofibrillar protein synthesis rates is potentiated when

compared to the resting value. This interaction on the stimulation of post-exercise myofibrillar protein synthesis rates is not observed during recovery from endurance

exercise (treadmill running at 70% of VO2peak for 1 h). Data adapted from Burd et al. (76) and Abou Sawan et al. (77). *different from post-absorptive value at rest.
†
different from postprandial value at rest.

stimulation of leucine oxidation rates (90), and it has been shown
that 24 h net leucine balance remains unaffected by acute cycling
exercise performed twice in a day (∼50% VO2max for 90min
per session) (91). Thus, it could be speculated that there is a
dietary protein accommodation occurring, thereby minimizing
the extra demand on dietary protein with endurance exercise
training (89).

However, our research groups have recently shown that 1 h
of treadmill running at 70% VO2peak results in a stimulation
of leucine oxidation rates and a net leucine balance that
was more negative when compared to the resting-state in
athletes (88). What is noteworthy is that net leucine balance
remained negative throughout the postprandial period even
when providing the athletes a generous amount of high quality
protein (18 g whole egg protein) immediately after the acute
bout (88). There was also no additive effect of nutrition and
endurance exercise on the stimulation of post-exercise muscle
protein synthesis rates in these athletes (Figure 1) (77), which
is a hallmark of the muscle protein synthetic response during
recovery from resistance exercise combined with feeding (71).
These findings are significant (77, 88) as we provided an
amount of protein (∼0.25 g protein/kg per meal) immediately
after the acute endurance bout that is commonly recommended
to maximize the stimulation of post-exercise muscle protein
synthesis rates after resistance exercise (71). Hence, we speculate
that endurance exercise places more demand on dietary protein,
which is likely intensity and exercise duration dependent, due
to the need to compensate for exercise-induced amino acid
oxidation losses while also supportingmuscle protein remodeling
throughout recovery when compared to resistance exercise.
These concepts could be supported by recent estimations of
an increased daily protein requirement (potentially primarily
by the branched chain amino acids that are preferentially

oxidized during exercise) to optimize whole body fed-state
anabolism in endurance trained athletes during recovery (92, 93).
Overall, protein recommendation for physically active adults
are likely more nuanced whereby the “optimal” amount of
protein to consume needs to take into account exercise mode,
intensity, duration, and/or health/performance goals within the
recommendation. This notion is consistent with periodized
nutrition frameworks for carbohydrates commonly advocated to
optimize training prescriptions and adaptations, especially for
athletes (94).

Finally, it is also important to recognize that prescribing
protein requirements as a single daily value as shown in Table 2

is likely obscuring the importance of protein distribution and
meal frequency to optimize the postprandial muscle protein
synthetic response throughout the day (95, 96). In short,
dietary guidelines recognize healthy eating patterns for nutrient
density and adequacy, but are currently not accounting for meal
frequency. For example, it is common for adults, especially
Americans, to skew their total protein intakes to dinner with
smaller protein portions consumed at breakfast and lunch (96).
Contrary to suggestions that there is not a practical maximal
anabolic response to a meal protein intake (97), it is clear
that muscle protein synthesis (71) and whole body net protein
balance (73) have finite capacities to assimilate dietary amino
acids. This would ultimately result in more dietary amino acids
being irreversibly lost to oxidation as opposed to be used for
postprandial muscle protein accretion at dinner when consuming
a skewed daily protein distribution (71, 96). Thus, the definition
of optimal protein intakes needs to consider meal frequency,
and prescribe a recommendation on a meal-by-meal basis to
take into account protein distribution as a relevant factor for the
stimulation of postprandial muscle protein synthesis rates during
the day.
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PROTEIN CONSIDERATIONS FOR
CHILDREN AND ADOLESCENTS

The development of lean body mass during childhood and
adolescence is important for supporting metabolic and skeletal
health. Adherence to an active lifestyle is associated with greater
lean body and muscle mass across the growth spectrum (98) and,
due to the mechanical forces muscle may impose on growing
bones, may be an independent predictor of peak bone mass (99,
100). Provided energy intakes are sufficient to support an active
lifestyle and the metabolic demand for somatic growth, dietary
protein represents arguably the most important macronutrient
for the growth and development of lean mass.

General protein requirements are ∼20–60% greater in
children and adolescents than the minimum safe intake for
adults to account for the metabolic demands of the linear and
accelerated, respectively, growth of these young populations
(101–103). Currently, the nitrogen balance-derived RDA is
set at 0.95 g/kg/d and PRI at 0.90 g/kg/d, and is based
largely on data from adult populations with an estimated
growth requirement (determined by a factorial method) (102).
In contrast, contemporary stable isotope-based methods (i.e.,
indicator amino acid oxidation) suggest the requirement to
maximize whole body protein synthesis (as a metric for offsetting
any fasted state protein loss) may be as high as 1.5 g/kg/d
(103). However, with protein intakes at ∼15% of energy, these
recommended intakes are generally satisfied in the US when
total energy intake is sufficient (22). Moreover, consideration
for protein quality and individual amino acid requirements in
children are unlikely to be an issue when consuming a typical
mixed protein diet (i.e., plant and animal-based protein) at the
current levels (23). It is important to note that regardless of
method (i.e., nitrogen balance vs. IAAO), preliminary research
suggests that, similar to adults, protein requirements in active
children and adolescents may be (∼50%) elevated, albeit
relatively less than similarly active adults (10). This increased
daily requirement may be related to a need to offset any exercise-
induced losses and/or to support enhanced rates of lean body
mass turnover and/or growth (10).

Dietary protein consumption in adults enhances the exercise-
induced increase in whole body and skeletal muscle protein
synthesis rates (4), the latter of which is generally the targeted
outcome to aid in the remodeling and growth of this tissue
in adults (24). In contrast to relatively weight stable adults,
children experience whole body growth of ∼5 cm height and
∼3 kg body mass per year that may be accelerated 3-fold during
the adolescent growth spurt (98). To accommodate for this
somatic whole body growth that is enhanced via an active lifestyle
(6), it is arguably more relevant to assess the nutritional factors
that enhance whole body protein turnover and net protein
balance (i.e., surrogate marker of acute “growth”) in children
and adolescents. Similar to adults, protein consumption after
exercise increases whole body net protein balance in children and
adolescents in a dose-dependent fashion (25, 26, 73). Perhaps
consistent with the requirement to support whole body growth,
active children, and adolescents appear to be more “anabolically
sensitive” to dietary protein than adults as whole body net protein

balance is greater in these young populations at suboptimal
(i.e., < ∼0.3 g/kg) meal protein intakes (10). However, similar
to adults, whole body net protein balance is saturable with
protein ingestion in active children and adolescents (26, 73).
For example, whole body leucine oxidation rates (estimate of
protein oxidation) plateaus at an intake of ∼34mg leucine/kg
(equivalent of ∼0.34 g/kg of a high quality, leucine-enriched
protein) with greater intakes resulting in an expansion of plasma
amino acid pool (26), which represents a metabolic profile that
could be suggestive of an acute nutrient excess (27). Therefore,
available data suggests children and adolescents should target a
meal protein intake of ∼0.3 g/kg to maximize whole body net
protein balance during the recovery from acute exercise (26, 73),
an intake that incidentally has also been shown to maximize
post-exercise muscle protein synthesis in adults (71).

The timing and distribution of protein intake throughout
the day has been suggested to represent a modifiable factor
to optimize dietary protein utilization in adults (95). Similar
to adults, children in the United States have been reported
to consume a skewed protein distribution with the majority
of the daily intake consumed in the evening (28). Whereas,
there is some support for consuming a balanced daily protein
distribution to enhance protein balance in children (29, 30),
this finding is not universal (31). It is possible that the nutrient
demands for growth in active children and adolescents render
them more sensitive to dietary amino acids and, thus, less
influenced by variations in protein distribution. This may be akin
to the ability of resistance exercise in adults, the arguable only
parallel to “growth” in this population, to increase the sensitivity
of muscle protein synthesis to dietary amino acids for up to
24 h (76). Nevertheless, given the anabolic response to bolus
protein ingestion is saturable, prudent advice may be to target
the repeated ingestion of moderate protein-containing meals
to optimize the anabolic efficiency of the daily protein intake.
Similar to adults, however, additional research is warranted
to identify the anabolic potential of different protein sources
independently and within whole food matrices and mixed meals.

PROTEIN CONSIDERATIONS WITH AGE

It is well-established that there is a gradual loss of skeletal muscle
mass and function that occurs at a more advanced age, and
that this muscle deconditioning is usually coupled to sedentary
lifestyle behaviors (32). For example, the age-related loss of
skeletal muscle mass is thought to begin at ∼50 years and
progress at a rate of ∼0.8% per year (33) whereas the decline in
strength, while associated with muscle loss, occurs at a faster rate
of ∼2–3% per year (34). Therefore, when an individual reaches
70 years of age, they may have lost ∼16% of their muscle mass
and∼50% of their strength from their younger years.

The age-related decline in overall skeletal muscle mass can
be attributed to an imbalance between muscle protein synthesis
and breakdown rates that results in a negative muscle protein
balance (35). No detectable differences shown to exist in post-
absorptive muscle protein synthetic rates between younger and
older men (36, 81) and women (37). Hence, the age-related
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decline in muscle mass is thought be attributed to the blunting
of the postprandial muscle protein synthetic response to protein
ingestion when compared to their younger counter-parts (36,
38, 81). The impaired ability of aging muscle to elicit a robust
postprandial muscle protein synthetic response to elevated
dietary amino acid availability in circulation has been coined
“anabolic resistance” (39). Various strategies have been used in
an attempt to overcome this age-related anabolic resistance of
muscle protein synthesis rate such as increasing the protein
density of meals (40, 41), food fortification techniques including
extra leucine as an anabolic trigger (42), and food combinations
(60, 61). However, what appears to be the most promising,
and cost effective, lifestyle strategy to improve the postprandial
muscle protein synthetic response to protein ingestion at a more
advanced age is regular exercise (82). The final point that has
received little attention is the potential sexual dimorphism in the
age-related changes in muscle protein synthesis rates in response
to protein. There is some indication that aging men and women
may respond differently to nutritional stimuli (43, 44), but both
sexes are clearly anabolically resistant (43). At this time, however,
there is not enough data to clearly define if older women have
different protein requirements when compared to older men.

Despite this established anabolic resistance with age, current
protein requirements as established by whole body nitrogen
balance methods are similar throughout adult life (Table 2).
When using a muscle-centric approach to protein intake,
however, we have observed that the relative quantity of protein
to maximize the postprandial muscle protein synthetic response
is greater in older when compared to younger men. In particular,
we established that older men demonstrated an ingested protein-
dose response curve of postprandial muscle protein synthesis

rates up to∼0.40 g/kg per meal, which was nearly doubled when
compared to young adults (∼0.24 g/kg per meal) (72). When
considering the value of spread distribution pattern of protein
intake at each meal time (i.e., breakfast, lunch, dinner, and
evening snack) for maximal muscle anabolic potential (45, 96),
it seems that protein intakes for older adults is likely higher than
the current RDA or PRI of∼0.8 g/kg/d and nearing values closer
to ≥1.2 g/kg/d. These recommendations are supported by whole
body tracer estimates using the indicator amino acid oxidation
technique of a safe intake of ∼1.25 g/kg/d in older (i.e., >65
years) adults (46). In addition, lean body mass loss over 3 years is
lowest in older adults consuming ≥1.2 g/kg/d (104), collectively
supporting dietary protein as a modifiable risk factor for age-
related lean (and muscle) loss. However, a prospective multi-site
randomized control trial with defined protein intakes spanning
sufficient to deficient with consideration for habitual activity and
functional endpoints (e.g., muscle strength/mass) is ultimately
needed to guide best practices in nutritional advice.

HOLISTIC APPROACH FOR BETTER
DEFINITIONS OF OPTIMAL PROTEIN
INTAKE FOR MUSCLE?

Reductionist approaches have made significant contributions
toward the understanding of nutrient-muscle interactions. For
example, it has been established that dietary protein derived
amino acids, especially the essential amino acids (105), are
mainly responsible for the stimulation of postprandial muscle
protein synthesis rates. Moreover, the branched chain amino
acid, leucine, has received much attention due to its dual role as

FIGURE 2 | To adequately define optimal protein intakes it is important to consider an integrative holistic approach. This “top-down” approach considers that different

levels are additive to the next for the development of dietary advice (110, 111). Dietary patterns (animal based vs. plant based) and their associated protein foods are

directly connected. Protein food is more than the sum of its constituent amino acids and the net effect of the food matrix, or food combinations (e.g., complementary

protein pairing of plant-based foods), likely has an impact on the stimulation of postprandial muscle protein synthetic responses and overall diet quality. At the highest

levels, food sustainability, food waste, and other human choices are important considerations. At the lowest (reductionist) level, amino acids represent the fundamental

building blocks of protein and are anabolic agents in themselves (i.e., initiate protein synthesis). Aside from nutrient factors, ample physical activity, including regular

structured exercise, is important component of a healthy lifestyle and has a direct impact on protein utilization and the overall nutritional recommendation.
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an anabolic signaling molecule (106, 107) as well as a substrate
for protein synthesis (108, 109). However, with the general
preoccupation of the field studying the individual parts (i.e.,
isolated proteins and free amino acids) of nutrition in a typical
bottom-up fashion, our current approach to understanding
human nutrition may be nearing its limits to adequately define
the role of protein quality and quantity for muscle mass and
health within a complete diet.

As shown in Figure 2, a holistic point-of-view considers
that protein nutrition follows a hierarchical organization with
each level demonstrating a reinforcing factor into the next for
the overall protein recommendation (110, 112). Using a top-
down approach, which takes into account environmental (e.g.,
time of year, geographical location, and sustainable agricultural
practices), quality of life (e.g., physical activity/exercise habits
or injury), dietary pattern (e.g., Western, Mediterranean, or
vegetarian), protein foods (e.g., beef or quinoa), net effect
of the food matrix (e.g., food structure and nutrient-nutrient
interactions), and finally the most basic constituent of protein
(i.e., dietary amino acids), will help advance the field of
research and perhaps yield the most ecologically valid dietary
advice (112, 113).

At the higher levels, it is important to first consider the eating
pattern of a population as dietary guidelines consist of eating
patterns and their respective food choices to ensure nutrient
adequacy and overall diet quality. Dietary eating patterns are
often adapted tomeet personal preference with common patterns
including animal based (e.g., US-style) or plant-based (e.g.,
vegetarian) eating patterns. Indeed, plant-based diets are often
thought to be inferior for the stimulation of postprandial muscle
protein synthesis (114). Plant based foods, when viewed in
isolation, are lower in leucine, lysine, and methionine by total
amino acid content when compared to animal based foods
(115). As such, it has been demonstrated that the ingestion of
soy protein isolate resulted in a reduced postprandial muscle
protein synthetic response when compared to whey protein
ingestion in healthy young men (116). However, vegetarian
and vegan diets are quite diverse, and generally consist of the
ingestion of a variety of plant based foods throughout the day
to ensure a more balanced profile of essential amino acids
for the stimulation of postprandial muscle protein synthesis
rates (117). Direct comparisons, however, are non-existent with
regards to the capacity of mixed plant based foods to augment
postprandial muscle protein synthesis rates vs. the ingestion of
animal based foods.

It is also significant to develop protein recommendations in
relation to whole food approaches, which takes into account
the amino acid composition of the ingested protein food as
well as the associated net effect of the food matrix (118).
The food matrix describes the nutrient and non-nutrient
components of foods as well as their structure and interactions
(113, 119). The food matrix can influence nutrient digestion,
absorption, and in terms of protein containing food matrices,
the net anabolic action on the stimulation of muscle protein
synthesis rates (62, 120–123). Such findings strongly suggest

that there are interactions occurring within the food matrix
to potentiate the net muscle anabolic effect that is stronger
than the individual action of amino acids alone (118). Overall,
dietary patterns are composed of foods, food combinations, and
their associated food components and nutrients. Certainly, it
is relevant to deconstruct dietary patterns, and subsequently
understand how the parts of foods (i.e., amino acids) activate
anabolic signaling pathways and stimulate the postprandial
muscle protein synthetic response to understand the mechanistic
basis behind a dietary recommendation. However, it is also
important to balance the knowledge gained from studying
isolated food components with the interactions occurring
between exercise habits, eating patterns, and foods (and their
constituent nutrients) when providing dietary advice (Figure 2).

CONCLUSION

Identifying the optimal amount and quality of protein foods to
consume within a dietary pattern is necessary to provide dietary
guidance. We have discussed optimal protein intakes from a
muscle-centric point of view given its role in muscle function and
metabolic health. There is little uncertainty that there needs to be
some level of flexibility when considering what is the “optimal”
protein intake to include within a dietary pattern throughout
the lifespan. In terms of the protein RDA or PRI, these values
represent a minimal target to prevent a protein deficiency within
a safety margin, and perhaps are not adequate to support muscle
protein remodeling with regular exercise training (6) and/or
account for the increased dietary protein amounts required to
overcome anabolically resistant aged muscles (7). Moreover,
protein quality is also an important consideration of a dietary
plan. The DIAAS of a dietary protein may yield more direct
information with regards to protein digestibility (2), but there
is currently limited DIAAS available based on a wide variety of
dietary proteins. Moreover, DIAAS does not consider the impact
of exercise training on modulating protein digestibility and the
transfer of bioactive food constitutes (118), which will play a role
in defining optimal protein quality.

At some point, it is also important to recognize a
holistic nutrition framework where there is interplay between
environmental considerations, physical activity and exercise
patterns, dietary patterns, protein foods, and nutrients (amino
acids) that cultivates into the overall dietary advice (Figure 2).
Likewise, it is essential to keep in mind that there is adaptability
for any protein recommendation throughout the life/health-
stage, which accounts for health or performance goals, periods
of hospitalization, or disease-state. In turn, this will provide a
better compass for the definition of “optimal” protein intakes for
all ages.
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